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1. Introduction

Since the seminal paper by Engle (1982), models that attempt to explain the
conditional heteroskedasticity of asset returns have become essential tools for
financial analysts. These models can be subdivided into two broad classes. The
first one is the class of ARCH, GARCH, and EGARCH models with their many
variants; see, e. g., Engle (1982), Bollerslev (1986), Engle et al. (1987), Nelson
(1991), and the excellent survey in Bollerslev et al. (1994). In this first class,
the variance equation is deterministic, and much effort has been devoted to its
specification. The second one is the class of stochastic volatility (SV) models,
where the variance equation is stochastic and can be considered as the evolution
equation in a state space model.

The evolution equation in SV models usually has a rather simple autoregressive
form. Nevertheless, it may be argued that SV models are potentially more flexible
than models in the GARCH class, since they involve two random shocks rather
than one. Furthermore, since an inference on the conditional variances in SV
models can be based on the entire sample rather than on past observations only,
a sophisticated modeling of the variance equation is perhaps less necessary in SV
models than in GARCH models: the evolution equation in SV models can be
viewed as a hierarchical Bayesian prior on the volatilities, which is updated by
the information present in the entire sample. As a consequence, the smoothed
estimates of the latent variables can exhibit systematic nonlinearities that were
not implied by the prior specification. The paper by Deschamps (2003) illustrates
this fact in a multivariate state space model of consumer demand.

Stochastic volatility models are non-linear or non-Gaussian state space models,
and this makes their estimation difficult. It is perhaps for this reason that their
use has been less frequent than that of models in the GARCH class. Their
treatment seems to follow three main approaches. The first approach is based
on a linear evolution equation implying Lognormal volatilities. This formulation
appears to be the most common one: see, e. g., Jacquier et al. (1994, 2004),
Kim et al. (1998), Chib et al. (2002), and Omori et al. (2007). The second one
is based on arbitrary differentiable, but Gaussian, observation and/or evolution
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equations; an example of this approach is in Stroud et al. (2003). The third
approach to SV models assumes a multiplicative evolution equation with Beta
innovations. Such an equation appears to have been first used by Smith and Miller
(1986) with an Exponential observation density, for the time series analysis of
extreme values; it was subsequently used by Shephard (1994) in the context of
SV models with observation equation disturbances having the Generalized Error
Distribution, which includes the Normal as a special case. The model of Shephard
(1994) is known as the local scale model. Uhlig (1997) presents a multivariate
generalization of the local scale model but his analysis is limited to multivariate
Normal observation equation errors. The same limitation is present in the closely
related paper by Philipov and Glickman (2006).

The local scale model has two main advantages over the first two approaches.
First, the one step ahead prediction densities are known analytically. This means
that forecast intervals are easy to obtain, and that the hyperparameter likelihood
(marginalized over the volatilities) can be computed exactly from the prediction
error decomposition. In contrast, prediction in the SV models that use the first
two approaches must be done by particle filtering. This implies choosing suitable
model-dependent importance sampling densities, a problem that has only been
solved in specific cases (Kim et al., 1998; Chib et al., 2002; Omori et al., 2007).
The second advantage involves posterior simulation. In the first two classes of
SV models, this requires either single-move sampling, or the use of auxiliary
models based on mixtures of Normals. Single-move sampling was found to be
inefficient by Omori et al. (2007), and using the auxiliary model proposed in
their paper causes misspecification that must be corrected by reweighting the
posterior replications obtained by Markov chain Monte Carlo (MCMC). Such
reweighting is not necessary when the local scale model is estimated, since the
posterior density kernel of the hyperparameters is known analytically.

The present paper follows the tradition of the local scale model. It presents
a new version of this model, and a new method of estimation. Its main contri-
butions are the following. First, contrary to the original formulation, the distur-
bances in the evolution equation are identically distributed, with a distribution
that depends on two fundamental parameters in a natural way. This new formula-
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tion will be called the steady-state version of the local scale model, and has some
advantages over the original version. Second, ARCH-M effects are introduced
and found to be very significant in an application to asset return data. This may
be due, at least in part, to the fact that these effects are formulated in terms of
the scale parameter of the one step ahead prediction density, which is available in
closed form for the local scale model. Indeed, French et al. (1987) show that it is
important in this context to distinguish between anticipated and unanticipated
components of volatility. Third, variance regressors are introduced in the evolu-
tion equation; they allow for irregularly spaced data, and for a form of leverage.
Fourth, a fully Bayesian treatment of the estimation problem is presented and il-
lustrated. In particular, the present paper derives an exact simulation smoother
for the stochastic volatilities, whereas Shephard (1994) used a quasi-smoother
based on a Gaussian local level approximation. The exact simulation smoother
is particularly easy to implement, since it only involves generating the inverse
volatilities from a linear stochastic difference equation with Gamma innovations.
The advantages of using a Bayesian approach in latent variable models have been
stated elsewhere in the literature; see, e. g., Harvey et al. (2007).

An outline of the paper follows. Section 2 presents and motivates our ver-
sion of the local scale model. Section 3 presents the simulation smoother; its
validity is proved in Appendix A. Section 4 presents a posterior simulator of the
hyperparameters, with further details given in Appendix B; a posterior sample
of the volatilities can be obtained by applying the simulation smoother to each
hyperparameter replication. Section 5 presents an extensive Monte Carlo experi-
ment, where the model of this paper and two competing models are estimated on
sixty samples generated under six different assumptions: namely, two versions of
the local scale model, two versions of the Lognormal SV model in Omori et al.
(2007), and two versions of the GARCH model with Student errors (t-GARCH
for short). Section 6 applies the local scale model to daily asset return and ex-
change rate series. Section 7 compares the results of Section 6 with estimates
obtained from the model in Omori et al. (2007) and from the t-GARCH model.
Section 8 presents in-sample and out-of-sample misspecification diagnostics for
those models that were found, in Sections 6 and 7, to have the best marginal
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likelihoods and information criteria. Section 9 concludes.

2. A steady-state version of the local scale model

2.1 Notation.

In what follows, we will denote a variableX having a standardized Generalized
Error Distribution with parameter r ≥ 1 as X ∼ GED(r). This distribution is
discussed in Box and Tiao (1992, pp. 156–160), who call it the Exponential
Power Distribution, and was used by Nelson (1991) in an important article. We
write the density of X as:

fGED(x; r) =
r

2
Γ(3/r)1/2

Γ(1/r)3/2
exp [−|x|rψ(r)] , with ψ(r) =

[
Γ(3/r)
Γ(1/r)

]r/2

.

Note that since ψ(2) = 1/2, fGED(x; 2) is the standard Normal density. The
GED density has heavier tails than the Normal if r < 2 and thinner tails if r > 2.
A Beta variable Y with parameters α and β is noted as Y ∼ Be(α, β), and its
density as fB(y;α, β). Finally, a Gamma variable Z with density fG(z; a, b) ∝
za−1 exp(−bz) is noted as Z ∼ Ga(a, b).

2.2 The model.

A general version of the local scale model is, for t = 1, . . . , T :

yt = µt + (λθt)−1/rut (2.1)

ln θt = ln θt−1 + [ln ηt − E(ln ηt)] +
k∑

j=1

βjDjt (2.2)

θ0 ∼ Ga(a0, b0) (2.3)

where ut and ηt are independently distributed with:

ηt ∼ Be(ωat−1, (1 − ω)at−1)

ut ∼ GED(r)

and where 0 < ω < 1. In the Beta distribution of ηt, at−1 is a parameter
of the filter density of θt−1, which will be stated in Section 2.3. Smith and
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Miller (1986) show that the marginal distribution of θt in (2.2) is Gamma, and
Shephard (1994) shows that this Gamma distribution is conjugate with the GED
distribution implied by (2.1).

There are two important differences between our version of the local scale
model and the original one in Shephard (1994). First, in this paper, at−1 will be
a constant that depends on ω and r, so that the evolution equation disturbances
ηt are identically distributed. Secondly, the empirical applications presented in
Shephard (1994) were limited to λ = 1, µt = 0, and βj = 0 in (2.1) and (2.2),
whereas we do not impose these restrictions.

In equation (2.1), the presence of λ ensures that the θt do not depend on
units of measurement, and the choice of the conditional expectation µt will be
motivated by the results of LeBaron (1992), who finds that the first-order auto-
correlation in asset return series is a decreasing function of anticipated volatility;
see also Bollerslev et al. (1994). We define the anticipated square root volatility
as:

st = (λE[θt | y1, . . . , yt−1])
−1/2 (2.4)

and model yt by an autoregression with coefficients that depend on st, so that:

µt = α00 + α10F (st) +
p∑

i=1

[
α0i + α1iF (st)

]
yt−i, with: (2.5)

F (st) =
1

1 + exp(−st)
− 1

2
. (2.6)

It will be seen in Section 2.3 that st turns out to be the scale parameter of the one
step ahead predictive distribution of yt. The logistic function F (st) lies between
0 and 1/2 and is almost linear for st close to 0; its boundedness is important
since st can take very large values.

