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Abstract 

 

Radiotherapy is a well-established therapeutic modality in oncology. It provides 

survival benefits in several different cancer types. However, cancers relapsing after 

radiotherapy often develop into more aggressive conditions, which are difficult to 

treat and are associated with poor prognosis. Cumulating experimental evidence 

indicates that the irradiated tumor bed contributes to such aggressive behavior. The 

involved mechanisms have long remained elusive. Recent progress in the field 

revealed previously unrecognized cellular and molecular events promoting growth, 

invasion and metastasis of tumors progressing in an irradiated microenvironment. 

Cellular mechanisms include inhibition of sprouting angiogenesis, generation of 

hypoxia, activation and differentiation of stromal cells and recruitment of bone 

marrow-derived cells with vasculogenic and pro-metastatic activities. Identified 

pathways include TGFβ/ALK5, CXCL12/CXCR4, KITL/KIT and CYR61/αVβ5 integrin. 

The availability of pharmacological inhibitors impinging on these pathways opens 

novel opportunities for translational and clinical studies. These experimental results 

and ongoing work highlight the importance of the irradiated microenvironment in 

modulating the tumor response to radiotherapy and open new opportunities for the 

development of novel therapeutic strategies for cancer patients relapsing after 

radiotherapy. Here we review and discuss recent advances in the field and their 

translational and therapeutic implications to human cancer treatment. 
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Background 

 

Radiotherapy plays a prominent role in the treatment of various tumor types and 

provides significant survival benefits in many cancers, including of the breast, 

prostate, rectum, brain, lung, and head and neck (1). In breast cancer, radiotherapy, 

alone or in combination with chemotherapy, is widely used as adjuvant treatment 

after breast-saving surgery to reduce the incidence of loco-regional and distant 

recurrences (2). The therapeutic effects of radiotherapy are traditionally considered 

as due to the induction of double strand DNA breaks in cancer cells causing cell-

cycle arrest, senescence or apoptosis (3). Consistent with this view, efforts aimed at 

understanding and improving the therapeutic efficacy of radiotherapy largely 

concentrated on the study of mechanisms of DNA damage and repair (4). It is now 

becoming increasingly evident that ionizing radiation also induces modifications of the 

tumor microenvironment, which profoundly impact tumor biology (5). This is 

particularly relevant to cancers relapsing after radiotherapy, which tend to develop 

into invasive and metastatic conditions with poor prognosis (6). Cumulating 

experimental evidence indicates that the irradiated tumor microenvironment actively 

contributes to such aggressive behavior. Here we review and discuss recent 

advances in unraveling cellular events and molecular pathways of the tumor 

microenvironment modulated by ionizing radiation and affecting tumor growth, 

invasion and metastasis.  

 

The tumor bed effect. Experimental tumors implanted in a pre-irradiated bed grow 

with slower kinetics, an effect originally referred to as the tumor bed effect (TBE) (7, 

8). The TBE is dose dependent between 5 and 20 Gy single doses (9), occurs with 
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fractionated therapy (e.g. daily doses of 2Gy) (10) and within broad time intervals (0-

90 days) between irradiation and tumor implantation (11) and is cell line dependent 

(10). A second element of the TBE is enhanced invasion and metastasis, which might 

seem paradoxical considering the reduced primary tumor growth (6 , 12). Enhanced 

metastasis was observed regardless of whether the analysis was metachronic (i.e. 

equivalent tumor sizes at different time points) (12) or synchronic (i.e. different tumor 

sizes at the same time point) (13 , 14). The TBE is a local effect, as it is only 

observed for tumors injected inside of the irradiated bed (14). These observations are 

of clinical relevance, since adjuvant radiotherapy improves local tumor control but 

tumor recurrences within a pre-irradiated field are often associated with an elevated 

risk of metastasis and poor prognosis (2, 15-17).  

