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The explosive growth of information asks for advanced information filtering techniques to
solve the so-called information overload problem. A promising way is the recommender
system which analyzes the historical records of users’ activities and accordingly provides
personalized recommendations. Most recommender systems can be represented by user-
object bipartite networks where users can evaluate and vote for objects, and ratings
such as ‘‘dislike’’ and ‘‘I hate it’’ are treated straightforwardly as negative factors or are
completely ignored in traditional approaches. Applying a local diffusion algorithm on three
benchmark data sets,MovieLens, Netflix and Amazon, our study arrives at a very surprising
result, namely the negative ratings may play a positive role especially for very sparse
data sets. In-depth analysis at the microscopic level indicates that the negative ratings
from less active users to less popular objects could probably have positive impacts on
the recommendations, while the ones connecting active users and popular objects mostly
should be treated negatively. We finally outline the significant relevance of our results to
the two long-term challenges in information filtering: the sparsity problem and the cold-
start problem.

1. Introduction

Thanks to advanced computer techniques, the amount of available information grows very fast, as indicated by the
exponential expansion of the Internet [1] and the World Wide Web [2]. Now we have to make a choice from billions of
web pages, millions of books and tens of thousands of movies. However, to evaluate all the alternatives is not feasible for
normal users, and if the alternative objects are not well organized, the increasing number makes the users feel even worse
than before. In a word, people are facing too much data and sources to be able to find out what they like most. Automatic
information filtering techniques are required to solve this so-called information overload problem in modern information
science.
The search engine is a landmark of information filtering, by which users can find the relevant objects with the help of

properly chosen keywords [3]. Essentially speaking, the search engine aims at finding what you want, namely before using
the search engine, users already know something about the objects they are looking for, otherwise they could not determine
which keywords they should input. Usually, users are looking for some exact information, like the email address of a certain
person, the online submission systemof a conference, the homepage of a journal, and so on.Without an informative purpose,
Googling ‘‘give me something I like’’ will probably return nothing relevant. In contrast, a recommender system is designed
for finding what you like [4], which may recommend to you some books or URLs according to your purchased books and
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collected bookmarks. Generally speaking, these recommendations are drawn automatically and the system does not ask for
keywords to activate the recommending process. Users are expected to be interested in the recommended objects yet they
probably did not know the recommendations before and may never have know them without the recommender system.
Actually, a ‘‘perfect’’ recommender system should be not only able to recommend objects that users like, but also able to
recommend objects that users do not know [5].
Recommender systems have already found significant applications in e-commerce [6]. For example, Amazon.com uses

one’s purchase record to recommend books [7], AdaptiveInfo.com uses one’s reading history to recommend news [8], and
the TiVo digital video system recommends TV shows and movies on the basis of users’ viewing patterns and ratings [9]. The
design of recommendation algorithms thus has not only academic interests but also practical benefits, which has attracted
increasing attention of many branches of science and engineering, ranging from computer science andmanagement science
tomathematics and physics [10]. Representative recommending techniques developed by the computer science community
include collaborative filtering [11,12], singular value decomposition [13,14], content-based analysis [15], latent semantic
models [16], latent Dirichlet allocation [17], principle component analysis [18], and so on. Recently, physical perspectives
and approaches have also found applications in designing recommendation algorithms, including iterative refinements
[19–21], random-walk-based algorithms [22–26] and heat conduction algorithms [5,27]. Generally speaking, the
performance of the above-mentioned algorithms can be further improved by using a hybrid method [28,29] or ensemble
learning [30], or by exploiting additional information, like time [31] and tags [32].
In many real recommender systems, users vote objects by discrete ratings. For example, in Yahoo Music, users vote each

