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In this paper, we study the statistical properties of bookmarking behaviors inDelicious.com.
We find that the inter-event time (τ ) distributions of bookmarking decay in a power-like
manner as τ increases at both individual and population levels. Remarkably, we observe a
significant change in the exponent when the inter-event time increases from the intra-day
range to the inter-day range. In addition, the dependence of the exponent on individual
activity is found to be different in the two ranges. Instead of monotonically increasing with
activity, the inter-day exponent peaks around 3. These results suggest that themechanisms
driving human actions are different in the intra-day and inter-day ranges.We further show
that the global distributions of less active users are closer to an exponential distribution
than those of more active users. Moreover, a universal behavior in the inter-day range is
observed by considering the rescaled variable τ/〈τ 〉. Finally, the possible causes of these
phenomena are discussed.

1. Introduction

With increasing availability of data from Internet applications, recent years have witnessed expanding interest in
characterizing and modeling human behavior. Many on-line human activities such as email communications [1–4], web
surfing [5–7], movie rating [8], playing on-line games [9,10], and blog posting [11] and off-line activities such as letter
communications [4,12,13] and text messages [14] are under active investigation to provide understanding of our society.
One of the main results of these empirical studies is the heavy-tailed nature of the inter-event time distribution: the time
interval between two consecutive human actions, which we denote as τ , follows a power-law distribution, i.e., p(τ ) ∼ τ−β .
Moreover, some studies have claimed that there exist a few universality classes in human dynamics characterized
by universal exponents [2], which has led to scientific debates [3,4,7,8]. Other studies show that the exponents of
inter-event time distributions depend on activity (the frequency with which an individual takes actions), which implies that
the exponent of an individual is not a good representation of human behavior [7,8], but a universal behavior can nevertheless
be found by considering the rescaled variable τ/〈τ 〉 [4,7]. It is noted that this strong dependence can only be observed in
the inter-day range; it becomes much weaker in the intra-day range [15]. These results also suggest that we may classify
human activities by different time ranges.
In this paper, we study in detail inter-event time statistics in, which is a typical web 2.0 application. Through Delicious,

users save andmanage bookmarks, while sharing interesting bookmarks with friends. It should be noted that there is a close
relation between web surfing and bookmarking: in most cases, we surf on the web, bookmark interesting web pages, and
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Fig. 1. The distribution p(k) of the number of bookmarks collected by individual users in Delicious. The distribution is shown with a log-bin of k, and the
decay exponent is 2.41. Inset: the distribution p(k) as shown with a linear-bin of k.

continue surfing. Heavy tails have already been observed in the distribution of the time interval between consecutive visits
to URLs [6,7]. On the other hand, the data set of Delicious is widely adopted as a training set for recommender systems
[16–18]. Understanding the temporal pattern in Delicious may give us insight to devise time-aware recommender
algorithms, which utilize the time stamps of data to increase the recommendation accuracy [19,20].
The paper is organized as follows. In Section 2, we provide detailed descriptions of the data set studied. In Section 3,

we give examples of individual inter-event time distributions which show heavy-tailed nature and heterogenous scaling
in the intra-day and inter-day ranges. In Section 4, we give the global inter-event time distribution in these two ranges
and distinguish them by estimating the respective decay exponents. In Section 5, through comprehensive analysis of the
dependence of the exponent on activity, we show that different trends are observed in the intra-day and inter-day ranges.
Then, a data collapse among the inter-day distributions is observed by considering the rescaled variable τ/〈τ 〉. Finally, we
summarize the results and discuss the possible causes in Section 6.

2. Data description

Our data set consists of 54,204,641 bookmarking activities by 220867 users over a period of 31 months (between
01/04/2004 and 01/11/2007). Here we use only the identifier (ID) of the users and the time when the bookmarks were
saved. The resolution of time stamps is in seconds. We denote k to be the number of bookmarks saved by a user, and p(k) to
be the distribution of k among users, which is shown in Fig. 1. As we can see, p(k) is broad, and the tail of the distribution
decays as a power law as k increases, giving p(k) ∼ k−2.41. This result resembles the distribution of the number of messages
in Ebay [7], and is significantly different from the distributions of the number of log-in actions in Wikipedia (which follows
a power law over the whole range [7]) and the number of posts in blog (which is the so-called ‘‘double power law’’ [11,21]).
Interestingly, in spite of the difference in these distributions, the statistics on their inter-event times are very similar, as we
will see below.

