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The effect of whole body vibration (WBV) on reflex
responses is controversially discussed in the literature.
In this study, three different modalities of reflex
activation with increased motor complexity have been
selected to clarify the effects of acute WBV on reflex
activation: (1) the electrically evoked H-reflex, (2) the
mechanically elicited stretch reflex, and (3) the short-
latency response (SLR) during hopping. WBV-induced
changes of the H-reflex, the stretch reflex, and the
SLR during hopping were recorded in the soleus and
gastrocnemius muscles and were analyzed before,
during (only the H-reflex), immediately after, 5 min
and 10 min after WBV. The main findings were that

(1) the H-reflexes were significantly reduced during
and at least up to 5 min after WBV, (2) the stretch
reflex amplitudes were also significantly reduced imme-
diately after WBV but recovered to their initial ampli-
tudes within 5 min, and (3) the SLR during hopping
showed no vibration-induced modulation. With regard
to the modalities with low motor complexities, the
decreased H- and stretch reflex responses are assumed
to point toward a reduced Ia afferent transmission
during and after WBV. However, it is assumed that
during hopping, the suppression of reflex sensitivity is
compensated by facilitatory mechanisms in this complex
motor task.

Performance improvements in response to whole body
vibration (WBV) are controversially discussed in the
literature (Nordlund & Thorstensson, 2007; Rittweger,
2010). Several reports state that WBV can have a ben-
eficial effect on strength (Delecluse et al., 2003; Roe-
lants et al., 2004) and power (Roelants et al., 2004; Rees
et al., 2008). These improvements were speculated to be
associated with an enhanced neural excitation (Cochrane
& Stannard, 2005; Cardinale & Bosco, 2003; Rittweger
et al., 2003), possibly achieved by increased reflex acti-
vation (Bosco et al., 2000; Cardinale & Bosco, 2003;
Cochrane & Stannard, 2005). In contrast, there are
numerous studies that could not find any WBV-induced
performance improvements (Rittweger et al., 2000; de
Ruiter et al., 2003), and some authors questioned any
additional effects of WBV if standardized training pro-
tocols are compared with and without WBV (Nordlund
& Thorstensson, 2007). Thereby, some authors proposed
that the neural facilitation lacks validity, and WBV is
more likely to induce an inhibition rather than a facili-
tation (Nordlund & Thorstensson, 2007).

Despite its widespread use in different areas of reha-
bilitative sports medicine, geriatrics and as a training
method for elite athletes (for review, see Rittweger,
2010) and despite the substantial amount of related arti-

cles, the underlying neuromuscular mechanisms in
response to WBV are poorly understood. A better under-
standing of the mechanisms is a prerequisite for a spe-
cific and substantiated application of WBV training. So
far, there are numerous articles that document the neu-
rophysiological effects in response to isolated vibration
applied to the muscle belly or the tendon (Arcangel
et al., 1971; Burke et al., 1976), but it has yet to be
shown whether these results can be transferred to WBV.
Isolated muscle or tendon vibration activates primary
and secondary muscle spindle endings as well as the Ib
afferents from Golgi tendon organs (Burke et al., 1976).
This activation of muscle spindle endings is thought to
elicit a succession of stretch reflexes, the “tonic vibration
reflex” (Matthews, 1966). It has been shown that isolated
muscle and tendon vibrations reduce Ia afferent trans-
mission (Arcangel et al., 1971; van Boxtel, 1986), prob-
ably mainly due to an increased level of presynaptic
inhibition (PSI; Gillies et al., 1969).

