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1Institute of Physiology, University of Regensburg, Regensburg, Germany and 2Department of Medicine/Unit of Anatomy, Faculty of
Science, University of Fribourg, Fribourg, Switzerland

Severe sepsis is often accompanied by acute renal failure

with renal tubular dysfunction. Albuminuria is a common

finding in septic patients and we studied whether it was due

to an impairment of proximal tubular endocytosis of filtered

albumin. We studied the regulation of megalin and cubilin,

the two critical multiligand receptors responsible for albumin

absorption, during severe experimental endotoxemia.

Lipopolysaccharide (LPS) caused a time- and dose-dependent

suppression of megalin and cubilin expression that was

paralleled by a decrease in plasma albumin levels and an

increase in the urine concentration of albumin in mice.

Incubation of rat renal cortical slices with LPS also reduced

the mRNA expression of megalin and cubilin. Further, LPS

suppressed megalin and cubilin mRNA expression in murine

primary proximal tubule cells and decreased the uptake of FITC

albumin in these cells. In addition, the increase in urine levels of

albumin in response to ischemia/reperfusion-induced acute

renal failure was paralleled by a decrease in the expression

of megalin and cubilin. Thus, our data indicate that the

expression of megalin and cubilin is decreased during

experimental endotoxemia and in response to renal

ischemia/reperfusion injury. This downregulation may

contribute, in part, to an increase in urine levels of albumin

during acute renal failure.
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Sepsis and septic shock are a serious health problem world-
wide because of high morbidity and mortality rates.1 They
are also one of the most important risk factors for acute renal
failure (ARF), which is defined as the abrupt decline in
glomerular filtration rate and tubular dysfunction. The inci-
dence of ARF is B43% in patients with severe sepsis and
septic shock. In addition, ARF is a critical complication of
sepsis because it further increases the mortality rate.2 Therefore,
the understanding of the pathogenesis of sepsis-related ARF
is of critical importance.

Hypoalbuminemia is a common finding in septic patients,3

and it is associated with higher mortality rates, not only in
septic patients but also in patients with ARF.4–6 Albumin is
synthesized in the hepatocytes and is the most abundant
plasma protein.7 It contributes to the maintenance of oncotic
pressure and blood volume, and it serves as a carrier for a
number of substances, such as drugs, vitamins, hormones,
bilirubin, and fatty acids. A decreased hepatic formation of
albumin, increases in catabolism, vascular permeability, or in
the urinary excretion of albumin may be reasons for hypo-
albuminemia.8 Under physiological conditions, the urinary
loss of albumin is mainly prevented by an intact glomerular
filtration barrier; thus, albuminuria is an important func-
tional parameter of glomerular damage.9 However, it has
been found over the past years that albumin is also partially
glomerular-filtered and then reabsorbed in the proximal
tubule via receptor-mediated endocytosis.10,11 Therefore,
albuminuria may also result in part from an altered reab-
sorption by proximal tubule cells (PTCs). Two receptors,
megalin and cubilin, are involved in the renal process for
tubular reabsorption of albumin via a receptor-mediated
endocytosis.12 Megalin is a large transmembrane protein
(B600 kDa) that belongs to the LDL (low-density lipopro-
tein) receptor family,13 and cubilin, also known as the
intrinsic factor/vitamin B12 complex receptor, is a peripheral
membrane protein (B460 kDa).14 Within the kidney, cubilin
and megalin are highly expressed at the apical site of PTCs,
and both proteins are critically involved in the reabsorption
of several glomerular-filtered substances including albumin.12

Recent findings suggest that cubilin is essential for the
proximal tubular uptake of albumin, and that megalin is
required for the endocytosis of the cubilin–albumin com-
plex.15 Because severe sepsis is often accompanied by ARF
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with renal tubular dysfunction, an impairment of proximal
tubular endocytosis of glomerular-filtered albumin may
participate in the renal loss of albumin during sepsis.

