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To address the fluctuation regime above the critical temperature of the charge-density-wave phase of 1T-
TiSe2, we perform calculations using the Bethe-Salpeter equation for treating strong electron-hole correlations.
Calculated photoemission intensity maps are in good agreement with the measured ones and provide a deeper
understanding of the phase transition in terms of an electronic instability. We find that no real nesting of the
Fermi surface is necessary, but crossing points between different Fermi surface sheets produce an instability with
a wave vector corresponding to the commensurate charge distribution observed below the critical temperature.
Finally, we also consider the effect of the electron-phonon interaction on the calculated spectra to discriminate
what mechanism is responsible for the instability and conclude that the electron-hole fluctuation scenario is more
likely to occur.

I. INTRODUCTION

Coulomb interaction plays a fundamental role in the
behavior of condensed-matter systems. A particular effect
is generated by the attractive Coulomb interaction between
holes in the valence band and electrons in the conduction
band of certain metals and semiconductors. It induces strong
correlations between the two types of charge carriers. When
the potential is weakly screened, and the gap between the
bands is sufficiently small, it can build up bound states, called
excitons. At low temperature these excitations can condense
into a macroscopic state. This “excitonic insulator phase”1 has
been theoretically described in the 1960s. It was introduced for
a system with valence and conduction bands of semimetallic
or semiconducting configuration, the bands exhibiting extrema
at the same location in reciprocal space.

The resulting superfluid is charge neutral, and thus diffi-
cult to evidence. Indeed, no experimental realization of the
excitonic insulator phase has been unambiguously discovered
yet, although potential candidates have been put forward.2–6

Recently, more theoretical work on the possible realization
of the excitonic insulator phase in particular systems has
been presented.7,8 1T-TiSe2 turns out to be a good candidate
for the realization of such an excitonic insulator phase,9,10

assuming a semimetallic band structure with a low carrier
density in its normal phase.11,12 The compound undergoes at
about Tc = 200 K a second-order phase transition towards
a charge-density-wave (CDW) phase,13 with a (2 × 2 × 2)
superstructure of the lattice. The fact that it breaks the
translational symmetry of the normal phase is a sign of a strong
link between the lattice and the electronic band structure.
Indeed, the extrema of the relevant valence and conduction
bands sit at different locations in the Brillouin zone (BZ),14

linked precisely by the wave vectors of the lattice deformation.
In previous work we have already inter-

preted the photoemission spectra in 1T-TiSe2

below Tc by invoking the influence of the
excitonic condensate on the electronic spectral functions.15

Spectral features similar to those of the exciton condensate
phase have also been observed above Tc.15 This unusual regime
has been attributed to the presence of strong electron-hole

fluctuations anticipating the formation of the exciton
condensate. Here, we study the fluctuation regime above the
critical temperature Tc of the transition to the CDW state.
Our results, based on calculations using the Bethe-Salpeter
equation and focusing on the Coulomb interaction between
holes and electrons, give theoretical support to the hypothesis
that strong electron-hole correlations play an important role
in 1T-TiSe2. The precise interplay between these electronic
correlations and lattice dynamics, as well as the role of a
possible exciton condensate, have still to be studied in more
detail. Persistence above Tc of spectral features reminiscent of
the low-temperature ordered phase allows for an interesting
comparison with the physics of the pseudogap phase in
high-temperature superconductors (HTSC).16,17 Finally, we
also consider the effect of the electron-phonon interaction
on the calculated spectra and compare their typical spectral
signature to the one of the electron-hole fluctuations, giving
further support to the electron-hole fluctuations as the origin
of the instability in 1T-TiSe2.