Equation (2.2) states that the latent variables θt follow a logarithmic random
walk, with covariates Djt. The random walk implies important restrictions on
these covariates. The term

∑k
j=1 βjDjt can be interpreted as a (non constant)

drift, which should be bounded and should average out to zero for the model to
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remain stable. Unfortunately, this excludes an asymmetric news impact function
of the EGARCH type. Suitable choices for the variance regressors Djt, which
can depend on past observations on yt, will be discussed in the empirical part of
this paper.

It should also be noted that the random walk (2.2) could not be replaced by
a more general autoregression without losing the conjugacy of (2.1) and (2.2).

2.3 Filtering and prediction.

We now state the filtering equations associated with (2.1) and (2.2). These
equations will enable us to obtain the one step ahead prediction densities, from
which the hyperparameter likelihood follows by the prediction error decomposi-
tion. Upon defining, for convenience:

φt = exp

⎡
⎣ k∑

j=1

βjDjt − E(ln ηt)

⎤
⎦ , (2.7)

it can be shown that:

f(θt | y1, . . . , yt−1) = fG(θt; at|t−1, bt|t−1) (2.8)

f(θt | y1, . . . , yt) = fG(θt; at, bt) (2.9)

with:
at|t−1 = ωat−1 and bt|t−1 =

bt−1

φt
(2.10)

at = at|t−1 +
1
r

and bt = bt|t−1 + λψ(r)|yt − µt|r. (2.11)

Finding the one step ahead prediction density is straightforward. The simplest
case occurs when the observation equation disturbances in (2.1) are normally
distributed, which occurs when r = 2. In this case, we have:

f(yt | y1, . . . , yt−1) =
∫ ∞

0

f(yt | µt, θt, λ)f(θt | y1, . . . , yt−1)dθt (2.12)

which is a scale mixture of Normals with a Gamma weighting density; from (2.1)
and (2.8), this is a Student-t with expectation µt, 2at|t−1 degrees of freedom, and
scale parameter:

s2t = bt|t−1/(λat|t−1) = (λE[θt | y1, . . . , yt−1])
−1 ; (2.13)
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see, e.g., Bernardo and Smith (2000, p. 123).
As noted by Shephard (1994), when r is arbitrary, the predictive becomes:

f(yt | y1, . . . , yt−1) = fGST (yt;µt, s
2
t , at|t−1, r)

=
r

2
Γ

(
at|t−1 + 1/r

)
Γ

(
at|t−1

)
Γ(1/r)

[
ψ(r)

at|t−1s
2
t

]1/r

×
[
1 +

ψ(r)|yt − µt|r
at|t−1s

2
t

]−at|t−1−1/r

(2.14)

where s2t is again given by (2.13).
The density (2.14) is known in the literature as a Generalized Student-t (see

McDonald and Newey, 1988) and was used by Bollerslev et al. (1994) as error
distribution in an EGARCH-type model of asset returns. It is easy to see that
(2.14) specializes to the usual Student distribution with 2at|t−1 degrees of freedom
when r = 2.

2.4 Filter initialization.

We now address the choice of a0 and b0 in (2.3). Following Harvey (1989),
Shephard (1994) proposes to initialize the filter (2.10)–(2.11) with the values a0 =
b0 = 0, corresponding to a diffuse prior on θ0. However, there are several reasons
why a0 > 0 and b0 > 0 might be preferred. First, if a0 = b0 = 0, the marginal
density of y1 is not defined. Second, we may view (2.2) and (2.3) as defining a joint
prior on (θ0, . . . , θT ); the marginal prior of θt is then Ga(ωta0, b0[

∏t
i=1 φi]−1),

which becomes improper as a0 and b0 tend to 0. This would exclude any prior
simulation of the volatilities. Third, it will be seen in Section 3 that the full
conditional posterior of θ0 becomes improper as b0 → 0. This would exclude any
posterior simulation involving θ0. Last, if a0 = 0, at will not reach a steady-
state value until some time after the start of the sample; since this start usually
depends on data availability rather than on more fundamental considerations,
this is difficult to justify.

We will adopt a flexible hierarchical prior on θ0 based on regularization con-
cepts. Similar treatments of initial conditions have appeared in the literature;
see, e. g., Schotman and van Dijk (1991). Upon solving the recurrence equations
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(2.10) and (2.11), we obtain for t = 1, . . . , T :

at = ωta0 +
1
r

t∑
i=1

ωi−1 = ωta0 +
1 − ωt

r(1 − ω)
(2.15)

bt =
b0∏t

i=1 φi

+
t∑

j=1

λψ(r)γj |yj − µj |r (2.16)

with γj =
∏t

i=j+1 φ
−1
i for j < t and γt = 1.

Equation (2.15) reveals that an obvious choice for a0 is the steady-state value:

a0 =
1

r(1 −w)
(2.17)

since this implies at = a0 > 0 for all t.
An appropriate choice for b0 is less obvious. The solution proposed in this

paper treats the first sample observation as one that is preceded by a large number
of missing data covering a time interval of length ∆t. In this case, Shephard (1994,
pp. 189-190) shows the following generalizations of the prediction equation and
evolution density:

bt|t−∆t = bt−∆t/φt

ηt ∼ Be(ω∆tat−∆t, (1 − ω∆t)at−∆t).

If ∆t→ ∞, ηt converges in probability to 0 since ω < 1. In this case, φt in (2.7)
diverges to +∞, and bt|t−∆t → 0. This means that the second part of (2.11)
must be modified as follows for t = 0:

b0 = b0|−∆t + λψ(r)|y0 − µ0|r

≈ λψ(r)|y0 − µ0|r.

We will treat the pre-sample value y0 as generated by a steady-state version
of the model, obtained from the density (2.14) with s20 = 1/λ and a0|−1 = ωa0,
and set b0 equal to the expected value of the previous approximation. The choice
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of s20 turns out to be the simplest one yielding a solution that depends only on
ω and r, and is therefore motivated by considerations of parsimony. It can be
verified using standard analytic integration software that:

∫ +∞

−∞
|yt − µt|rfGST

(
yt;µt,

1
λ
,

ω

r(1 − ω)
, r

)
dyt =

b0
λψ(r)

with:
b0 =

ω

rω + r2(ω − 1)
. (2.18)

The denominator of (2.18) will be positive if ω > r/(1+r). When the observa-
tion equation disturbances are Normal (r = 2), this inequality merely constrains
the degrees of freedom in the Student-t predictive to be greater than two, a con-
straint that ensures the existence of the first two moments. Since E(θ0) = a0/b0,
(2.17) and (2.18) allow the full range of expectations 0 < E(θ0) < +∞ and do
not, therefore, seriously restrict the flexibility of the model.

Choosing a0 as in (2.17) and b0 as in (2.18) leads to the steady-state version
of the local scale model, which is written below for the sake of easy reference:

yt = µt + (λθt)−1/rut, ut ∼ GED(r) i.i.d (2.19)

θt = φtθt−1ηt (2.20)

φt = exp

⎡
⎣ k∑

j=1

βjDjt + Ψ
(

1
r(1 − ω)

)
− Ψ

(
ω

r(1 − ω)

)⎤
⎦ (2.21)

ηt ∼ Be
(

ω

r(1 − ω)
,
1
r

)
i.i.d (2.22)

θ0 ∼ Ga
(

1
r(1 − ω)

,
ω

rω + r2(ω − 1)

)
(2.23)

where Ψ(z) = d ln Γ(z)/dz is the digamma function. Equations (2.19) – (2.23)
can be viewed as a restatement of (2.1) – (2.3) where the choice of a0 and b0

is made endogenous; equation (2.21) follows from (2.7) and from a well-known
result on the expected logarithm of a Beta variate.
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2.5 Comparing the diffuse and steady-state likelihoods.

This subsection will illustrate some differences between the steady-state ver-
sion of the local scale model and the Shephard (1994) version, using simulated
data. Figure 1 presents, for the three sample sizes of T = 100, 500, and 2000,
the loglikelihoods of ω obtained with the diffuse filter initialization (dashed lines)
and with the steady-state initialization (solid lines). Since the density of y1 is
not defined with the diffuse filter, both loglikelihoods are conditional on the first
observation in order to ensure comparability: they are obtained by summing the
logarithms of the densities (2.14) for t = 2, . . . , T . The data were simulated from
the steady-state version of the model, assuming µt = 0, βj = 0, λ = 1, r = 2, and
ω = 0.93. The DGP values of r and ω are close to maximum likelihood estimates
obtained by Shephard (1994). In computing the loglikelihoods, all parameters
except ω were set equal to their DGP values.

It is apparent in the top panel of Figure 1, and to a lesser extent in the other
panels, that the steady-state likelihood penalizes those values of ω that are close
to 2/3 or close to unity. In our model, when ω tends to r/(1 + r) = 2/3, E(θ0)
tends to zero, and when ω tends to one, E(θ0) tends to +∞. Since neither
assumption is supported by the data, the steady-state likelihood is lower than
the diffuse one. When T becomes large, the two likelihoods of course become
increasingly similar, but the differences remain apparent in this example.

Since the evolution density becomes singular as ω tends to one, it may be
argued that the steady-state likelihood, which bounds ω away from unity, is
preferable to the diffuse one.

