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Ethanol  is  one  of the  most  abused  drugs  in the  western  societies.  It  is well  established  that  mesolim-

bic  dopaminergic  neurons  mediate  the  rewarding  properties  of ethanol.  In  our  previous  studies  we  have

shown  that  the  serine  protease  tissue  plasminogen  activator  (tPA)  is  involved  in the  rewarding  properties

of  morphine  and  amphetamine.  In  the  current  study,  we investigated  the  role  of tPA  in ethanol-induced

behavioral  sensitization  and  conditioned-place  preference  (CPP).  Ethanol  treatment  dose-dependently

induced  tPA  enzymatic  activity in  the  nucleus  accumbens  (NAc).  In addition,  ethanol-induced  increase

in  tPA  activity was  completely  inhibited  by  pre-treatment  with  the  dopamine  D1 and  D2  receptor

antagonists  SCH23390  and  raclopride  respectively.  Furthermore,  ethanol-induced  locomotor  stimulation,

behavioral  sensitization  and  conditioned-place  preference  were  enhanced  following  tPA  over-expression

in  the  NAc  using  a lentiviral  vector.  In  contrast,  tPA  knock  down  in the  NAc  with  specific  shRNA  blocked

the  rewarding  properties  of ethanol.  The  defect  of locomotor  stimulation  in shRNA-injected  mice  was

reversed  by  microinjections  of exogenous  recombinant  tPA  into  the  nucleus  accumbens.  Collectively,

these  results  indicate,  for  the  first  time,  that  activation  of tPA  is effective  in  enhancing  the  rewarding

effects  of  ethanol.  Targeting  the  tissue  plasminogen  activator  system  would  provide  new  therapeutic

approaches  to  the  treatment  of alcoholism.

1. Introduction

Alcohol dependence can be characterized by  a pattern of com-
pulsive ethanol drinking or loss of control of intake by an individual
in spite of the adverse devastating negative consequences of its
abuse [1]. It is well established that alcohol intake increases the
release of dopamine and subsequently increases gene expression
in mesencephalic brain areas related to reinforcement and reward,
such as the nucleus accumbens (NAc) or the ventral part of striatum
[2–6]. In these regions, alcohol-induced opioid release stimulates
dopamine neurons by  acting directly on the NAc and by disinhibit-
ing GABA neurons projecting into the ventral tegmental area (VTA)
[7–13].

Several recent reports have suggested a close interaction
between the plasminogen system and drug of abuse. Particu-
larly, many studies have addressed the role of tissue plasminogen
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activator (tPA) in amphetamine, nicotine and morphine-induced
behavioral changes and reward [14–22]. Extracellular proteases
are found in  a  large amount of human tissues and function to
maintain the integrity of the extracellular matrix, to modulate the
interaction of the cells during development and to  contribute to
tissue remodeling [23–25]. Regulation of the extracellular matrix
by proteases and protease inhibitors is  a fundamental biological
process for normal growth, development and repair in  the cen-
tral nervous system (CNS) [26,27]. tPA is  a  serine protease that
catalyzes the conversion of plasminogen to  plasmin and plays a
role in  fibrinolysis [28]. In addition, tPA is  expressed by  many
types of neurons in  the developing and adult brain [for review
see [15,29]]. tPA is highly expressed in  the adult rodent brain in
regions involved in  learning and memory (hippocampus) [30,31],
fear and anxiety (amygdala) [32–34], motor learning (cerebellum)
[35,36], and addiction [14,33,37–40]. The understanding of phys-
iological functions of tPA in the CNS has expanded together with
its roles in pathological situations including neuronal degenera-
tion due to  excitotoxicity [41–43], Alzheimer’s disease [44–47] and
amyotrophic lateral sclerosis (ALS) [48]. These findings suggest that
tPA is involved in  the regulation of numerous aspects of neuronal
remodeling and particularly drug-induced synaptic plasticity.

In  2004, Nagai and co-workers showed that repeated metham-
phetamine injections dose-dependently induced tPA mRNA
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expression in multiple brain regions including the NAc. In addition,
methamphetamine-induced behavioral sensitization and condi-
tioned place preference (CPP) were significantly reduced in  tPA-KO
mice compared to their wild-type littermates [21]. The same
group has also shown that the tPA–plasmin system plays a  cru-
cial role in nicotine-induced reward and dopamine release [39]
as well as morphine-induced dopamine release and behaviors but
not in the anti-nociceptive effects of morphine [17–19]. Using
lentiviral-mediated gene transfer approach our  previous research
has demonstrated that tPA-overexpressing rats had greater acute
locomotor stimulating response, behavioral sensitization and con-
ditioned place preference upon morphine and amphetamine
treatments and that, these effects were inhibited using specific-
shRNA-expressing viral vectors [14]. In an independent study we
have reported that lentiviral tPA over expression in the NAc was
involved in the acquisition, extinction and reinstatement but not
in the expression, of amphetamine-induced place preference. [16].
Together, these data clearly indicate that tPA plays an important
role in morphine and amphetamine-induced behavioral changes.