II. MODEL

We consider a minimal model for the electronic structure
of 1T-TiSe2. For simplifying the numerical work, we neglect
any dispersion of the bands in the kz direction. We take into
account a single valence band εa(�k) having its maximum at �

(center of the BZ),

εa(�k) = −h̄2
(
k2
x + k2

y

)
2ma

+ ε0
a, (1)

and three conduction bands εi
b(�k), labeled i = 1,2,3, having

their minimum at three equivalent M points (on the border of
the BZ). � is separated from each M by the corresponding
spanning vector �wi = �M . The dispersion ε1

b(�k), for the
electron pocket lying along the kx axis reads (see Ref. 14
for a formula describing the other two pockets)

ε1
b(�k) = h̄2(kx − w1x)2

2mbx

+ h̄2k2
y

2mby

+ ε0
b. (2)
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FIG. 1. (a) Diagram for the self-energy of Eq. (9), involving the
Coulomb interaction (wavy line). (b) Diagram representation of the
Bethe-Salpeter equation (6) for the interacting two-particle Green’s
function Gi

2, Eq. (4). The lowest order is the product of the valence
and the conduction band Green’s functions, labeled by a and bi ,
respectively.

The corresponding effective masses are ma and mbx
,mby

,
respectively. The offsets ε0

a > 0 and ε0
b < 0, with respect to

the chemical potential, provide the energy position of the band
extrema. In our calculation, we take the chemical potential
as the zero of energy. The resulting Fermi surface consists of
a symmetric paraboloid in the valence band and an elliptic
paraboloid in each of the conduction bands.

The (spinless) Hamiltonian of the model is composed
of a one-electron part H0 for the different bands and a
Coulomb interaction part W which contains only the Coulomb
interaction between electrons in the valence and in the
conduction bands

W =
∑
�q,i

ρa(�q)V (�q)ρ†
b,i(�q, �wi), (3)

with the screened Coulomb potential V (�q) = e2/ε0(q2 + q2
0 ),

which will be approximated by a local potential, V (�q) = V0, as
discussed below. The partial electron density operators ρa,ρb,i ,
are expressed in the usual way in terms of the fermionic
operators a†(�k) and b

†
i (�k) creating electrons with wave vector �k

in the valence band and in the conduction band i, respectively.
To obtain the self-energies of the valence and the conduction

bands, a perturbation calculation is performed in the electron-
hole interaction W , following the diagram in Fig. 1(a), similar
to the one shown in Ref. 18 [Figs. 2(b) and 2(c), therein].
A basic quantity is the two-particle Green’s function Gi

2
describing pairs, formed by a hole in the valence band and
an electron in the conduction band i. For i = 1 it has the form

G1
2(�k1,�k2,�k′

1,
�k′

2,t − t ′)

= −〈T a†(�k1,t)b1(�k2 + �wi,t)b
†
1(�k′

2 + �wi,t
′)a(�k′

1,t
′)〉, (4)

where �k1 and �k2 are the wave vectors of the electrons in
the valence and the conduction band, respectively. In order
to simplify the calculation, the electron wave vectors are
transformed into the center-of-mass frame of the electron-hole
pair

�Q = �k1 − �k2 (center-of-mass coordinate),

pj = mak2j
+ mbj

k1j

ma + mbj

, j = x,y (relative coordinate). (5)

The same definition holds for �Q′ and �p ′. Because of the center-
of-mass momentum conservation, we have �Q = �Q′. This two-
particle interacting function will be calculated via the Bethe-
Salpeter (BS) equation, which is depicted diagrammatically in
Fig. 1(b),

G1
2( �Q, �p, �p ′,zα) = δ �p, �p ′G

1,(0)
2 ( �Q, �p,zα) + i G

1,(0)
2 ( �Q, �p,zα)

×
∑

�q
V (�q)G1

2( �Q, �p + �q, �p ′,zα). (6)

The noninteracting Green’s function G
1,(0)
2 has the form

G
1,(0)
2 ( �Q, �p,zα) = N ( �p, �Q)

zα − [
ε1
b( �p, �Q) − εa( �p, �Q)

] , (7)

with the thermodynamical factor N ( �p, �Q) = NF (εa( �p, �Q)) −
NF (εb( �p, �Q)), NF being the Fermi-Dirac distribution. The
( �p, �Q) dependence of the dispersions are a consequence of
the transformations (5) for εa(�k1) and ε1

b(�k2) [see Eqs. (1) and
(2)].