Concerning the effect of isolated muscle or tendon
vibrations mentioned above, it might be hypothesized
that WBV also reduces spinal reflex responses. However,
the reported reflex adaptations following WBV are
inconsistent in the literature (Rittweger, 2010). For
instance, some authors demonstrated an inhibition of the
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soleus (SOL) H-reflex (Armstrong et al., 2008; Sayenko
et al., 2010) and stretch reflex responses (Roll et al.,
1980) after WBV. Those results are well in line with the
findings observed after locally applied muscle and
tendon vibration. However, other authors reported facili-
tated reflexes after WBV (Rittweger et al., 2003; Melnyk
et al., 2008), which were argued to be beneficial for
performance-related parameters like increases in jump
height (Bosco et al., 2000; Cochrane & Stannard, 2005).
In light of the articles of McBride et al. (2010) and
Hopkins et al. (2009), who did not observe any differ-
ences in response to acute WBV exposure at all, drawing
functional conclusions has become even more delicate.
To explain at least part of the contradictory results, it has
been proposed that electrically evoked H-reflex and
mechanically elicited stretch reflex responses might be
differently affected by WBV (Rittweger, 2010). Further-
more, the time interval between WBV treatment and
reflex measurement may influence the outcome, as it was
shown in studies applying local muscle and tendon
vibrations (Arcangel et al., 1971).

Therefore, this study investigated the influence of
WBV on different modalities of reflex activation with
increased motor complexity at distinct time intervals
during and after the WBV treatment: (1) the electrically
elicited H-reflex, (2) the mechanically evoked stretch
reflex, and (3) the short-latency response (SLR) during
hopping. The rationale behind testing H-reflexes and
stretch reflexes was their different point of origin:
H-reflexes bypass the muscle spindles, whereas stretch
reflexes are largely dependent on the sensitivity of the
muscle spindles and the a–g linkage. It is well-known
that the amplitude of the H-reflex is independent of the
activity of the g-motoneurons, whereas the stretch reflex
can be modulated by the fusimotor drive (Granit, 1975;
Hagbarth & Macefield, 1995). Furthermore, it was dem-
onstrated that the amplitude of the H-reflex is strongly
more affected by changes in PSI than the stretch reflex
(Morita et al., 1998). In the third experimental condition,
we investigated the modulation of reflex contributions in
hopping to assess the effects of WBV on stretch reflex
components in a functional task. In all three conditions,
reflex responses were measured at distinct time intervals
during and after the WBV treatment to highlight the time
dependency of WBV-induced reflex modulation.

We hypothesized that according to the effects
observed with locally applied muscle and tendon vibra-
tion and based on the data we collected in a pilot study,
WBV would reduce the H-reflex, the stretch reflex, and
the SLR during hopping and that those effects would
decline over time.

Materials and methods
Subjects

Twenty-two subjects (12 females and 10 males, age 26 � 3 years)
volunteered to participate in this study. All subjects gave written
informed consent to the experimental procedure, which was

approved by the ethics committee of the University of Freiburg
and was in accordance with the latest revision of the Declaration of
Helsinki. The subjects were healthy with no previous neurological
irregularities or injuries of the lower extremity.

Experimental design

A single-group repeated-measures study design was used to evalu-
ate acute WBV-induced effects on reflex responses. For that
purpose, three different protocols were used: in the first protocol,
we investigated the influence of WBV on the Ia afferent transmis-
sion by means of H-reflex measurements. The second protocol
aimed to assess vibration-induced effects on the mechanically
evoked stretch reflex. The third protocol quantified the influence of
WBV on the stretch reflex contribution during hopping. Reflex
responses for each protocol were recorded at a minimum of four
different time intervals: just before vibration (t1), immediately
after (t3), 5 min (t4) and 10 min after vibration (t5). In protocol 1,
H-reflexes were additionally recorded during WBV (t2). Recording
of stretch reflexes and the SLR of hopping during WBV was not
feasible from a methodological point of view. In protocol 2, stretch
reflex responses were recorded twice (t0 and t1) before the WBV
intervention was started to control the reproducibility of mechani-
cally evoked stretch reflex responses. The protocols were con-
ducted on separate days with a minimum of 1 day rest in between.

WBV

The WBV device was a side-alternating vibration platform
(Galileo Sport, Novotec Medical, Pforzheim, Germany), which
generates vibration by platform oscillations along the sagittal axis.
In this study, the axis of rotation was placed in between the
subjects’ feet, and the feet were placed 21 cm away from the axis
of rotation resulting in a vibration amplitude of 4 mm. The vibra-
tion frequency was set to 22 Hz. During those 60 s, the subjects
were exposed to vibrations, and the subjects maintained a static
body position with a knee angle of 30° and a forefoot stance. The
subjects were instructed to place their hands on their hips, direct
their head and eyes forward, and distribute their weight equally on
both feet.