To  extend our previous findings, we performed a  series of exper-
iments to examine the effects of ethanol on tPA enzymatic activity.
Using lentiviral-mediated gene transfer and shRNA expression,
we investigated how tPA manipulation in  the NAc may  influence
ethanol-induced locomotor sensitization and conditioned place
preference.

2. Materials and methods

2.1.  Animals

Male C57BL/6 mice weighing 25–30 g were group housed in standard plexiglas

cages  1 week before the experimental procedure started. All  mice were kept under

standard laboratory conditions (12/12 h  light–dark cycle, lights off at 7 a.m., 22 ◦C,

55% relative humidity) with free access to  tap water and standard mouse chow diet.

All animal care and use were in accordance with the National Institutes of Health

Guide  for the Care and Use of Laboratory Animals. All experimental procedures were

approved by the local Research Ethics Committee.

2.2. Ethanol solution and drugs

Ethanol  was  diluted in 0.9% isotonic saline (10%, v/v). The D1 receptor antag-

onist  SCH23390 and the D2 receptor antagonist raclopride were purchased from

Sigma–Aldrich Chemie GmbH (Buchs, Switzerland) and dissolved in saline and

injected into the intraperitoneal cavity. Based on previous published studies,

SCH23390  and raclopride were used at  0.05 and 0.1 mg/kg respectively [49–51].

SCH23390  or raclopride were administered intraperitoneally 30 min  before the

ethanol treatment. Control animals were given the same volume of vehicle.

2.3. Construction and production of lentiviral vectors LV-GFP, LV-tPA and
LV-shRNA

These  vectors were prepared as described previously [14,16]. Briefly, for LV-tPA,

tPA was  amplified from total brain cDNA using specific primers. The  amplicon was

then digested with Bam HI and Xho I  and ligated into pTK431 previously digested

with  the same restriction enzymes. LV-GFP was  made from a control vectors con-

struct, in which green fluorescent protein (GFP) is  expressed by a  CMV  promoter.

For  LV-shRNA, using PCR amplification shRNA oligos were added to the mouse U6

promoter using pSilencer 1.0-U6 (Ambion, UK) as a  template and the PCR product

was  digested with Bam HI  and Xho I  and cloned into similar sites in pTK431. After

cloning  and sequencing, all plasmids were CsCl2-purified. Vesicular stomatitis virus

G-pseudotyped lentiviruses were produced by  the transient calcium phosphate

cotransfection  of human embryonic kidney 293T (HEK293T) cells with pTKs vectors

together with pMDG-VSV-G and p�NRF as described previously [14,16,52–59].

2.4. Microinjection of LV-GFP, LV-tPA, LV-shRNA and recombinant tPA into the
NAc

Microinjection of  lentiviral vectors or recombinant tPA into the NAc was  per-

formed according to the previous study [60]. First, mice were tested for their

baseline  preference and conditioned with either saline or ethanol for 10 days (see

Table 1). Viral vectors were injected after conditioning. Mice were anesthetized with

isoflurane and placed in a stereotaxic apparatus. A pair of metal guide cannulas

was  stereotaxically implanted bilaterally into the NAc using following coordinates:

+1.6  mm antero-posterior, ±0.8 mm lateral from the bregma, and 4 mm ventral from

the skull (dorsal striatum coordinates: AP +1.6 mm, lateral ±1.2  mm  and DV 2.5 mm)

Table  1

Time-lines  of the experimental procedure.

Days 0 1–10 11–12 12–20 21

Baseline Conditioning Viral injection Recovery CPP test

[61]. Following recovery from the operation, mice were used for EtOH–CPP expres-

sion.  For rescuing experiments using recombinant tPA, an  infusion cannula was

inserted through the guide cannula until they protruded 1 mm beyond the inner end.

Vehicle or tPA (10, 30 or 100 ng) were microinjected bilaterally into the  NAc through

the infusion cannulas at  a  rate of 0.2 �l/min for 5 min  (final volume 1 �l/site). Saline

or  ethanol (1 g/kg; i.p.) was  administered 10 min  after the microinjections, and then

locomotor activity was  measured for 60 min  as described below. Determination of

the location of the infusion cannula placements was  assessed at the  completion of

the experiments.

2.5. Measurement of locomotor activity

Mice were placed individually in a transparent acrylic cage with a  black frosting

Plexiglas  floor, and locomotor activity was measured every 5 min  for 60 min  using

digital counters with infrared sensor (Activity Monitor, Med  Associates, VA, USA). All

mice were habituated to the test environment for 30 min  before the measurement

of  locomotor activity. Mice were then injected with isotonic saline (0.9%; i.p.) or

ethanol (0.5, 1 or 2  g/kg; i.p.), and the locomotor activity was measured in daily

sessions  for 10 days.