Bacterial endotoxins or exotoxins are known to stimulate
the synthesis of inflammatory mediators on glomerular
podocytes and tubular epithelial cells.16 Administration of
lipopolysaccharide (LPS), which is a component of the outer
membrane of Gram-negative bacteria, is an experimental
approach commonly used in examining the pathogenesis of
sepsis. Injection of LPS has been found to cause a decrease in
plasma albumin levels and an increase in the urinary excretion
of albumin in animals.17–20 Recently, it has been demon-
strated that LPS downregulates the expression of megalin
in vitro.21 As the multiligand receptors megalin and cubilin
are of major importance for proximal tubular reabsorption of
albumin, we investigated in the present study the regulation
of these receptors during severe experimental endotoxemia
and, in addition, on ischemia/reperfusion (I/R)-induced ARF.

RESULTS
LPS worsens renal function and increases urine concentration
of albumin

Plasma creatinine and urea levels were increased from 0.30±
0.04 and 24.5±2.6mg/dl to 0.61±0.05 and 79±3.6mg/dl,
respectively, 16 h after injection of LPS (10mg/kg). Plasma levels
of albumin were decreased from 40.9±2.3 to 23.2±3.0mg/ml
16 h after injection of LPS (10mg/kg). Urine albumin concen-
tration increased 2.0- and 1.7-fold at 8 and 16h after the injection
of LPS. The ratio of urinary albumin to creatinine increased 2.0-
and 2.2-fold at 8 or 16h after the injection of LPS (Figure 1).

LPS decreases renal megalin and cubilin expression

Endotoxemia, induced by the administration of a single dose
of LPS (10mg/kg), time-dependently decreased renal megalin

and cubilin mRNA abundance. Megalin mRNA was down-
regulated to 74%, 60%, and 34% of control levels at 4, 8, and
16 h after injection of LPS, respectively. Cubilin mRNA levels
were decreased to 68%, 51%, and 44% of control levels at 4,
8, and 16 h after treatment with LPS, respectively. Clathrin
heavy chain (HC) and PiT-2 mRNA levels were unaltered 4,
8, and 16 h after treatment with LPS. SGLT1 mRNA levels
were increased 1.6- and 1.5-fold at 8 and 16h after injection of
LPS, respectively (Figure 2a).

Injection of increasing doses of LPS (1, 3, and 10mg/kg)
caused a dose-dependent downregulation of megalin mRNA
abundance to 67%, 51%, and 37% of control levels 16 h after
LPS injection, respectively. Cubilin mRNA abundance also
decreased dose-dependently to 74%, 57%, and 42% of
control values, respectively. Clathrin HC mRNA levels were
unaltered (Figure 2b). We further investigated the expression
of megalin, cubilin, and clathrin HC protein in the kidneys
of vehicle- and LPS-treated animals and found that the
expression of megalin and cubilin protein were decreased to
45% or 65% of control values, respectively, in animals treated
for 16 h with LPS. Clathrin HC protein levels were unaltered
(Figure 2c and d). As megalin and cubilin are also expressed
in other tissues, we further determined the effect of LPS on
the expression of megalin and cubilin in the lung and the
small intestine. LPS decreased megalin mRNA expression
in the lung to 49% of control values. In contrast, megalin
mRNA expression was increased in the small intestine to
280% of control values. Cubilin mRNA was not detected in
the lung, and was decreased in the small intestine to 11% of
control values. Megalin immunoreactivity was detected in
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Figure 2 | Effect of lipopolysaccharide (LPS) on megalin and
cubilin expression. (a) Time-dependent effect of LPS (10mg/kg)
on renal megalin, cubilin, clathrin heavy chain (clathrin HC), PiT-2,
and SGLT1 mRNA expression related to b-actin mRNA expression.
(b) Dose-dependent effect of LPS on renal megalin, cubilin, and
clathrin HC mRNA expression related to b-actin mRNA expression.
(c) Insets show representative immunoblots for megalin, cubilin,
clathrin, and b-actin protein expression. (d) Effect of LPS (10mg/kg
for 16 h) on megalin, cubilin, and clathrin HC protein
expression related to b-actin protein expression. Values are
mean±s.e.m. for six animals. *Po0.05 vs. control.
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Figure 1 | Endotoxemia induces hypoalbuminemia and
increases urine concentration of albumin. Effect of
lipopolysaccharide (LPS; 10mg/kg for 16 h) on (a) plasma
creatinine concentration and (b) plasma albumin concentration.
Time-dependent effect of LPS on (c) urine albumin concentration,
and (d) urine albumin/creatinine ratio. Values are mean±s.e.m.
for six animals. *Po0.05 vs. control.
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proximal tubules of vehicle-treated mice and was clearly
decreased in mice treated with LPS (Figure 3a–d). Cubilin
immunoreactivity was also observed in proximal tubules of
vehicle-treated mice. In kidneys from LPS-treated mice,
there was also a marked reduction in the staining for
cubilin after 16 h (Figure 3e–h). The acute tubular necrosis
score was increased in LPS-treated mice compared
with vehicle-treated mice (2.4±0.8 vs. 0.5±0.2, Po0.05;
Figure 3i and j).