Electromyographic (EMG) recording

Bipolar Ag/AgCl surface electrodes (Ambu Blue Sensor P,
Ballerup, Denmark; diameter 9 mm, center-to-center distance
34 mm) were placed over the Musculus (M.) SOL, the M. gastroc-
nemius medialis (GM), and the M. tibialis anterior (TA) of the
right leg. The longitudinal axes of the electrodes were in line with
the direction of the underlying muscle fibers. The reference elec-
trode was placed on the patella. Interelectrode resistance was kept
below 5 kW by means of shaving, light abrasion, degreasing, and
disinfection of the skin. The (EMG) signals were transmitted to the
amplifier (band-pass filter from 10 Hz to 1 kHz, 1000¥ 1000
amplified) via shielded cables and recorded with 4 kHz. The
cables were carefully taped to the skin.

Protocol 1: H-reflex

Protocol 1 was conducted with 22 subjects. Modulation in Ia
afferent transmission of the SOL in response to WBV was assessed
by H-reflex measurements; H-reflexes were elicited by peripheral
nerve stimulation (PNS). For the PNS, an electrical stimulator
(Alea Solutions® type AS100, Zurich, Switzerland) was used,
generating single rectangular pulses of 1-ms duration. The cathode
(2 cm in diameter) was placed in the popliteal fossa and moved
until the best position was found for eliciting an H-reflex in the
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SOL. The anode (10 ¥ 5 cm dispersal pad) was fixed directly
below the patella on the anterior aspect of the knee. H-reflexes
were elicited by electrically stimulating the posterior tibial nerve
with an interstimulus interval of 4 s. Throughout each of the
defined time intervals (t1, t2, t3, t4, and t5), an H/M recruitment
curve was recorded with the subjects standing in an upright posi-
tion. For that purpose, the stimulation current was successively
augmented, ranging from subthreshold stimulation intensities to
intensities sufficient to elicit H-reflexes to supramaximal intensi-
ties for the maximal M-wave (Taube et al., 2008).

Protocol 2: Stretch reflex

In 13 subjects, passive dorsiflexions generated by a custom-made
ankle ergometer evoked stretch reflex responses in SOL and in
GM. The ankle ergometer was driven by two independent motors
that controlled the rotation of the right and the left foot pedal. The
participants were fixed by a strap-binding system with their feet
resting on the rotation platform of the ergometer. The rotation axis
of the upper ankle joint coincided with the rotation axis of the
platform. A mechanically induced dorsiflexion movement at the
ankle joint with an amplitude of 6° and a velocity of 150°/s evoked
a stretch and hence a reflex response in the triceps surae muscle,
which occurred depending on the subject with an interindividual
latency of 35–55 ms (Fig. 1). Dorsiflexions were carried out in two
different modalities: first, in a sitting position (90° hip, knee, and
ankle joint angle) to evoke stretch reflex responses in relaxed
muscles and second, just like in the H-reflex measurement in an
upright standing position, in which the muscles are slightly acti-
vated to ensure postural equilibrium (Hayashi et al., 1992). At
each of the defined time intervals (t0, t1, t3, t4, and t5), 20 stretch
reflexes with an interstimulus interval of 4 s were evoked.

Protocol 3: SLR in hopping

Twenty subjects performed stiff hopping, i.e. hopping with a small
range of motion in the hip, knee, and ankle joint and short ground-
contact times (GCT). At each of the defined time intervals (t1, t3, t4,
and t5), 40 jumps were performed on a force platform (Kistler®,
Wintherthur, Switzerland) to determine the ground reaction forces
(GRF) and the corresponding neuromuscular activity. While
jumping, the subjects kept their hands akimbo to avoid supportive
movement of the arms.

