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Modeling the memory capacity as observed during Memory

game play

N pair of identical cards are shuffled and placed face down on a table. At each step of the game
(hereafter on referred to as a move), the player turns two cards face up, one after the other. If the
two cards are identical, they are removed from the table. If not, the cards are replaced face down
in their initial positions. The game ends when there remains a unique pair of cards. The game is
scored by counting the number of pairs of cards turned over (i.e., the number of moves) necessary
to find all matching pairs.

In order to build a mathematical model of the game, two types of assumptions are necessary:

Assumptions on the memorization process.

• The model assumes that the player has at his disposal L memory slots, which he can fill
with memorized cards/positions.

• This memory is absolute, the player makes no errors.

• When all L memory slots are filled, the player has to delete a card from memory in order to
memorize a new one.

• The cards removed from the game are forgotten.

Assumptions on the strategy of the player.

• During each move, the player turns over two cards, one after the other.

• If the player has only distinct cards (i.e., non-matching) cards in his memory, then he chooses
at random (uniformly) amongst the remaining cards that are not in his memory.

• If this card corresponds to a card in his memory, he turns its double and has thus identified
a pair. The pair is then removed from the game.

• If the card does not correspond to a card in his memory, he flips a second card at random.

• If the second card corresponds to the first one, he has identified a pair.

• If the second card corresponds to a card in his memory, he has two more cards in his memory,
among which are a pair. If the maximum memory capacity is reached, the pair is memorized
with priority.
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• If the second card corresponds neither to the first one, nor to a previously memorized card,
then the player places two more cards in his memory (until maximal memory capacity is
reached).

• Finally, if the player has a pair of cards in his memory, he identifies and removes this pair
from play.

Figure 1: Figure 1 depicts the possible events which can occur during each move. The probability
that a certain event occurs depends on three factors: (1) the number of remaining pairs; (2) the
number of cards in memory; and (3) whether or not the player has a pair of cards in his memory
or not.

Hence, the game can be viewed as a Markov chain Xk = (n, l, �) where

• n : number of pairs of cards which remain in the game

• l : number of cards memorized by the player

• � = d : only distinct cards in the player’s memory
� = p : a pair of cards in the player’s memory

• k : number of trials

All possible transitions and transition probabilities are defined by the assumptions described above.

The state space of this Markov chain is given by ΩN,L
1 where

ΩN,L
k =

N⋃
n=k

ΛL
n with ΛL

n = ΛL,d
n ∪ ΛL,p

n

ΛL,d
n = {n} × {0, 1, . . . , L} × {d} and ΛL,p

j = {j} × {(2), 3, . . . , L} × {p}
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When L ≤ 1, we set ΛL,p
n = ∅.

We divide the state space ΩN,L
1 into layers ΛL

n in order to find a simple way to describe the
transitions. Each layer ΛL

n contains all of the states where n pair of cards remain in the game.
The goal is to described the transitions layer by layer.

Figure 2 shows an example of admissible transitions with the related transitions probabilities.
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Figure 2: Example of transitions when memory limit has not been attained.

When the memory limit is attained, the transitions are different (see figure 3)
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(n+1,L−2,p)

Figure 3: Example of transitions when memory limit has been attained.

Special attention must be given to the condition when the capacity of the memory exceeds the
number of the remaining pairs. Indeed, the states (n, l, �) with n < l are unreachable, which
means that in these cases it is not possible to fill the memory because too few cards remain.

As we consider the transitions layer by layer, the transition matrix AN,L of this process can
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be divided in submatrices giving the transitions between the various layers Λj. If R
L
n contains the

transitions ΛL
n → ΛL

n and PL
n the transitions ΛL

n → ΛL
n−1, we have

AN,L =

⎛
⎜⎜⎜⎝

R
L

N P
L

N 0 . . . 0 0

0 R
L

N−1 P
L

N−1 . . . 0 0

. . . . . . . . . . . . . . . . . .

0 0 0 . . . R
L

2 P
L

2

0 0 0 . . . 0 R
L

1

⎞
⎟⎟⎟⎠ ,

Moreover, when L ≥ 2, each layer ΛL
n is divided in two sublayers ΛL,d

n and ΛL,p
n . Hence

RL
n =

(
RL,dd

n RL,dp
n

RL,pd
n RL,pp

n

)
and PL

n =

(
PL,dd
n PL,dp

n

PL,pd
n PL,pp

n

)

where, for example, RL,dd
n contains the probabilities to stay in the sublayer ΛL,d

n (n remaining
pairs, only distinct cards in memory) and PL,pd

n contains the probabilities to go from the sublayer

ΛL,p
n (n remaining pairs, a pair of cards in memory) to the sublayer ΛL,d

n−1 (n− 1 remaining pairs,
only distinct cards in memory).

