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Historical sampling reveals dramatic demographic changes
in western gorilla populations

O. Thalmann, D. Wegmann, M. Spitzner, M. Arandjelovic, K. Guschanski,
C. Leuenberger, R.A. Bergl and L. Vigilant

1 Laboratory Analysis

1.1 Initial PCR test and multiplex amplification

In order to assess whether or not the DNA extracted from 35 historical gorilla samples would allow
amplification of autosomal microsatellite loci, we ran an initial PCR test on all extracted samples.
Test amplifications of three autosomal microsatellites and one segment of the sex-specific amelogenin
gene were set up in a laboratory dedicated for work on ancient materials and performed in a standard
one step PCR of 20 ul volume consisting of 1x Super Taq PCR buffer (HT Biotechnology) already
containing MgCly, an additional 0.88 mM MgCls, 0.2 uM each forward and reverse primer, 0.125 mM
each ANTP, 0.5 U Super Taq (HT Biotechnology) pre-mixed 2:1 with 1 ug/ul TagStart monoclonal
antibody (BD Biosciences) to facilitate hot start conditions and 5ul of template DNA. PCR amplifi-
cations on a Peltier cycler PTC 200 (MJ Research) included the following steps: initial denaturation
for 9 min at 94°C, 50 cycles each of 20 sec at 94°C, 30 sec at X°C (dependent on the primers used), 30
sec at 72°C, and a final elongation for 30 min at 72°C. PCR products were visualized under UV light
using a 2.5% agarose gel containing ethidium bromide. Extracts from twenty-one specimens produced
no or only sporadic amplifications, and so we continued work with the 14 extracts which amplified
products of the expected size at two or more loci.

The 14 extracts were subsequently subjected to a multiplex PCR approach, which requires two
steps; one multiplex-step in which all non-labeled primers are pooled for an initial amplification and
a second step using an aliquot of 1:20 diluted multiplex PCR product as a template for independent
singleplex PCRs with each dye-labeled primer pair. The exact protocol used is detailed in Arandjelovic
and colleagues, which also reports PCR success rates, allelic dropout incidence, and the frequency of
false alleles experienced using these extracts (ARANDJELOVIC et al., 2009). Three replicates of 5 pul
from each extract, as well as the extraction blanks included into each respective extraction series
and at least three negative controls (5 pl ddH20 in place of the DNA), were included in each 20 pul
PCR set up. Each PCR product amplified in the two-step multiplex approach was visualized under
UV light using a 2.5% agarose gel containing ethidium bromide and prepared for further analysis on
an ABI 3700 Genetic Analyzer (Applied Biosystems) according to the manufacturer’s instructions.
PCR products labeled with different dyes were combined and run against an internal size standard
(ROX labeled HD400). Alleles were called using GeneMapper v. 3.7 (Applied Biosystems) and
independently confirmed by two researchers (OT and KG). As a precautionary measure, we genotyped
all researchers conducting laboratory work (OT and MS) and limited the handling of the historical
extracts to only a single researcher (OT).

Historical DNA, particularly from close human relatives such as African apes, is susceptible to
contamination by modern DNA. None of our extraction blanks yielded any positive amplification with
the eight microsatellite loci. Of 168 negative controls performed (7 multiplex PCR x 3 replicates x 8
loci) we only observed nine sporadic amplifications (5.36%). In those cases we repeated the singleplex
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Figure 1. Structure Analysis
A) Likelihood distribution of different K.
B) Admixture probabilities for each Cross River gorilla used in this study, modern and historical
samples respectively. Modern CR gorillas and Historical CR gorillas are divided here with a solid
white line. Each colored bar represents the proportion of ancestry for each single individual under
the assumption of K = 3 populations.

reaction for the respective locus. Only once did we need to repeat the multiplex reaction due to the
occurrence of consistent amplification products in the same negative control in two singleplex reactions
using one locus (VWF).