 

Inhibition of sprouting angiogenesis. Several microenvironmental events have 

been linked to the TBE, most notably the decrease in tumor vascularity (18-20). We 

know today that radiotherapy-induced modifications of tumor vasculature are due to 

direct effects of ionizing radiations on endothelial cells. Garcia-Barros et al., showed 

that high-dose ionizing radiation induces ceramide-mediated apoptosis of tumor-

associated endothelial cells, causing tumor vessel disruption and delayed tumor 

growth. Preventing ceramide-mediated endothelial cell apoptosis attenuated these 

effects, indicating that endothelial cells are a therapeutically-relevant target of 

radiotherapy (21). We showed that ionizing radiation suppresses de novo 

angiogenesis by inhibiting endothelial cell proliferation, migration and sprouting and 

by causing premature senescence, in part mediated by the TGFβ/ALK5 pathway (22). 

ALK5 inhibition rescued radiation-induced cell sprouting and migration defects in vitro 

and restored angiogenesis in vivo (22). In spite of inhibited sprouting angiogenesis, 
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vessels can still form, to a certain extent, in irradiated tumors. Hlushchuk et al., 

demonstrated that intussusceptive angiogenesis replaces sprouting angiogenesis in 

irradiated tumors to support growth of surviving tumor cells (23). The resulting 

microvascular density is, however, reduced by 30% to 40% compared to non-

irradiated tumors. The molecular mechanisms of intussusceptive angiogenesis 

remain largely unknown.  

 

Hypoxia, vasculogenesis, invasion and metastasis. Hypoxia consequent to 

impaired angiogenesis is considered as a major cause of the TBE (13, 14, 24). 

Indeed, tumor hypoxia is associated with a shorter disease-free survival in many 

human cancers (25). Many molecular mechanisms induced by hypoxia and 

promoting cancer progression have been unraveled (26), including in tumor growing 

in irradiated beds. The Brown laboratory reported that hypoxia-mediated activation of 

hypoxia inducible factor (HIF) -1 in glioblastoma cells after radiotherapy leads to 

increased expression of the chemokine CXCL12 (27). CXCL12 stimulates the 

recruitment of CXCR4+CD11b+ BMDC into irradiated tumors to promote MMP-9-

dependent blood vessel formation by vasculogenesis, which sufficient to support the 

growth of recurring tumors (27, 28). Using an orthotopic TBE model of breast cancer, 

we observed HIF-dependent induction of KitL in hypoxic tumors, causing the 

recruitment of bone marrow-derived pro-metastatic Kit+CD11b+ BMDC to primary 

tumors and pre-metastatic lungs (29). Using a subcutaneous model of TBE we 

observed that recovered tumor cells expanded in vitro and re-injected in non-

irradiated mice retained enhanced metastatic capacity (14). The cysteine-rich protein 

61 (CYR61), a matricellullar protein that regulates cell growth, differentiation, survival, 

and migration (30), and the adhesion receptor integrin αVβ5 emerged as two 

ht
tp

://
do

c.
re

ro
.c

h



Kuonen et al.,  Radiation-induced tumor progression 

 6 

molecules cooperating to enhance metastasis. Importantly, CYR61 and αVβ5 

promoted resistance to hypoxia, although they were not induced by hypoxia (14). 

These results support the notion that besides HIF-depended adaptive reactions to 

hypoxia, selection of hypoxia-resistant cancer cells with superior metastatic 

capacities also contributes to the TBE (31).  