3. Simulation smoothing

This section addresses the simulation of (θ0, . . . , θT ) from their distribution
conditional on the observables (y1, . . . , yT ) and on all the other unobservables in
the model, including ω and r. We denote by yt1:t2 the vector (yt1 , . . . , yt2) and
similarly for θt1:t2 . The full conditional posterior of θ0:T can be written as:

f(θ0:T | y1:T ) = f(θT | y1:T )
T−1∏
t=0

f(θt | y1:T ,θt+1:T ). (3.1)
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A simulation smoother can be based on the decomposition (3.1), using an
argument similar to the ones given by Carter and Kohn (1994) and Chib (1996)
in different contexts. Each of the last T terms in the product on the right-hand
side of (3.1) can be written as:

f(θt | y1:T ,θt+1:T ) ∝ f(θt | y1:t)f(θt+1 | θt,y1:t) (3.2)

since we have, from Bayes’ theorem and from the decomposition of a joint density:

f(θt | y1:T ,θt+1:T ) ∝ f(θt | y1:t)f(yt+1:T ,θt+1:T | y1:t, θt)

∝ f(θt | y1:t)f(θt+1 | θt,y1:t)f(yt+1:T ,θt+2:T | y1:t, θt+1, θt)
(3.3)

and since the last term in (3.3) does not depend on θt. The first term on the
right-hand side of (3.2) is of course the filter density of θt, given by (2.9); the
second term can be viewed as the likelihood of θt implied by equation (2.20). It
is shown in Appendix A that applying Bayes’ theorem to the right-hand side of
(3.2) yields the following translated Gamma posterior:

f(θt | y1:t, θt+1) = fG

(
θt − φ−1

t+1θt+1;
1
r
, bt

)
.

In order to simulate θ0:T from its full conditional posterior distribution, we
may then use the following forward-filtering backward-sampling algorithm based
on (3.1) and (3.2):

(1) Compute and store bt from the filter (2.10)–(2.11) for t = 0, . . . , T .
(2) Sample:

θT ∼ Ga
(

1
r(1 − ω)

, bT

)
. (3.4)

(3) Generate θT−1, . . . , θ0 from the stochastic difference equation:

θt = φ−1
t+1θt+1 + εt (3.5)

where the εt are independent draws from Ga(1/r, bt) distributions.
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The posterior expectations θ̄t of the θt can be obtained by replacing, in (3.4)
and (3.5), the random variables by their expected values. This yields the recur-
sion:

θ̄T =
1

rbT (1 − ω)
(3.6)

θ̄t = φ−1
t+1θ̄t+1 +

1
rbt

for t = T − 1, . . . , 0. (3.7)

4. Posterior simulation

Let, for convenience:

α′ = (α00 α10 α01 α11 . . . α0p α1p )

and:
β′ = (β1 . . . βk ) .

We will adopt the following prior:

p(α,β, λ, ω, r) ∝
fN (α;mα,Σα)fN (β;mβ ,Σβ)fG(λ; aλ, bλ)I(rmin,rmax)(r)I(ωmin ,1)(ω) (4.1)

where fN denotes the Multinormal density and I denotes an indicator function.
From the definition of a GED density, we must have rmin ≥ 1; and since typical
asset return distributions exhibit heavy tails, it is sensible to choose rmax not
much greater than 2. For (2.18) to remain well-defined, we must have:

ωmin >
rmax

1 + rmax

which is an innocuous constraint in view of the remark made after the statement
of (2.18).

Our posterior sampler for the extended local scale model can be summarized
as follows. Define ξ = (α,β, λ, ω, r). First sample ξ(0) in the support of its prior
distribution. A Markov chain {ξ(i)}N

i=1 is generated as follows:

(1) Sample r(i) conditional on the data, α(i−1), β(i−1),ω(i−1), and λ(i−1).
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(2) Sample ω(i) conditional on the data, α(i−1), β(i−1),r(i), and λ(i−1).
(3) Sample α(i) conditional on the data, β(i−1), λ(i−1), r(i), and ω(i).
(4) Sample β(i) conditional on the data, α(i), λ(i−1), r(i), and ω(i).
(5) Sample λ(i) conditional on the data, α(i), β(i), r(i), and ω(i).

Note that this algorithm does not depend on the simulation smoother of Sec-
tion 3, but uses the likelihood implied by the prediction error decomposition.
This use is partly due to the fact that the joint likelihood of ξ and θ0:T is only
defined for those values of the volatilities which are consistent with (2.20): it
would not be practical to maintain this consistency across random draws of the
remaining parameters. However, the deterministic smoother (3.6)–(3.7) will be
used in the construction of candidate proposal densities, and this turns out to be
important for a good performance of the algorithm.1

Steps (1)–(5) are “Metropolis within Gibbs” steps having the following generic
expression. Let ϑ be the subvector of ξ being simulated, and let ϕ be that
subvector of ξ which does not contain ϑ. Let k(ϑ | ϕ) be the kernel of the
conditional posterior of ϑ. Let ϑold be the previous draw of ϑ, and let q(ϑ |
ϑold,ϕ) be a normalized proposal density. The proposal densities used in this
paper are described in Appendix B. One draws a candidate ϑ from q(ϑ | ϑold,ϕ),
and sets ϑ(i) = ϑ with probability:

min
[
1,

k(ϑ | ϕ)
k(ϑold | ϕ)

q(ϑold, | ϑ,ϕ)
q(ϑ | ϑold,ϕ)

]

and ϑ(i) = ϑold otherwise.
In order to compute the posterior kernel k(ϑ | ϕ) above, one multiplies by the

prior density (4.1) the likelihood implied by (2.14):

L(ξ) ≡ L(ϑ;ϕ) =
T∏

t=1

fGST

[
yt;µt(ξ), s2t (ξ),

ω

r(1 − ω)
, r

]
(4.2)

where the µt(ξ) and s2t (ξ) are obtained by the filter of Section 2.3. For conve-
nience, we restate this filter by incorporating into (2.10)–(2.11) the conditions

1An alternative way of generating candidates would be to use random draws of the volatil-

ities, generated at the beginning of each pass. This did not result in an improved sampler.
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(2.5), (2.13), (2.17), (2.18), and (2.21). We assume that p initial observations
y1−p:0 are available. For given α, β, λ, r, and ω, the sequences b0:T , φ1:T , µ1:T

and s1:T can be generated by the following recursion:

µt = α00 + α10F (st) +
p∑

i=1

[
α0i + α1iF (st)

]
yt−i (4.3)

bt =
bt−1

φt
+ λψ(r)|yt − µt|r (4.4)

lnφt+1 =
k∑

i=1

βiDi,t+1 + Ψ
(

1
r(1 − ω)

)
−Ψ

(
ω

r(1 − ω)

)
(4.5)

s2t+1 =
bt

λφt+1

r(1 − ω)
ω

(4.6)

with the initial conditions:

b0 =
ω

rω + r2(ω − 1)
(4.7)

lnφ1 = Ψ
(

1
r(1 − ω)

)
− Ψ

(
ω

r(1 − ω)

)
(4.8)

s21 =
1 − ω

λφ1[ω + r(ω − 1)]
. (4.9)

Using (2.14), it is easy to show that the likelihood (4.2) is equal to:

⎡
⎢⎢⎣

Γ
(

1
r(1 − ω)

)
[rr+1ψ(r)(1 − ω)]1/r

2 Γ
(

ω

r(1 − ω)

)
Γ

(
1
r

)
ω1/r

⎤
⎥⎥⎦

T

×

T∏
t=1

s2t (ξ)−1/r

[
1 +

rψ(r)(1 − ω)
ωs2t (ξ)

|yt − µt(ξ)|r
] 1
r(ω − 1)

. (4.10)

5. Monte Carlo experiment

In this section, we will investigate the ability of the extended local scale model
to provide accurate point and interval estimates of the volatilities generated by
six data generating processes (DGPs).
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DGP1 and DGP2 are versions of the Lognormal SV model in Omori et al.
(2007), with and without leverage. This model reads as:

Model 1.

yt = εt exp(ht/2) (5.1)

ht+1 = µ+ φ(ht − µ) + ηt (5.2)(
εt
ηt

)
∼ N

[(
0
0

)
,

(
1 ρσ
ρσ σ2

)]
i.i.d (5.3)

with ρ = 0 for DGP2.
DGP3 and DGP4 are AR(1) and AR(0) t-GARCH models with an asymmetric

variance equation:

Model 2.

yt = γ0 + γ1yt−1 + ut (5.4)

ut = σt

√
ν − 2
ν

εt, εt ∼ Student(ν) i.i.d (5.5)

σ2
t = α0 +

[
α1I[0,+∞)(ut−1) + α2I(−∞,0)(ut−1)

]
u2

t−1 + βσ2
t−1 (5.6)

with γ0 = γ1 = 0 for DGP4.
DGP5 and DGP6 are extended and basic versions of the local scale model:

Model 3.

yt = α00 + α10F (st) + [α01 + α11F (st)]yt−1 + (λθt)−1/rut (5.7)

st = (λE[θt | y1, . . . , yt−1])
−1/2 (5.8)

ln θt = ln θt−1 + [lnηt − E(lnηt)] + β1F (yt−1) (5.9)

ut ∼ GED(r) i.i.d (5.10)

ηt ∼ Be
(

ω

r(1 − ω)
,
1
r

)
i.i.d (5.11)

θ0 ∼ Ga
(

1
r(1 − ω)

,
ω

rω + r2(ω − 1)

)
(5.12)
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where:

F (x) =
1

1 + exp(−x) − 1
2

(5.13)

and where all parameters are nonzero in DGP5, whereas DGP6 sets α00 = α10 =
α01 = α11 = β1 = 0. So, DGP6 is the local scale model with GED errors, but
without ARCH-M effects and variance regressors. It will be seen in Section 6
that the logistic transform F (yt−1) in equation (5.9) turns out to be a good
approximation of yt−1, while ensuring model stability.