Data processing

Peak-to-peak amplitudes of the H-reflexes and M-waves were
calculated, and the maximal H-reflex (Hmax) was expressed relative

to (Mmax) (Hmax/Mmax ratio). Peak-to-peak amplitudes of the stretch
reflex responses were calculated, averaged, and subsequently nor-
malized to t1 for each time interval. The stretch reflex time interval
was defined as the interval from the initial deflection of the EMG
signal from the baseline to the second crossing of the baseline.

For hopping, the EMG was rectified, averaged, and integrated
(iEMG). The iEMG of the preactivation phase (150–0 ms before
ground contact) and the SLR (30–60 ms after ground contact)
were calculated (Hobara et al., 2007) and normalized to t1. The
GRF were used to determine the rate of force development (RFD),
the maximal force (Fmax), and the GCT.

Statistic

To test for reflex changes over time (t0–t5) in protocol 1 (H-reflex),
protocol 2 (stretch reflex), and protocol 3 (SLR during hopping), a
repeated measures analysis of variance was used. A Bonferroni
post-hoc test was used to correct for multiple testing. The level of
significance was set to P � 0.05, and statistically significant dif-
ferences were marked with a symbol (*). To make sure that par-
ticular parameters (Mmax, Fmax, RFD, GCT, jump height, the iEMG
of TA in the phase of the SLR, and the preactivation in SOL, GM,
and TA) did not change over time in response to WBV, equivalence
statistics were used (for that purpose, the 95% confidence intervals
were calculated for the differences between the corresponding
values in t1 and t2 (t3, t4, and t5, respectively). The acceptable
bounds were determined based on the differences observed in a
repeated measurement without intervention (Borman et al., 2009).
If the confidence interval stayed within those bounds, the differ-
ences were statistically equal. In case of statistical equivalence, the
respective parameter is marked with a symbol (ª). All statistical
analysis was conducted using the SPSS 16.0 software (SPSS Inc.,
Chicago, Illinois, USA). All data are presented as group mean
values � standard deviation unless otherwise stated.

Results
H-reflex

The H/M recruitment curves and the corresponding Hmax/
Mmax ratios of one representative subject are shown in
Figure 2. The individual data as well as the mean data of
the group (Fig. 3) highlight that the Hmax/Mmax ratios
in SOL were highly reduced during WBV, followed by
a phase of recovery within 10 min after WBV
(t1: 0.55 � 0.19; t2: 0.27 � 0.14; t3: 0.48 � 0.14; t4:
0.48 � 0.16; and t5: 0.50 � 0.16, P < 0.05; Fig. 3). The

Fig. 1. Illustration of the ankle ergometer used to evoke stretch reflex responses in the soleus and gastrocnemius medialis muscles. The
stretch is induced by an ankle dorsiflexion, which in turn is forced by the upward movement of the foot pedal.
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Hmax/Mmax ratios were significantly decreased at the time
intervals during (t2: P < 0.05) and within 5 min after
WBV (t3: P < 0.05; t4: P < 0.05) compared with control
Hmax/Mmax ratios established during the control condition
before WBV (Figs 2 and 3). During the entire measure-
ment, Mmax was statistically equal (t1: 7.1 � 2.7; t2:
7.4 � 2.6 ª; t3: 7.5 � 2.4 ª; t4: 7.2 � 2.3 ª; and t5:
7.2 � 2.3 ª).

Stretch reflex

In a sitting position, mechanically evoked stretch
reflexes in SOL (t0: 1.04 � 0.29; t1: 1; t3: 0.70 � 0.28; t4:

0.86 � 0.28; and t5: 1.01 � 0.27, P < 0.05; Fig. 4) were
significantly reduced immediately after WBV (t3:
P < 0.05) compared with those established during the
control condition before WBV. After WBV, a successive
recovery of the stretch reflex amplitudes could be
observed, and after 10 min, the amplitudes reached the
initial values established during the control condition
before WBV (Fig. 5(a)).