The replacement of the screened Coulomb potential by
V0 allows us to integrate out the wave vectors �p, �p ′ of the
two-particle Green’s functions in the BS equation (6), giving
rise to the new functions Xi( �Q,z) = i

∑
p,p′ G

i
2( �Q, �p, �p ′,z),

expressed in terms of X
(0)
i ( �Q,z) = i

∑
p G

i,(0)
2 ( �Q, �p,z), as

follows:

Xi( �Q,z) = X
(0)
i ( �Q,z)

1 − V0X
(0)
i ( �Q,z)

. (8)

With these ingredients, the self-energy of the valence band is
determined by [cf. Fig. 1(a)]

σa( �p,zα) = V 2
0

∑
�Q,i

∫
dω

2π
XXi

( �Q,ω)

× NB(ω) + NF [εbi
( �p + �Q)]

zα + ω − εbi
( �p + �Q)

. (9)

where NB is the Bose-Einstein distribution. This self-energy
directly depends on the dispersion of the conduction band
and on the spectral function XXi

of the integrated two-particle
Green’s function

XXi
( �Q,ω) = 2 Im[Xi( �Q,ω + iη)], (10)

which describes the propagation of an electron-hole pair. In
order to simplify the numerical calculations, the unperturbed
conduction-band dispersion εbi

( �p) is introduced in Eq. (9).
A fully self-consistent approach, using a renormalized band
dispersion in the calculation of the self-energies, should in
principle be done. However, it should not lead to substantially
different results, since the parts of the renormalized spectral
functions (shown below) which have the largest weight, still
more or less follow the bare band dispersion. The calculation
of the self-energy of the conduction band i is similar and leads
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to a comparable expression

σbi
( �p + �ωi,zα) = V 2

0

∑
�Q

∫
dω

2π
XXi

( �Q,ω)

× 1 + NB(ω) − NF [εa( �p − �Q)]

zα − ω − εa( �p − �Q)
. (11)

Except for the exchange of the band indices, this self-energy
differs particularly from the one of the valence band by the
thermodynamical factor.

With our definitions, a pair composed of an electron
εbi

( �p, �Q) and a hole εa( �p, �Q) of center of mass �Q = �0 has
a total momentum wi . In the following figures, the conduction
band is shifted by this vector wi to have its minimum at �. This
choice does not change the electron-hole physics but simplifies
its visualization.

III. NUMERICAL RESULTS

We now turn to the numerical evaluation (using the CUBA

library19) of the self-energies of the valence and the conduction
bands. Our model band structure, given by Eqs. (1) and (2),
is displayed in Fig. 2. Panel (a) shows the dispersion of the
valence and of the conduction bands around their extrema and
along the �M direction. The parameters of these dispersions
are chosen as ε0

a = 0.03 eV, ε0
b = −0.04 eV, ma = me, mbx

=
5.5me, and mby

= 0.5me (me is the bare electron mass), giving
rise to a band structure similar to the one measured in 1T-
TiSe2 and producing a Fermi surface [panel (b)] with four
“crossing” points (where the valence and conduction bands
cross each other at EF ). They are emphasized by arrows on
the Fermi surface displayed in Fig. 2(b). The (orange) circle is

FIG. 2. (Color online) (a) Band structure along kx for ky = 0
considered in our calculations, with a single valence band at �

(orange) and one of the three symmetry equivalent conduction
bands at M (blue) shifted on this graph to �. (b) Corresponding
Fermi surface. (c) Imaginary part of X

(0)
i ( �Q,ω), the integrated

noninteracting two-particle Green’s function, at �Q = �0. Two regimes
are distinguished and related to the band structure in graph (b). (d)
Real part of X

(0)
i ( �Q,ω) (see text).

the hole pocket from the valence band and the (blue) ellipse is
an electron pocket from the conduction band.