song with one to five stars representing ‘‘Never play again’’ (�), ‘‘It is OK’’ (��), ‘‘Like it’’ (� � �), ‘‘Love it’’ (� � ��) and ‘‘Can’t
get enough’’ (� � � � �). The similarity between two users is usually defined as the Pearson correlation on all their commonly
voted objects and thus ratings lower than the average play a negative role. Some algorithms only care about whether an
object will be selected by a user, and the ratings are coarse-grained. For example, in Ref. [33], an object is considered to be
collected by a user if and only if the given rating is at least 3. A similar coarse-graining method has been used in many other
algorithms. In a word, up to our knowledge, in most of the known algorithms, the negative ratings1 either play a negative
role or are neglected.
Notice that, even if a user dislikes a book after reading it, she/he might be attracted by its title, abstract, author, type or

others, otherwise she/he will never read it. Users may bemore captious to the objects they are familiar with or interested in.
In fact, the negative ratings contain rich information, and should not be neglected or be considered all negative. Especially,
when the ratings are very sparse, negative ratings may also be important to extract the tastes of users, at least which
type of objects a user may like the most. Therefore, we should reconsider the usage of negative ratings in personalized
recommendation. In this paper, we apply a modified version of the so-called network-based inference (NBI) [23], which can
distinguish the contributions from positive and negative ratings. According to the extensive numerical analysis on three
benchmark data sets,MovieLens, Netflix and Amazon, our study arrives at a very surprising result: negative ratings may play
a positive role. Further analyses show that in the macroscopic level negative ratings are more valuable for sparser data sets,
and in the microscopic level, negative ratings from inactive users onto less popular objects are more valuable. We finally
outline the significant relevance of our results to the two long-term challenges in information filtering: the sparsity problem
[34] and the cold-start problem [35].

2. Problem and metrics

A recommender system consists of a set of users {u1, u2, . . . , um} and a set of objects {o1, o2, . . . , on}, and can be
represented by a bipartite network [36] where users are connected to objects they have read, purchased, collected, etc.
In the simplest case, every edge has the same meaning—representing a kind of interaction between a user and an object,
while in this paper, we consider amore complicated case, say the edges are classified into two types: positive edges represent
favor and negative edges represent disfavor. Notice that, a non-edge has amuch differentmeaning from a negative edge since
the latter means both disfavor and relevance [37] which are not indicated by the former. Fig. 1 illustrates an example with
4 users and 4 movies where red and blue lines represent positive and negative edges, respectively.
Given a target user ui, a recommender system will sort all u′

is uncollected objects and recommend the top-L objects
to ui. To test the recommendation algorithms, the data set is randomly divided into two parts: The training set and the
testing set. The training set is treated as known information, while no information in the testing set is allowed to be used
for recommendation.
The precision of recommendations to ui, Pi(L), is defined as the ratio of the number of ui’s removed positive edges (i.e. the

objects collected by ui with positive ratings in the testing set), Hi(L), contained in the top-L recommendations to L, say

Pi(L) = Hi(L)/L. (1)

The precision of the whole system is the average of individual precisions over all users, given as

P(L) = 1

m

m∑

i=1
Pi(L). (2)

1 Negative ratings here refer to the ratings lower than the average. In a system with five discrete ratings, the ratings 1 and 2 are usually considered as
negative ratings.
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favor
disfavor

Fig. 1. (Color online) Illustration of a recommender systemconsisting of four users and fourmovies. The basic information contained in every recommender
system is the relation between users and objects that can be represented by a bipartite graph.

The recall of recommendations to ui, Ri(L), is defined as the ratio of the number of ui’s removed positive edges contained in
the top-L recommendations to the number of ui’s positive edges in the testing set, say

Ri(L) = Hi(L)/Ni, (3)

where Ni denotes the number of u
′
is positive edges in the testing set. Similarly, the recall of the whole system is defined as

R(L) = 1

m

m∑

i=1
Ri(L). (4)

Higher precision and recall indicate higher accuracy of recommendations. Generally speaking, as the length of the
recommendation list increases, the precisionwill decrease and the recall will increase.We therefore use an integrated index
to quantify the algorithm’s performance, called the F1 measure, defined as [38]:

F1(L) = 2P(L)R(L)

P(L) + R(L)
. (5)

