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We propose a method called the residual edge-betweenness gradient (REBG) to enhance the synchronizability
of networks by assigning the link direction while keeping the topology and link weights unchanged. Direction
assignment has been shown to improve the synchronizability of undirected networks in general, but we find that
in some cases incommunicable components emerge and networks fail to synchronize. We show that the REBG
method improves the residual degree gradient (RDG) method by effectively avoiding the synchronization failure.
Further experiments show that the REBG method enhances the synchronizability in networks with a community
structure compared with the RDG method.

Synchronization is an important phenomenon in various
fields including biology, physics, engineering, and even soci-
ology [1]. In particular, synchronization in complex networks
has been intensively studied in the past decade [2–8]. One
important objective of these studies is to enhance the synchro-
nizability [6–8], that is, the ability to coordinate oscillators in
synchronization. Various methods have been proposed, taking
into account degree centrality [6], betweenness [7], and node
age [8] to enhance the synchronizability. Nishikawa and Motter
proposed assigning zero weight to particular links, which leads
to an oriented spanning tree with normalized input strength
and no directed loop, and proved that synchronizability is
highest in this tree [9]. Recently, the shortest oriented spanning
tree was shown to be optimal for both synchronizability and
convergence time [10]. However, all these methods are based
on the link weight, and the influence of the link direction on
synchronization has not been intensively studied.

How to improve synchronization in a directed network is
still an unsolved problem. Though previous works suggest that
hierarchical structures and the absence of a feedback loop can
enhance synchronizability, the underlying mechanism is not
clear. In contrast, the directionality plays a significant role
in the dynamic of networks [11–14]. With the understanding
of relations between link direction and synchronization, a lot
of applications can be made. For example, simply regulating
the direction of the phase signal of alternating current can
facilitate phase match in power grids without additional
construction cost to alter the topology. Thus Ref. [15] proposed
the residual degree gradient (RDG) method to enhance the
synchronizability of networks by assigning only the link
direction without changing the topology and link weights.

We find, however, that the RDG method results in incommu-
nicable components for some cases, which leads to incomplete
synchronization in graphs. Incommunicable components of a
network correspond to the components on which information
cannot be transmitted from one to the other in both direction.
In these circumstances, the networks can never reach a
completely synchronized state. In this paper, we propose the
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so-called residual edge-betweenness gradient (REBG) method
to resolve the problem of incommunicable components.
The effectiveness of the algorithm lies in the use of edge
betweenness, which embeds global information, compared to
the node degree, which reflects only local information. We find
that the REBG method effectively enhances synchronizability
and avoids incommunicable components.

To begin our analysis, we note that undirected networks
can never reach complete synchronization when there are
isolated nodes or components, since communications between
the isolated components are absent. We call this phenomenon
synchronization failure, which is in general more likely in
directed networks, as isolated components are not necessary.
To show this, we first denote the cut vertex as the only node
through which two or more components communicate with
each other. In directed networks, the failure happens whenever
cut vertexes have only incoming links. In this case, there is
no communication between those components, and the cut
vertex becomes an information sink. Hence, complete syn-
chronization cannot be achieved among the incommunicable
components. Actually, the synchronization failure is reflected
by the eigenvalue properties of the Laplacian matrix, defined
as Lij = δij

∑
h Aih − Aij [16], where Aij = 1 when there

exists a directed link from j to i, and Aij = 0 otherwise.
The second-smallest eigenvalue λ2 is called the algebraic
connectivity of a graph since λ2 = 0 when incommunicable
components emerge [17]. Therefore, λ2 can be used to detect
the synchronization failure.

To examine synchronization failure, we first describe
briefly the RDG method in Ref. [15], which enhances the
synchronizability of undirected networks by simply assigning
the link direction. Links that have not yet been assigned a
direction are referred to as residual edges, and the number
of connected residual edges is referred as the residual degree
of a node. In each step, the node with the smallest residual
degree is selected and a maximum of �〈k〉/2� residual edges
is set to be incoming [18], where 〈k〉 is the average degree in
the original network. Once a node has been selected, it will
not be chosen again. Nodes that have not yet been selected
are called residual nodes. The RDG assignments are finished
when there is no residual node left in the network. In addition,

Published in "
"which should be cited to refer to this work.

ht
tp

://
do

c.
re

ro
.c

h



1

1

9

8 7

6 5

4

2

3

9

8

6

7 3

2

4

5

(a)

(b)

FIG. 1. (a) A simple example of an RDG network with syn-
chronization failure. (b) The REBG network from the same original
network, with θ = 1 and without synchronization failure.

there is a directionality α to control the final fraction of links
with direction assignment. When α = 0, all the links remain
undirected. When α = 1, all the links are assigned a direction.