Stretch reflex amplitudes in GM were significantly
reduced immediately after compared with those estab-
lished during the control condition before WBV (t3:
P < 0.05). However, 5 min and 10 min after WBV, no
statistically significant differences could be observed
(for details, see Table 1 and Fig. 5(c)).

In a standing position, stretch reflex amplitudes in
SOL (Fig. 5(b)) were decreased in trials after WBV com-
pared with amplitudes established during the control
condition before WBV (t0: 1.06 � 0.32; t1: 1; t3:
0.89 � 0.34; t4: 0.87 � 0.19; and t5: 0.87 � 0.26,
P < 0.05). GM showed a slight reduction in peak-to-peak
amplitude in the trials after WBV compared with the
amplitudes recorded during the control condition before
vibration (for details, see Table 1 and Fig. 5(d)).
However, the statistical analysis for stretch reflex ampli-
tudes in GM revealed no significant effects (P = 1.00) in
the standing position (Table 1).

SLR in hopping

No vibration-induced effects could be observed in the
SLR during hopping in the SOL (t1: 1; t3: 1.02 � 0.18; t4:
1.07 � 0.21; and t5: 1.08 � 0.22, P = 1.00), GM (t1: 1; t3:

Fig. 2. Modulation of soleus H-reflexes in response to acute WBV in one representative subject: H/M recruitment curves (�
H-reflexes, � M-waves) and the resulting Hmax/Mmax ratios recorded before (a), during (b), immediately after (c), 5 min (d), and 10 min
(e) after WBV treatment. The maximal M-wave (Mmax) was of similar size before (a), during (b), and after WBV (c, d, and e), whereas
the maximal H-reflex (Hmax) was highly reduced during WBV and successively recovered up to 10 min after WBV. The horizontal
dashed line marks the initial value of Hmax recorded in the control condition (a) before WBV.

Fig. 3. Grand mean of the Hmax/Mmax ratios of the soleus muscle
(n = 22) at the different time intervals before (t1), during (t2),
immediately after (t3), 5 min and 10 min after vibration treat-
ment (t4 and t5).
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Fig. 4. Modulation of mechanically evoked stretch reflexes in the soleus muscle in response to acute WBV in one representative
subject: mean and standard deviation of 2 ¥ 20 stretch reflex responses recorded before (t0 and t1), immediately after (t3), 5 min (t4) and
10 min (t5) after vibration treatment. Stretch reflex amplitudes recorded before WBV displayed in t0 and t1 are very similar, whereas
after WBV stretch reflex, amplitudes were reduced up to 5 min after WBV but had recovered 10 min afterwards.

Fig. 5. Grand mean of stretch reflex amplitudes at the different time intervals before (t0 and t1), immediately after (t3), 5 min and 10 min
after vibration treatment (t4 and t5) in two modalities: in the soleus muscle during sitting (a) and standing (b), in the gastrocnemius
medialis muscle during sitting (c) and standing (d). The stretch reflex amplitudes in the control conditions (t0 and t1) were of similar
size, whereas immediately after vibration treatment amplitudes were reduced (t3).
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1.00 � 0.06; t4: 1.04 � 0.13; and t5: 1.02 � 0.10,
P = 1.00), and TA muscles (Table 2). The EMG activity
during the phase of preactivation in SOL, GM, and TA
did not change in response to WBV and was statistically
equal (for details, see Table 2). Fmax, RFD, GCT, and
jump height of the hopping are displayed in Table 3; they
were statistically equal.

Discussion

The purpose of this study was to ascertain the effects of
acute WBV at specific times during and after the treat-
ment on reflex responses on different complexity levels:
the electrically elicited H-reflex, which bypasses the
muscle spindles, the mechanically evoked stretch reflex,
and the SLR during hopping, where spinal stretch
reflexes interact with centrally programmed motor com-
mands (Zuur et al., 2010). The main findings were that
(1) the H-reflex in SOL was reduced during WBV. This
reduction lasted for at least 5 min. (2) WBV decreased
the stretch reflex response in SOL and GM; however, the

depression lasted at least for 1 min but less than 5 min.
(3) The SLR during hopping remained unaffected by
WBV.