3. Algorithm

3.1. NBI on weighted networks

The standard NBI works on unweighted bipartite networks. Here, we introduce a weighted NBI algorithm. Considering a
weighted bipartite network, denoted by aweighted adjacencymatrixW = {wiα}wherewiα > 0 if there is an edge between
ui and oα ,wiα = 0 otherwise, and assuming that a unit resource is assigned to each object, who distributes its resource to all
neighboring users, and then each user redistributes the received resource to all her/his collected objects. Accordingly, the
resource that object oα has received from object oβ is

sαβ = 1

k(oβ)

m∑

i=1

wiαwiβ

k(ui)
, (6)

where k(oβ) is the degree of oβ , namely the number of users who have collected oβ , k(ui) is the degree of ui, namely the

number of objects ui has collected. This process can be expressed by the matrix form
−→
f ′ = S

−→
f , where S = {sαβ}, −→f is

the initial resource vector on objects, and
−→
f ′ is the final resource vector. Given the target user ui, the corresponding initial

resource vector is defined as

f (i)
α = aiα, (7)

where aiα is the element of the adjacency matrix, namely aiα = 1 if ui has collected oα and aiα = 0 otherwise. According to

the resource-allocation process discussed before, the final resource vector
−→
f ′ is
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Fig. 2. (Color online) How NBI works on a signed network. The red lines denote positive edges and the blue lines denote negative edges. The weight of
each positive edge is equal to λ1 and of each negative edge is equal to λ2. Circles and squares denote users and objects, respectively. The target user is
indicated by the red circle. The initial resource distribution is shown in the left plot.

f ′(i)
α =

n∑

β=1
sαβ f

(i)
β =

n∑

β=1
sαβaiβ . (8)

Then all ui’s uncollected objects are sorted in the descending order according to the final resource and those objects with
the highest values are recommended.

3.2. NBI on a signed network

In many real recommender systems, users are allowed to vote objects by discrete ratings. Taking MovieLens (a movie
recommender system) for example, users can evaluatemovies by ratings on a scale of 1–5. Asmentioned above, the negative
ratings contain rich information. Two reasonsmay lead to negative ratings: (1) the user really dislikes the object, (2) the user
is very strict to the objects she/he is interested in. Anyway, a rating, either positive or negative, indicates the attention on
the object. We next extend the NBI on a signed network, where positive edges indicate favor and negative edges indicate
disfavor.
Signed networks are known to the scientific communities in recent years [39,40]. For example, users can declare others to

be either ‘‘friends’’ or ‘‘foes’’, or express trust or distrust of others. Since here we consider systems with 1–5 discrete ratings,
we simply define an edge as positive (negative) if the corresponding rating is no less than 3 (less than 3). Accordingly, we
can get a signed network, for example, in Fig. 2, the red lines denote positive edges while the blue lines denote negative
edges. We respectively use the adjacency matrices AP and AN to represent positive and negative edges.
To see the contributions of negative edges in recommendation, each positive edge is assigned a weight λ1 and each

negative edge is assigned a weight λ2. Fig. 2 illustrates the resource diffusion process of NBI on the signed network.

4. Results and analysis

4.1. Data description

Three real data sets are used to test the algorithms:

1. MovieLens (http://www.movielens.org) is a movie recommendation web site, which uses users’ ratings to generate
personalized recommendations.

2. Netflix (http://www.netflix.com) is an online DVD and Blu-ray Disc rental service in the US. The datawe used is a random
sample that consists of 3000 users who have voted at least 45 movies and 2779 movies having been voted by at least 23
users.

3. Amazon (http://www.amazon.com) is a multinational electronic commerce company. The original data were collected
from 28 July 2005 to 27 September 2005, and what we used here is a random sample, consisted of 3604 users and 4000
books.

The basic statistics of these three data sets are presented in Table 1, where one can see that users prefer to give positive
ratings to objects.
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Table 1

Basic statistics of the tested data sets. The sparsity is defined by E
m·n , where E is the number of edges in the bipartite networks, and m and n

respectively denote the number of users and objects.

