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For the past ~30 years, polymer nanocomposites (PNCs)' and
block copolymers (BCPs) have represented two extremely active
areas of research within the polymer science community. It was
inevitable, then, that the two topics should overlap; block
copolymer/nanoparticle composites represent a relatively new
and exciting field in materials research. A large portion of such
work has, to date, sought to employ the well-ordered microphase-
separated structures available in block copolymers as scaffolds to
direct the spatial arrangement of the nanofiller.** Indeed, effec-
tive control over the spatial location and/or orientation of the
nanofiller particles in PNCs offers great possibilities for dramat-
ically improved composite properties.' In the block copolymer
field, great strides have been made in developing techniques to
globally orient the BCP microdomains using external fields (e.g.,
shear® or electric fields”) or surfaces,® ! even further enhancing
the possibility for the creation of nanocomposites with precisely
defined morphology.

In this Communication, we present a general method for creation
of aligned block copolymer/nanoparticle (BCP/NP) composites,
although via something of an inverse approach: an external
(magnetic) field is used to define the spatial orientation of rod-
shaped magnetic NPs, which then serve as structure-directing agents
for neighboring BCP domains. Specifically, the oriented NPs, which
are incorporated at a concentration of only a few percent, present
templating surfaces for the alignment of cylindrical block copolymer
nanodomains. In a sense, our approach is an extrapolation of the
graphoepitaxy technique, which can be used to template BCP
cylinder orientation in thin films,'®!" to thicker films, and eventually
into the bulk. The ability of rod-shaped NPs to nucleate coaxially
oriented BCP cylinders has recently been established.'>'® There has
also been a fair amount of work using magnetic fields to orient block
copolymers, although it is necessary to use copolymers which
contain moieties or semicrystalline domains with appreciable mag-
netic susceptibility.>'*~!7 In the absence of such a condition, we
introduced the rod-shaped nanoparticles, which are capable of being
magnetically aligned. Using this kind of scheme to induce reorienta-
tion in lyotropic liquid crystal/nanomagnet composites has also
been demonstrated.''

The composite under study consisted of a polystyrene-block-
poly(2-vinylpyridine) (PS—P2VP) diblock copolymer, which forms
cylindrical microdomains of P2VP in a PS matrix,” and spindle-
type hematite (0-Fe,O3) particles, which were synthesized by the
forced hydrolysis of Fe(ClO,)s, according to procedures previously
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Figure 1. (a) TEM image of a typical needle-shaped hematite particle.
(b) The particles orient in the plane perpendicular to the applied
magnetic field, B. (c) Confining the particles to lie within the block
copolymer film parallel to the substrate, and under the influence of B,
should result in a unique particle orientation. (d) The preferred BCP
cylinder orientation is parallel to both the substrate and the long axis of
neighboring hematite nanoparticles.

described by Ocana et al.>' The particles, an example of which is
shown in the transmission electron microscopy (TEM) image in
Figure la, had an average diameter of 55 £ 6 nm and an average
long axis length of 330 £ 38 nm (see the Supporting Information,
Figure S1). Such hematite particles are weakly ferromagnetic and
have recently been shown to orient with their major axes perpendic-
ular to an applied magnetic field, B> as drawn in Figure 1b (B
applied in the x-direction). To overcome this problem and introduce
a unique particle orientation, the composites were cast as films of
thickness ~500 nm; by confining the particles to lie in the film plane
and perpendicular to the applied magnetic field, the particles should
orient preferentially in the y-direction diagrammed in Figure Ic.
Films were produced by casting a THF solution of BCP (1 wt %)
and NP (0.05 wt %) onto either carbon-coated epoxy or mica
substrates, followed by slow solvent evaporation. For samples
subjected to the magnetic field, the substrate was placed
between two permanent magnets® and the solution casting
procedure followed. To allow the BCP microstructure to
evolve toward equilibrium, the films were annealed in CH,Cl,
solvent vapor (a neutral solvent for PS and P2VP)* for 1 day
while still under the influence of the magnetic field. This
process resulted in the alignment of the BCP cylinders with
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Figure 2. TEM images of a BCP/NP composite film cross-sectioned
parallel (a, b, d) and perpendicular (c) to the applied magnetic field, B.

their axes predominantly parallel to the long axis of nearby
hematite particles, as schematized in Figure 1d.