All DGP parameter values can be found in Table 1. As will be seen in Sections
6 and 7, the values for DGPs 1, 3, and 5 are typical of asset return series and
those for DGPs 2, 4, and 6 are typical of exchange rate series.

Ten samples of 2000 observations each were generated under each DGP, for a
total of 60 samples. Table 2 presents the ranges of the unconditional moments,
of the first autocorrelations, and of the first autocorrelations of the squares of
the observations generated by all six DGPs. Unrestricted versions of Models 1,
2, and 3 were then estimated on all 60 samples, and posterior samples of the
volatilities were generated. The volatilities were defined as exp(ht/2) for Model
1, σt for Model 2, and (λθt)−1/r for Model 3; they were estimated by simulation
smoothing for Models 1 and 3. The MCMC algorithm used in GARCH estimation
is fully described in Ardia (2008, pp. 59–64); the algorithm used in estimating
the Lognormal SV model is described in Omori et al. (2007). The validity of the
computer codes was tested by the joint distribution method of Geweke (2004).
In all cases, convergence was tested by the method of Gelman and Rubin (1992).
The priors will be described in Sections 6 and 7.

Table 3 presents, for each model and DGP combination, the mean absolute
errors (MAE) of the volatility point estimates (posterior means), the root mean
squared errors (RMSE) of these estimates, and the outlier percentages (propor-
tions of true volatilities outside of 95% confidence intervals). It also presents
t-statistics on the deviations between these percentages and the 5% nominal
value, computed using heteroskedasticity and autocorrelation consistent standard
errors. All the figures in Table 3 are based on the 20000 volatilities estimated for
each DGP/Model combination.
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We first discuss the MAE and RMSE in Table 3. The point estimates in
both SV models outperform GARCH on DGP1, DGP2, DGP5, and DGP6. It
is noteworthy that the MAE and RMSE of both SV models are quite similar;
actually, in the case of DGP3 and DGP6, the differences between the MAE for
Models 1 and 3 are statistically insignificant.

A striking fact in Table 3 is the consistent failure of the GARCH model to
provide accurate interval volatility estimates, as can be seen from the high values
of the coverage t-statistics for this model. Indeed, from a coverage standpoint,
both the Lognormal and the local scale stochastic volatility model actually out-
perform GARCH on DGP4, where 13% of the true volatilities go beyond the 95%
confidence bounds estimated by Model 2, even though the samples were gener-
ated by a GARCH process. In fact, the local scale model passes the coverage
tests for both GARCH DGPs. In contrast, the Lognormal SV model fails these
two tests, but correctly identifies the volatility outliers for DGP6 (the basic lo-
cal scale model). This occurs in spite of the fact that the Lognormal SV model
in this paper has a Gaussian observation equation, whereas the corresponding
distribution in DGP6 is GED.

The failure of the GARCH model to provide adequate volatility coverage ap-
pears to be due to its deterministic formulation of the variance equation. This is
illustrated in Figure 2, where the observations in the first sample generated with
DGP1 are plotted, together with the true volatilities and 95% confidence bands
generated by the three models. For Models 1 and 3, the widths of these bands
reflects two types of uncertainty: parameter uncertainty, and the uncertainty
caused by the stochastic nature of the variance process. Since the confidence
bands in the two right-hand panels of Figure 2 were estimated by simulation
smoothing, their widths reflect both types of uncertainty. In contrast, confidence
bands on the GARCH variance function only reflect parameter uncertainty; this
results in narrower bands, which prove inadequate to accurately identify the
volatility outliers.
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6. Estimating the local scale model on real data

6.1 The data.

In this section, we will estimate versions of the local scale model on one as-
set return and two exchange rate series. The first series is constructed from the
Standard and Poor 500 (S&P500) daily asset price data, available on
finance.yahoo.com, and ranges from January 6, 1970 to April 17, 2009 (9916 ob-
servations). The second and third series range from January 5, 1982 to June 19,
2009 (6905 observations) and are constructed from the Swiss Franc/US dollar and
US dollar/Pound Sterling exchange rates, available on www.federalreserve.gov.
All three series are defined as yt = 100 ln(Pt/Pt−1), where Pt is either the closing
price index (in the case of the S&P500 data) or the exchange rate (in the two
other cases). The three series are irregularly dated; whereas the missing data in
the S&P500 series only cover Saturdays, Sundays, holidays, and the September
2001 event, the two exchange rate series include occasional missing observations
that are not due to market closure.

Two predetermined variables D1t and D2t will be considered for use in the
variance equation (2.2). D1t is the logistic transform F (yt−1), where F (x) is given
by (5.13). Since D1t < 0 corresponds to a negative past asset return, one would
expect its coefficient β1 to be positive in the S&P500 case (bad news increase
volatility), and this can be interpreted as a form of leverage. D2t is defined as
the first difference of the number of consecutive non-trading days prior to date t.
Its presence allows for effects due to market closure. In view of the remark made
at the end of the previous paragraph, it will be included in some local scale asset
return models but omitted from the exchange rate models.

Figure 3 presents the histograms of both variance regressors for the asset return
data, as well as a scatter plot of yt on its logistic transform. The distribution
of both variance regressors is clearly centered on zero; as mentioned at the end
of Section 2.2, this ensures model stability. The bottom panel of Figure 3 shows
that F (yt) is approximately linear for values of yt close to zero, but does not
exhibit the extreme outliers present in the asset return series.
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6.2 Specification search.
Estimating the local scale model involves deciding whether to include

ARCH-M effects and variance regressors, and whether to choose a GED rather
than a Normal observation density. In addition, the autoregressive order p must
be specified. We will choose the models with the highest information criteria.
The first benchmark will be the Schwarz information criterion:

BIC(ξ̂) = 2 ln[L(ξ̂)] − q ln(T ) (6.1)

where ξ̂ is the posterior mean of the parameter vector defined in Section 4, q is
the number of parameters in ξ, and L(ξ) is given by (4.2).

The second criterion is the marginal likelihood:

p(y) =
∫
f(y | ξ)p(ξ)dξ (6.2)

where y = y1:T , f(y | ξ) is the right-hand side of (4.2), and p(ξ) is the prior
(4.1).

The two criteria (6.1) and (6.2) are complementary: (6.1) has the advantage
of being insensitive to the prior, but the magnitude of its difference across models
is difficult to interpret. The marginal likelihood (6.2) does depend on the prior,
even asymptotically, but the Bayes factors that can be derived from (6.2) have a
clear probabilistic interpretation.

A number of methods are available for estimating (6.2); see, e. g., Gelfand
and Dey (1994), Meng and Wong (1996) and Chib and Jeliazkov (2001). The
author chose the bridge sampling method of Meng and Wong (1996) for its ease
of implementation and numerical efficiency. In the present context, the bridge
sampling identity reads as:

p(y) =

∫ [
p(ξ)f(y | ξ)α(ξ)

]
q(ξ)dξ∫ [

q(ξ)α(ξ)
]
p(ξ | y)dξ

(6.3)

where q(ξ) is a normalized importance sampling density and α(ξ) is a “bridge
function” to be defined shortly. So, the numerator in (6.3) can be estimated by
an average of n replications of p(ξ)f(y | ξ)α(ξ), where ξ is drawn from q(ξ), and
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the denominator by an average of m replications of q(ξ)α(ξ), where ξ is drawn
from the posterior. The bridge function is obtained by an iterative procedure,
as:

α(ξ) =
1[

nq(ξ) +m
p(ξ)f(y | ξ)

p(y)

] . (6.4)

Frühwirth-Schnatter (2004) provides many useful implementation details, and
uses theoretical arguments to show that this method is an improvement over
earlier importance sampling methods, such as that of Gelfand and Dey (1994).
Bridge sampling has been used successfully with several other models (Frühwirth-
Schnatter, 2004; Deschamps, 2008; Ardia, 2008, 2009).

The importance sampling density was chosen as:

q(ξ) = q1(r)q2(ω)q3(α)q4(β)q5(λ)

where q1 and q2 are the densities of linear functions of Beta variates with ranges
equal to the prior supports of r and ω; q3 and q4 are Normal; and q5 is Lognormal.
The first two moments of the qi were chosen to match the empirical posterior
moments obtained by MCMC.

The priors on the elements of α and β were independent N(0, 10); the prior
on λ was Ga(10−6, 10−6); and that for ω was Uniform U(0.8, 1). The prior on r
was U(1, 2) for the S&P500 data and U(1, 2.5) for the exchange rate series (in
each case, these choices ensured prior supports much larger than the range of the
posterior replications).