2.6.  Conditioned place preference testing apparatus

Eight conditioning Plexiglas boxes were enclosed in light and sound-attenuating

chambers. The place preference boxes were composed of two distinct tactile condi-

tioning environments (consisting of either wire grid or mesh floor). All experimental

procedures were conducted without lights in these chambers. Photodetectors and

infrared light sources were mounted 2 cm above the floor of the conditioning box

at 2.5-cm intervals along the sides of the box. A computer recorded activity and

position  of mouse within the conditioning box (Med Associates, VA, USA).

2.7. General behavioral procedures for conditioned place preference experiments

2.7.1.  Pre-conditioning (habituation)
A  1-day habituation procedure preceded conditioning in all  experiments. After

a saline injection (10 ml/kg; i.p.), the mouse was  placed in the center with free

access  to  both conditioning chambers and the time the mouse spent in each of the

two  chambers during a 15-min test period was recorded. This pre-test determined

baseline  preferences (whether the mouse spent significantly more time in one test

chamber than in the other, regarded as equipment bias). Mice that spent more than

60%  of the time in either one of the compartments during the pre-conditioning base-

line (habituation) session were excluded from the study. This allowed us to  use an

unbiased design in which both compartments were equally preferred before the

conditioning session and to  randomly assign the compartment paired with ethanol.

2.7.2.  Conditioning
The place conditioning phase started 1 day  after the pre-conditioning phase. This

phase consisted of ten, 30-min sessions (five saline and five ethanol pairings). These

sessions were conducted once each day (from day 1 to  day 10). On each of these

days,  separate groups of animals received one conditioning session with ethanol

(1  g/kg, 10%, w/v; i.p.) and one with isotonic saline (10 ml/kg; i.p.). During these ses-

sions in alternative days, the animals were confined to  one compartment by closing

the removable wall. Animals of each group were injected with ethanol and were

immediately  confined to  one compartment of the apparatus for 30 min. Following

administration  of saline, the animals were confined to  the other compartment for

30 min. Locomotor activity was  recorded during each of these five saline and five

ethanol conditioning sessions to  determine the effects of LV-GFP, LV-tPA and LV-

shRNA on ethanol-induced hyperactivity. In the saline control group, mice received

saline injection on all 10 conditioning days. Treatment compartment and order of

presentation of ethanol and saline were counterbalanced for each group.

2.7.3. Post-conditioning (CPP-test)
On  day  11  and after a saline injection (10 ml/kg; i.p.) the animals were allowed

free  access to both compartments. No ethanol injection was  given on the test day.

Animals  were placed in the center of the  chamber with free access to both test cham-

bers for 15 min  and the time the mouse spent in each chamber was  automatically

recorded  and used as a test for CPP.

2.8. Measurement of tPA activity

Immediately  after the completion of behavioral testing, brains were removed

after  rapid decapitation. The NAc was  punched from 2-mm sections with an 18-

gauge syringe and placed immediately in lysis buffer. Fifty micrograms of protein

from  each sample were incubated with a  specific tPA substrate from AMC  tPA
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Fig. 1. Changes in tPA enzymatic activity in the NAc after ethanol treatment. (A) Ethanol dose dependently increases tPA activity in the NAc. Mice were treated with ethanol

i.p. at doses of 0, 0.5, 1 or 2 g/kg. Mice were then killed and tPA activity was  measured in the NAc extracts. Values indicate means ±  SEM (n = 6 for all doses). **P <  0.01 compared

to  saline-treated group. (B) Ethanol-induced tPA activity kinetics revealed a  maximum effect after 2 h post injection. Mice were i.p. injected with 1  g/kg ethanol and killed as

described  previously after 0.5, 1, 2,  4 or 24  h  post injection. Values indicate means ± SEM [saline (n =  4); 0.5-h (n  = 6); 1-h (n =  6), 2-h (n  =  5), 4-h  (n  = 6), 24-h (n = 8)]. **P <  0.01

and  *P < 0.05 compared to  saline-treated group. (C) Ethanol-induced tPA  activity in the NAc was  antagonized by dopamine D1 and D2 receptors antagonists. Mice were

injected with SCH23390 (0.05 mg/kg) or raclopride (0.1 mg/kg) i.p. 30 min  before ethanol (1 g/kg, i.p.) treatment. Mice were then killed and tPA activity was  measured as

described previously. Values indicate means ± SEM. [Vehicle (n =  10); SCH23390 (n =  12); raclopride (n  = 9).] **P < 0.01 compared to saline-treated group. #P <  0.05 compared

to  vehicle-treated group.

Activity  Assay Kit (Fremont CA, USA) according to the manufacturer’s protocol

and  published studies [62–64]. Reactions were stopped and colorimetric intensity

was  measured at 442 nm in a microplate spectrophotometer. Data represent values

obtained from three independent experiments performed in triplicate.

2.9. Statistical analysis

For  statistical comparisons, the software package SPSS (version 17.0) was  used.

All  data were expressed as means ± SEM. In the analysis of the effect of time course

for the behavioral sensitization, an ANOVA with repeated measures was  used and

followed by the Bonferooni’s test when F  values were significant. In the analysis

of  tPA activity, acute locomotion and conditioned place preference, an  ANOVA was

used. In cases of a significant main effect, post-hoc comparisons were performed

with  Bonferroni’s test. The criterion for statistical significance was  P <  0.05.