The spectral function of the integrated two-particle Green’s
function Xi( �Q,ω) plays a central role in the self-energies of the
valence and conduction bands [see Eqs. (9) and (11)]. We first
discuss the case of its noninteracting version, X

(0)
i ( �Q,ω). In

Fig. 2(c), we show the imaginary part of X
(0)
i ( �Q,ω) at �Q = �0

(and T = 250 K), where two domains have been delimited on
each side of ω = 0. Nonzero contributions are produced by
transitions between the valence and the conduction bands at
a certain energy transfer ω [such an excitation is sketched in
Fig. 2(a)]. The large (green) feature building up at ω > 0 in
Fig. 2(c) is related to transitions away from the band extrema,
in the (green) region III of Fig. 2(b) (see Ref. 20 for a similar
discussion below Tc.) The (orange) peak extending to energies
below ω = 0 are related to transitions near �k = �0 (region I).
In Fig. 2(d), we show the real part of X

(0)
i ( �Q,ω) at �Q = �0

for two different temperatures. From Eq. (8), Xi diverges
when Im(X(0)

i ) → 0 and Re(X(0)
i ) → 1/V0. The first condition

is fulfilled at ω = 0 for any temperature, while the second
depends on the value of V0. In order to obtain a divergence at
T = 200 K, we find V0 ≈ 0.4 eV Å3. Attributing this value to
V0 corresponds to a reasonable replacement of the screened
Coulomb interaction by a local potential. Its value can also
be obtained by integrating the real-space screened Coulomb
potential V (�r) over a sphere of radius rλ = 1.6 Å. This distance
is slightly larger than the screening length of 1.2 Å, which
can be estimated by using the Thomas-Fermi screening theory
and the measured plasma frequency in 1T-TiSe2.21 The fact
that these distances are about one half of the nearest-neighbor
distance justifies the use of a local potential.

Figure 3 illustrates the divergence of the electron-hole
susceptibility Xi( �Q,ω). In graphs (a) and (b) are shown
its imaginary and real parts for different temperatures. The
divergence develops as the temperature decreases towards
T = 200 K. This instability of the electron-hole system takes
place at �Q = 0 and ω = 0 and it corresponds to the Thouless
criterion18 for the transition, at T = 200 K, to a possible
exciton condensate. It is characterized by the wave vectors
�wi , since, for �Q = 0, the wave vectors of the electron and
of the hole in Gi

2 in Eq. (4) differ precisely by �wi . A
fully three-dimensional calculation would be based on the
minima of the conduction band lying at L, rather than at

(a) (b)

FIG. 3. (Color online) Temperature dependence of the (a) imagi-
nary and (b) real parts of Xi( �Q = �0,ω).
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

FIG. 4. (Color online) Four different Fermi-surface configura-
tions (first column) are discussed (when the hole pocket is drawn in
orange color, it is the configuration for �Q = �0; in green or red colors,
the Fermi pockets are shifted by a center-of-mass wave vector �Q �= 0).
Depending on the situation, the divergence of Re[X(0)

i ( �Q,ω = 0)]
occurs for different �Q vectors (second column, in false color plots).
The third column also displays Re[X(0)

i ( �Q,ω = 0)] as a function of
Qx for different Qy from 0.0 (top curve) to 0.18 (bottom curve), in
arbitrary units. The wave vectors are given in Å−1.

M . The corresponding wave vectors �wi would then exactly
correspond to the new periodicity of the electronic charge in
the low-temperature CDW phase.13 Therefore this scenario
indeed shows the relevance of electron-hole correlations in
the formation of the (2 × 2 × 2) CDW of 1T-TiSe2, which
is commensurate, in spite of the absence of a real nesting
vector.22 The nesting between valence and conduction bands,
which is often taken as the driving force of a CDW transition, is
replaced by the crossing of the corresponding Fermi surfaces
at the four points shown in Fig. 2(b). We shall now discuss
this issue in more detail before discussing the influence of the
electron band self-energies on the spectral function.

