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Abstract: Upon exposure to singlet oxygen and dimethylsulfide,
the addition products between 3-furaldehydes and Grignard re-
agents undergo an oxidative rearrangement to give 2-substituted 3-
furaldehydes, in yields ranging from 26–83%. N-Aryl- and N-to-
sylpyrroles were similarly obtained if the corresponding nitrogen-
containing precursors were used instead, in equally attractive yields
(64–92%).
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Oxidation reactions are among the most important pro-
cesses for both life and organic synthesis. The reaction be-
tween oxygen and glucose is carefully orchestrated by a
series of enzymes, providing the essential form of energy
for keeping organisms alive. On the other hand, the un-
controlled version of the process is the combustion reac-
tion, which provides mainly heat and carbon dioxide. In
synthesis, oxidations are rarely based on molecular oxy-
gen, and expensive and toxic reagents are routinely used.
A notable exception is the photo-oxygenation of alkenes
using singlet oxygen. Essentially green and atom-eco-
nomical, this process is actually one of the few industrial-
ly relevant photochemical reactions.1,2

An unprecedented Grignard addition–oxidative rear-
rangement sequence providing 2-alkyl-/aryl-3-furalde-
hydes has recently been published by Walsh et al.
(Scheme 1).3 The oxidative step is induced by N-bromo-
succinimide; we report here its photochemical counter-
part.

Scheme 1 Oxidative rearrangement of furans according to Walsh et
al.

3-Furfural (1) is a readily available starting material,
which reacts with organozinc, organolithium, and
Grignard reagents to give alcohols 2, following the work
of Walsh et al.3 These alcohols, if bearing electron-donat-
ing R side chains are quite acid-sensitive, and should not

be kept for prolonged times, as already pointed out by
Blechert et al.4 Exposure of 2a–i to singlet oxygen (gener-
ated by irradiation of a saturated solution of oxygen in
acetonitrile at –40 °C in the presence of methylene blue
with a 300 W tungsten/quartz burner light source), imme-
diately followed by quenching at –40 °C with dimethyl-
sulfide and p-toluenesulfonic acid gave moderate to
excellent yields of 2-substituted furfurals 3a–i after grad-
ual warming up to room temperature (Scheme 2, Table 1).
Low temperature during irradiation and quenching is es-
sential to ensure optimal yields. Different conditions were
screened, varying the solvent, the acid, and the reductant.
Acetonitrile proved to be the best solvent (either anhy-
drous or containing up to 10% water), followed by dichlo-
romethane, while hexane and methanol were found
inappropriate. We suspect an attack of the latter on the en-
doperoxide intermediate 4 (Scheme 3).5 A strong acid,
such as p-toluenesulfonic acid, was required, whereas
acetic acid was inefficient. Dimethylsulfide was the only
reductant that led to the desired product; phosphites, thio-
urea, and diphenylsulfide were unreactive. It is worth
pointing out that pure oxygen was used for experimental
convenience, but ambient air gave similarly good results.
The nature of the R substituent has an impact on the yield;
conjugated systems have a beneficial effect, whereas alkyl
and strong electron-releasing groups (entry 4) lower the
yields. An N-Boc-indolyl substituent is tolerated (entry 9),
but the corresponding N-Boc-pyrrole led only to degrada-
tion. It is worth noting that the reaction of 2h resulted in
the chemoselective reaction of the diene part, leading to
3h.

Scheme 2 Singlet-oxygen-promoted oxidative rearrangement

We propose the mechanism as shown in Scheme 3: the fu-
ran core of alcohols 2a–i reacts with singlet oxygen ac-
cording to a very well documented process,6 leading to the
endo-peroxides 4. These peroxides are rather unstable, as
proton abstraction at the anomeric site is known to give
hydroxybutenolides,7 and thus should be reduced to the
diols 5 before warming up the mixture. These hydroxy-
furans 5 can undergo a ring opening to their enedial forms
6 and 6¢, which can re-close to 3, along the lines of the
mechanism proposed by Walsh. In some cases, particular-
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ly with alkyl R groups, small amounts of alkylidenefuran-
2-ones 7 are observed.8 The formation of this product can

be enhanced by the in situ treatment with a sulfonyl chlo-
ride (mesyl or tosyl); this is also compatible with a reduc-
tive cleavage of the endo-peroxides 4 into 7.

Following this mechanism, the formation of pyrrole deriv-
atives should be also possible if the hydroxyl function of
2 is replaced with an amine.3 Thus, reductive amination of
1 with aniline gave 8a (94%) and addition of phenylmag-
nesium bromide to the tosylimine derivative9 of 1 gave 8b

Table 1 Singlet-Oxygen-Promoted Oxidative Rearrangement

Entry Alcohol 2 R Yield of furan 3 
(%)a

Furanone 7 
(%)b

1 2a Ph 74 5

2 2b Me 40 6

3 2c t-Bu 26 26

4 2d 4-MeOC6H4 29 15

5 2e n-Pr 38 8

6 2f 4-F3CC6H4 71 <2

7 2g Bn 73 <2

8 2h vinylc 83 <2

9 2i 2-N-Boc-indolyld 53 <2

a Isolated yield.
b Estimated by 1H NMR with an internal standard.
c Overall yield based on 1.
d Prepared by the addition 2-lithio-N-Boc-indole to 3-ethoxycarbon-
ylfuran, followed by reduction with NaBH4.

Scheme 3 Putative mechanism
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Scheme 4 Formation of pyrroles
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(74% overall). We then checked the feasibility of the pro-
cess, by exposing amines 8 to the same reaction condi-
tions (Scheme 4), and pyrroles 9 were obtained in good to
excellent yields.

In summary, we reported a photochemical alternative to
the halogen-induced rearrangement of 3-hydroxymethyl-
furans, which is also compatible with the formation of
pyrroles. Applications of this chemistry in the green syn-
thesis of industrially relevant compounds are under way.

Typical Procedure for the Oxidation with 1O2 Followed by the
Rearrangement of 3-(1¢-Hydroxyalkyl)furan Derivatives

A 25 mL, two-necked, quartz, cylindrical flask equipped with mag-
netic stirring bar, was charged with the corresponding 3-(1-hy-
droxyalkyl)furan (1.15 mmol), methylene blue (5.6 mg, 0.013
mmol), and MeCN (10 mL). The solution was cooled to –40 °C, and
oxygen was bubbled gently through the solution while it was irradi-
ated (Osram Ultra-Vitalux®, 300 W) The consumption of 3-hy-
droxymethylfuran was followed by TLC (CH2Cl2–MeOH, 98:2).
After 90 min, DMS (1 mL, 13.6 mmol) was added at –40 °C, rapidly
followed by PTSA (218 mg, 1.15 mmol). The reaction mixture was
allowed to warm to r.t. then stirred for 2 h. Sat. solution of Na2CO3

(30 mL) and CH2Cl2 (50 mL) were added. The layers were separat-
ed, the organic layer was dried over anhyd MgSO4, and concentrat-
ed under reduced pressure. The crude product was purified by flash
chromatography on silica gel to afford the desired aldehyde.
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