 

Hypoxia-independent mechanisms. Ionizing radiation induces the generation of 

reactive oxygen/nitrogen species (ROS/RNS). When exceeding the cellular anti-

oxidants defense, ROS/RNS induce damages to DNA, proteins and lipids resulting in 

cell cycle arrest, apoptosis, cell activation or differentiation (32). ROS/RNS also 

regulate cellular functions by acting as messenger molecules in signaling pathways 

and by direct effects on transcription (33). ROS/RNS also modify production and 

activation of transforming growth factor (TGF) β1 (34, 35). Since ROS/RNS are 

rapidly induced, and persist over time by self-amplification, they are considered as 

main mediators of sustained radiation-modifications of the microenvironment, in 

particular fibrosis (desmoplastic reaction) (36). Ionizing radiation induces expression 

of growth and inflammatory factors and matrix proteins (5). For example, ionizing 

radiation induces endothelial cell activation resulting in the activation of the pro-

inflammatory pathways NF-kB (37), the expression of pro-coagulant proteins (e.g. 

thrombomodulin, von Willebrand factor), and leukocyte endothelial-cell adhesion 

molecules (e.g. intercellular adhesion molecule-1, vascular endothelial cell adhesion 

molecule-1) (6, 38). Irradiated fibroblasts differentiate into myofibroblasts (39) 

producing tissue-specific collagens, growth factors and cytokines, such as platelet-

derived growth factor (PDGF), interleukin (IL) 1β, tumor necrosis factor (TNF) and 

TGFβ (5, 6, 40). Irradiated fibroblasts enhance the invasive capacity of co-cultured 
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pancreatic cancer cells (41). This effect was attributed to fibroblast-induced activation 

of MET, a receptor tyrosine kinase promoting cell growth and invasiveness through 

the Ras/mitogen activated protein kinase (MAPK) pathway (42). While further 

experiments are needed to confirm the role of MET in the TBE, recent evidence 

indicates that ionizing radiations induces MET expression in cancer cells, via the 

ataxia telangiectasia mutated (ATM) and nuclear factor (NF) -κB signaling pathways, 

resulting in ligand-independent MET activation and enhanced invasiveness (43). 

Among all radiation-induced cytokines, TGFβ is of particular relevance, since it elicits 

strong and long-lasting microenvironmental changes (e.g. suppressed angiogenesis, 

inhibited immune response, fibrosis) and tumor reactions (e.g. invasiveness, 

epithelial-to-mesenchymal transition) concurring to promote carcinogenesis and 

accelerating the development of highly malignant phenotypes (44, 45). 

 

Induction of angiogenesis by low dose radiotherapy. While high doses of ionizing 

radiation inhibit sprouting angiogenesis, low doses stimulate it. Sonveaux et al., 

originally reported that low doses ionizing radiation stimulates endothelial cell 

migration and tubologenesis in vitro and angiogenesis in vivo of by activating the 

nitric oxide pathway (46). More recently, Sofia Vala et al., observed that doses lower 

or equal to 0.8 Gy cause ligand-independent activation of vascular endothelial growth 

factor receptor (VEGFR) -2, resulting in enhanced endothelial cell migration, survival 

and angiogenesis (47). Low-dose ionizing radiation promotes cancer cell 

dissemination and metastasis of leukemia and breast cancer cells, which are 

prevented by blocking VEGFR-2 activation (47). These observations might be 

relevant to human cancer therapy, especially in hyper-fractionation protocols, since 
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the tissue and the border of the irradiated field is exposed to lower doses compared 

to the bulk of the tumor (48).  

 

 

Clinical-translational advances 

 

The fact that tumor bed irradiation promotes metastasis in experimental models is 

well established. In contrast whether this also occurs in patients treated with 

radiotherapy is still matter of debate (6). Increased risk of developing distant 

metastases upon local recurrences after radiotherapy has been reported in some 

(15-17) but not all (49) studies. Since these analyses were retrospective and non-

randomized, it will be necessary to perform prospective randomized studies in order 

to obtain conclusive results. Translational studies will be necessary to validate or 

invalidate whether cellular and molecular events observed in preclinical models also 

apply to human cancer. The fact that different and complementary mechanisms are 

at play in the TBE, that some of them may be tumor specific or dominant over others, 

and that tumors are highly heterogeneous tissues may complicate the interpretation 

of the results issued from these translational studies. Nevertheless, it is important to 

start considering which pathways emerging from pre-clinical studies may be relevant 

targets for future therapeutic approaches to blunt invasion and metastasis of cancers 

relapsing after radiotherapy (See Figure 1 and Table 1). 