The RDG method may lead to directed graphs with synchro-
nization failure, that is, cut vertexes with only incoming links.
A simple example is given in Fig. 1(a). According to the rule
of RDG, node 1 (k = 2) is selected first and the two remaining
communities are left incommunicable. As we have discussed,
this RDG network cannot reach complete synchronized state.

As exponential and power-law degree distributions are
widely observed in empirical data [19,20], we study the RDG
method in random exponential networks and random scale-
free networks [20], which correspond to random networks with
exponential and power-law degree distributions, respectively.
Their degree distributions are given by P (k) ∼ e−βk and
P (k) ∼ k−γ , respectively. For each β and γ , we tested
the RDG method on 100 network realizations. To examine
incommunicable components, we made sure that there are
no original isolated nodes. We find that the resultant RDG
networks show synchronization failure, and the failure rate,
that is, the fraction of realizations with 0 λ2, is reported in
Fig. 2. As shown in Figs. 2(a) and 2(b), when α increases (i.e.,
more links are assigned direction), the failure rate increases for
both networks. These results imply that the synchronization
failure really happens in both networks, given the RDG is
employed. Further, when α = 1, where there is the largest
synchronization improvement [15], we find that the failure rate
is high when β and γ are large. We also note that the failure
rate decreases with kmin but increases with N . Synchronization
failure is relatively frequent, especially in sparse networks, and
therefore a new method is required to assign the link direction
avoiding incommunicable components.

We thus introduce the REBG method to avoid synchro-
nization failure. Instead of the node degree, we take the edge
betweenness into account. First, we define si for node i as

si =
N∑

j=1

aij l
θ
ij , (1)

where aij = 1 when there an undirected link exists between i

and j and aij = 0 otherwise. The edge betweenness lij , that
is, the betweenness of the link between i and j , is defined as

lij = ∑
m>n

C
ij
mn

Cmn
, where Cmn is the number of shortest paths
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FIG. 2. (Color online) Synchronization failure rate as a function
of α by the RDG method in (a) random exponential networks [P (k) ∼
e−βk , N = 500, kmin = 2, β = 1] and (b) random scale-free networks
[P (k) ∼ k−γ , N = 500, kmin = 2, γ = 5]. Given α = 1, the failure
rate as a function of β in (c) random exponential networks and the
failure rate as a function of γ in (d) random scale-free networks when
the RDG and the REBG (θ = 0.01, θ = 0.2, and θ = 1) methods are
used.

from m to n, and C
ij
mn is the number of shortest paths from

m to n that pass through a link ij . lij is evaluated on the
original undirected networks and is subjected to a power θ

with 0 � θ � 1 in the evaluation of si . To assign the link
direction, we select the node with the smallest residual si in
each step and assign an incoming direction for a maximum of
�〈k〉/2� residual links. As more directed links are assigned,
the residual si has to be updated at every step. If there are
multiple nodes of the smallest si , we choose the node with the
smallest initial si . If, again, their initial si values are identical,
we randomly choose one node. The REBG method stops when
there is no residual node left and all links are directed. We
remark that when θ = 0, si = ki , and the REBG reduces to the
RDG method. When θ > 0, it contains the global information
delivered from the edge betweenness.

As shown in Fig. 1(b), the REBG method effectively avoids
synchronization failure. In this simple network, whenever
node 1 is chosen before nodes 3 and 7, synchronization failure
occurs. We note that node 1 is the cut vertex connecting the
two components, and its edges are of high betweenness. To
determine the details of how the algorithm avoids the fail-
ure, we evaluate the initial si before any direction assign-
ment, as given by s1 = 20θ + 20θ , sx = 1θ + 1θ + 6θ for
x = 2,4,5,6,8,9 and sy = 6θ + 6θ + 6θ + 20θ for y = 3,7.
By tracing all the possibilities of the subsequent direction
assignment, we find that synchronization failure does not occur
provided that node 1 is not selected at the first assignment.
In this case, s1 > sx , which implies θ > 0.18. We denote this
value θc, which marks the value of θ from which failure ceases.
We note that θc depends on the network topology.

We then examine the failure rate in random exponential
networks and random scale-free networks. As shown in
Figs. 2(c) and 2(d), the failure rate vanishes for both networks
when θ = 0.01, 0.2, and 1, which suggests that θc is nonzero
and infinitesimally positive. Since cut vertexes have the same
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FIG. 3. (Color online) Synchronizability difference D = σRDG − σREBG in (a) random exponential networks and (b) random scale-free
networks with N = 500 and kmin = 2.

degree of but a larger edge betweenness compared to
other nodes in these networks, failure ceases when edge
betweenness has nonvanishing contributions in direction
assignment to identify cut vertexes. This implies that for these
two types of network, θ in Eq. (1) should be positive to stop
synchronization failure.