Thus, the current study demonstrated for the first time
in a systematic and concise way that WBV interventions
have a suppressive effect on spinal reflex responses when
measurements were performed under rest conditions.
However, the more active the test situation was, the less
pronounced was the reflex inhibition resulting in no
observable suppression during hopping. Apart from the
test situation, the second main effect was the time when
the reflexes were elicited. The strongest suppression
could be monitored during WBV. Thereafter, the sup-
pressive effect declined over time. Importantly, no sig-
nificant reflex facilitation could be observed at any time
in any of the tested situations. This seems of great
relevance as previous studies speculated that some of
the performance improvements observed after WBV
occurred because of an increased reflex contribution
(Bosco et al., 2000; Cochrane & Stannard, 2005). Based
on the present results, which are well in line with obser-

Table 1. Changes in stretch reflex amplitudes in the gastrocnemius medialis muscle

Stretch reflex t0 t1 t3 t4 t5 ANOVA results

Sitting 1.07 � 0.31 1.00 � 0 0.78 � 0.30 1.12 � 0.39 1.31 � 0.66 P < 0.05
Standing 1.08 � 0.30 1.00 � 0 0.93 � 0.34 0.95 � 0.19 0.90 � 0.23 P = 1.00

Mean stretch reflex amplitudes of the gastrocnemius medialis muscle (normalized to t1) evoked in the ankle ergometer in the sitting and standing position
at the time intervals before (t0 and t1), immediately after (t3), 5 min and 10 min after WBV treatment (t4 and t5).
ANOVA, analysis of variance; t, time intervals.

Table 2. Electromyographic data of hopping

t1 t3 t4 t5 ES results

Pre SOL 1.00 � 0 1.02 � 0.07ª 1.11 � 0.19ª 1.13 � 0.24ª Statistically equal
Pre GM 1.00 � 0 1.02 � 0.14ª 1.02 � 0.07ª 1.02 � 0.09ª Statistically equal
Pre TA 1.00 � 0 1.03 � 0.12ª 1.07 � 0.13ª 1.03 � 0.14ª Statistically equal
SLR TA 1.00 � 0 0.96 � 0.23 0.97 � 0.20ª 0.88 � 0.19

Means and standard deviations of the soleus (SOL), gastrocnemius medialis (GM), and tibialis anterior muscles (TA) during the phase of preactivation (Pre)
and for TA during the phase of the short-latency response (SLR) pre- (t1) and post-WBV treatment (t3, t4, and t5). Data are normalized to t1. Parameters
marked with ª were statistically equal.
ES, equivalence statistics; t, time intervals.

Table 3. Mechanical data of hopping

t1 t3 t4 t5 ES results

Fmax (N) 3190 � 685 3147 � 661ª 3138 � 558ª 3141 � 641ª Statistically equal
GCT (ms) 188 � 33 187 � 29ª 184 � 26ª 187 � 27ª Statistically equal
RFD (kN/s) 20.3 � 6.1 20.4 � 6.1ª 20.4 � 6.1ª 20.4 � 5.8ª Statistically equal
Height (cm) 17 � 3 17 � 4ª 16 � 3ª 17 � 3ª Statistically equal

Means and standard deviations of the maximal force (Fmax), ground contact time (GCT), rate of force development (RFD), and jump height of the hopping
pre- (t1) and post-WBV treatment (t3, t4, and t5). Parameters marked with ª were statistically equal.
ES, equivalence statistics; t, time intervals.
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vations obtained after locally applied tendon and muscle
vibrations (Gail et al., 1966; van Boxtel, 1986), it seems
unlikely that changes within the central nervous system
augment reflex responses because of WBV.