Assume that L ≥ 2. Then,

• For the submatrix RL,dd
n we have

– (RL,dd
n )l,l+2 = 2 (n−l)

2n−l

2 (n−l−1)
2n−l−1 , 0 ≤ l ≤ min(L− 2, n− 1),

– (RL,dd
n )L−1,L = 2 (n−L+1)

2n−L+1
2 (n−L)
2n−L

, n ≥ L,

– (RL,dd
n )L,L = 2 (n−L)

2n−L

2 (n−L−1)
2n−L−1 , n ≥ L,

– (RL,dd
n )l,l = 1, l > n,

– R
L,dd
N−1 = id.

• For the submatrix RL,dp
n in the case L = 2, we have

– (RL,dp
n )L,L−2 =

2 (n−L)
2n−L

L
2n−L−1 , n ≥ L.

• For the submatrix RL,dp
n in the case L ≥ 3, we have

– (RL,dp
n )l,l−1 = 2 (n−l)

2n−l
l

2n−l−1 , 1 ≤ l ≤ min(L− 2, n),

– (RL,dp
n )L−1,L−3 =

2 (n−L+1)
2n−L+1

L−1
2n−L

, n ≥ L− 1,

– (RL,dp
n )L,L−3 =

2 (n−L)
2n−L

L
2n−L−1 , n ≥ L.

• RL,pd
n = 0

• RL,pp
n = 0 except RL,pp

N−1 = id

• For the submatrix PL,dd
n we have

– (PL,dd
n )l,l−1 = l

2n−l
, 1 ≤ l ≤ min(L, n),

– (PL,dd
n )l,l =

2 (n−l)
2n−l

1
2n−l−1 , 0 ≤ l ≤ min(L, n).

• PL,dp
n = 0

• For the submatrix PL,pd
n in the case L = 2, we have

– (PL,pd
n )l−2,l−2 = 1, 2 ≤ l ≤ L,
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– P
L,pd
N−1 = 0.

• For the submatrix PL,pd
n in the case L = 3, we have

– (PL,pd
n )l−3,l−2 = 1, 3 ≤ l ≤ L,

– P
L,pd
N−1 = 0.

• PL,pp
n = 0

When L = 0,

(AN,0)n,n =
2 (n− 1)

2n− 1
, (AN,0)n,n+1 =

1

2n− 1
and (AN,0)N,N = 1.

and when L = 1,

R1
n =

(
0 2 (n−1)

2n−1

0 2n−3
2n−1

)
, P 1

n =

( 1
2n−1 0

1
2n−1

1
2n−1

)
and R1

N =

(
1 0
0 1

)
.

Duration of the game

In order to calculate the duration of the game, i.e., how many moves it will take to complete the
game, we define the random variable

TN,L = inf{k | XN,L
k ∈ ΛL

1 },

the law of probability of which is

PL(k) = P(TN,L = k) = P(XN,L
1 ∈ ΩN,L

2 , . . . , X
N,L
k−1 ∈ ΩN,L

2 , X
N,L
k ∈ ΛL

1 )

= P(XN,L
k−1 ∈ ΩN,L

2 , X
N,L
k ∈ ΛL

1 )

= P(XN,L
k−1 ∈ ΛL

2 , X
N,L
k ∈ ΛL

1 ).

The second and third equalities follow from the relations

• {XN,L
k ∈ ΩN,L

n } ⊂ {XN,L
k+1 ∈ ΩN,L

n },

• {XN,L
k−1 ∈ ΩN,L

2 } ∩ {XN,L
k ∈ ΛL

1 } =
N⋃

n=2

(
{XN,L

k−1 ∈ ΛL
n} ∩ {XN,L

k ∈ ΛL
1 }

)
= {XN,L

k−1 ∈ ΛL
2 } ∩

{XN,L
k ∈ ΛL

1 }.

Moreover, we have

• for L = 2

• for L ≥ 3

{XN,L
k−1 ∈ Λ2} ∩ {XN,L

k ∈ Λ1}

=
(
{XN,L

k−1 = (2, 0, d)} ∩ {XN,L
k = (1, 0, d)}

)
∪

(
{XN,L

k−1 = (2, 1, d)} ∩ {XN,L
k = (1, 0, d)}

)
∪

(
{XN,L

k−1 = (2, 1, d)} ∩ {XN,L
k = (1, 1, d)}

)
∪

(
{XN,L

k−1 = (2, 2, d)} ∩ {XN,L
k = (1, 1, d)}

)
∪

(
{XN,L

k−1 = (2, 3, p)} ∩ {XN,L
k = (1, 1, d)}

)
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Finally, when L ≥ 3

PL(k) = P(XN,L
k−1 = (2, 0, d), XN,L

k = (1, 0, d)) + P(XN,L
k−1 = (2, 1, d), XN,L

k = (1, 0, d))