3. Results

3.1. Ethanol increases tPA activity in the nucleus accumbens

It has been shown that tPA is  stored in  synaptic vesicles and
released after cell depolarization [62]. We hypothesize that if
ethanol-induced dopamine release is  affecting the tPA system,
ethanol should increase tPA activity in  the NAc. We  examined
tPA activity in the NAc protein extracts after ethanol administra-
tion using an enzymatic assay. In  this experiment, four different
groups of mice were injected with increasing doses of ethanol
(0, 0.5, 1 and 2 g/kg; i.p.) and killed 60 min  later. As shown in
Fig. 1A, ethanol treatment increased tPA activity in the NAc. In

addition the effect of ethanol was  dose dependent [F(3,20) = 9.512;
P <  0.05; n = 6 for all groups] (Fig. 1A). Post-hoc analysis revealed
that, compared to saline injected mice, 0.5 g/kg ethanol treatment
did not affect tPA enzymatic activity (P  > 0.05). In  addition, sin-
gle ethanol injection (1 g/kg) significantly increased tPA activity
in the NAc 1 h (135%), 2 h (139%) and 4 h (110%) after the treat-
ment [F(5,29) =  6.588; P < 0.05; saline (n  =  4); 0.5 h (n  =  6); 1 h (n  = 6),
2 h (n  =  5), 4 h (n  = 6), 24 h (n  =  8)] (Fig. 1B). These results sug-
gest that acute ethanol administration induces an up-regulation
of tPA activity in  the NAc. Furthermore, ethanol-induced increase
in tPA activity in  the NAc was inhibited by pretreatment with
dopamine D1 receptor antagonist SCH23390 (P  < 0.05) and with the
D2 receptor antagonist raclopride (P  <  0.05) (Fig. 1C). In between
subject analysis has revealed a main effect of ethanol treat-
ment [F(1,28) = 12.278; P <  0.05]. The within subject evaluation has
shown an ethanol × drug interaction [F(2,28) =  8.375; P <  0.05; vehi-
cle (n  =  10); SCH23390 (n  = 12); raclopride (n  =  9)]. These results
suggest that ethanol stimulates release of tPA through both
dopamine D1 and D2, receptors.

3.2. Ethanol-induced locomotor stimulation in LV-GFP, LV-tPA
and  LV-shRNA mice

In  order to clarify the physiological significance of the reg-
ulation of tPA activity in the NAc, we compared the locomotor
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Fig. 2. Ethanol-induced locomotor stimulation in mice expressing GFP, tPA or shRNA. (A) Mice were stereotaxically injected in the NAc with lentiviral vectors expressing

either GFP, tPA or shRNA. After recovery, mice were acutely injected with either saline or ethanol (1 g/kg, i.p.) and locomotor activity was  measured 15 min  later. Values

indicate means ± SEM. [LV-GFP (n =  11); LV-tPA (n = 13); LV-shRNA (n  = 10)]. **P  <  0.01 and *P  <  0.05 compared to saline-treated group. #P <  0.05 compared to LV-GFP-injected

group. (B) The same animals as previously were injected daily with saline (2 days) for baseline locomotor activity and then daily with ethanol (0.5 g/kg, i.p.) for 11  days and

locomotor activity monitored to assess behavioral sensitization. *P  < 0.05 compared to day 1. #P <  0.05 compared to LV-GFP-injected group. (C) Mice were stereotaxically

injected in the NAc with LV-shRNA. After recovery mice were infused with 0, 10, 30 or 100 ng of recombinant tPA. 10 min  later mice were injected with either saline or

ethanol (1 g/kg, i.p.) and locomotor activity was  measured. **P < 0.01 and *P  <  0.05 compared to  saline-treated group. ##P <  0.01 and #P < 0.05 compared to 0  ng tPA-infused

group. [saline (n = 13); ethanol (n = 16)]. (D) After repeated ethanol treatment (panel “B”  above), mice were killed at day  11  and tPA  enzymatic activity was  measured in the

NAc. [LV-GFP (EtOH, n =  8/saline, n =  3); LV-tPA (EtOH, n = 9/saline, n =  4); LV-shRNA (EtOH, n = 7/saline, n =  3).] *P <  0.05 compared to  saline-treated group. #P <  0.05 compared

to LV-GFP-injected group. (E) Mice were sterotaxically injected in the dorsal striatum with lentiviral vectors expressing either GFP, tPA or shRNA. After recovery, mice were

acutely  injected with either saline or ethanol (1 g/kg, i.p.) and locomotor activity was  measured. Values indicate means ± SEM. [LV-GFP (n  =  11); LV-tPA (n = 12); LV-shRNA

(n = 11)]. **P < 0.05 compared to saline-treated group. (F) The same animals as previously were injected with saline (2 days) for baseline locomotor activity and then daily

with  ethanol (0.5 g/kg, i.p.) for 11 days and locomotor activity was  monitored to  assess behavioral sensitization. *P  <  0.05 compared to day 1.