Previously, Armstrong et al. (2008) and Sayenko et al.
(2010) reported a depression of the SOL H-reflex imme-
diately after WBV. The present results confirmed this
observation and further specified that the H-reflex
depression was most pronounced during WBV and
recovered slowly afterwards but was still not fully recov-
ered 5 min after WBV. The potential mechanisms
responsible for the reduction of the Ia afferent transmis-
sion are manifold and can occur through a variety of
mechanisms: a 22 Hz WBV – as it was used in this study
– results in 22 repetitive reflex-induced activations of
the muscles per second (Ritzmann et al., 2010). Thus,
the reduction of the H-reflex during WBV could be
explained by post activation depression. Post activation
depression reflects a reduced Ia afferent transmitter
release because of previous activation (Crone & Nielsen,
1989). The repetitive excitations cause a transmitter
depletion within the presynaptic terminals and
consequently a reduced postsynaptic excitation (Pinco &
Lev-Tov, 1993). In every cycle, WBV generates a
dorsiflexion moment, stretches the calf muscles
(Cochrane et al., 2009), and thus induces a successive
and frequency-dependent activation of the muscle spin-
dles (Ritzmann et al., 2010). During WBV, this excit-
ation is transmitted via Ia afferents and generates
numerous discharges at the a-motoneuron pool
(Cochrane et al., 2009; Ritzmann et al., 2010). There-
fore, post activation depression most likely contributes
to the reduction of the H-reflex during and shortly after
WBV. However, as post activation depression was docu-
mented to last for only 10 s (Crone & Nielsen, 1989), it
cannot explain the incomplete recovery of the H-reflex
observed 5 min after WBV. Based on studies investigat-
ing the effects of locally applied tendon vibration, it may
be speculated that PSI has also contributed to the
observed H-reflex reduction. Several studies reported
inhibited H- and stretch reflex responses during and after
tendon vibration (Arcangel et al., 1971; van Boxtel,
1986), and it was demonstrated that this reduction was
due to an increase in PSI elicited by GABAergic
interneurons (Gillies et al., 1969). Reciprocal inhibition
is another mechanism that could potentially have
reduced the reflex responses in this study. However, as
WBV was shown to cause a co-contraction (Berschin &
Sommer, 2004) and reciprocal inhibition is considered to
be reduced during co-contraction (Nielsen & Kagami-
hara, 1992), it seems rather unlikely that this mechanism
may have suppressed the Ia afferent transmission.

Independent of the detailed knowledge about the
neural processes responsible for the H-reflex depression,
it is reasonable to assume that the same inhibitory
mechanisms acting on the H-reflex also influence the
stretch reflex, as both use the same pathways. Thus, post

activation depression and PSI could also explain the
reduction of the stretch reflexes in SOL and GM when
measured in the sitting position. In contrast to the
H-reflexes, stretch reflexes are dependent on the activity
of the g-motoneurons and can be modulated by the fusi-
motor drive, altering the threshold for the muscle spindle
activation (Hagbarth & Macefield, 1995).

In contrast to the H-reflex suppression, (1) the stretch
reflex inhibition recovered much faster and (2) was not
noticeable in the standing position. A possible explana-
tion for (1) has been proposed by Morita et al. (1998).
They stated that the discrepancy between the H- and
stretch reflex is based on the different processing at the
spinal level. They proposed that the excitation by means
of PNS in the H-reflex causes just one synchronized
activation, whereas the excitation of the primary muscle
spindle endings results in a more dispersed volley
(Morita et al., 1998). In addition, PSI induced by locally
applied tendon vibration was shown to diminish the
H-reflex to a greater extent than the stretch reflex (van
Boxtel, 1986). Thus, based on both observations, it
might be speculated that the higher sensitivity of the
H-reflex toward PSI is responsible for the more pro-
nounced and longer lasting depression of the H-reflex
after WBV.