Because the concentration of amplifiable DNA in the extracts was so low (< 1 pg/ul, (ARAND-
JELOVIC et al., 2009)), there was a higher chance of ‘allelic dropout’, the stochastic nonamplification
of one allele at a heterozygous locus. Thus, all heterozygous loci were confirmed by detection of each
allele at least two times in independent PCRs, and each apparently homozygous locus was accepted
after the allele was observed in six independent PCRs, as previously described (ARANDJELOVIC et al.,
2009).

One locus (D5S1470) showed an unusual allele range, and resequencing of a subset of individuals
from the modern Cross River population revealed a two basepair insertion/deletion polymorphism in
the region adjacent to the microsatellite. Given the complex nature of this microsatellite and the
dependency of simulations upon estimated mutation rates, we excluded this locus when performing
demographic simulations.

1.2 Data Analysis

Using Arlequin v.3.1 (EXCOFFIER et al., 2005) we calculated the number of alleles, allele frequencies
and observed/expected heterozygosities (H,/H.) for each locus. We tested each locus for deviations
from Hardy-Weinberg equilibrium (HWE) and pairs of loci for deviations from linkage disequilibrium.
We adjusted the significance threshold for non-independent tests according to Cross and Chatffin
(Cross and CHAFFIN, 1982). An additional test for deviation from HWE was performed using the
excess and deficiency of heterozygotes as well as probability tests at each locus and then applying a
global test over all loci as implemented in Genepop v.4 (ROUSSET, 2008). Population differentiation
tests were also performed with the aforementioned software. All tests in Genepop v.4 using Markov
chains were run with the following parameters: 100,000 dememorizations, 1,000 batches and 10,000
iterations per batch.

In order to observe any potential outlier in our historical dataset, we performed multiple Structure
(PRITCHARD et al., 2000) analyses under the following conditions: 100,000 burn in steps followed by
100,000 steps from which the parameter were recorded. We assumed an admixture model and found
that the most likely K value was 3 (as estimated from InP(D)). The results also demonstrate that the
admixture pattern of historical Cross River samples does not differ from that of the modern samples,
indicating that the historical samples constitute a subset of contemporary Cross River gorillas (Figure

1).



2 Demographic Modeling

2.1 Approximate Bayesian Computation

Parameter inference and model selection was performed using an Approximate Bayesian Computations
(ABC) approach taking the independence of the studied loci explicitly into account. Consider genetic
data at a single locus generated under a model M, determined by the parameters 8, whose joint prior
density is denoted by m(@). The genetic data is further replaced by a set of summary statistics s, and
the quantity of interest is the posterior distribution

7(0[Sobs) < 7(0) fr(Sobs); (1)

where faq(Sobs) is the likelihood of the observed summary statistics seops. Since the likelihood function
of the considered models cannot be calculated analytically we use stochastic simulations: we simulate
for a parameter vector 6, drawn from the prior 7(0), the summary statistics s from the model M and
retain only the parameter vector if dist(s,Sops) < €, i.e. if the simulated summary statistics s are
sufficiently close to the observed summary statistics sgps. Let us denote the likelihood of the truncated
model M, (sps) obtained by this acceptance-rejection process as fc(s|@) and the truncated prior (the
distribution of the parameters retained after the rejection process) by m(6). Recently, LEUENBERGER
and WEGMANN (2010) have shown that the posterior distribution of the parameters under the full
model M is exactly equal to the posterior distribution under the truncated model M. (sqps) given by

T(0|Sobs) X Te(O) fe(Sops|@)e(8). (2)
Given the observed summary statistics sqps = (s})bs, e ,sg(bs) at K independent loci, the posterior
distribution is given by
K
T(0sobs) o me(0) H f6(8§b8|9), (3)
k=1
where simulations of a single locus are accepted if
- k
max dist(s,sgps) < Ocrit (4)

and rejected otherwise. The threshold d..; is a distance chosen such that an arbitrary fraction of
all simulations meet the criteria. Following LEUENBERGER and WEGMANN (2010) we assume the
truncated model to be a general linear model, we thus assume the summary statistics s created by
the truncated model’s likelihood fc(s|@) to satisfy

s|@ =CO+co+ e, (5)

where C is a matrix of constants, cy a vector and € a random vector with a multivariate normal
distribution of zero mean and covariance matrix X:

e ~N(0,3,).