stimulating effects of ethanol in  LV-GFP, LV-tPA and LV-shRNA
injected mice. Results of ethanol-induced locomotor activity were
evaluated using one-way ANOVAs repeated measure, with the
virus (LV-GFP, LV-tPA and LV-shRNA; 3 levels) defined as a
between-subject factor and treatment (saline and ethanol; 2
levels) as within-subject factor. As shown in Fig. 2A, the loco-
motor response to  1 g/kg; i.p. ethanol was significantly enhanced
[F(1,31) = 10.537; P < 0.05; LV-GFP (n  =  11); LV-tPA (n  =  13); LV-
shRNA (n = 10)] in mice that were treated with ethanol as compared

to  saline. In addition, analysis has revealed an ethanol × virus
interaction [F(2,31) =  7.649; P < 0.05]. Post-hoc evaluation has shown
that, compared to control animals injected with LV-GFP, tPA
over-expression enhances locomotor activity. In contrast, knock-
ing down tPA expression by mean of LV-shRNA in  the NAc
reduces ethanol-induced locomotor stimulation. When the time
course of ethanol (0.5 g/kg)-induced locomotor sensitization in
LV-tPA and LV-shRNA mice was compared with that in  LV-GFP
mice, the sensitization was found to be significantly high in

ht
tp

://
do

c.
re

ro
.c

h



Fig. 3. Ethanol-induced place preference in mice expressing GFP, tPA or shRNA in the NAc. (A) Optimization of ethanol doses for place preference (CPP). Ethanol-CPP is dose-

dependent. After an initial 15-min determination of place preference baseline, mice were place conditioned with ethanol (0, 0.5, 1, 2 or 2.5 g/kg; i.p.) or in the opposite chamber.

Final  CPP was  determined on  day 11.  All mice demonstrated similar preconditioning place preferences (habituation). Mice place conditioned with 0 and 0.5 g/kg ethanol did

not  demonstrate a change from the initial place preference response. In contrast, place conditioning with 1,  2 or 2.5 g/kg ethanol produced a  significant preference for the

ethanol-paired environment. Values indicate means ± SEM. [0-g/kg (n  = 7); 0.5-g/kg (n = 9); 1-g/kg (n = 8); 2-g/kg (n = 9); 2.5-g/kg (n  = 8)] **P <  0.01 and *P  <  0.05 compared to

habituation; ##P < 0.01 and #P <  0.05 compared to  0-g/kg. (B) Mice were tested for their baseline and stereotaxically injected with either LV-GFP, LV-tPA or LV-shRNA. Mice

were then conditioned with ethanol (1 g/kg, i.p.) and tested for CPP. Values indicate means ± SEM. [LV-GFP (n  = 10); LV-tPA (n  =  11);  LV-shRNA (n = 9).] **P  <  0.01 and *P  < 0.05

compared to habituation. #P < 0.05 compared to LV-GFP-injected group. (C) In the same mice, ethanol significantly increased locomotor activity in LV-tPA, but had no effect

on  LV-shRNA, injected mice compared to LV-GFP during conditioning. **P <  0.01 and *P  < 0.05 compared to  habituation. ##P < 0.01 and #P < 0.05 compared to  LV-GFP-injected

group. (D) In absence of ethanol LV-GFP, LV-tPA and LV-shRNA did  not affect locomotor activity during place preference test.

tPA-over-expressing mice [F(7,217) = 6.942; P <  0.05; LV-GFP (n  =  11);
LV-tPA (n = 13); LV-shRNA (n  = 10)]. In  contrast, tPA knock down
in the NAc impaired ethanol-induced behavioral sensitization
(Fig. 2B). We  then examined whether exogenous recombinant tPA
can reverse LV-shRNA-induced decrease in  the ethanol locomotor
sensitization response. The attenuation of locomotor stimulation
in ethanol-treated LV-shRNA mice was dose-dependently signifi-
cantly reversed by microinjections of exogenous recombinant tPA
[F(3,81) = 8.622; P < 0.05; saline (n  =  13); ethanol (n  = 16)] into the
nucleus accumbens, although tPA microinjection itself had no effect
on locomotor activity in saline-treated LV-shRNA mice (Fig. 2C).
To determine whether observed locomotor stimulation changes
are related to the tPA activity, the enzymatic activity of tPA in
repeated ethanol treatment groups was assessed. LV-tPA over-
expression resulted into enhanced extracellular enzymatic activity
of this protease in the NAc [F(2,21) =  13.106; P <  0.05; LV-GFP (n  = 8);
LV-tPA (n = 9); LV-shRNA (n  =  7)] (Fig. 2D). A  within-subject anal-
ysis revealed a main effect of ethanol treatment [F(1,21) = 12.677;
P < 0.05]. However, when gene expression of tPA was inhibited with
specific shRNA-expressing lentiviral vectors, a  reduced enzymatic
activity was observed.