We also compare the resultant synchronizability between
the REBG and the RDG methods. We represent network
synchronizability by the normalized spread of eigenvalues in
the complex plane, which is given by

σ 2 = 1

d2(N − 1)

N∑

i=2

|λi − λ|2, (2)

where λ = 1
N−1

∑N
i=2 λi and d = 1

N

∑
i

∑
j �=i Aij [5]. Gen-

erally, the smaller the value of σ , the stronger the synchro-
nizability of networks. Both random exponential networks
and random scale-free networks are examined. For better
illustration, we report the difference D = σRDG − σREBG be-
tween the eigenvalue spread of the REBG and RDG networks
as a function of θ and β in Fig. 3(a) and θ and γ in
Fig. 3(b). The positive D shows that the REBG method results
in higher synchronizability compared to the RDG method.
This enhancement mainly results from the absence of failure
in REBG, which avoids zero eigenvalues and reduces the
eigenvalue spread.

Moreover, we observe how often cyclic loops emerge in
resulting networks. We show in Fig. 4 that for the regime
when β and γ are large, the resulting networks are free of
directed loops. From the lines of θ = 0 and θ = 1, we see that
the number of networks with directed loops is higher when
θ = 1, which hinders synchronization and leads to unfavorable
results with the REBG. These results also explain the negative
D observed at intermediate values of β and γ , since loops
would increase the imaginary part of the eigenvalue and lead
to a larger spread. We, further, show that the REBG method
with θ = 0.2 is similar to the RDG in terms of the fraction
of loopy realizations, suggesting that θ = 0.2 is an effective
value for direction assignment and, at the same time, avoids
synchronization failure. Hence, one can use the REBG method
with small θ to enhance synchronizability effectively.

We further compare the RDG and the REBG methods in
graphs where failure does not occur. We find that the REBG
method would outperform the RDG method in networks with
obvious modular structures. Here, we present the result by
studying the two methods in a Girvan-Newman benchmark
(GN benchmark) network that consists of 128 nodes divided
into four4 communities [21]. In the GN benchmark network,
kinter + kouter = 16, where kinter is the average node degree in
each community and kouter is the average node degree between
different communities. We show in Fig. 5 the results of kouter =
1, in which the GN benchmark networks are highly clustered.
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FIG. 4. (Color online) Fraction of realizations with a directed loop as obtained by the REBG and the RDG methods in (a) random exponential
networks and (b) random scale-free networks. The abrupt jumps in random exponential networks come from the discontinuity in the assignment
constraint �〈k〉/2�.
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N , and (c) σ of the
REBG and the RDG networks from the GN benchmark (kouter = 1).
(d) Order parameter r(t) of the Kuramoto model (ε = 5) on the RDG
and the REBG networks (θ = 1). Results were obtained by averaging
100 independent realizations.

The σ in Fig. 5(c) indicates that synchronizability is further
enhanced in the REBG method. Moreover, we check the ratio
of the second smallest and the largest real part of the eigenvalue
(λr

2/λ
r
N ) as an alternative indicator [8,15]. A higher ratio value

indicates a generally better synchronizability. The results in
Figs. 5(a) and 5(b) show that λr

2 increases with θ while λr
N

stays almost the same when θ varies.
Although current indicators can approximately characterize

the synchronizability of directed networks, a simple universal
measure is still absent [5,15]. It is necessary to use a model
of oscillators and test its actual ability for synchronization on
directed networks. We therefore employ the Kuramoto model
to study synchronization on the resultant directed networks
[22]. The phase of the oscillator on node i of the networks

is described by φ̇i = ωi + ε
∑N

j Aij sin(φj − φi), where A is,
again, the directed adjacency matrix, and the collective phase
synchronization can be investigated by the order parameter
defined as r(t) = 〈|∑N

j=1 eiφj (t)/N |〉. r(t) ≈ 1 and r(t) ≈ 0
describe the limits in which all oscillators are, respectively,
phase locked and moving incoherently. In Fig. 5(d), it can
be seen from r(t) that oscillators in the REBG networks
converge more rapidly to complete synchronization than those
in the RDG networks. These results show that the REBG
method leads to a greater improvement in synchronizability
than the RDG method in highly clustered networks, despite
the absence of failure. This is because the RDG method does
not distinguish links between communities that are of high
betweenness [21], while the REBG method deals with them
in the final steps of direction assignment to establish a more
effective information flow between communities.