 

HIF-1 pathway. Preclinical models of the TBE point to HIF-1 activation as an 

important event in promoting tumor invasion and metastasis, suggesting that HIF-1 

inhibition might provide therapeutic benefits. Blocking HIF-1 transcriptional activity 
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prevented the release of CXCL12 and attraction of CXCR4+ myelomonocytic cells 

promoting the formation a novel vessels by vasculogenesis, the mobilization of pro-

metastatic cKit+CD11b+ cells, and the expression of HIF1-dependent pro-metastatic 

genes, including the urokinase-type of plasminogen activator receptor (uPAR), lysil 

oxydase (LOX), plasminogen activator inhibitor (PAI) 1, matrix metallo proteinase 

(MMP) 2, snail or fibronectin (26). However, recent preclinical studies warrant caution 

in the use of HIF inhibitors in cancer as different HIF isoforms (e.g. HIF-1, -2, -3) 

have pleiotropic and sometimes opposing effects (50). For example, in contrast to its 

well-known tumor-promoting activity, HIF-1 has growth inhibitory and pro-apoptotic 

effects in some cancers (51, 52).  At this point it might be prudent to target pro-

metastatic pathways downstream of HIF-1 rather than HIF-1 itself. 

 

CXCL12/CXCR4 pathway. Inhibition of CXCR4 activation using a small molecule 

(AMD3100) or neutralizing antibodies to CXCR4, prevented the recruitment of 

vasculogenic CD11b+ cells to glioblastoma relapsing after radiotherapy and inhibited 

tumor re-growth (27). These pre-clinical results are corroborated by the increased 

accumulation of CD11b+ cells observed in recurrent human glioblastoma compared 

to untreated tumors. Thus, targeting the CXCL12/CXCR4 axis might add potential 

benefits to standard radiotherapy. This hypothesis could be rapidly tested in patients, 

as CXCR4 inhibitors are available for clinical use (53). It should be noted, however, 

that CXCR4 inhibition leads to a rapid mobilization of hematopoietic stem cells into 

the peripheral circulation, some of which may have pro-tumoral activities.  

 

KITL/KIT pathway. In our orthotopic breast cancer model of TBE, KitL silencing in 

tumor cells and systemic Kit inhibition with a blocking antibody or the tyrosine kinase 
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inhibitor nilotinib (54), reduced the mobilization of Kit+CD11b+ cells, and their 

recruitment to primary tumors and lungs and attenuated lung metastasis (29). 

Whether mobilized KIT+CD11b+ cells are present in the blood of breast cancer 

patients treated with radiotherapy and their relationship to CD11b+ cells infiltrating the 

primary tumor and metastases is currently under investigation. Of interest, increased 

expression of KITL was reported in peri-necrotic regions of glioblastoma and breast 

cancer tissues in association with poor prognosis (55). Several small molecular 

tyrosine kinase inhibitors targeting KIT are already approved for clinical use (56) 

thereby facilitating the planning of clinical studies aimed at inhibiting KIT in patients 

with post-radiation recurrences.  

 

CD11b+ cells. Zoledronic acid and liposomal clodronate were successfully used in 

post-irradiation settings to target MMP-9-expressing tumor-recruited CD11b+ 

monocytes/macrophages and to deplete tumor-mobilized Kit+CD11b+ populations 

resulting in reduced tumor growth and metastasis, respectively (28, 29). Whether 

biphosphonates may also be used in cancer patients for the same purpose remains 

to be demonstrated. Carrageenan, a sulfated polysaccharides extracted from red 

seaweeds, was also used to deplete monocytes/macrophages with similar inhibitory 

effects on tumor re-growth after radiotherapy (27). Inhibition of the CD11b/CD18 

complex using function-blocking antibodies effectively inhibited the recruitment of 

CD11b+ myeloid cells into irradiated tumors and prevented tumor growth (57). 