LPS suppresses megalin and cubilin mRNA expression ex vivo

To confirm the pathophysiological relevance of our in vivo
findings independent of systemic influences, we assessed the
effect of LPS on megalin and cubilin expression ex vivo in
rat kidney slices. LPS alone (1mg/ml) significantly decreased
megalin and cubilin mRNA levels after 6 h of incubation to
53% and 62% of control levels, respectively (Figure 4). There
was no difference in the concentration of lactate dehydro-
genase (LDH) in the supernatants of control and LPS-treated
kidney slices (data not shown).

LPS reduces megalin and cubilin mRNA expression and the
uptake of FITC albumin in primary PTCs

To examine a possible direct effect of Toll-like receptor (TLR)
activation on megalin and cubilin expression, we incubated
primary PTCs with ligands for TLR2, TLR3, TLR4, TLR7,
and TLR9. We found that only the activation of TLR4 by LPS
significantly downregulated megalin and cubilin mRNA to 55%
and 62% of control levels, respectively, 16 h after the addition
of LPS (Figure 5a). No significant accumulation of LDH in
the supernatants was measured (Figure 5b). Furthermore,
cellular viability was unaltered 16 h after the addition of the
different TLR ligands (Figure 5c). In line with the down-
regulation of megalin and cubilin, the uptake of fluorescein
isothiocyanate (FITC)-labeled albumin was reduced in LPS-
treated cells to B60% of control values (Figure 5d).

Renal I/R decreases megalin and cubilin expression

Plasma creatinine and urea levels were increased from 0.24±
0.03 and 25.4±2.1mg/dl to 1.21±0.12 and 131±18.0mg/dl,
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Figure 4 | Effect of lipopolysaccharide (LPS) on megalin and
cubillin expression ex vivo. LPS (1 mg/ml for 6 h) on (a) megalin
and (b) cubilin mRNA expression related to b-actin mRNA
expression in rat renal cortical slices. Values are mean±s.e.m. of
three independent experiments. *Po0.05 vs. control.

Figure 3 | Immunolocalization of megalin and cubilin. Megalin
immunolocalization in the renal cortex of (a, b) control and (c, d)
lipopolysaccharide (LPS; 10mg/kg for 16 h)-treated animals.
Cubilin immunolocalization in the renal cortex of (e, f) control and
(g, h) LPS (10mg/kg for 16 h)-treated animals. Periodic
acid–Schiff–stained kidney sections treated with (i) saline and (j)
LPS at 16 h. Original magnification (a, c, e, g) � 100, (i, j) � 200,
and (b, d, f, h) � 400.
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respectively, after renal ischemia for 27min and reperfusion
for 16 h (I/R). Plasma levels of albumin were unchanged
after I/R. Urine albumin concentration and urine albumin/
creatinine ratio were increased 4.0- and 6.4-fold, respec-
tively, in mice subjected to I/R. Megalin and cubilin mRNA
were downregulated to 41% and 47% of control levels 16 h
after renal ischemia for 27min, respectively. Clathrin HC
mRNA was not altered 16 h after renal ischemia for 27min
(Figure 6).

