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ABSTRACT: The combination of platinum nanoparticles with a tripodal osmium complex
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Organometallic complexes self-assembled on metal nanopar-
ticles (MNPs) have received increased attention, especially
with respect to their photocatalytic and photoluminescent pro-
perties.'* Functionalized tripodal molecules, also named mo-
lecular caltrops, are ideal candidates for these systems because
their design implies a very well-defined surface attached struc-
ture. The tripodal geometry was conceived by Gossauer and
coworkers®” and was further developed by, for example, Tour®
and Gallopini.” " A silicon-based tripod center with three thio-
acetate groups,'” the fourth prong bearing the photo- and
electroactive osmium center with two 4,4’-dimethyl-2,2'-bipyr-
idyl (dmbpy) and one imidazo-phenanthroline ligand, was used
here'*™'® (Os-trip, see Chart 1) as well as two reference com-
pounds (e.g,, [Os(bpy)s]*" see Supporting Information [SI])."

The formation of solvated electrons is a remarkable process in
which electrons are trapped within a solvent cage. The generation
of such trapped charges requires rather drastic chemical conditions
or strongly ionizing (UV) radiation (e.g., pulse radiolysis).m Here
we describe, for the first time to our knowledge, the use of green
visible light to generate solvated electrons.

We show that excitation of the Os-trip that is attached to Pt
MNPs results in total emission quenching, attributed to electron
transfer to the particle. This process is followed by slow electron
detachment from the particle, the solvent playing a crucial role
in accommodating the electron in solution in the form of a
solvated electron.

The Os-trip complex in acetonitrile was surface anchored by
mixing with a citrate-stabilized Pt-MNP solution and the formed
nanocomposite was isolated.”"** The attachment was monitored
with IR, UV—vis, and emission. (See the SI.) Sulfur-containing
groups typically displace the citrate on the platinum surface due
to the higher affinity of these groups to the noble metal. The
carbonyl bond of the thioacetate group of Os-trip, present at
1690 cm ™' with medium intensity in the IR, is not visible in the
assembled nanocomposite because the structure of the vibra-
tional band shifts and changes to one broad band, indicating that
during the approach and attachment of the tripod to the metal
surface, the thioacetate hydrolyses result in a platinum—sulfur
bond, displacing the citrate.® The UV—vis spectra of the particle-
tripod nanocomposite, and its components, are shown in
Figure 1A. The observed superposition of the individual compo-
nents of the spectra is comparable to other examples.”® The HR-
TEM (Figure 1B) shows a good size distribution (2 £ 0.4 nm).
The photophysical properties of Os-trip are similar to those
of the reference complexes (e.g., [0s(bpy);]* ), although
slightly modified by the Si-atom. The attachment of Os-trip to
the particle, however, quenches the emission of the chromo-

phore. (See the SL)
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Chart 1. Molecular Structure of Os-trip
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Figure 1. (A) UV—vis of components and composite. (B) HR-TEM of
the nanoparticles.

Transient absorption spectroscopy on the nanosecond time
scale shows clear differences in the excited state processes of the
individual components and the nanocomposite (Figure 2).
Whereas the particles show no feature in their transient spec-
trum, the osmium complex itself exhibits a typical spectrum for
polypyridine complexes with the strong 'MLCT bleaching
between 400 and 550 nm as well as the "MLCT bleach seen at
630 nm. The bipyridine radical anion of the Os-bpy complex has
positive absorption bands that appear below 400 nm (the emiss-
ion lifetime of Os-trip is ~45 ns).** The assembly of Os-trip on
the platinum shows a very different behavior. The features of the
osmium complex are masked, and a broad band over the whole
spectral region grows within 40—60 ns depending on the solvent
used (Figures 2D and 3). In dioxane, this band then decays in 50
ns, having, however, also a longer component (Tdecay ~ 15 us).
These lifetimes are in good agreement with kinetic studies on
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Figure 2. Transient absorption spectra (with zero line) of Os-trip and
Pt-MNP (A,B) and the nanocomposite (C) in deaerated dioxane with
the formation and decay kinetics (at 400—S00 nm) of the solvated
electron (D); the excitation was at 500 nm, 20 frames recorded with 150
accumulations per frame. Incremental time delay is 1S ns for all. (The
legends show the times of the traces with rainbow color scheme, from
violet to red.)

solvated electrons in water and ammonia.”®> We attribute the
quenching process to a photoinduced electron transfer from the
osmium(II) to the platinum nanoparticle. The transferred elec-
tron is then trapped on the metal surface and solvated.*®”**
Hydrated electrons present very broad absorption features in the
visible part of the spectrum with a maximum in the near-infrared
region of the spectrum.” If the solvent is other than water (or a
protic solvent), then the maximum of this very broad band is
shifted further to lower energies.***> We were able to see con-
vincing features of the solvated electron in ethylene glycol, with a
maximum for the absorption band at 600 nm>*% (Figure 3).

In ethylene glycol, the formation of the band corresponding to
the solvated electron is relatively slow (7. = 60 ns). For Os-trip
itself, we have determined that Tgec,, = 45 ns. If we take into
account this lifetime, the limiting step for the formation of the
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Figure 3. (A) Transient absorption spectrum of the Os-trip—Pt-MNP
assembly after excitation at S00 nm in ethylene-glycol. The broad band
is centered at 600 nm and has a rise time of 60 ns (B, at 600 nm). 15 ns
increment per frame with 500 accumulations per frame. (The legends
show the times of the traces with rainbow color scheme, from violet to

red.)
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Figure 4. Schematic representation of the chemical steps and kinetics
occurring in the nanocomposite in ethylene glycol.

solvated electron has to be the release of the electron from the
platinum surface into the solution. The quantum yield (number
of electrons produced/number of photons absorbed) was esti-
mated to be ~4% in ethylene glycol. (See the Supporting
Information.) Kinetic observations and correlated chemical steps
are combined in Figure 4. Attempts to trap the solvated electron
from the solution with a viologen were made. (See the Support-
ing Information.) Further experiments are currently in progress
and will be published separately.

Self-assembly of thioacetate-functionalized tripodal molecules
containing an osmium polypyridyl complex onto platinum
nanoparticles has been accomplished. Photoinduced interactions
between the two components indicate charge transfer from the
osmium complex to the particle, followed by surface detachment
of the electron. A long-lived solvated electron is formed. The
signal corresponding to this solvated electron has a rise time of
40 to 60 ns and a lifetime that lies in the 50 ns range with a long
component of 15 us, indicating a faster disappearance of most of
the solvated electrons from the solution and a residual concentra-
tion that remains solvated on the longer time scale. Prospective
new photocatalytic systems using these concepts are envisioned.
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