Humanized antibodies to the CD11b/CD18 complex (β2 integrin subfamily) have 

been developed for human use (58) and could be tested in patients with post-

radiotherapy recurrences. In contrast, humanized, CD11b-selective antibodies are 

not available yet. Considering their essential role in mediating leukocyte recruitment 
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to sites of infection, sustained inhibition of β2 integrins bears the potential risk of 

increased infections.  

 

HGF/MET pathway. A specific antagonist of hepatocyte growth factor (HGF), the 

MET ligand, suppressed growth, invasion and metastasis of pancreatic cancer cells 

co-cultured with irradiated fibroblasts (41). MET kinase inhibitors enhanced the 

efficacy of radiotherapy to halt tumor growth and prevent radiation-induced 

invasiveness (43). Considering the well-established role of the HGF/MET pathway in 

mediating invasive tumor growth (42) and the clinical development of novel MET 

inhibitors (59), MET should be considered as an attractive target to prevent or treat 

invasive growth of post-radiation tumor relapses.  

 

TGFββ pathway. Because of its multiple tumor-promoting effects, the TGFβ pathway 

has been long considered as an appealing target in cancer (44). For example, 

genetic and pharmacological targeting of the TGFβ receptor activin receptor-like 

kinase (ALK) 1, impaired tumor growth and angiogenesis in the Rip1Tag2 model 

(60), and TGFβ neutralizing antibody enhanced efficacy of radiotherapy in a breast 

cancer model (61). Since TGFβ signaling is induced by ionizing radiation (62), and 

TGFβ receptors inhibitors are in clinical development, it may be tempting to consider 

this pathway as a valid therapeutic target to prevent invasion and metastasis in post-

radiotherapy recurrences. In view of the complexity, and sometimes opposing effects 

of TGFβ in cancer and its role in healthy tissue homeostasis, however, it may be wise 

to focus on the inhibition of molecules up or downstream of TGFβ, such as AKT (63).  
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αV integrins. The function-blocking anti-αV mAb 17E6 and the αVβ3/αVβ5-specific 

peptidic antagonist cilengitide (EMD12197) prevented metastasis induced by tumor 

bed irradiation or CYR61 overexpression (14). Since cilengitide is currently in 

advanced clinical testing in glioblastoma patients in combination with radio- and 

chemotherapies (64), it seems attractive to assess the effect of cilengitide in patients 

at high risk for post radiation relapses in other cancers. Of note, cilengitide, alone or 

in combination with radio- and chemotherapy, has shown high tolerability and low 

toxicity making it an ideal drug for combination therapies (65).  

 

 

Conclusion 

 

In recent time we have gained insights in some of the cellular events and molecular 

pathways responsible for the TBE. These results represent a conceptual advance to 

the understanding of the TBE and provide some rationales to the development of 

new therapeutic approaches to prevent invasion and metastasis of tumors locally 

relapsing after radiotherapy. However, they may only represent the tip of the iceberg 

of the radiation-induced microenvironmental modifications modulating cancer 

progression, and many more mechanisms are likely to be discovered. Drugs 

targeting some of the uncovered pathways are already available for human use. We 

need now to move on and perform innovative translational studies and combination 

trials to validate or invalidate in patients the molecular pathways uncovered in 

preclinical models. In addition, we need to determine predictive biomarkers, such as 

gene expression signatures in primary tumors, circulating molecules or circulating cell 

populations, in order to identify patients at risk for relapse and progression after 
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radiotherapy. Such patients would be the ones to benefit most from a concomitant 

therapy blunting tumor escape and evasive growth. The TBE may also serve as a 

model relevant to unravel pathways mediating evasive resistance to anti-angiogenic 

therapies. Indeed, hypoxia and metabolic starvation caused by anti-angiogenic 

treatments (66), much alike hypoxia caused by radiotherapy, may initiate 

microenvironmental modifications eliciting adaptive tumor responses or the selection 

of highly aggressive tumor cell populations. This would be an unexpected but 

welcome contribution to research in anti-angiogenesis for an effect originally 

described nearly 100 years ago! 
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Legend 