The matrices C, X4 and the vector ¢ are estimated from the retained simulations (see LEUENBERGER
and WEGMANN (2010) for details). Compared to previous ABC approaches (e.g. WEGMANN and
EXCOFFIER (2010)) the methodology proposed here reduces the computations to a fraction 1/K since
only a single locus is simulated, rather than a set of K loci. We implemented the proposed approach
in the software package ABCtoolbox (WEGMANN et al., 2010), an updated version of which will be
available at www.popgen.unibe.ch.

2.2 Model Selection

In order to perform model comparisons using Bayes factors we estimated the marginal densities of
model M at sgps. Under the above assumptions and denoting the acceptance rate of the rejection



process by Ac(sops, ) = N/M, where N is the number of retained values and M the total number
of simulations performed, LEUENBERGER and WEGMANN (2010) estimated the marginal density for
a single locus as follows:

N
Ac(Sobs, T —1(syps—mi D1 —mi
S 7 . 5 \Sobs m ) D (Sobs m ) 6
frm(Sobs) = N]27rD]1/ JEle (6)
where the sum runs over the parameter sample P = {91, ..,0N 1

D=3X,+Cx,C!

and ' '
m’ =cg+ CH7.

39 is the matrix that has been chosen for the widths of the Gaussian peaks to smooth the distribution
of retained parameters (see LEUENBERGER and WEGMANN (2010)).
For K independent loci the marginal density is given by

A Sobsa ( —mJ)tD~( —m/)
SO s) = e 2 Spbs — 1ML Sobs — 1ML 7
fr(sobs) = NI |27rD|1/2 E11<,H1 (7)

For two models M 4 and M p with prior probabilities m4 and g = 1 — w4, the Bayes factor B4p in
favor of model M 4 over model Mp is

fMA (Sobs)
fMB (Sobs)

where the marginal densities faq, and faq, are calculated according to (7).

(8)

Bag =

2.3 Variation in parameter estimates

We decided to base the parameter estimates and model selection on the 5,000 simulations closest to
the observed data sets. To check the robustness of our choice we repeated the ABC estimation with
different numbers of retained simulations, ranging from 2,500 to 20,000. These results are shown
in Figure 2. This analysis suggests that our estimates are very robust to changes in the number of
simulations accepted in the rejection step.

2.4 Validation of parameter inference

Unbiased posterior distributions have a well-balanced coverage property, such that the true value of a
parameter should be found q percent of the time in a q% credible interval (WEGMANN et al., 2009). We
investigated this behavior for our preferred model by creating 2,500 artificial data sets matching the
observed data set in number of loci for each model, randomly drawing each time parameters from our
prior distribution. We then estimated the parameter posterior distributions as described above and
estimated the proportion of the true parameters contained in 10%, 25%, 50%, 75% and 90% credible
intervals. Following PETER et al. (2010), we examined these coverage properties locally for different
parameter values. We thus divided our 2,500 simulated data sets into 15 equally sized parameter
bins according to the value of the estimated posterior mode, for each parameter independently. The
results of this analysis is given in Figure 3. Towards the borders of the priors we observed very
few modes, partly due to smoothing. This leads to inaccurate estimation of the coverage property
(especially with non-uniform priors) or, in extreme cases, no estimates at all. While it proved difficult
to obtain unbiased estimates over the entire parameter range, the accuracy for posteriors similar to
those obtained for the Cross River data set (indicated by the red lines in Figure 3) was encouraging.
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For each parameter, the colored curves give its posterior distribution with different numbers of simu-
lations retained in the rejection step. Note that the values for effective population size (N) estimates
are given in gene copies so they are twice the number of individuals.
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Figure 3. Local coverage properties for the isolation with migration model