In order to understand the influence of the Fermi-surface
configuration on the wave vector characterizing the electronic
instability, we consider three other Fermi-surface configura-
tions in addition to the one discussed above. Our results are
summarized in Fig. 4. For explaining the different behaviors,
it is useful to consider Eq. (7) for G

1,(0)
2 , which involves in its

denominator the difference between the energies of a valence
and of a conduction-band state.

At low temperature the numerator is nonzero essentially
only when one of the states is occupied and the other one
is empty. For z = 0, the denominator in the sum is small
when the involved valence- and conduction-band energies are
close to the Fermi surface. For our configuration (a) this is
the case near the four crossing points for which the center-

of-mass momentum Q is zero. Thus the peak in Re(X(0)
i ),

and the instability of Re(Xi), occur at �Q = 0. However, in
configuration (d), where the effective mass of the valence band
is reduced (ma = 0.4me), there are no crossing points. The
most important contribution to the sum over �p (appearing in the
definition of X

(0)
i ) will come from regions where, for a given

�Q, a small difference in the denominator can be maintained
on a relatively large segment of Fermi surface in the �p sum.
For configuration (d), this is the case for Qx ≈ 0.2 Å−1 and
Qy small. Indeed, when the valence-band Fermi surface is
shifted by Qx ≈ 0.2 Å−1 [in green in Fig. 4(d)], it touches
the ellipse of the conduction-band Fermi surface. Therefore
this configuration corresponds more to the Fermi-surface
nesting, well known for Peierls transitions, and the vector,
for which the instability occurs, joins the portions of the two
Fermi surfaces with a similar curvature. For an intermediate
case, a configuration for which the hole pocket diameter
is exactly matching the short axis of the elliptical electron
pocket [Fig. 4(g)], a nonzero wave vector �Q ≈ (0.07,0) Å−1,
is again preferred. Indeed, shifting the hole pocket by this
nonzero Qx (see green circle) leads to a configuration where
the nesting between the two Fermi surfaces is more favorable.
For configuration (d), one should note that there is no more
favorable configuration for a nonzero Qy at Qx = 0 [see panel
(e)]. The reason is that the two Fermi surfaces are too close
to each other. In the configuration (j), the conduction-band
minimum is shifted to −90 meV such that its Fermi surface
is enlarged. In this case [see panel (k)], there is a favorable
situation for a finite Qy (corresponding to the displaced red
circle) also, in addition to the (dominant) one occurring along
Qx (green circle). However, the real divergence builds up for
Qy = 0 and Qx around 0.3 Å−1.

It should be noticed that for the Fermi-surface configu-
rations of Figs. 4(d), 4(g) and 4(j), the value of V0 had to
be increased to 0.68, 0.49, and 0.72 eV Å3, respectively, for
keeping the electronic instability at 200 K. It means that these
configurations are less susceptible to lead to an electronic
instability than the one of Fig. 4(a).

We would also like to note that any interaction potential
V (�r), which acts between the valence and conduction bands
and can be approximated by a local potential with a sufficient
amplitude, and which leads to self-energies having the same
form as those of Eqs. (9) and (11) will essentially result in the
same phenomenology as described in this article.