3. Inter-event time distribution for individuals

In our context, the inter-event time τ is defined as the time interval between consecutive bookmarks by the same user.
Fig. 2 shows the cumulative distribution of inter-event time obtained from six users. As we can see, all curves show a
crossover around τ ≈ 1 day, which corresponds to a change in exponent between the intra-day and inter-day ranges.
Althoughpower-lawdecays are observed in both ranges, the change in exponent (which is also noticed in other systems [15])
suggests that the mechanism driving intra-day and inter-day activities are different. Moreover, changes in exponent are
observed evenwithin the intra-day range for some users. As shown in Fig. 2(e) and (f), a slight increase in the decay exponent
is observed at τ ≈ 1 h.

4. The global distribution of inter-event time

The global distribution of inter-event times is plotted in Fig. 3. In order to have a clear picture in the intra-day range, we
express τ in Fig. 3(a) with a resolution of minutes. In Fig. 3(b), we express it with a resolution of days, where the circadian
oscillations are masked, which makes the decay in the inter-day range clearer. Both distributions in the intra-day and inter-
day ranges present a power-like decay, with exponents βintra � 1.07 for the intra-day range and βinter � 2.41 for the
inter-day range. This significant difference between the exponents of the two ranges is consistent with the results obtained
from the distribution of individuals in Section 3. The exponent in the intra-day distribution in this case is similar to the
one obtained from consecutive visits to URLs [6]. This is reasonable, since bookmarking often follows web surfing, as we
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Fig. 2. The cumulative distribution of inter-event time of six random individuals. Their corresponding numbers of bookmarks are 3104, 1689, 1047, 1946,
2983, and 11,892. The shaded areas correspond to the span of τ in the range of 60 min (1 h)< τ < 1440 min (1 day). The exponents of these cumulative
distributions in the intra-day and inter-day ranges (βintra, βinter) are (a) (0.31, 2.15), (b) (0.15, 1.53), (c) (0.15, 1.0), (d) (0.23, 2.02), (e) (0.23, 1.29), and (f)
(0.28, 2.09).

Fig. 3. The global distribution of inter-event time with precision in (a) one minute and (b) one day.

mentioned above. The exponent of the inter-day distribution is very large compared to other systems [7,8,15], whichmakes
the following analysis different from the others. It should be noted that we fit the inter-day distributions with the so-called
‘‘shifted power law’’ (SPL) [22,23]:

y ∼ (x + h)−β . (1)

The SPL can be shown by a linear linewith a slopeβ on the ln p(x)−ln(x+h) plane. The exponentβ of inter-day distributions
can thus be fitted by themethod of least square error in the plot of ln p(x) against ln(x+h) [23], given a value of h. The value
of h is determined by a variational approach, which leads to the best fitting results. When the parameter h increases from
0 to∞, the distribution varies from a power-law distribution to an exponential distribution [23]. Actually, when h is larger
than 100, the SPL shows a rather good linear line on a linear–logarithmic plane, indicating approximately an exponential
distribution. In our case, the distribution in Fig. 3(b) is fitted by Eq. (1) with h ≈ 3.32. We will further discuss in the next
section the fitting values of h for distributions with different individual activity.
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Fig. 4. The distribution of activity. The solid line corresponds to the fitting of the log-normal distribution lnN (μ, σ 2)with μ = ln(0.42) and σ = 0.93.

Fig. 5. (Color online) The exponent dependence on activity. The inter-event timedistributions of groups 1, 5, and 9 are shown in this figure. As a comparison,
the slope of the straight line in (a) is 1.07, which we obtained from the global distribution. In (b), the exponents we obtained are 2.15 for group 1, 2.91 for
group 5, and 2.90 for group 9.

5. Activity and exponents

Based on individual heterogeneity, we investigate both the intra-day and inter-day distributions. First, we define the
average activity Ai of user i as

Ai = ni

Ti
, (2)

where ni is the total number of bookmarks saved by user i and Ti is the time interval between the first and the last bookmarks
of user i. We consider only users with at least 20 bookmarks and Ti larger than 10. There are 173108 users who satisfy these
conditions. Fig. 4 shows the distribution of activity Ai, which is also heavy tailed, and approximately follows a log-normal
distribution, as shown by the fitting line. The value of Ai of most users is between 0.01 and 1, with most probable value
around 0.2 per day.
To examine inter-event time distributions in relation with user activity, we sort users in an ascending order of Ai and

divide the entire population into 10 groups, each of which hasM users (M ≈ N/10, where N is the total number of users).
Accordingly, the mean activity of each group obeys the inequality 〈A〉1 < 〈A〉2 < · · · < 〈A〉10. We then investigate the
dependence of the exponent on Activity in both the intra-day and inter-day ranges. In Fig. 5, we plot the inter-event time
distribution of groups 1, 5, and 9 (which respectively correspond to 〈A〉 = 0.09, 0.37, and 1.12 per day). In the intra-day
range, we find that the exponents are onlyweakly dependent on 〈A〉 (as shown by Fig. 5(a), a slight decrease is observedwith
〈A〉). In contrast, in the inter-day range, the exponents increase from 2.15 to 2.91 with 〈A〉 increasing from 0.37 to 1.12. This
result shows that behavioral heterogeneity in intra-day and inter-day ranges is also evident from the exponent dependence
on 〈A〉.