DISCUSSION

Several clinical studies have shown that septic patients
develop albuminuria, but the mechanisms are not fully
understood.22,23 Within the kidney, albumin undergoes
glomerular filtration and proximal tubular reabsorption.10

Most findings suggest a central role for the glomerular
filtration barrier, especially for podocytes, in this context.9,24

However, a decrease in proximal tubular reabsorption of
albumin via a decrease in the cubilin- and megalin-
mediated reuptake of albumin might also contribute to the
development of albuminuria as a consequence of glomer-
ular disease. A single bolus injection of LPS in our in vivo
model caused a marked increase in plasma levels of urea
and creatinine, indicating that renal failure occurred in
these mice.

We now found that endotoxemia caused a time- and dose-
dependent downregulation of megalin and cubilin gene
expression in vivo. To confirm the relevance of our in vivo
findings, we assessed the effect of LPS on megalin and cubilin

mRNA expression ex vivo in rat kidney slices, where we used
a high concentration of LPS (1 mg/ml) to imitate the condi-
tion of septic shock.25 In agreement with the results obtained
in our in vivo experiments, we found that LPS decreased
megalin and cubilin mRNA expression ex vivo. This finding
may indicate that the downregulation of megalin and cubilin
in response to LPS is independent of systemic and renal
hemodynamic or tubular alterations, such as hypotension,
reduced renal blood flow, and reduced glomerular filtration,
which we and others observed in this in vivo model.26 In
subsequent in vitro studies in primary PTCs, endotoxin was
clearly shown to decrease the cellular uptake of FITC-labeled
albumin, which is in line with previous observations.21,27 The
decrease in the cellular uptake of FITC-labeled albumin was
paralleled by a decrease in cubilin and megalin mRNA
expression. This finding is in accordance with previous in
vitro reports, showing a decreased expression of megalin in
response to LPS or plasma from septic patients.20,23,24 We
now found that cubilin mRNA expression is also decreased in
response to LPS. As proximal tubules uptake LPS in vivo,28

these findings may indicate a possible direct effect of LPS on
the expression of megalin and cubilin in PTCs, which could
be likely mediated via activation of extracellular-signal-
regulated kinases 1 and 2 (ERK1/2).21 As the expression of
several TLRs has been reported for renal tubule cells,29,30 we
further investigated the expression of megalin and cubilin in
response to ligands for other TLRs. In contrast to the TLR4
ligand LPS, we found that typical ligands for TLR2, TLR3,
TLR7, and TLR9 did not alter the expression of megalin and
cubilin in primary PTCs. Therefore, our data suggest that
megalin and cubilin are affected specifically by TLR4 ligands.
Taken together, our data show that LPS directly reduces megalin
and cubilin expression. It cannot be completely excluded that
the observed changes are a result of cellular damage. However,
several lines of evidence indicate that LPS directly reduces
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Figure 5 | Effect of Toll-like receptor (TLR) agonists in vitro.
Effect of lipoteichoic acid (LTA; 1 mg/ml; TLR2 agonist),
polyinosinic:polycytidylic acid (Poly (I:C); 30 mg/ml; TLR3 agonist),
ultrapure lipopolysaccharide (LPS; 100 ng/ml; TLR4 agonist),
imiquimod (1 mg/ml; TLR7 agonist), and type B CpG
oligonucleotide ODN 1668 (CpG; 1 mg/ml; TLR9 agonist) for 16 h
on (a) megalin and cubilin expression, (b) lactate dehydrogenase
(LDH) release, and (c) cell viability in primary proximal tubule cells.
(d) Effect of LPS on fluorescein isothiocyanate (FITC) albumin uptake
in these cells. Values are mean±s.e.m. of four to six independent
experiments. *Po0.05 vs. control.
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Figure 6 | Effect of renal ischemia reperfusion on renal
function and megalin and cubilin expression. Effect of ischemia
for 27min and reperfusion for 16 h (ischemia/reperfusion (I/R))
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concentration, (c) urine albumin/creatinine ratio, and (d) megalin,
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megalin and cubilin expression. (1) in accordance with pre-
vious observations, we found only a modest renal tubular
injury in our in vivo model of LPS-induced ARF;31,32 (2) our
ex vivo and in vitro findings, which are in accordance with
previous findings, indicate that there is no cell damage, at
least ex vivo and in vitro;33,34 and (3) the observation that the
expression of clathrin HC, which is involved in endocytosis,
and of the apical sodium cotransporters SGLT1 and PiT-2 is
unaltered or even increased.35 In addition, the latter finding
also argues against a global decrease in proximal tubular
apical membrane carriers and ion channels in response to
LPS. However, the precise mechanism for the repression of
megalin and cubilin gene expression in response to LPS
in vivo has to be addressed in further studies.