Because  it is possible that tPA activity may  also be modulated
by the ethanol in the dorsal striatum, we examined the ethanol-
induced tPA activity in  this brain region. As shown in Fig. 2E,
the locomotor response to  1 g/kg; i.p. ethanol was  significantly
enhanced [F(1,31) = 12.967; P <  0.05; LV-GFP (n  =  11); LV-tPA (n  = 12);
LV-shRNA (n = 11)] in  mice that were treated with ethanol as com-
pared to saline. In contrast to  the NAc, within-subject analysis

has  revealed no ethanol × virus interaction [F(2,31) =  0.678; P > 0.05].
Post-hoc evaluation has shown that, compared to control animals
injected with LV-GFP, tPA over-expression or knock down using LV-
siRNA did not affect locomotor activity. Similarly, when the time
course of ethanol (0.5 g/kg)-induced locomotor sensitization in  LV-
tPA and LV-shRNA mice was compared with that  in LV-GFP mice,
the sensitization was  not found to be affected by tPA expression
using viral vectors [F(7,217) =  0.975; P >  0.05; LV-GFP (n  =  11); LV-tPA
(n =  12); LV-shRNA (n  = 11)] (Fig. 2F).

3.3.  Ethanol-induced place preference in LV-GFP, LV-tPA and
LV-shRNA-injected NAc

Because we  observed robust changes in tPA enzymatic activity
in the nucleus accumbens, the areas of the brain important for the
rewarding effects of drugs of abuse [65–68], we focused on the role
of tPA in  the rewarding effects of ethanol, which can be assessed
using the conditioned place preference test [69–73].

Optimization of ethanol place conditioning was conducted with
ethanol doses of 0, 0.5, 1,  2 or 2.5 g/kg once daily for 5 days. As
shown in Fig. 3A, the one-way ANOVA analysis indicated a sig-
nificant main effect of ethanol dose [F(4,36) =  6.974; P < 0.05; n = 7
for 0 mg/kg, n =  9 for 0.5 mg/kg, n = 8 for 1 mg/kg, n = 9 for 2  mg/kg
and n = 8 for 2.5  mg/kg]. Mice place conditioned with 0 or 0.5 g/kg
ethanol displayed no change in preference from baseline (P  =  0.394
and P = 0.487 respectively). However, subsequent post-hoc evalua-
tion for each dose revealed that mice place conditioned 30 min  daily
with 1, 2 or 2.5 g/kg doses of ethanol spent significantly more time
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Fig. 4. Ethanol-induced place preference in mice expressing GFP, tPA or shRNA in the dorsal striatum. (A) Mice were tested for their baseline and steretoaxically injected in

the  dorsal striatum with either LV-GFP, LV-tPA or LV-shRNA. Mice were then conditioned with ethanol (1 g/kg, i.p.) and tested for CPP. Values indicate means ± SEM. [LV-GFP

(n  = 10); LV-tPA (n = 9); LV-shRNA (n  =  9).] *P  < 0.05 compared to  habituation. (B) In the same mice, ethanol significantly increased locomotor activity in LV-GFP, LV-tPA, and

LV-shRNA injected mice during conditioning. *P  <  0.05 compared to habituation. (C) In absence of ethanol LV-GFP, LV-tPA and LV-shRNA did not affect locomotor activity

during  place preference test. (D) After CPP completion, mice were killed and tPA activity in was  assessed. [LV-GFP (EtOH, n =  5/saline, n = 5); LV-tPA (EtOH, n =  5/saline, n = 4);

LV-shRNA (EtOH, n = 5/saline, n =  4).] *P  < 0.05 compared to habituation. #P <  0.05 compared to  LV-GFP-injected group.

in the ethanol-paired chamber in final preference testing. Although
slightly significantly different from the effect of place conditioning
with a 2.5 g/kg dose of ethanol, a  peak effect was observed with 1
and 2 g/kg ethanol, prompting use of the 1 g/kg dose of ethanol in
CPP testing for the remainder of the study.

We then examined the effect of tPA modulation on ethanol-
induced CPP expression. The experimental timeline is illustrated in
Table 1. Mice were alternately conditioned to ethanol in  one com-
partment and saline in the other compartment. To determine the
effects of LV-GFP, LV-tPA and LV-shRNA on ethanol memory, mice
were tested for their baseline preference. After the 10-day condi-
tioning sessions, mice were streotaxically injected with the viral
vectors in the NAc. After recovery, mice were tested for ethanol-
induced CPP as described above. The results are illustrated in
Fig. 3B. Analyzing percent of time spent in the ethanol-paired box
during the CPP test revealed a significant virus × test interaction
[F(2,27) = 9.864; P <  0.05; LV-GFP (n  =  10); LV-tPA (n  =  11); LV-shRNA
(n = 9)]. Post-hoc tests showed that mice injected with LV-tPA and
conditioned to ethanol displayed a  significant place preference
compared to LV-GFP and pre-conditioning habituation time. In con-
trast, knocking-down tPA expression with LV-shRNA significantly
reduced place preference compared to  controls.