Concerning (2), it is well-known that the level of
background activation (Butler et al., 1993) is a factor
that could potentially explain the differences between
the standing and the sitting position in stretch reflex
sensitivity. Based on previous studies showing stronger
reflex modulations during rest than in the active state, it
might be assumed that inhibitory effects in response to
WBV are masked in the activated muscle (Burke et al.,
1992). Gollhofer and Rapp (1993) showed that the
stretch reflex responses recovered fast following
mechanical stimulation in the standing position when the
triceps surae muscle was activated, whereas in the
relaxed sitting position, the reflexes remained sup-
pressed. They proposed that these differences may be
caused by alterations in the a–g linkage (Gollhofer &
Rapp, 1993), possibly due to a faster reformation of
previously disrupted cross-bridge links in the intrafusal
muscle fibers in a standing position (Gottlieb et al.,
1981). Based on these studies, it may be argued that the
stretch reflexes after WBV recovered faster in the stand-
ing position because of the enhanced functional rel-
evance of stretch reflexes for controlling an upright body
position (Gollhofer & Rapp, 1993).

Furthermore, from a functional point of view, it is
noteworthy that reflex modulation in the even more
dynamic task of hopping was missing completely. It
might be speculated that the dynamic type of voluntary
muscle activation accelerated the recovery of the reflex
circuit because of its functional importance in regard to
stiffness regulation in the stretch-shortening cycle
(Komi, 2000). It may be supposed that supraspinal
modulation could have compensated the reduction of the
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Ia afferent transmission. Although Taube et al. (2008)
assumed that spinal mechanisms are predominantly
present at the time of the SLR, a recent study highlighted
that the motor cortex contributes to the SLR amplitude.
Zuur et al. (2010) showed that the SLR consists of a
stretch reflex component but also a cortical contribution.
Thus, to generate appropriate muscle stiffness in the
muscles encompassing the ankle joint in the stretch
shortening-cycle, supraspinal centers might have com-
pensated the reduced Ia afferent transmission during
hopping.

In summary, in all the test conditions, either a reflex
inhibition or insignificant changes in response to WBV
could be observed. In any case, there was no evidence for
any reflex facilitation. Thus, performance improvements
after the application of WBV in sports training are not
likely to be caused by spinal facilitation. Improved per-
formance after WBV has therefore to be explained dif-
ferently. One likely mechanism contributing to enhanced
performance after WBV may be the previously discov-
ered effect of WBV on muscle temperature (Cochrane
et al., 2008, 2010). As the increase in performance was
related to the increase in temperature, Cochrane et al.
(2008) proposed that changes in muscle temperature
may be primarily responsible for enhancing short-term
explosive events after WBV.

Regarding therapy, the results of the present study
could help to explain the beneficial effects of WBV in
people suffering from exaggerated reflex activity. In
hemiparetic patients, for instance, the WBV-induced
reduction of Ia afferent transmission might help to
reduce the abnormal muscle tone and reduce the
co-contraction of their muscles. Furthermore, the partial
and largely long duration of reflex suppression after
WBV is probably helpful to facilitate voluntary motor
actions in patients with a high muscle tone caused by
exaggerated Ia afferent input (Ness & Field-Fote, 2009).

This assumption is well in line with previous observa-
tions showing that WBV training enhances the walking
ability and balance control in persons with spastic diple-
gia (Ahlborg et al., 2006) and improves mobility and
muscle force in bilateral spastic cerebral palsy children
(Stark et al., 2010). Those improvements were accom-
panied by a reduction of spasticity that might be associ-
ated with a suppression of Ia afferent transmission
(Ahlborg et al., 2006).

Perspectives

This study demonstrated an extensive suppression of Ia
afferent transmission combined with a delayed recovery
in response to WBV. However, with an increase in motor
complexity, the suppression was less pronounced, and
the recovery was accelerated. During hopping, the con-
dition with the highest complexity level, WBV did not
affect the reflex component. The present results of
reduced reflex activity after WBV are well in line with
the effects observed after locally applied tendon and
muscle vibrations. Possible mechanisms explaining the
suppression of reflex responses after WBV are post acti-
vation depression, PSI, and changes in muscle spindle
sensitivity. Furthermore, it is proposed that in tasks with
a greater motor complexity, the inhibitory mechanisms
may be compensated by supraspinal facilitating mecha-
nisms leading to an accelerated reflex recovery in the
voluntarily activated muscle.

Key words: electromyography, EMG, stretch-shortening
cycle, peripheral nerve stimulation, training.
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