+ P(XN,L
k−1 = (2, 1, d), XN,L

k = (1, 1, d)) + P(XN,L
k−1 = (2, 2, d), XN,L

k = (1, 1, d))

+ P(XN,L
k−1 = (2, 3, p), XN,L

k = (1, 1, d))

= P(XN,L
k = (1, 0, d) | XN,L

k−1 = (2, 0, d))P(XN,L
k−1 = (2, 0, d))

+ P(XN,L
k = (1, 0, d) | XN,L

k−1 = (2, 1, d))P(XN,L
k−1 = (2, 1, d))

+ P(XN,L
k = (1, 1, d) | XN,L

k−1 = (2, 1, d))P(XN,L
k−1 = (2, 1, d))

+ P(XN,L
k = (1, 1, d) | XN,L

k−1 = (2, 2, d))P(XN,L
k−1 = (2, 2, d))

+ P(XN,L
k = (1, 1, d) | XN,L

k−1 = (2, 3, p))P(XN,L
k−1 = (2, 3, p))

=
1

3
P(XN,L

k−1 = (2, 0, d)) +
2

3
P(XN,L

k−1 = (2, 1, d))

+ P(XN,L
k−1 = (2, 2, d)) + P(XN,L

k−1 = (2, 3, p))

= eT1 A
k−1
N,L

(1
3
eR+1 +

2

3
eR+2 + eR+3 + eR+L+2

)
.

where R = (2L− 1) (N − 2) and eTn = (0, . . . , 0, 1, 0, . . . , 0) is a vector of length 2 (L− 1)N with
the n-th entry equal to 1.

We can also calculate the generating function GT of the random variable T . For z < 1, u = eT1
and v = 1

3 eR+1 +
2
3 eR+2 + eR+3 + eR+L+2, we have

GT (z) =

∞∑
k=1

P(T = k) zk =

∞∑
k=1

uAk−1 v zk = z u

∞∑
k=0

(z A)k v = z u (Id− z A)−1 v.

And for Sn =
∑n

k=1 Tk where the random variables Tk are i.i.d. and follow the same distribution
than T , we have

GSn
(z) =

n∏
k=1

GTk
(z) = (GT (z))

n = zn (u (Id− z A)−1 v)n.

Mean and standard deviation of the duration of the game

The mean and variance are calculate using the first and second derivatives of the generating func-
tion GT (z) evaluated in z = 1.

By induction, we can show that the derivatives of the generating function GT (z) for z < 1 are
given by

dk

dzk
GT (z) = k!uAk−1 (Id− z A)−k (Id + z A (Id− z A)−1) v,

for k ≥ 1.

Indeed for k = 1

d

dz
GT (z) =

d

dz
(z u(Id− z A)−1v)

=
(
u (Id− z A)−1 v − z uA (Id− z A)−2 v

)
= u (Id− z A)−1 (Id− z A(Id− z A)−1) v.

For the induction step, set B(z) = Id + z A (Id− z A)−1. Then

d

dz
B(z) = A ((Id− z A)−1 + z A (Id− z A)−2) = A (Id− z A)−1 B(z).
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and therfore

dk+1

dzk+1
GT (z) =

d

dz
(k!uAk−1 (Id− z A)−k B(z) v)

= k!uAk−1
(
k (Id− z A)−(k−1) A (Id− z A)−2 B(z)

+ (Id− z A)−k A (Id− z A)−1 B(z)
)
v

= k!uAk (k + 1) (Id− z A)−(k+1) B(z)

which ends to prove the formula for the derivatives of GT (z).

Our formulas for GT (z) and its derivatives are only valid for z < 1, however for the positive
random variable T we have (monotone convergence)

lim
x↗1

dk

dzk
[GT (z)]z=x = lim

x↗1

∞∑
l=k

l!

(l − k)!
P(T = l)xl−k

=

∞∑
k=1

lim
x↗1

l!

(l − k)!
P(T = l)xl−k

=

∞∑
k=1

l!

(l − k)!
P(T = l),

and therefore

E(T ) = lim
x↗1

d

dz
[GT (z)]z=x = lim

z↗1
u (Id− z A)−1 (Id− z A(Id− z A)−1) v,

with

Var(T ) = lim
x↗1

d2

dz2
[GT (z)]z=1 + E(T ) (1− E(T ))

= lim
z↗1

2 uA (Id− z A)−2 (Id + z A (Id− z A)−1) v + E(T ) (1− E(T )).

Since Sn is the sum of n independent replicates of T , we have simply E(Sn) = nE(T ) and
Var(Sn) = nVar(T ).
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