Tables 4 and 5 present the decimal logarithms log10(BF ) of the estimated
Bayes factors against the preferred models, the numerical standard errors (NSE)
of these logarithms, and the differences ∆(BIC) between Schwarz information
criteria. The Bayes factor estimates are indeed very precise, confirming that our
choice of the method and importance sampling densities is appropriate. For the
S&P500 data, both criteria favor an AR(1) model with ARCH-M effects, two
variance regressors, and GED errors (β1 �= 0, β2 �= 0, p = 1, r �= 2). The Bayes
factor evidence against all the other models in Table 4 is decisive (Jeffreys, 1961,
Appendix B). For both exchange rate series, ARCH-M effects are irrelevant and
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serial correlation is negligible, so that µt = 0 was imposed, and it can be seen in
Table 5 that models with GED disturbances but without the variance regressor
D1t are preferred. The evidence against the inclusion of D1t is strong in the
Swiss Franc case, and very strong in the Sterling case. The evidence in favor of
GED disturbances is decisive in both cases.

6.3 Estimates.

Tables 6, 7, and 8 present posterior replication summaries for the specifica-
tions having the largest posterior probabilities. These results are based on 10000
replications obtained by running the posterior simulator twice for 30000 passes,
of which the first 5000 were discarded. Convergence was checked by heteroskedas-
ticity and autocorrelation consistent Wald equality tests on the expected values
of the two chains, and by the method of Gelman and Rubin (1992). The final
posterior sample was then obtained by combining the two chains and selecting
every fifth replication. The autocorrelations in the final posterior sample decay
quickly, as indicated by ρ1 and ρ5 in Tables 6 to 8. The priors are the same as
in Section 6.2.

For the S&P500 data (Table 6), the credible set for α01 implies the presence
of autocorrelation, and that for α11 only contains negative values, confirming the
findings of LeBaron (1992): autocorrelation is a decreasing function of anticipated
volatility. The credible set for β1 confirms the intuition in Section 6.1 of a positive
sign. The credible set for β2 confirms the stylized fact that market closure causes
a subsequent increase in volatility (recall the definition of D2t in Section 6.1,
and that θt is an inverse volatility). The GED parameter r is clearly less than 2,
confirming the leptokurticity of the observation distribution. This is also the case
for the exchange rate series (Tables 7 and 8). The parameter ω is particularly
well identified in all cases.

The burn-in period of 5000 passes (which was also used in the other simulations
of Sections 5 and 6.2) appears to be very conservative. Indeed, Figure 4 presents
the sample paths of 1000 replications for the local scale model used on the S&P500
data, obtained without discarding intermediate and burn-in passes; it suggests
convergence after a few hundred sweeps of the Metropolis-Hastings algorithm.
The 1000 replications took about 5 minutes of processor time on a 3.2 Ghz
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workstation, using compiled code.
The top panel of Figure 5 is a time series of point estimates (posterior means)

of the anticipated volatilities st = st(ξ) for the S&P500 data, obtained by the
filter (4.3)–(4.9) from a posterior sample. The middle panel is a time series of
point estimates of the conditional expectations:

E(yt | st) =
α00 + α10F (st)

1 − α01 − α11F (st)
(6.5)

where F (st) is the logistic function (2.6). The bottom panel is a scatter plot of st

against E(yt | st). These graphs clearly indicate that a significant risk premium
is present.

Figure 6 presents, for all three data sets, line graphs of the observations,
together with median volatilities and 95% confidence bands, obtained by the
simulation smoother of Section 3 from a posterior sample of 1000 replications of
ξ. The volatility graphs closely reflect intuition; however, for the S&P500 data,
it is interesting to note that the peak volatility estimate occurs during the recent
financial crisis rather than during the 1987 crash.

7. Comparing the local scale and other models

In this section, we will compare the local scale models yielding the best infor-
mation criteria and marginal likelihoods in Tables 4 and 5 with the competitors
defined in Section 5 (Models 1 and 2 in that section).

The prior used in the Lognormal SV model was the same as in Omori et al.
(2007). For the GARCH model, the author used:

p(γi) = fN (γi; 0, 10)

p(α0) ∝ fN (α0; 0, 10)I(0,∞)(α0)

p(αi) ∝ fN (αi; 0.5, 10)I(0,∞)(αi) (i = 1, 2)

p(β) ∝ fN (β; 0.5, 10)I(0,1)(β)

ν = 2 + ν∗, ν∗ ∼ Exponential(0.1).

Table 9 presents logarithmic Bayes factors and differences of information cri-
teria against the extended local scale model (p = 1, r �= 2, β1 �= 0, β2 �= 0) in
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the asset return case, and against the basic local scale model (µt = 0, r �= 2,
β1 = β2 = 0) for the exchange rate series. The GARCH marginal likelihoods
were estimated by bridge sampling, and those for the Lognormal SV model were
estimated by the method of Chib (1995), as implemented in Chib and Greenberg
(1998). The evidence in favor of leverage in the Lognormal SV model (ρ �= 0) can
be obtained as a difference of the relevant logarithmic Bayes factors. It is not
surprising that this evidence is decisive for asset returns, whereas the absence
of leverage (ρ = 0) is favored for the exchange rates (though not very strongly).
For the GARCH models, the evidence decisively favors AR(1) (γ1 �= 0, γ2 �= 0)
for the S&P500 series, and AR(0) (γ1 = γ2 = 0) for the exchange rates.

The local scale models chosen in Section 6 are preferred to all Lognormal SV
and GARCH formulations according to the marginal likelihood criterion (6.2),
and the Schwarz criterion (6.1) agrees in all cases except one. It should be noted,
however, that the evidence against the preferred GARCH models is very weak in
all instances, the odds against GARCH and in favor of local scale never exceeding
three to one.

Comparing Tables 4 and 9 reveals that for the S&P500 data, the odds against
Lognormal SV are due to the inclusion of D1t and to µt �= 0 in the local scale
model, rather than to GED errors. Comparing Tables 5 and 9 reveals that for
the exchange rate series, the superiority of the local scale to the Lognormal SV
model is due to the GED observation density.

The MCMC estimates of the GARCH and Lognormal SV models are in Tables
10 and 11. Table 10 shows that the variance equations in the Lognormal SV
models are close to logarithmic random walks. Table 11 suggests that some
asymmetry is present in the GARCH variance equations for the exchange rate
series, even though this can obviously not be ascribed to leverage; as expected,
strong asymmetry is present in the S&P500 case.

Figure 7 presents the differences in the volatility point estimates (posterior
means, estimated by simulation smoothing in the SV cases) obtained with the
local scale and competing models. As expected in the light of the Monte Carlo
results of Section 5, these differences have a much higher amplitude when the
local scale model is compared to GARCH. Another noticeable fact is that they
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are more pronounced in periods of high volatility (compare with Figure 6).

8. Misspecification diagnostics

8.1. Generalized residuals and density forecasting.

Given ξ = (α,β, λ, ω, r), generalized residuals can be defined as:

vt(y, ξ) = Φ−1
(
P [Yt ≤ yt | y1:t−1, ξ]

)
(8.1)

where Φ(.) is the standard Normal cumulative distribution function (cdf). If the
predictive probabilities in (8.1) are indeed those implied by the process generat-
ing y, the generalized residuals are independent standard Normal; for a proof,
see, e. g., Diebold et al. (1998). These predictive probabilities are obtained by
integrating (2.14). It can be checked that:

FGST (yt;µt, s
2
t , at|t−1, r) = 0.5

[
1 − FB

(
τt(yt);

1
r
, at|t−1

)]
if yt < µt

= 0.5
[
1 + FB

(
τt(yt);

1
r
, at|t−1

)]
if yt ≥ µt

(8.2)

where:

τt(yt) =

ψ(r)
s2t

|yt − µt|r

ψ(r)
s2t

|yt − µt|r + at|t−1

(8.3)

and where FB(τ ; a, b) is the cdf of a Beta variate with parameters a and b.
With the steady-state filter initialization defined in Section 2, we have at|t−1 =
ω/(r − rω).

Inverting the cdf (8.2) yields the following useful algorithm for generating
simulated observations from the conditional predictive (2.14):

(1) Draw x ∼ Be(1/r, at|t−1).
(2) Compute:

z =
(
at|t−1

x

1 − x

)1/r

.

(3) Draw u ∼ U(0, 1).
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(4) If u ≥ 0.5 let z∗ = z; otherwise let z∗ = −z.
(5) Return:

yt = µt +
[
s2t
ψ(r)

]1/r

z∗.

It is of course easy to compute generalized residuals analogous to (8.1) for the
GARCH model of Section 5, and to generate simulated observations from the one
step ahead GARCH predictive. For the Lognormal SV model, the counterpart
of (8.2) must be estimated by particle filtering, and it is impractical to do so for
all the parameter replications in a posterior sample. For this reason, simulating
from the Lognormal SV marginal predictive is not straightforward.

8.2 In-sample diagnostics.

This subsection will present posterior predictive p-values of diagnostics com-
puted from the residuals vt defined in Section 8.1. These diagnostics are:

(1) The F-statistic for testing the nullity of the autoregression coefficients in
an AR(6) model of the vt. This is indicated in Table 12 by AC.

(2) The F-statistic for testing the nullity of the autoregression coefficients in
an AR(6) model of the v2

t . This is indicated by ARCH.
(3) The likelihood ratio statistic for testing E(vt) = 0 and E(v2

t ) = 1, assum-
ing Normality. This is indicated by LR.