Data set #Users #Objects #Edges Sparsity (+ratings) / (−ratings)
MovieLens 943 1682 100000 6.3× 10−2 4.72/1
Amazon 3604 4000 134680 9.3× 10−3 8.46/1
Netflix 3000 2779 197248 2.4× 10−2 5.77/1

Table 2
The optimum values of λ corresponding to different L and p.

Amazon MovieLens Netflix

L = 10 L = 20 L = 10 L = 20 L = 10 L = 20

p = 0.2 0.13 0.28 −0.18 −0.18 −1.10 −1.10
P = 0.4 0.50 0.54 0 0 −0.94 −0.83
P = 0.6 0.73 0.74 0.14 0.14 −0.57 −0.32
P = 0.8 0.76 0.82 0.60 0.52 0.23 0.27

Table 3
The optimum values of λ corresponding to different subsets.

RL
1 RL

2 RL
3 RL

4 RL
5

MovieLens
L = 10 −3.14 −3.28 −2.12 −0.48 1.32
L = 20 −3.39 −3.11 −2.19 0 1.90

Netflix
L = 10 −3.23 −3.36 0 0 2.12
L = 20 −3.24 −3.17 −1.94 0 1.48

Amazon
L = 10 −2.30 −1.58 0.40 0.85 1.05
L = 20 −2.20 −1.60 0.82 1.11 0.91

4.2. Macroscopic analysis

For the sake of seeing the contribution of negative edges (corresponding to negative ratings), each of the aforementioned
data sets, namely MovieLens, Netflix and Amazon, was divided into two parts: a training set and a testing set. In the testing
set, only the ratings no less than 3 are conserved for testing the algorithm’s accuracy. The ratio of the edges in the testing
set to the total edges is p and thus a larger p corresponds to a sparser training data. We use the F1 measure to quantify the
algorithm’s accuracy.
In the training set, positive and negative edges were assigned weights 1 and λ, respectively. By tuning the value of λ,

one can adjust the amount of contribution of negative edges. Results are presented in Fig. 3. The optimum values of λ
corresponding to different L and p are shown in Table 2. For MovieLens and Netflix, as the training data gets sparser, the
optimal value of λ goes from negative to positive. For the very sparse Amazon data, the optimal value of λ is always positive.
This surprising result displays a completely different scenario from the traditional understanding, suggesting that negative
ratings can play positive role in information filtering. The reason for the pimples in Fig. 3 is that when λ = 0, all the negative
links are removed, so the resulting bipartite network is much sparser compared with the ones with nonzero λ, and thus
a slight fluctuation of the F1 value appears. Specifically, if the negative ratings play a negative role, a peak will appear at
λ = 0 (e.g., the Netflix dataset when p = 0.2). On the contrary, if the negative ratings play a positive role, there will be a
downward hollow at λ = 0 (e.g., the cases for the Amazon dataset). As mentioned above, negative ratings indicate not only
disfavor but also relevance. When the training set is dense, the relevance information is less important and thus the optimal
value of λ is negative, while for the sparse training set, the significance of relevance information results in positive optimal
λ, suggesting that much valuable information will be lost if we thoughtlessly remove these negative edges.

4.3. Microscopic analysis

In this subsection, we investigate the contribution of negative edges microscopically. By the aforementioned way, each
data set is divided into a training set and a testing set. The ratio of edges in the testing set to the total edges is fixed to 0.2
and only the ratings no less than 3 are conserved in the testing set for testing the algorithm’s accuracy.
Let RL be the set of negative edges in the training set. All the negative edges in RL are sorted in the descending order of

k(ui) × k(oα), where k(ui) and k(oα) denote the degree of user ui and object oα , respectively. An edge connecting an active
user and a popular object will have a higher degree product, and thus we call it the popularity of an edge, which is known to
be able to quantify an edge’s functional significance in percolation [41], synchronization [42] and transportation [43]. The
set RL is further divided into five subsets with almost equal sizes, namely RL

1, R
L
2, R

L
3, R

L
4 and RL

5. That is to say, if 1 ≤ i < j ≤ 5,

every edge in RL
i has higher popularity than any edge in RL

j . For a certain i ∈ {1, 2, 3, 4, 5}, the weight of edges in RL
i is set
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(a) MovieLens.