IV. SPECTRAL FUNCTION: COMPARISON
TO EXPERIMENT

Figures 5(a)–5(f) display the photoemission intensity maps
calculated numerically with the self-energies of Eqs. (9) and
(11), using the band dispersions shown in Fig. 2(a). Graphs
(a) and (b) of Fig. 5 show the results for the valence and
the conduction bands. In graphs (c) and (d) are displayed
the corresponding energy distribution curves. Around �

[Fig. 5(a)], for the valence band, two separate bands are clearly
distinguished. The top of the valence band (labeled c) is higher
above EF and has a high intensity around its local maximum
situated at about 85 meV, vanishing then for larger values of
the wave vector. The rest of the band (v) is shifted below EF ,

ht
tp

://
do

c.
re

ro
.c

h



(a) (b)

(c) (d)

(e) (f)

(g) (h)

FIG. 5. (Color online) Photoemission intensity maps calculated
in the fluctuation regime above Tc (at 250 K) at � (a) and at M (b),
without considering the Fermi-Dirac cutoff. Graphs (c) and (d) show
the corresponding energy distribution curves. In graphs (e) and (f),
same as (a) and (b), but symmetrized around the band extremum and
cut by a Fermi-Dirac cutoff. Photoemission intensity maps measured
at 250 K (g) at � and (h) at M in the surface BZ, from Ref. 11.
Guides to the eyes (dashed curves and triangles) have been added to
emphasize the faint backfolded band in the calculation (f) and in the
experiment (h).

at about −70 meV, and its intensity, which is low around its
maximum, increases as the wave vector increases. As the peak
of the bare band shifts away from EF , its width increases too.
In graph (b), around M , the conduction band is split in two
parts, one dispersing mainly above EF and one below EF .
Above EF , the band (labeled c) is quite sharp and has a local

maximum at 95 meV, while below EF the band (v) is broader
and has a minimum at −155 meV.

In our previous work on the exciton condensate phase,11

we interpreted our photoemission data on 1T-TiSe2 within the
exciton condensate phase model developed at the mean-field
level and characterized by an order parameter. Although
formally not correct, this approach was also used to simulate
the photoemission data above Tc with a nonzero order
parameter and with a constant nonzero imaginary self-energy
to broaden the delta peaks. In the present calculation, the
width of the band, which increases with binding energy,
comes naturally from the imaginary part of the self-energy and
is due the electron-hole scattering. Comparing experimental
data at 250 K (Ref. 11) [Figs. 5(g) and 5(h)] with the
calculated data [Figs. 5(e) and 5(f), as Figs. 5(a) and 5(b)
but symmetrized around �, respectively, M , and cut by a
Fermi-Dirac distribution], we observe the following. At �, we
find good overall agreement with the calculated data. Notice
that, in the experiment, three Se 4p valence bands, highlighted
by (gray) lines in Fig. 5(g), are observed at �, whereas only the
topmost one (dashed line) is considered for simplicity in our
model (see Ref. 11 for more details). In particular, the opening
of a gap, the shifting of the valence band below EF , and the
loss of intensity at its maximum are reproduced here, as in the
mean-field approach.11

At M , the situation is different. In the mean-field approach,
the artificial use of a small nonzero order parameter above Tc

was leading to the appearance of a narrow backfolded valence
band below the conduction band11 with a width given by the
constant nonzero imaginary self-energy. Now, in Fig. 5(f),
the electron-hole fluctuations produce a strong broadening
of the conduction band, together with low intensity tails
at higher binding energy, which anticipate the presence of
the backfolded valence band below Tc. Despite their lower
intensity in the calculation, possibly due to some higher-order
effects not captured in the present analytical treatment, this is
in better agreement with the experimental photoemission data
taken at M and at 250 K, shown in Fig. 5(h), where below the
surprisingly broad conduction band residual intensity appears.
The residual higher intensity below the conduction band,
together with the shift of the valence band at �, is thus a
clear spectral signature of the fluctuation regime above Tc.
These findings are also interesting with respect to the HTSC
community, as they show that spectral features typical of the
low-temperature ordered phase are surviving above the critical
temperature, giving rise to diffuse intensity as a consequence
of phase fluctuations.