We simulated 2,500 data sets with parameter values drawn from the prior distribution. We then
grouped all obtained posterior distributions into 15 equally sized bins according to the mode of that
distribution (see text for further details). We defined the credible intervals as follows 10%, 25%, 50%,
75% and 90% and show these here as grey dashed lines. The coverage property is finally computed
as the proportion of the true parameters contained in those credible intervals (black dots). The mode
of the gorilla data set is given by red vertical line. Note that the values for effective population size
(N) estimates are given in gene copies so they are twice the number of individuals.
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3 Supplementary Tables

Table S1: List of genotypes determined for historical Cross River gorilla. (— indicates missing data)

Sample D1S550 D5S1457 D5S1470 D7S817 D8S1106 D10S1432 D16S2624  VWF
406 188/184 116/116 172/162 134/134 141/141  135/135 142/142  157/153
806  188/188 128/120 166/162 138/114 145/141 155/139  142/138  149/145
1206  188/172 132/124 164/160 142/134 141/141  151/151 142/138  161/157
1306  —/— 136/120 /158 134/114 141/137 151/135  142/138  145/145
1506 184/172 120/116 176/168 134/114 145/141  151/135 142/142  149/149
1806 188/184 124/116 160/158 142/134 141/141 135/131 142/138  149/145
2006  184/172 124/120 174/164 142/138 141/141  135/135 142/142  149/145

10 188/188 120/116 162/162 134/130 141/141 155/139 142/142  157/145

48 188/184 128/116 178/162 138/114 145/141 147/147 142/138  149/149

52 192/188 132/116 176/162 130/114 141/137 155/135 142/138  153/153

53 188/188 120/116  166/158 134/114 145/145 151/147 142/142  157/145

62 188/184 128/116  178/162 138/114 145/141  147/147 142/138  149/149

65  192/188 120/116 168/ 134/134 145/141 /139  146/142 153/149

68 —/184  124/116  174/162 142/114 141/141  139/135 142/138  149/145
Table S2: Standard summary statistics

Historical Gorillas Contemporary Gorillas

Locus  #gene copies  Falleles H,* H.? #gene copies  Falleles H,* H.°
D1S550 25 4 0.75 0.657 135 8 0.687  0.712

D5S1457 28 6 0.929  0.772 136 6 0.706 0.71

D5S1470 26 10 0.917  0.883 138 10 0.739  0.825
D7S817 28 5 0.857  0.772 136 5 0.731  0.695

D8S1106 28 3 0.5 0.489 136 4 0.397  0.559

D10S1432 27 6 0.615  0.815 136 8 0.806  0.764

D1652624 28 3 0.643  0.474 133 3 0.492  0.533
VWF 28 5 0.643  0.749 135 5 0.493  0.637
Mean 27.25 5.25 0.732  0.701 135.63 6.13 0.631  0.679

“observed heterozygosity
bexpected heterozygosity

Table S3: Fixation index and Allelic richness

Historical Gorillas Contemporary Gorillas

Locus FIS  Allelic richness FIS Allelic richness

D1S550  -0.165 4.000 0.030 4.915
D5S1457  -0.211 5.840 0.006 4.965
D5S1470  -0.052 10.000 0.105%* 7.134
D7S817  -0.114 4.984 -0.050 4.028
D8S1106  -0.022 2.984 0.291°%* 3.293
D10S1432  0.247 5.923 -0.048 6.321
D16S2624 -0.376 2.857 0.077 2.563
VWF 0.146 4.857 0.228%* 3.838

mean -0.050 0.072*

* fewer than 5% of the randomizations gave higher FIS values than observed