To prove the functional consequence for the down-
regulation of megalin and cubilin gene expression, we further
investigated plasma and urine levels of albumin. In line with
previous observations, we found that the injection of LPS
caused a decrease in plasma albumin concentration,19,20 and
an increase in the urine concentration of albumin. This
observation is in contrast to a recent report, where rather a
decrease in urine albumin concentration has been found,36

but it strongly supports other findings reporting an increase
in the urine concentration of albumin.17,18,36,37 The increase
in urine albumin concentration and urine albumin/creatinine
ratio occurred in parallel with the decrease in megalin and
cubilin expression. Thus, our data support a rather sustained
increase in urine albumin/creatinine ratio, and do not support
a transient proteinuria and/or albuminuria as it has been
assumed by others.18,37,38

To exclude extrarenal factors and to prove the importance
of the kidneys for the resulting increased urine albumin levels
in response to endotoxemia, we further investigated the effect
of I/R injury on renal megalin and cubilin expression and on
albumin levels. We found that megalin expression was
decreased in response to I/R injury. This finding fits very
well with another study reporting decreased megalin mRNA
expression in response to I/R.39 As renal I/R induces the renal
formation of cytokines,40 and may also activate the ERK1/2
pathway,41,42 it seems likely that the decrease of megalin in
response to I/R could also be due to an activation of
cytokines and/or the ERK1/2 pathway. In addition, we now
found that cubilin expression is also decreased in response to
I/R injury. The downregulation of megalin and cubilin was
paralleled by an increase in the urine concentration of
albumin, confirming previous observations.36 Although we
could not discriminate between an increase in glomerular-
filtered albumin and a decrease in tubular-reabsorbed
albumin, a decreased tubular absorption of albumin could
likely be involved in the increase of urine albumin
concentration in this model, which has been mainly linked
to an altered glomerular function,43,44 and also in the
endotoxemic mouse model.

We further observed that plasma levels of albumin
were not altered after I/R-induced injury. Thus, the resulting
hypoalbuminemia in response to LPS may be rather due to

alterations in the extrarenal handling of albumin, such as a
decrease in hepatic albumin synthesis, increased catabolism of
albumin, or an increase in the vascular permeability of
albumin.8,45,46 However, as the plasma half-life of albumin
is B2 weeks, a hepatic failure may be of less importance in
this context.

In summary, we provide evidence that experimental
endotoxemia causes a decrease in renal megalin and cubilin
expression, which is paralleled by an increase in the urine
concentration of albumin. We further found that the expres-
sion of megalin and cubilin is decreased in response to renal
I/R injury. Our findings indicate that this downregulation
could be partly involved in the increase in urine albumin
concentration during ARF. Therefore, this study contributes
to our pathophysiological understanding about the develop-
ment of albuminuria under ARF.

MATERIALS AND METHODS
Experimental animals
All animal experiments were conducted according to the National
Institutes of Health Guide for the Care and Use of Laboratory
Animals and were approved by the local animal protection com-
mittee. Male C57BL/6J mice (20–25 g) were obtained from Charles
River (Sulzfeld, Germany). Mice were acclimated for at least 1 week
in the animal facility with free access to food and water. Controls
received intraperitoneal injections of 250ml of 0.9% saline. LPS-
treated mice received a single intraperitoneal injection of 250 ml of
LPS (1, 3, or 10mg/kg from Escherichia coli serotype 0111:B4; Sigma
Aldrich Chemical, Taufkirchen, Germany) dissolved in 0.9% of
saline. The animals (n¼ 6 per group) were killed 4, 8, or 16 h after
injection of LPS or saline. Blood was collected and the kidneys, lung,
and small intestine were quickly removed, frozen in liquid nitrogen,
and stored at –80 1C until extraction of total RNA. For induction
of renal I/R injury, renal arteries of mice (n¼ 6 per group) were
totally occluded for 27min with microaneurysm clamps, followed
by reperfusion for 16 h. In sham controls, renal arteries were only
touched with forceps.