(4) The Bera-Jarque statistic (indicated by BJ).
(5) The Kolmogorov-Smirnov statistic corresponding to the null hypothesis

that vt ∼ N(0, 1), indicated by KS.
(6) The sample skewness of the vt, indicated by M3.
(7) The sample excess kurtosis of the vt, indicated by M4.

Analyzing predictive p-values based on these diagnostics (apart from KS) can
be viewed as a Bayesian counterpart of conditional moment testing, a procedure
that is commonly used for evaluating models in the GARCH class; see, e. g.,
Nelson (1991) and Bollerslev et al. (1994).

The notion of predictive p-value is discussed in Gelman and Meng (1996),
Carlin and Louis (2000, p. 48), and Koop (2003, pp. 100–104). We write as
s(x, ξ) any of the seven statistics described above, computed from a residual
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series {vt(x, ξ)}T
t=1. The predictive distribution of s(x, ξ) can be simulated by

recursively generating x = (x1, . . . , xT ) with the algorithm of Section 8.1, for each
replication of ξ taken from a posterior sample. A one-sided posterior predictive
p-value is then defined as:

p1 = P
[
s(x, ξ) > E[s(y, ξ) | y]

]
(8.4)

and is estimated by the percentage of replications of s(x, ξ) that exceed the
posterior average of the values computed from the actual data. A two-sided p-
value is defined as p2 = min(p1, 1− p1). The one-sided p-value will be used in all
cases except for M3 and M4, where the two-sided value is used.

Carlin and Louis (2000, p. 48) stress that predictive p-values should not be
used for model choice, but rather as a validation tool after model selection has
been done. It is partly for this reason that the analysis of this section is limited to
those models that yielded the best selection criteria in Sections 6 and 7, namely,
the extended local scale and AR(1)-GARCH models for the S&P500 data and the
basic local scale and AR(0)-GARCH for the exchange rate series. The fact that
these models yielded posterior odds close to unity lends additional motivation to
the analysis of this section.

The p-values can be found in the first part of Table 12. With several thousand
observations, a significance level of 1% is appropriate. It can be seen that neither
model fully accounts for residual skewness, as indicated by the results for BJ and
M3. On the other hand, KS, which is less sensitive to outliers, is never significant.
This provides some evidence that the residual quantiles (as opposed to moments)
are in line with the values expected under the maintained hypothesis. Some
residual autocorrelation is present in both models for the USD-Sterling series.
Apart from the slight significance of M4 for the S&P500 local scale estimates,
the in-sample diagnostics of the two models are very similar.

8.3 Out-of-sample diagnostics.

In this subsection, out-of-sample forecast evaluation will be done on the same
models as in Section 8.2, using five rolling and non-overlapping two-year fore-
casting windows, each preceded by an eight-year estimation window. This means
that the posteriors are updated every two years. Combining the five forecasting
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windows yields 2515 one step ahead density forecasts for the S&P500 data, and
2517 such forecasts for the exchange rate data, covering the period January 4,
1999 to December 31, 2008 in each case.

Our first forecast evaluation tool will be the probability integral transform,
defined analogously to (8.1):

PIT (yf
t ) = Φ−1

(
P [Yt ≤ yf

t | y1:t−1]
)

(8.5)

where yf
t is the observation being predicted; see Rosenblatt (1952), Diebold et

al. (1998) and Berkowitz (2001). The probability in (8.5) can be estimated by
an average of the predictive probabilities (8.2), or of their GARCH counterparts,
over the parameter replications in the most recent posterior sample. The first
five diagnostics in Section 8.2 were used for testing the hypothesis that the series
(8.5) is Gaussian white noise; the p-values in the second part of Table 12 are
based on their asymptotic distributions.

The second tool is based on the methodology of Christoffersen (1998). In
evaluating forecasting performance on the S&P500 series, we use, for each t in
the combined forecasting window:

It = 1 if yf
t < qt

= 0 otherwise (8.6)

where qt is the value at risk, defined as the 5th percentile of the estimated one
step ahead predictive. For the exchange rate series, a two-sided counterpart of
(8.6) is used:

Jt = 1 if yf
t < q1t or yf

t > q2t

= 0 otherwise (8.7)

where q1t and q2t are the lower and upper bounds of a 95% one step ahead
prediction interval. The tests proposed by Christoffersen are:

(1) UC : unconditional coverage: test of p = 0.05, where p is the probabil-
ity that It or Jt equals one, assuming that It or Jt have independent
Bernoulli distributions.

27



(2) IND : test of independence, versus the alternative that It or Jt follows a
Markov chain.

(3) CC : joint test of unconditional coverage and independence.

The out-of-sample performance of the local scale model is better than its in-
sample counterpart. In the bottom part of Table 12, it is seen that the only
significant diagnostic for the local scale model is the BJ statistic for the S&P500
data. The diagnostics of both models are again generally quite similar; in par-
ticular, both models estimate adequate out-of-sample coverage, which is perhaps
the most important objective for financial analysts.

To conclude, there is little in Table 12 that would lead one to prefer either the
GARCH or the local scale model, so that this section confirms the nearly equal
rankings implied by Table 9.

9. Discussion and conclusions

This paper has attempted to develop a full Bayesian treatment of an extended
version of the local scale model in Shephard (1994). An extensive Monte Carlo
experiment and applications to three publicly available data sets have shown
that posterior simulation is straightforward, and that exact, efficient simulation
smoothing is possible. Simulation smoothing, which is not available in GARCH
models, turned out to be essential for an accurate interval estimation of the
volatilities.

This paper has also shown that introducing ARCH-M effects and variance
regressors significantly improves the marginal likelihood when the model is esti-
mated on S&P500 data. The ARCH-M function has two features that would be
difficult to introduce in Lognormal SV models. First, it is formulated in terms of
the scale parameter st of the one step ahead predictive of the dependent variable.
This is arguably more natural than a formulation using the expectation of the
volatility conditional on its past history, since volatility is unobservable. Second,
the autoregression coefficients depend on st, and this dependence is found to be
very significant for the S&P500 data.

The predictive performance of the extended local scale model turned out to be
comparable to that of an asymmetric t-GARCH model, both in sample and out
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of sample. Information criteria were nearly equal or better. The latter conclusion
confirms the findings obtained by Shephard (1994), using maximum likelihood
and much smaller samples of exchange rate data.

The extended local scale model yielded marginal likelihoods and information
criteria that were significantly better than those obtained with the Lognormal SV
model. It has the additional advantage of enabling the straightforward simulation
of one step ahead Bayesian predictives. This is impractical in the Lognormal SV
model, which requires particle filtering to achieve that objective.

A potential disadvantage of the local scale model, when compared to Lognor-
mal SV, is the difficulty of introducing correlation between the observation and
evolution disturbances (Yu, 2005; Omori et al., 2007). It is, however, straightfor-
ward to introduce dependence between current volatilities and past observations.
Another limitation is the inability to specify an asymmetric news impact func-
tion of the EGARCH type: all the attempts to generalize the model in that
direction led to serious numerical problems for large values of T , including expo-
nent overflows. This limitation does not appear to have been mentioned in the
previous literature. However, the fact that the model remains competitive with
asymmetric t-GARCH formulations suggests that the empirical implications of
this shortcoming are not too serious.

Appendix A. Validity of the simulation smoother

In this Appendix, we will show that the two densities on the right-hand side
of (3.2), though not conjugate, yield a translated Gamma posterior.

Proposition 1. Bayes’ theorem implies:

f(θt | y1:t, θt+1) = fG

(
θt − φ−1

t+1θt+1;
1
r
, bt

)
for t = T − 1, . . . , 0

where φt+1 is given by (4.5) and bt is given by (4.4).

Proof. First note that if Y = cX with X ∼ Be(α, β) and c > 0, then:

fY (y) = fB

(y
c
;α, β

) 1
c
I(0,c)(y)

=
Γ(α+ β)
Γ(α)Γ(β)

yα−1(c− y)β−1c1−α−βI(0,c)(y).
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Applying the preceding result to θt+1 = φt+1θtηt+1 and recalling that at =
a = 1/[r(1 − ω)] yields:

f(θt+1 | θt,y1:t) ∝ θωa−1
t+1 (φt+1θt − θt+1)1/r−1(φt+1θt)1−ωa−1/rI(0,φt+1θt)(θt+1)

∝ θωa−1
t+1 φ

1/r−1
t+1 (θt − φ−1

t+1θt+1)1/r−1 ×
(φt+1θt)1−ωa−1/rI(0,φt+1θt)(θt+1). (A.1)

Viewing (A.1) as the likelihood of θt and omitting all those terms that do not
depend on θt yields:

L(θt; θt+1,y1:t) ∝ (θt − φ−1
t+1θt+1)1/r−1θ

1−ωa−1/r
t I(φ−1

t+1θt+1,∞)(θt). (A.2)

On the other hand, (2.9) implies:

f(θt | y1:t) ∝ θa−1
t exp(−btθt)I(0,∞)(θt). (A.3)

Multiplying (A.2) and (A.3) yields:

f(θt | y1:t, θt+1) ∝ (θt − φ−1
t+1θt+1)1/r−1 exp(−φ−1

t+1θt+1bt) ×
exp[−bt(θt − φ−1

t+1θt+1)]I(φ−1
t+1θt+1,∞)(θt)

∝ (θt − φ−1
t+1θt+1)1/r−1 exp[−bt(θt − φ−1

t+1θt+1)]I(φ−1
t+1θt+1,∞)(θt)

where we have used a− ωa = 1/r. This is the kernel of a Ga(1/r, bt) density on
θt − φ−1

t+1θt+1, proving Proposition 1. �

Appendix B. Proposal densities

B.1 Sampling ω and r.
Since the method used will be the same, we will use the generic expression x

to denote a draw of either parameter. The prior of both parameters is Uniform
U(xmin, xmax).