Finally, it appears that the calculated spectra produce bands
at too high binding energies compared to the experiment. This
is certainly due to the fact that the chemical potential was left
constant in these calculations. Because of the redistribution
of spectral weight in the fluctuation regime, the chemical
potential has to shift downwards to compensate for the
numerous new states occupied in the (three) broad conduction
bands at M , despite the small loss of occupied states at the top
of the valence band at �. Thus the good qualitative agreement
with the experimental data gives support for the relevance of
strong electron-hole correlations. They get stronger when T

approaches the temperature of the transition to the CDW phase
in a symmetry-breaking superstructure. Their influence on the
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structural transformation and the possible occurrence of an
excitonic instability in 1T-TiSe2, which has allowed for an
understanding of the electronic spectral functions in the CDW
phase, has still to be clarified in more detail.

V. ALTERNATIVE EXPLANATION: ELECTRON-PHONON
INTERACTION

As an alternative scenario, we now evaluate the influence
of the electron-phonon interaction on the electronic spectral
functions. The coupling between the electrons and the lattice
has certainly to play an important role in the CDW instability
in 1T-TiSe2, given the fact that the formation of the CDW is
accompanied by a periodic lattice deformation. Such a scenario
has been already invoked for 1T-TiSe2 in the framework of the
(band) Jahn-Teller distortion23–25 or also in addition to the
excitonic mechanism.8

In addition to the one-electron Hamiltonian containing the
electronic dispersions (1) and (2), we consider the electron-
phonon interaction term

Hel-ph =
∑
�k�q

gba(�k,�q)b†i (�k)a(�k − �q)Q(�q) + H.c. (12)

between the valence- and conduction-band electrons. Here Q

represents the normal coordinate of the particular phonon cou-
pling these electrons together. The electron-phonon coupling
function gba(�k,�q) will then be approximated by a constant
in reciprocal space, i.e., a local interaction in real space, in
analogy to what has been done for the Coulomb interaction
previously.

Performing a perturbation calculation in Hel-ph leads to a
standard formula26 for the electron self-energy of the valence
band due to the coupling of the electrons to the L1-phonon
mode

σa( �p,zα) = |gba|2
∑
�K,i

∫
dω

2π
Xph( �K,ω)

× NB(ω) + NF [εbi
( �p + �K)]

zα + ω − εbi
( �p + �K)

. (13)

�K is the phonon wave vector relative to the corresponding L

point in reciprocal space. This formula is very similar that of
Eq. (9), except that there is a different coupling constant and
the spectral function of the electron-hole correlator is replaced
by the phonon spectral function Xph, for which we choose a
form with a finite line width ε,

Xph( �K,ω) = π

2ω( �K,T )

[
1

ε
√

2π
e−[ω−ω( �K,T )]2/2ε2

− 1

ε
√

2π
e−[ω+ω( �K,T )]2/2ε2

]
.

A self-energy similar to Eq. (13) is derived for the conduction
band.

For performing numerical evaluations, we have to use a
large value for the electron-phonon coupling constant gba ,
namely, gba = 2 × 1012 eV Å−1 kg−1/2 (which is about twice
larger than what is found using the tight-binding formula of
Ref. 27) in order to emphasize the characteristic features
of the electron-phonon interaction in the electron spectral

FIG. 6. (Color online) Photoemission intensity maps calculated in
the fluctuation regime due to the electron-phonon interaction above Tc

(at 220 K) at � (a) and at M (b), without considering the Fermi-Dirac
cutoff. Graphs (c) and (d) show the corresponding energy distribution
curves. In graphs (e) and (f), same as (a) and (b), but symmetrized
around the band extremum and cut by a Fermi-Dirac cutoff.

function. Furthermore, based on the experimental works of
Refs. 28 and 29, we approximate the (transverse optic) L1-
phonon dispersion ω( �K,T ), which is softening at Tc, with the
formula30

ω( �K,T ) =
√

[a(T − Tc)]2 + (bK)2,

for a = 0.000 05 eV/K and b = 0.04 eV Å (and Tc = 200 K).
We also use a phonon linewidth of ε = 3 meV.29