Measurement of renal and blood parameters
Spot urine was obtained 4, 8, or 16 h after the injection of LPS.
Plasma and urine levels of creatinine and plasma concentration of
urea were determined using commercially available kits (BioAssay
Systems, Hayward, CA). Plasma and urine levels of albumin were
determined using a commercially available mouse albumin ELISA
(Immunology Consultants Laboratory, Newberg, OR).

Primary PTCs
Primary PTCs were isolated from mouse renal cortex, based on the
method of Vinay et al.47 In brief, the cortex was minced and digested
in Hank’s balanced salt solution (Invitrogen GmbH, Darmstadt,
Germany) containing 10% collagenase II and 25% of bovine serum
albumin for 20min. After filtration through a 150-mm cell strainer,
the suspension was washed in cold phosphate-buffered saline. The
tubule fragments were separated on a 55% Percoll gradient in 2�
phosphate-buffered saline containing 5mmol/l glucose in which the
proximal tubules form the lowest band. This band was removed and
washed three times in cold phosphate-buffered saline. The proximal
tubule fragments were cultured in a hormone-defined (1% of
Insulin-Transferrin-Selenium-A Supplement (Invitrogen GmbH),
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50 nm hydrocortisone, 5 nM trijodthyronin, and 5 nm epidermal
growth factor) Dulbecco’s modified Eagle’s medium/F-12 medium
supplemented with 1% fetal calf serum. After adhesion in B4 h, the
medium was changed to remove fibrocytes. The cells were grown in
culture medium until confluent and then in serum-free medium for
24 h before use. Thereafter, cells were treated with or without the
TLR2 ligand–purified lipoteichoic acid from Staphylococcus aureus
(1mg/ml), the TLR3 ligand polyinosinic:polycytidylic acid
(poly(I:C))-LMW (30 mg/ml), the TLR4 ligand ultrapure LPS from
E. Coli 0111:B4 (100 ng/ml), the TLR7 ligand imiquimod (1mg/ml),
and the TLR9 ligand type B CpG oligonucleotide ODN 1668 (CpG;
1 mg/ml) for 16 h. All chemicals were purchased from InvivoGen
(San Diego, CA). Uptake of FITC-conjungated bovine serum
albumin was determined as described.48 In brief, cells were washed
three times with phosphate-buffered Ringer’s solution (pH 7.4) and
were incubated with 0.5mg/ml FITC-conjungated albumin in
Ringer’s solution for 15min at 37 or 4 1C. Thereafter, cells were
rinsed four times with ice-cold Ringer’s solution, and were lysed
with Triton X-100 (0.1% vol/vol in Ringer’s solution). Fluorescence
was determined in cell lysates using a NanoDrop 3300
Fluorospectrometer (Peqlab Biotechnologie GmbH, Erlangen,
Germany) at an excitation wavelength of 480 nm and an emission
wavelength of 520 nm, and normalized for total protein in the
samples measured by BCA protein assay (Pierce, Rockford, IL).
Fluorescence was corrected for extracellular binding and un-
specific adhesion to the cells by subtraction of fluorescein counts
on cells at 4 1C.

LDH and MTT assay
Cell injury was determined by the release of LDH into the
incubation medium using a commercially available assay kit
(Cayman Chemical, Ann Arbor, MI). The values were presented as
fold of the LDH release that was observed in control incubated cells.
Cell viability was assayed by the MTT assay in accordance with the
manufacturer’s instructions (Cayman Chemical).