As shown in Fig. 3C, locomotor activity data analysis from the
mice undergoing acquisition of ethanol CPP, revealed a  significant
conditioning × virus interaction [F(2,27) =  4.957; P <  0.05], and the
post-hoc evaluation revealed that ethanol significantly stimulated
locomotor activity in LV-GFP-injected animals during conditioning.

In  addition, LV-tPA enhanced ethanol-induced locomotor activity
(compared to  LV-GFP). In contrast LV-shRNA-injected mice showed
a reduced ethanol-induced locomotor activity (compared to LV-
GFP). In addition, as shown in Fig. 3D  LV-tPA and LV-shRNA did not
alter total locomotor activity during the CPP test (saline and ethanol
conditioning chambers) [F(2,27) =  0.967, P >  0.05].

3.4.  Ethanol-induced place preference in LV-GFP, LV-tPA and
LV-shRNA-injected dorsal striatum

To determine if the effects of LV-GFP, LV-tPA and LV-shRNA on
ethanol memory was  mediated by the NAc tPA activity, mice were
tested for their baseline preference. After the 10-day conditioning
sessions, mice were streotaxically injected with the viral vectors
in the dorsal striatum. The results are illustrated in Fig. 4A. Ana-
lyzing percent of time spent in  the ethanol-paired box during the
CPP test revealed a significant effect of ethanol [F(1,26) =  12.945;
P <  0.05; LV-GFP (n  =  10); LV-tPA (n  =  9); LV-shRNA (n  =  9)] but no
virus × drug interaction was  observed [F(2,25) =  1.957; P > 0.05]. As
shown in Fig. 4B,  locomotor activity data analysis from the mice
undergoing acquisition of ethanol CPP, revealed non-significant
conditioning × virus interaction [F(12,93) =  0.967; P > 0.05], and the
post-hoc evaluation revealed that ethanol significantly stimulated
locomotor activity in LV-GFP-injected animals during condition-
ing. In addition, LV-tPA enhanced ethanol-induced locomotor
activity but no difference to  LV-GFP was  found (compared to
LV-GFP). Similarly, LV-shRNA-injected mice showed an identical

ht
tp

://
do

c.
re

ro
.c

h



ethanol-induced locomotor activity (compared to LV-GFP). In addi-
tion, as shown in Fig. 4C, LV-tPA and LV-shRNA did not  alter total
locomotor activity during the CPP test (saline and ethanol condi-
tioning chambers).

At  the end of the experiment we  measured tPA activity in  dor-
sal striatum protein extracts (Fig.  4D). Saline treatment had no
effect on tPA activity. In contrast, ethanol injection significantly
increased tPA activity compared with the saline-treated group
[F(1,24) = 13.674; P < 0.05]. Furthermore, within-subject analysis has
revealed an ethanol × virus interaction [F(2,23) =  9.048; P <  0.05].
Post-hoc evaluation has shown that, compared to control animals
injected with LV-GFP, tPA over-expression enhances enzymatic
activity. In contrast, knocking down tPA expression by  mean of LV-
shRNA in the dorsal striatum reduces tPA activity. Overall, these
results indicate that ethanol-induced behavioral changes depend
on tPA activity in the NAc.

4.  Discussion

The present study examined the role of the tissue plasmino-
gen activator “tPA” in ethanol-induced locomotor sensitization
and conditioned place preference. The main findings of the
present study were that: first, ethanol treatment dose dependently
induced tPA activity in  the NAc. This effect was mediated by both
dopamine D1and D2 receptors. Second, tPA over-expression, but
not knock down, enhanced ethanol-induced locomotor stimula-
tion and behavioral sensitization. Finally, the rewarding effects
of ethanol were significantly enhanced with tPA over-expression
and attenuated with knocking down tPA expression in the nucleus
accumbens. Taken together, these data suggest that the initial
memory formation of ethanol-seeking behavior did require intact
tPA activity. Overall, these findings demonstrate that tPA plays an
important role in ethanol reward memory.

tPA is primarily expressed in  the brain’s motivational circuitry,
including the prefrontal cortex, amygdala, NAc, dorsal striatum,
thalamus and hippocampus [30–34,38]. Our present study found
that ethanol dose dependently induced tPA activity in the NAc. In
addition, enhancement of tPA activity was blocked when mice were
pretreated with both dopamine D1  receptor antagonist SCH23390
or raclopride, the D2R antagonist. Our observation is in agree-
ment with previously published studies where tPA expression
and activity in the nucleus accumbens induced after metham-
phetamine, morphine and nicotine treatment was blocked when
D1 and D2 receptors were antagonized [19,21,22,39].  It has been
shown that tPA expression is regulated by  cAMP response bind-
ing protein (CREB) [30] and when injected with cocaine tPA-KO
mice displayed attenuated phosphorylation of ERK, CREB, and
dopamine and cAMP-regulated phosphoprotein 32 kDa (DARPP-
32) in the NAc [37]. In addition, ethanol treatment enhanced
CREB phosphorylation and activity in  many brain regions includ-
ing the NAc [74–79]. Thus, we  can speculate that the enhanced
ability of ethanol treatment to  induce tPA enzymatic activity in
the NAc may  be due at least in part to the increased CREB func-
tion.