The candidate we propose is a linear function xmin +(xmax−xmin)X of a Beta
variable X with parameters ax and bx:

q(x | ϕ) ∝ (x− xmin)ax−1(xmax − x)bx−1I(xmin,xmax)(x). (B.1)
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In (B.1), ϕ contains all the parameters in ξ except x, and ax, bx are chosen in such
a way that the location of the candidate density corresponds to an approximate
expected value x̄ of the full conditional posterior of x. This value can be computed
as:

x̄ =
L∑

i=1

pixi

where:

pi =
L(xi;ϕ)∑L

j=1 L(xj ;ϕ)

and where the xi form a grid of equally spaced values x1, . . . , xL covering the
prior support. The values for ax and bx solve the equation:

ax

ax + bx
=

x̄− xmin

xmax − xmin
(B.2)

subject to ax = δx (if the right-hand side of (B.2) is less than 0.5) or bx = δx

(if the right-hand side of (B.2) is larger than 0.5), where δx ≥ 1 is a tuning
parameter. This ensures that both ax and bx are larger than δx. Decreasing δx
will increase the variance of the candidate while leaving its location unchanged.
In all the simulations of this paper, the same values of δx = 20, L = 10 were
chosen after some experimentation and led to well-mixing MCMC chains.

B.2 Sampling α.

We obtain the proposal density by combining the Multinormal prior in (4.1)
with a likelihood of α suggested by (2.1) and (2.5). However, considerations
suggested by the choice of an appropriate importance sampling density indicate
that heavier tails than the Normal might be required. Let ϕα denote all the
parameters in ξ except α. We first run the filter (4.3)–(4.9) to obtain b0:T , φ1:T ,
and s1:T , then run the smoother (3.6)–(3.7) to obtain the conditional posterior
expectations θ̄t. Note that all these quantities depend on α and ϕα. Define
y = y1:T ,

Θ(α,ϕα) = diag[(λθ̄1)2/r , . . . , (λθ̄T )2/r ]

and Xα(α,ϕα) as the T by 2p+ 2 matrix with row t equal to:

( 1 F (st) yt−1 F (st)yt−1 . . . yt−p F (st)yt−p ) .

31



The proposal density is multivariate Student with να degrees of freedom, location
vector α∗, and scale matrix s2αΣ∗

α:

q(α | αold,ϕα) ∝ (det s2αΣ∗
α)−1/2 ×[

1 +
(α − α∗)′(s2αΣ∗

α)−1(α − α∗)
να

]−(να+2p+2)/2

(B.3)

where:

(Σ∗
α)−1 = Σ−1

α +X ′
α(αold,ϕα)Θ(αold,ϕα)Xα(αold,ϕα)

α∗ = Σ∗
α

[
Σ−1

α mα +X ′
α(αold,ϕα)Θ(αold,ϕα)y

]
.

and where να and s2α are tuning parameters. In all the simulations of this paper,
identical values of να = 3, s2α = 1 were chosen after some experimentation and
led to well-mixing MCMC chains.

B.3 Sampling β.

We obtain the proposal density by combining the Multinormal prior in (4.1)
with a likelihood suggested by (2.2). It is easy to show that:

σ2
η = V (ln ηt+1) = Ψ′

(
ω

r(1 − ω)

)
−Ψ′

(
1

r(1 − ω)

)
(B.4)

where Ψ′(z) = d2 ln Γ(z)/dz2 is the trigamma function, which can be computed
using the algorithm in Bowman (1984). Let ϕβ denote all the parameters in ξ

except β. We run the filter and smoother to obtain the θ̄t, define yβ(β,ϕβ) as
the (T − 1) × 1 vector with element t equal to ln θ̄t+1 − ln θ̄t for 1 ≤ t ≤ T − 1,
and Xβ as the (T − 1) × k matrix with row t equal to:

(D1,t+1 . . . Dk,t+1 ) .

The proposal density is multivariate Student with νβ degrees of freedom, lo-
cation vector β∗, and scale matrix s2βΣ∗

β :
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q(β | βold,ϕβ) ∝ (det s2βΣ∗
β)−1/2

[
1 +

(β − β∗)′(s2βΣ∗
β)−1(β − β∗)

νβ

]−(νβ+k)/2

(B.5)
where:

(Σ∗
β)−1 = Σ−1

β +
X ′

βXβ

σ2
η

β∗ = Σ∗
β

[
Σ−1

β mβ +
X ′

βyβ(βold,ϕβ)
σ2

η

]
.

and where νβ and s2β are again tuning parameters. In all the simulations of this
paper, identical values of νβ = 3, s2β = 400 were chosen after some experimenta-
tion and led to well-mixing MCMC chains. Setting s2β = 1 led to low rejection
rates but high autocorrelations.

B.4 Sampling λ.

We obtain the candidate density by combining the Gamma prior in (4.1) with
a likelihood suggested by (2.1). Let ϕλ denote all the parameters in ξ except λ.
We run the filter and smoother to obtain the µt and θ̄t, and define:

Λt(λ,ϕλ) =
∣∣yt − µt(λ,ϕλ)

∣∣r θ̄t(λ,ϕλ).

The candidate density is:

q(λ | λold,ϕλ) = fG(λ; δλa∗λ, δλb
∗
λ) (B.6)

with:

a∗λ = aλ +
T

r

b∗λ = bλ + ψ(r)
T∑

t=1

Λt(λold,ϕλ)

and where the tuning parameter δλ is chosen by experimentation. Lowering δλ
increases the variance of the candidate but leaves its expectation unchanged. In
all the simulations of this paper, an identical value of δλ = 1/625 was chosen
after some experimentation and led to well-mixing MCMC chains. As before,
high values of δλ led to low rejection rates but high autocorrelations.
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Table 1. DGP parameter values (Monte Carlo experiment)

Model Param. DGP1 DGP2 DGP3 DGP4 DGP5 DGP6

φ 0.986 0.984

Lognormal SV σ2 0.018 0.016
ρ −0.558 0.000
µ −0.171 −1.150

γ0 0.029 0.000
γ1 0.074 0.000
α0 0.009 0.004

t-GARCH α1 0.020 0.045
α2 0.097 0.056
β 0.933 0.942
ν 8.610 6.866

α00 0.019 0.000
α10 0.034 0.000
α01 0.202 0.000

Local Scale α11 −0.645 0.000
β1 0.232 0.000
λ 0.151 0.095
r 1.680 1.520
ω 0.951 0.959
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Table 2. Statistics of simulated data (Monte Carlo experiment)

Statistic DGP1 DGP2 DGP3 DGP4 DGP5 DGP6

Mean Min. −0.028 −0.020 −0.039 −0.021 0.023 −0.031
Max. 0.029 0.025 0.043 0.024 0.090 0.068

Std. dev. Min. 0.982 0.545 0.836 0.590 0.057 0.132
Max. 1.294 0.699 1.477 0.851 1.554 3.476

Skewness Min. −0.374 −0.224 −0.209 −0.221 −0.005 −0.615
Max. 0.400 0.245 0.285 0.412 0.648 0.174

Excess kurtosis Min. 1.182 0.988 1.132 1.281 2.285 2.220
Max. 6.276 2.604 9.833 9.233 67.914 16.991

Autocorrelation Min. −0.024 −0.037 0.036 −0.049 −0.136 −0.078
Max. 0.020 0.035 0.122 0.043 0.215 0.031

Autocorrelation Min. 0.091 0.108 0.055 0.031 0.109 0.097
of squares Max. 0.314 0.199 0.205 0.194 0.323 0.384
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Table 3. Results of Monte Carlo experiment

Data Generating Process
Estimated model Statistic DGP1 DGP2 DGP3 DGP4 DGP5 DGP6

Model 1: MAE 0.114 0.076 0.105 0.080 0.055 0.077
Lognormal SV RMSE 0.155 0.100 0.148 0.108 0.133 0.152
with leverage Coverage 0.049 0.055 0.029 0.034 0.188 0.049

Coverage t-stat. −0.163 1.666 −7.708 −5.286 14.345 −0.215

Model 2: MAE 0.162 0.103 0.032 0.030 0.075 0.106
AR(1) RMSE 0.218 0.135 0.051 0.049 0.180 0.208
t-GARCH Coverage 0.743 0.757 0.068 0.130 0.717 0.685

Coverage t-stat. 132.739 143.149 3.405 10.841 102.284 84.930

Model 3: MAE 0.117 0.077 0.105 0.072 0.049 0.074
Extended RMSE 0.158 0.101 0.152 0.097 0.125 0.143
Local Scale Coverage 0.069 0.094 0.044 0.044 0.054 0.061