mRNA extraction and real-time PCR analysis
Total tissue and cell RNAs were extracted from homogenized tissue
with TRIzol Reagent (Invitrogen) according to the manufacturer’s
instruction. Total RNAwas reverse transcribed into cDNA according
to standard protocols as described previously.49 Real-time PCR for
megalin, cubilin, and b-actin was performed in a LightCycler 480
(Roche, Mannheim, Germany). All PCR experiments were con-
ducted using the LightCycler DNA Master SYBR Green I kit
provided by Roche Molecular Biochemicals (Mannheim, Germany)
as described previously. The following primers were used: mouse
Megalin (NM_001081088) sense: 50-GGAGGAACCAATCTGTTG
TAATGT-30, antisense: 50-GATGGTTGCCTGGAGGG-30; rat Mega-
lin (NM_030827) sense: 50-ACCGCCGCAATGCCGCTGACT-30,
antisense: 50-TGCCCCAATGCCATAGGTAACGA-30; mouse Cubilin
(NM_001081084) sense: 50-AGCTCAACCTCCATTCAATCATA-30,
antisense: 50-GTGCAATCTGTGCTGCTT-30; rat Cubilin (NM_053332)
sense: 50-TGCATGTCACCTTCACGTTT-30, antisense: 50-TGTAAAG
CCTCTCCCACTCC-30; mouse/rat b-actin (NM_007393) sense:
50-CCGCCCTAGGCACCAGGGTG-30, antisense: 50-GGCTGGGGT
GTTGAAGGTCTCAAA-30; mouse clathrin heavy polypeptide
(NM_001003908) sense: 50-ATCGCCCAGCTGTGTGAGAA-30, antisense:
50-TCTTGCAAGCCGCCTGAATA-30; mouse SGLT1 (NM_019810)
sense: 50-CGGAAGAAGGCATCTGAGAA-30, antisense: 50-AATCA
GCACGAGGATGAACA-30; mouse PiT-2 (NM_011394) sense:

50-AGGAGTGCAGTGGATGGAGC-30, antisense: 50-ATTAGTATGA
ACAGCACGCCGG-30.

Protein preparation and immunoblotting
Protein preparation and immunoblotting were performed as
described previously.50 In brief, protein samples were electrophor-
etically separated on 10% polyacrylamide gels and transferred to
nitrocellulose membranes, which were blocked overnight in 5%
nonfat dry milk diluted in Tris-buffered saline with 0.1% Tween-20,
and then incubated for 1 h at room temperature with antibodies
against megalin (1:500), b-actin (Sigma Aldrich; 1:5000), clathrin
HC (Cell Signaling, Danvers, MA; 1:1000), or cubilin (Santa Cruz
Biotechnology, Santa Cruz, CA; 1:500). After being washed, the
membrane was incubated for 2 h with the secondary antibody (Santa
Cruz Biotechnology; 1:2000) and subjected to a chemiluminescence
detection system.

Tubular injury
Renal tissue injury was assessed in 10% phosphate-buffered,
formalin-fixed, paraffin-embedded, and periodic acid–Schiff base–-
stained tissue sections. A semiquantitative score for tubular injury
was calculated for each animal by a blinded observer. The percentages
of tubules that displayed cellular necrosis, loss of brush border,
interstitial edema, vacuolization, and tubule dilatation were scored
as follows: 0¼ none, 1¼o30%, 2¼ 30–60%, and 3¼460%. For
each animal, at least 10 fields were examined.

Immunohistochemistry for megalin and cubilin
Kidneys from sham-operated and LPS-treated mice were fixed in 4%
paraformaldehyde solution by retrograde perfusion through the
abdominal aorta. Immunolabeling was performed on 5-mm paraffin
sections as described previously. In brief, after being boiled in a
microwave oven followed by cooling, kidney sections were incubated
with an anti-megalin antibody (1:500) or an anti-cubilin antibody
(Santa Cruz Biotechnology; 1:200) overnight at 4 1C, followed by
incubation with a secondary antibody. As a negative control, we
used the secondary antibody without incubation with the primary
antibody.

Preparation of rat kidney slices
Male Sprague Dawley rats (200–250 g body weight; Charles River)
were anesthetized and the kidneys were removed. Slices (0.5 mm
thick) were cut with a McIlwain Tissue chopper (Mickle
Laboratory Engineering, Gomshall, UK). The slices (three slices
per experimental condition) were then incubated in Hanks’
balanced solution at 37 1C for 6 h alone or in the presence of LPS
(1 mg/ml).

Statistical analyses
Data were analyzed by analysis of variance with multiple compari-
sons followed by the t-test with Bonferroni adjustment. Po0.05 was
considered significant.
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