Based on sequence analysis and downstream second messen-
ger in the NAc, dopamine has two major receptors, D1  and D2  and
despite the opposing effects on cellular signaling via the cAMP/PKA
system, D1 and D2 receptor antagonists attenuated the induced
behavioral-induced behavioral changes [80–82] leading to reduced
levels of functional pCREB [83–86]. Therefore, ethanol-induced tPA
activity may  be mediated by the activation of both dopamine D1
and D2 receptors, which is associated with the enhanced pCREB
function.

To further investigate the physiological significance of the
ethanol-induced increase in  tPA enzymatic activity in the NAc,

we  examined the locomotor stimulating and rewarding effects
of ethanol in mice. For this purpose we used lentiviral-mediated
gene transfer technology to either over-express tPA or knock-
down its mRNA expression by mean of shRNA. These technologies
have been successfully used to  study gene function in the CNS
[87–93]. Ethanol induced locomotor stimulation and behavioral
sensitization were exacerbated in tPA over-expressing mice but
significantly reduced when tPA mRNA was  inhibited by mean
of specific shRNA-expressing lentiviral vectors in  the NAc. These
findings correlate with previously published studies in which
morphine-induced hyperlocomotion was significantly reduced in
tPA-KO mice compared to their wild-type littermates [22]. These
same mice displayed impaired locomotor stimulation when treated
with either amphetamine, cocaine or nicotine [18,19,21,39]. Also,
the tPA target, plasminogen, has been shown to  be involved in
the stimulating effects of morphine. In fact plasminogen-KO mice
exhibit reduced morphine-induced hyper-locomotion similar to
those found in tPA-KO mice [22]. Consistent with previous findings,
the microinjection of recombinant tPA in  shRNA-expressing mice
into the NAc dose dependently rescued ethanol-induced locomo-
tor stimulation. Taken together, it is  likely that the tPA is crucial in
regulating ethanol-induced hyperlocomotion as well as behavioral
sensitization in  mice.

We  also investigated whether tPA is involved in the rewarding
properties of ethanol using a  paradigm of conditioned place prefer-
ence. Our findings suggest that the rewarding effects of ethanol are
reduced in  shRNA-expressing mice but tPA over-expression leads
to an exaggerated ethanol response. Ethanol-induced locomotor
sensitization and conditioned place preference were significantly
attenuated when tPA mRNA was blocked by means of  shRNA
expressing viral vectors compared with GFP mice, and the atten-
uation of locomotor sensitization in  shRNA mice was significantly
reversed by microinjections of exogenous recombinant tPA into the
NAc. These findings suggest that tPA activity in  NAc plays a crucial
role in ethanol-induced behavioral sensitization and conditioned
reward. It is  well known that ethanol-induced locomotor sensi-
tization and CPP include learning and memory processes [94,95].
In addition, early studies suggested that tPA plays an important
role in the processes of learning and memory as tPA-KO mice have
shown a  reduced exploratory inhibition “high impulsivity” and an
impaired acquisition of hippocampal-dependent spatial learning
[96–99]. Furthermore, tPA gene ablation prevented corticostriatal
long-term potentiation “LTP” [100]. The demonstration that tPA
interferes with the induction of corticostriatal LTP in tPA-deficient
mice might provide new insights into the molecular mechanisms
underlying synaptic plasticity in the striatum. Our hypothesis is
that, when blocking tPA expression in  the NAc, mice failed to asso-
ciate the ethanol rewarding effects with the environmental context
during the conditioning period.

Ethanol  treatment produces structural and morphological
changes of neurons. In fact, two-photon microscopy analysis indi-
cated that chronic alcohol treatment modified and disoriented
dendrites of medium spiny neurons in  the nucleus accumbens
[101]. Also baseline decreases in dendritic length and spine
density in the agranular insular region of frontal cortex were
observed in ethanol-exposed rats. Furthermore rat pups exposed
to 5.25 g/kg/day of ethanol have an altered basilar dendritic com-
plexity due to a significant decrease in both length and number of
intersections in  proximity to the neuronal soma of the prefrontal
cortex [102–105]. Thus, tPA may  play a  role in  ethanol-induced
structural changes, which may  underlie the sensitization and
conditioned rewarding effects of alcohol. Although the cellular
and molecular mechanisms remain to be further clarified, it is
suggested that the effects of tPA might be due to long last-
ing neuronal and structural changes in ethanol induced drug
dependence.
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5. Conclusion

We  have demonstrated that ethanol induces tPA enzymatic
activity in the brain, and that tPA blockade by  mean of shRNA-
expressing viral vectors attenuates locomotor sensitization as well
as the rewarding effects of ethanol. Taken together with our  pre-
vious findings that tPA is involved in the rewarding effects of
amphetamine and morphine, we  propose that tPA plays an impor-
tant role in long-lasting neuronal and structural changes related to
drug addiction.
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