To elucidate the structure in the nanocomposite films, TEM
was performed on film cross sections, with iodine staining of the
P2VP domains performed to allow visualization of the BCP
structure (Figure 2). Sectioning was performed both parallel to
the applied magnetic field direction (the xz plane as indicated in
Figure 1) and perpendicular to B (the yz plane). Figure 2a shows a
single particle (in cross section) embedded in the PS-rich matrix of
the BCP. P2VP is known to strongly wet many oxide,” metal,®
and semiconductor®® surfaces. This is presumably the case with
the hematite particles, as well, leading to the formation of a
PS—P2VP brush layer that compatibilizes the particles within the
PS matrix of the BCP.?” Since the remanent magnetic moment of
the particles is rather low,* the steric repulsion between particles
afforded by this brush layer is sufficient to prevent particle
aggregation in solution and in the composites. Images from cross
sections cut parallel to B typically show both particles and P2VP-
rich cylinder cores in cross section, as in Figure 2a,b. The
cylinders show the usual hexagonal packing, except in proximity
to a particle, where lattice distortions are often observable. Given
that the particle diameter is much larger than the BCP domain
periodicity, this is to be expected. Cross sections cut perpendic-
ular to B, as in Figure 2c, typically show particles and cylinders
lying with their principal axes lying in the plane of the section.
Note that the thickness of the sections is comparable to the
particle diameter, so in many instances the particles are not left
entirely intact by the microtoming procedure. Again, the fact that
the particle size and shape are not perfectly commensurate with
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Figure 3. (a) Schematic diagram of the SAXS experiment. (b, c)
Transmission SAXS patterns for BCP/NP composite films cast on mica
substrates: control sample with no applied magnetic field (b) and sample
with B applied as indicated (c). (d) Azimuthal average of data from the
control sample, where the Bragg peaks related to the hexagonal BCP
cylinder packing (¢* and +/3¢*) are indicated with arrows. (¢) Azi-
muthal intensity scans at ¢* = 0.23 nm ™" for the control sample (dashed
gray line) and for the magnetically aligned sample (solid black line).

incorporation of defects in the cylinder array, a fact that
precludes the possibility of a high degree of translational ordering
of the cylinders. Nonetheless, the particles appear to effectively
template the orientation of nearby cylinders.'>'* This point is
driven home by the observations of regions of poor alignment
(with respect to the preferred alignment direction dictated by B)
that are often observed in the TEM images as well. Crucially,
those areas of misaligned cylinders are typically associated with
nearby particles that are misaligned as well. In Figure 2d, the
preferred alignment is with particles and cylinders normal to the
image (right side of the image). However, two misaligned
particles, lying in the plane of the section, appear to have induced
misalignment in the cylinders above them (left side of the image).