Coverage t-stat. 4.709 9.831 −1.784 −1.722 0.987 2.470

MAE : Mean absolute error of volatility point estimates.
RMSE : Root mean squared error of volatility point estimates.
Coverage : Proportion of true volatilities outside of 95% confidence intervals.
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Table 4. Bayes factors and differences of information criteria (S&P500 data)

Observation Variance No ARCH-M ARCH-M effects
density regressors µt = 0 p = 0 p = 1 p = 2

Normal D1t, D2t log10(BF ) −22.843 −23.396 −10.692 −13.185
NSE 0.003 0.003 0.003 0.003
∆(BIC) −100.862 −103.634 −45.523 −57.462

GED D1t, D2t log10(BF ) −9.574 −9.395 0.000 −2.061
NSE 0.003 0.003 0.003
∆(BIC) −43.676 −42.425 0.000 −10.135

Normal D2t log10(BF ) −53.267 −48.541 −35.506 −37.620
NSE 0.003 0.003 0.003 0.003
∆(BIC) −241.732 −220.266 −160.569 −170.789

GED D2t log10(BF ) −36.729 −32.139 −22.531 −24.179
NSE 0.003 0.003 0.003 0.003
∆(BIC) −168.884 −148.308 −104.857 −113.235

Normal None log10(BF ) −58.728 −54.381 −39.350 −41.480
NSE 0.002 0.003 0.003 0.003
∆(BIC) −268.156 −248.424 −179.567 −189.927

GED None log10(BF ) −40.855 −36.584 −25.560 −27.220
NSE 0.003 0.003 0.003 0.003
∆(BIC) −189.374 −170.324 −120.346 −128.804
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Table 5. Bayes factors and differences of information criteria (exchange rate data, µt = 0)

Observation Variance
Data density regressors log10(BF ) NSE ∆(BIC)

US dollar/Swiss Franc Normal None −19.849 0.002 −88.999
US dollar/Swiss Franc Normal D1t −21.254 0.002 −95.210

US dollar/Swiss Franc GED None 0.000 0.000
US dollar/Swiss Franc GED D1t −1.111 0.002 −4.128

US dollar/Sterling Normal None −21.090 0.001 −94.878
US dollar/Sterling Normal D1t −22.917 0.002 −103.506

US dollar/Sterling GED None 0.000 0.000
US dollar/Sterling GED D1t −1.945 0.002 −8.540
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Table 6. Posterior replication summaries (S&P500 data)

θ θ0.025 θ0.5 θ0.975 RNE ρ1 ρ5 Reject. rate

α00 −0.038 0.019 0.075 0.80 0.11 −0.00 0.58
α10 −0.288 0.035 0.359 0.80 0.11 −0.01 0.58
α01 0.138 0.202 0.266 0.70 0.18 0.01 0.58
α11 −0.924 −0.646 −0.365 0.75 0.14 −0.00 0.58
β1 0.186 0.232 0.280 0.52 0.32 0.01 0.73
β2 −0.106 −0.076 −0.047 0.14 0.76 0.23 0.73
r 1.602 1.676 1.755 0.82 0.10 0.01 0.33
λ 0.061 0.135 0.350 0.36 0.47 0.02 0.24
ω 0.945 0.951 0.957 0.71 0.17 0.03 0.63

θα: quantile at probability α; RNE: relative numerical efficiency;

ρi: autocorrelation at lag i.

Table 7. Posterior replication summaries (US Dollar/Swiss Franc exchange rate)

θ θ0.025 θ0.5 θ0.975 RNE ρ1 ρ5 Reject. rate

r 1.466 1.542 1.623 0.90 0.05 −0.01 0.53
λ 0.032 0.060 0.126 0.50 0.34 0.01 0.34
ω 0.959 0.966 0.973 0.78 0.12 0.02 0.54

θα: quantile at probability α; RNE: relative numerical efficiency;
ρi: autocorrelation at lag i.

Table 8. Posterior replication summaries (US Dollar/Sterling exchange rate)

θ θ0.025 θ0.5 θ0.975 RNE ρ1 ρ5 Reject. rate

r 1.443 1.519 1.601 0.91 0.05 −0.01 0.52
λ 0.045 0.087 0.188 0.51 0.33 0.03 0.32
ω 0.951 0.959 0.966 0.78 0.13 0.01 0.60

θα: quantile at probability α; RNE: relative numerical efficiency;

ρi: autocorrelation at lag i.
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Table 9. Bayes factors and differences of information
criteria (competing models against best local scale models)

Data Model log10(BF ) NSE ∆(BIC)

S&P500 AR(0) t-GARCH −10.941 0.009 −54.564
S&P500 AR(1) t-GARCH −0.057 0.008 0.697
S&P500 Lognormal SV (leverage) −16.808 0.031 −104.252
S&P500 Lognormal SV (no leverage) −53.680 0.019 −270.446

USD-CHF AR(0) t-GARCH −0.469 0.009 −6.698
USD-CHF AR(1) t-GARCH −5.454 0.014 −23.863
USD-CHF Lognormal SV (leverage) −6.100 0.021 −56.577
USD-CHF Lognormal SV (no leverage) −5.131 0.017 −48.037

USD-Sterling AR(0) t-GARCH −0.155 0.013 −3.687
USD-Sterling AR(1) t-GARCH −3.991 0.009 −15.201
USD-Sterling Lognormal SV (leverage) −11.285 0.025 −79.103
USD-Sterling Lognormal SV (no leverage) −10.777 0.020 −72.950
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Table 10. MCMC estimates of the best Lognormal SV models

S&P500 USD-CHF USD-Sterling

θ θ0.025 θ0.5 θ0.975 θ0.025 θ0.5 θ0.975 θ0.025 θ0.5 θ0.975

φ 0.981 0.986 0.989 0.968 0.979 0.987 0.977 0.984 0.990
σ2 0.015 0.018 0.023 0.008 0.012 0.018 0.010 0.015 0.022
ρ −0.618 −0.558 −0.481 NA NA NA NA NA NA
µ −0.280 −0.193 0.008 −0.897 −0.770 −0.637 −1.335 −1.147 −0.949

θα: quantile at probability α; NA: not applicable.

Table 11. MCMC estimates of the best GARCH models

S&P500 USD-CHF USD-Sterling

θ θ0.025 θ0.5 θ0.975 θ0.025 θ0.5 θ0.975 θ0.025 θ0.5 θ0.975

γ0 0.014 0.029 0.044 NA NA NA NA NA NA
γ1 0.054 0.074 0.094 NA NA NA NA NA NA
α0 0.006 0.008 0.012 0.004 0.007 0.011 0.002 0.003 0.006
α1 0.012 0.020 0.029 0.027 0.038 0.052 0.033 0.045 0.059
α2 0.083 0.097 0.113 0.034 0.044 0.057 0.042 0.056 0.072
β 0.922 0.933 0.942 0.931 0.946 0.959 0.926 0.942 0.956
ν 7.415 8.570 10.072 6.559 7.822 9.537 5.855 6.820 8.133

θα: quantile at probability α; NA: not applicable.
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Table 12. P-values of misspecification diagnostics

S&P500 USD-CHF USD-Sterling
Local scale GARCH Local scale GARCH Local scale GARCH

AC 0.036 0.114 0.357 0.446 0.004 0.004
ARCH 0.390 0.095 0.609 0.402 0.413 0.607
LR 0.039 0.306 0.814 0.510 0.873 0.543

In sample BJ 0.003 0.002 0.000 0.002 0.017 0.034
KS 0.240 0.183 0.127 0.135 0.230 0.025
M3 0.000 0.001 0.000 0.000 0.006 0.008
M4 0.004 0.195 0.259 0.361 0.114 0.357

AC 0.114 0.003 0.074 0.070 0.183 0.181
ARCH 0.051 0.033 0.268 0.052 0.404 0.202
LR 0.030 0.025 0.491 0.636 0.777 0.146

Out of BJ 0.000 0.003 0.023 0.167 0.052 0.016
sample KS 0.127 0.074 0.556 0.234 0.469 0.458

UC 0.144 0.031 0.702 0.659 0.942 0.059
IND 0.697 0.268 0.235 0.715 0.598 0.324
CC 0.318 0.052 0.459 0.849 0.868 0.103

AC: autocorrelation; ARCH: autocorrelation of squares; LR: LR test forN(0, 1); BJ: Bera-Jarque stat.;
KS : Kolmogorov-Smirnov stat.; M3: skewness; M4: kurtosis; UC: unconditional coverage;
IND: coverage independence; CC: conditional coverage.
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Figure 1. Loglikelihood comparisons
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Figure 2. True volatilities (DGP1) and volatility 
confidence bands
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Figure 3. Variance regressors (S&P500 data)
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Figure 4. MCMC sample paths (S&P500 data)
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Figure 5. Anticipated volatilities and ARCH-M effects 
(S&P500 data)

0

1

2

3

4

5

1975 1980 1985 1990 1995 2000 2005

Estimates of anticipated volatilities s(t)

.025

.026

.027

.028

.029

.030

.031

.032

1975 1980 1985 1990 1995 2000 2005

Estimates of E[y(t) | s(t)]

.025

.026

.027

.028

.029

.030

.031

.032

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Estimates of s(t)

Es
tim

at
es

 o
f E

[y
(t)

|s
(t)

]

51



Figure 6. Observations and volatility confidence bands
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Figure 7. Comparison of volatility point estimates
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