(b) Netfix.

(c) Amazon.

Fig. 3. (Color online) The F1 measure as a function of p, where p denotes the ratio of the edges in the testing set to the total edges. A larger p corresponds
to a sparser training set. The lengths of recommendation lists are specified as 10 and 20. The vertical dashed line in each graph corresponds to the optimal
value of λ for the top 10.

(a) MovieLens. (b) Netfix. (c) Amazon.

Fig. 4. (Color online) The optimal value of the F1 measure corresponding to different subsets RL
i .

as λ, the weight of edges in RL
j (j �= i) is set as 0, and the weight of positive edges is set as 1. In this way, one can see the

contribution of negative edges only in the subset RL
i .

The results are presented in Fig. 4 and Table 3. In Fig. 4, the dashed lines denote the F1 value when λ = 0, namely all
negative edges are neglected. The circles denote the optimal values of F1 taking into account the negative edges only in the
subset RL

i (i = 1, 2, 3, 4, 5), with corresponding optimal values of λ presented in Table 3. As shown in Table 3, one can see
that the negative edges between active users and popular objects (i.e., edges of high popularity) tend to play a negative role
while those between inactive users and unpopular objects (i.e., edges of low popularity) are very likely to play a positive role
in recommendation. This again supports our analysis about the information carried by negative edges, because the relevance
information is more valuable for the inactive users and unpopular objects where the known information is deficient.
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5. Conclusion and discussion

The design of recommender systems has attracted much attention from computer scientists for decades. Driven by the
increasing requirement of algorithmic performance, many advanced machine learning methods, as well as the hybrid and
ensemble learning frameworks have been developed recently. An ensemble learning frameworkmay consist of thousands of
individual algorithms, each of whichmay contain thousands of parameters. The overwhelming emphasis on the algorithmic
performance continuously improves the accuracy of recommender systems, yet adds little insight to the understanding of
these systems. In contrast, we are interested in not only improving the accuracy of recommendation algorithms, but also
providing insight of recommender systems. For physicists, the latter may be even more significant.
In the traditional algorithms, especially collaborative filtering methods based on the Pearson correlation, the negative

ratings play a negative role in recommending. That is to say, if similar users tend to give negative ratings to an object, this
object will never be recommended. However, this paper reveals a completely different scenario where negative ratings can
play a positive role in recommending. By tuning the sparsity of the training set, we show that when the data are dense, the
negative edges have negative effects while in the sparse case, negative edges should be assigned positive weight. This result
suggests that the negative ratings play a mixing role, simultaneously indicating the disfavor and relevance. The relevance
information gets more significant when the data set is sparser, and thus speaking overall they should be assigned a positive
weightwhen the training set is very sparse. Further analysis at the individual level shows that the negative edges connecting
inactive users and unpopular objects tend to play a positive role while those connecting active users and popular objects
tend to play a negative role. This again supports our idea about the mixing role embedded in the negative edges, since the
relevance information is obviously more significant for inactive users and unpopular objects.
In a word, the negative ratings simultaneously indicate disfavor and relevance. For recommendation, the former is

negative while the latter is positive, and thus negative ratings may play either a negative or positive role, depending on the
sparsity of training set and the popularity of the corresponding edges. Therefore, thoughtlessly removing negative edges
or assigning a negative weight to them may waste valuable information and lead to less accurate recommendations. The
negative ratings are more significant for sparse data sets and for small-degree users/objects. The former is related to the
so-called sparsity problem while the latter to the cold-start problem. These are two long-term challenges in the study of
recommender systems [10].We hope our analysis could contribute to the in-depth understanding of recommender systems,
as well as the final solution of the sparsity and cold-start problems.
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