Figures 6(a)–6(f) display the photoemission intensity maps
calculated numerically at 220 K with the self-energy of
Eq. (13) and the corresponding one for the conduction band,
using the band dispersions shown in Fig. 2(a). At first sight,
the effect of the electron-phonon interaction on the model
band structure is quite similar to what has been observed in
Fig. 5 due to the electron-hole fluctuations. At � [Fig. 6(a)],
a gap opens at EF , shifting the band (v) to higher binding
energies, while a backfolded band (c) appears above EF . At M
[Fig. 6(b)], the band (c) is shifted above EF and a backfolded
band (v) emerges below EF . However, having a closer look,
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especially at the energy distribution curves of Figs. 6(c) and
6(d), one sees characteristic differences. In the case of the
electron-phonon interaction, the original bands are extremely
sharp [band (v) in Fig. 6(a) and band (c) in Fig. 6(b)], being
the quasiparticle peak, while the backfolded bands [band (c)
in Fig. 6(a) and band (v) in Fig. 6(b)] are very broad, being
the incoherent peak. These are typical spectral signatures of
the electron-phonon interaction in metals.31,32 In our case, it
affects the spectra on an energy scale of about 50–100 meV
around EF due to the phonon dispersion combined with the
backfolded band dispersion [see Eq. (13)].

We now focus on the photoemission intensity maps cut by
a Fermi-Dirac cutoff. Comparing the situation at � for the
electron-hole fluctuations [Fig. 5(e)] and the electron-phonon
interaction [Fig. 6(e)], one sees similar spectra. However, the
valence band is broader (in energy) in the case of electron-hole
fluctuations, over the full energy range of the spectrum, in
agreement with the experiment [Fig. 5(g)]. At M , the electron-
phonon interaction causes in both cases [Figs. 5(f) and 6(f)] a
broad backfolded valence band with tails extending to higher
binding energies [anticipating the full backfolded valence band
at T < Tc (Ref. 15)]. However, in the case of the electron-
phonon interaction [Fig. 6(f)], the intense quasiparticle peak
above EF still resists to the Fermi-Dirac cutoff, leaving a
sharp peak above EF in the photoemission intensity map, in
disagreement with the experiment [Fig. 5(h)].

To sum up, the absence of any sharp quasiparticle peak in
the measured spectra above Tc, a quasiparticle peak which is
typical of the effect of the electron-phonon interaction in the
spectral function, as well as the broad valence band (at �)
observed up to high binding energies, typical of the scattering
to electron-hole pairs, give strong support to the electron-
hole fluctuations as the origin of the CDW instability in
1T-TiSe2.

VI. CONCLUSION

In conclusion, we have studied the fluctuation regime
above the critical temperature Tc of the formation of the
charge-density-wave phase of 1T-TiSe2. The Bethe-Salpeter
equation has been used in order to handle the electron-hole
fluctuations and to determine the influence of the latter on the
electronic self-energies. We identified various spectral features
characteristic of this regime. They show the increasing strength
of electron-hole fluctuations going towards an instability
leading to the low-temperature charge-density phase. The
wave vectors at which the instability occurs correspond to the
(2 × 2 × 2) structure of the CDW phase. The calculated pho-
toemission intensity maps compare well with photoemission
data obtained for 1T-TiSe2 at T = 250 K, providing us with
a better understanding of the dynamics of the electron-hole
correlations which can lead to the appearance of an exciton
condensate phase below Tc in this system, the scenario which
we have used before in order to interpret the low-temperature
features of the spectra. Finally, we have also considered the
effect of the electron-phonon interaction on the calculated
spectra to discriminate what mechanism is responsible for the
instability in 1T-TiSe2. The absence of the typical spectral
signatures of the electron-phonon interaction in the measured
spectra gives further support to the electron-hole fluctuation
scenario.
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