In general, the TEM images suggest that the particles are
effective at templating the orientation of nearby cylinders and
that the magnetic alignment of the nanoparticles works to some
degree, but certainly not perfectly. However, quantifying the
effect requires a complementary technique with much greater
statistical averaging. To this end, small-angle X-ray scattering
(SAXS) was performed in transmission geometry on samples cast
on thin mica substrates, the results of which are shown in Figure 3.
A control sample cast and annealed with zero applied magnetic
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whereas the magnetically aligned sample shows anisotropic
scattering (Figure 3c). The difference in electron density between
hematite and either block of the copolymer is much larger than
that between PS and PVP, so the scattering intensity at low ¢ is
dominated by scattering from the particles. Attempts to isolate
the contribution from the BCP structure by subtraction of the
contribution to the scattering signal from only the particles
proved unsuccessful. An oriented BCP array is expected to yield
a mirror-image pair of spots or crescents of intensity,'® as
opposed to the isotropic ring of intensity observed for unoriented
samples. In Figure 3c, the lemon-shaped scattering pattern arises
from the form factor of the (partially oriented) particles,?
dwarfing the signal from the BCP. However, as shown in
Figure 3d, upon azimuthal integration of the scattering patterns,
weak Bragg peaks associated with the BCP cylinders can none-
theless be observed at ¢* = 0.23 nm™ ' and ¢ ~ /3¢*. The
corresponding repeat spacing, do = 27 nm, correlates well with
that observed in the TEM images. An intensity scan (as a function
of azimuthal angle, ¢) taken at ¢ = ¢*, as shown in Figure 3e,
thus can be used to estimate the degree of alignment of the BCP
cylinders. Neglecting cylinders that do not lie parallel to the film
plane (which seems reasonable given the TEM observations), the
order parameter (S,), which quantifies the degree of orientation
of the cylinders along the preferred (y) direction, can be calcu-
lated from the data in Figure 3e, viz.

3cos® ¢)— 1 (1)

(S) = 2

where

f027 I(¢)cos® plsin ¢| dgp
127 1(¢)[sin ¢| dgp

¢ is defined with respect to the applied magnetic field direction
(x, as shown in Figure 3a) and 1(¢) is the scattered intensity as a
function of ¢. A perfectly aligned sample would yield (S,) = 1.0,
while a perfectly isotropic sample would yield (S,) = 0.0. Cal-
culations based on the data in Figure 3 yield values of (S») = 0.00
(£0.01) for the control sample and (S,) = 0.07 (£0.01) for the
sample cast and annealed under the influence of the magnetic
field. It must be noted that this calculation is sensitive to any
background scattering, and as we have thus far been unsuccessful
in separating scattering signals from the particles from that of the
BCP, it is unlikely that this value ((S») = 0.07) is definitive.

In any case, it is clear that the overall degree of orientation
produced by the magnetic field treatment in the composite is only
rather modest. However, we believe the method to be general
and, upon further improvements, capable of producing relatively
well-aligned composites. The observation that misaligned cylin-
ders correlate with misaligned particles suggests that improved
particle alignment is of paramount importance. The fact that the
hematite particles used in these experiments align with the particle
long axis perpendicular to the applied magnetic field is particu-
larly disadvantageous. The use of particles that orient parallel to
an applied magnetic field should yield dramatically improved
results and should allow for the creation of aligned composites in
bulk form. As it is, during the film casting procedure, once the
drying BCP/NP solution reaches a certain viscosity, hydrody-
namic forces on the particles will dominate over the aligning
torque produced by magnetic forces. Hematite particles can in
principle be transformed to maghemite (y-Fe,O3), in which case
the particles would align parallel to the applied field.”® However,
the larger remanent moment in maghemite particles creates
problems in preventing particle aggregation due to increased
particle—particle attraction. Such particles also tend to migrate to

(cos® ¢y =

(2)

areas of highest magnetic field strength due to their high magnetic
susceptibility (in the case of a nonhomogeneous external mag-
netic field), creating additional difficulties in the preparation of
well-dispersed composites. In principle, these challenges can be
overcome.

In summary, in a composite of spindle-type magnetic nano-
particles and cylinder-forming block copolymer, the nanoneedles
have been shown to effectively template the orientation of nearby
BCP cylinders. By application of a uniaxial magnetic field during
composite casting from solution, the particles can be partially
aligned, imparting an overall alignment to the final composite. At
present, the alignment that has been achieved is modest at best.
However, future improvements in the alignment should be
possible, and in principle, any anisotropic particle with sufficient
magnetic susceptibility may be used.”’ Therefore, these results
suggest a simple and general processing route to complex multi-
functional composite materials with unique combinations of
anisotropic (and orthogonally engineered) mechanical, magnetic,
optical, electrical, or other properties.
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