In summary, we have introduced the REBG method for
direction assignment, which overcomes the problem of emer-
gence of incommunicable components in the RDG method.
The effectiveness of our method lies in the use of edge
betweenness, which reflects global information compared
to the node degree in the RDG. Further tests in highly
clustered networks show that the REBG leads to a greater
synchronizability improvement despite the absence of syn-
chronization failure. In general, incommunicable components
cause problems in various systems such as power grids,
wireless communication networks, neural networks, and social
interactions [1]. The proposed REBG method is effective in
enhancing, avoiding synchronization failures, and may lead to
wide applications.

This work was supported by the NSFC under Grants No.
60974084 and No. 70771011. C.H.Y. was partially supported
by the QLectives projects (EU FET-Open Grant Nos. 213360
and 231200).

[1] A. Arenas, A. Diaz-Guilera, J. Kurths, Y. Moreno, and C.-S.
Zhou, Phys. Rep. 469, 93 (2008).

[2] T. Nishikawa, A. E. Motter, Y.-C. Lai, and F. C. Hoppensteadt,
Phys. Rev. Lett. 91, 014101 (2003).

[3] H. Hong, B. J. Kim, M. Y. Choi, and H. Park, Phys. Rev. E 69,
067105 (2004).

[4] J. Gomez-Gardenes, Y. Moreno, and A. Arenas, Phys. Rev. Lett.
98, 034101 (2007).

[5] T. Nishikawa and A. E. Motter, Proc. Natl. Acad. Sci. A. 107,
10342 (2010).

[6] A. E. Motter, C.-S. Zhou, and J. Kurths, Phys. Rev. E 71, 016116
(2005); C.-S. Zhou, A. E. Motter, and J. Kurths, Phys. Rev. Lett.
96, 034101 (2006).

[7] M. Chavez, D.-U. Hwang, A. Amann, H. G. E. Hentschel, and
S. Boccaletti, Phys. Rev. Lett. 94, 218701 (2005).

[8] D.-U. Hwang, M. Chavez, A. Amann, and S. Boccaletti, Phys.
Rev. Lett. 94, 138701 (2005); Y.-F. Lu, M. Zhao, T. Zhou, and
B.-H. Wang, Phys. Rev. E 76, 057103 (2007).

[9] T. Nishikawa and A. E. Motter, Phys. Rev. E 73, 065106 (2006);
Physica D 224, 77 (2006).

[10] A. Zeng, Y. Hu, and Z. Di, Europhys. Lett. 87, 48002 (2009);
T. Zhou, M. Zhao, and C.-S. Zhou, New J. Phys. 12, 043030
(2010).

[11] G. Bianconi, N. Gulbahce, and A. E. Motter, Phys. Rev. Lett.
100, 118701 (2008).

[12] A. Zeng, Y.-Q. Hu, and Z. Di, Phys. Rev. E 81, 046121 (2010).
[13] G. Zamora-Lopez, V. Zlatic, C.-S. Zhou, H. Stefancic, and

J. Kurths, Phys. Rev. E 77, 016106 (2008).
[14] S. M. Park and B. J. Kim, Phys. Rev. E 74, 026114 (2006).
[15] S.-W. Son, B. J. Kim, H. Hong, and H. Jeong, Phys. Rev. Lett.

103, 228702 (2009).
[16] L. M. Pecora and T. L. Carroll, Phys. Rev. Lett. 80, 2109 (1998);

K. S. Fink, G. Johnson, T. Carroll, D. Mar, and L. Pecora, Phys.
Rev. E 61, 5080 (2000); M. Barahona and L. M. Pecora, Phys.
Rev. Lett. 89, 054101 (2002).

[17] M. Fiedler, Czech. Math. J. 23, 298 (1973).
[18] Please note that, in contrast with Ref. [15], the edge direction

here is the direction of information flow.
[19] R. Albert, I. Albert, and G. L. Nakarado, Phys. Rev. E 69,

025103(R) (2004).
[20] M. E. J. Newman, S. H. Strogatz, and D. J. Watts, Phys. Rev. E

64, 026118 (2001).
[21] M. E. J. Newman and M. Girvan, Phys. Rev. E 69, 026113

(2004).
[22] J. A. Acebron, L. L. Bonilla, C. J. Perez Vicente, F. Ritort, and

R. Spigler, Rev. Mod. Phys. 77, 137 (2005).

ht
tp

://
do

c.
re

ro
.c

h