 

Figure 1. Emerging pathways mediating growth, invasion and metastasis of 

tumors progressing after radiotherapy. High dose ionizing radiation (IR) kills tumor 

-associated endothelial cells and inhibits sprouting angiogenesis. Tumor cells 

growing within this angiogenesis-suppressed microenvironment cause tissue 

hypoxia, which elicits HIF-dependent and HIF-independent responses. Hypoxia 

induces HIF-dependent expression of CXCl12 and KITL promoting the mobilization 

from the bone marrow and the recruitment to tumors or pre-metastatic sites of cells 

promoting vasculogenesis (CXCR4+CD11b+ cells) or metastasis (KIT+CD11b+ cells). 

Hypoxia selects for invasive and metastatic tumor cells expressing high levels of αV 

integrins and CYR61. Hypoxia also stimulates the expression of additional pro-

metastatic factors, such as uPAR, LOX, PAI-1, MMP-2. Ionizing radiation also 

induces the expression of tumor-promoting cytokine and growth factor by stromal 

cells (TGFβ, PDGF, IL1β) directly or indirectly (e.g. thought ROS/NOS). Irradiated 

tumor cells increase expression of the pro-invasive receptor MET, through the 

ATM/NF-κB pathway. Together, these events concur to promote growth, invasion and 

metastasis of tumors progressing in a pre-irradiated microenvironment. The “stop” 

signs indicate candidate target molecules that can be blocked with available 

inhibitors in order to suppress growth and metastasis of tumors growing in an 

irradiated bed. See table 1 for a selection of inhibitory molecules. The pro-angiogenic 

effects of low dose IR are not depicted here. 

 

Table 1. Synopsis of molecules promoting tumor growth and metastasis in a 

pre-irradiated bed and selected inhibitory drugs. This table lists candidate 
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therapeutic targets and a selection of inhibitory molecules to consider in preclinical 

and clinical studies to impinge on pro-metastatic pathways activated by ionizing 

radiation.  
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Table 1. Synopsis of molecules promoting tumor growth and metastasis in a pre-irradiated bed and selected inhibitory drugs. 

Target  

Molecule  Class 

Inhibitor 

Molecule   Class 

Targeted event 

αVβ3 integrin Adhesion receptor Celengitide; 

17E6 

Peptide (αVβ3/αVβ5) 

Antibody (pan anti-αV) 

Tumor cell adhesion, migration, invasion, 

metastasis 

β2 integrins  

(CD11/18 complex)  

Adhesion receptor Rovelizumab Antibody Recruitment of CD11/18+ monocytes 

KIT Receptor tyrosine 

kinase 

Imatinib; 

Nilotinib  

Ttyrosine kinase inhibitors Recruitment of KIT+CD11b+ BMDC 

MET Receptor tyrosine 

kinase 

PHA665752; 

JNJ-38877605; 

SU11274;  

PF-02341066; 

XL880;  

Ttyrosine kinase inhibitors Tumor cell growth, survival and invasion  

CXCR4 Chemokine receptor BKT140; 

ALX40-4C; 

Plerixafor  

Small molecular inhibitors Recruitment of CD11b+ BMDC 

ALK5 

 

ALK1 

TGFβ receptors EW-7195; 

SB-431542; 

PF-03446962 

Kinase inhibitors 

 

Antibody 

Inhibition of angiogenesis, invasion, 

epithelial-to-mesenchymal transition 

HIF-1 Transcription factor NSC-134754; 

PX-478; 

PX-12; 

YC-1; 

Topotecan; 

Small molecular inhibitors 

 

 

 

Camptothecin analogue 

Metabolism, migration, invasion, 

angiogenesis, survival 
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