4

ht
tp
://
do
c.
re
ro
.c
h



Fig. 6. β of each group is plotted as a function of average Activity. The inset shows h as a function of average Activity.

Fig. 7. (Color online) Scaling of the inter-event time distributions.

In Fig. 6, we show the inter-day exponents of the inter-event time distribution as a function of Ai. It is noted that the
exponents here increase much more quickly than the ones in previous studies in spite of the same tendency [7,8,15]. The
exponent of group 1 is 2.15 and that of group 3 already increases to 2.74. The reason for this steep increase may correspond
to the large exponent of 2.41 of the global distribution, which leads us to observe the dependence of exponents on a broader
range. As we can see, the exponent reaches the maximum at group 6 and then it decreases slightly. This suggests a limiting
value of β � 3 for decay exponents. Actually, in Radicchi’s study [7], the exponents of the last group of America On-Line
and Wikipedia also decrease. We further plot in the inset of Fig. 6 the fitted values of h from Eq. (1) for the distributions of
the 10 groups, which shows a monotonic decrease of h with 〈A〉. For instance, h ≈ 7 for group 1 and h ≈ 0.7 for group 10,
indicating a substantial decrease of h. As mentioned above, this shows that the inter-event time distributions of less active
groups are closer to an exponential distribution than those of more active groups.
Instead of considering the bare value for the inter-event time τ , we take into account the activity of each single user

and consider the rescaled variable τ/〈τ 〉. 〈τ 〉 represents the average inter-event time between two actions performed by
the same user. Interestingly, the simple scaling of 〈τ 〉P(τ ) versus τ/〈τ 〉 allows us to find a data collapse between curves
corresponding to populations with different activity. In Fig. 7, for example, we plot the quantity 〈τ 〉P(τ ) versus τ/〈τ 〉 for the
three groups in Fig. 5(b). The same result can be observed in other groups. It should be noted that these observations have
already been reported in other human-driven systems [7,24,25].

6. Discussion

In this paper, we have shown that the distributions of inter-event time at both individual and population levels are heavy
tailed. Our results further verified heterogenous human dynamics in intra-day and inter-day ranges. On the one hand, there
is a significant difference between the exponents in the intra-day and inter-day distributions, which are 1.07 and 2.41,
respectively. On the other hand, the inter-day exponents are strongly dependent on the individual’s activity, while this
dependence is absence in the intra-day range. Moreover, our study suggests that there is a maximum value of β ≈ 3 for
the increase of exponent with activity. It should be noted that similar results were also reported on Wiki-revising and blog
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posting [15], which shows that heterogenous scaling in the intra-day and inter-day ranges may be a common feature of
human activities. This phenomenon is apparently related to human circadian rhythms, and one possible explanation is the
time scale in scheduling activities. For instance,we canplan our daily schedule carefully according to our personal preference
or need, but we hardly plan for every minute.
For the intra-day behavior, the distributions seem to be in the universality class of human dynamics characterized by

β = 1 [2,6,7,11,13], if we ignore the weak dependence of exponents on activity. It is well known that the priority-queue
model of Barabási [1] can produce a waiting time distribution with β = 1, which can also be used to explain the inter-event
time distribution according to the arguments of [2]. The other models include the so-called ‘‘adaptive interest’’ model and
the zero-crossing model, which also give similar inter-event time distributions [26,27].
The strong dependence of the exponent on activity in the inter-day range implies that it is inappropriate to classify

the distributions in this range by only their exponents. However, human behavior in this range still shows some common
features. One of them corresponds to the exponents of these distributions being variable in a wide range with a strong
correlation with an individual’s activity [7,8,15]. Moreover, the values of these exponents are often larger than or equal to 2
and smaller than 3 [7,8,15]. Though exponent dependences on activity are observed in this range, successful data collapse
of these distributions suggests that the dynamics at different activity is driven by the same mechanism. Similarly, in the
nonhomogeneous Poisson model, the same mechanism leads to inter-event distributions with different exponents based
on different systemparameters [3]. Amore interesting result is obtained from the temporal-preferencemodel inwhich even
with the same system parameter different exponents are observed in different parts of the time series with heterogeneous
activity [11]. This result can explain the data collapse between different distributions in some human-driven systems [7,
24,25]. However, the current temporal-preference model is oversimplified, although it can give a preliminary explanation
for the inter-day dynamics. In order to improve the model and give better agreements with most systems, it is key to
understanding the relation between action repetition and memory [28,29].
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