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ABSTRACT
We have demonstrated that cortical cell autografts

might be a useful therapy in two monkey models of

neurological disease: motor cortex lesion and Parkin-

son’s disease. However, the origin of the useful trans-

planted cells obtained from cortical biopsies is not

clear. In this report we describe the expression of

doublecortin (DCX) in these cells based on reverse-tran-

scription polymerase chain reaction (RT-PCR) and immu-

nodetection in the adult primate cortex and cell

cultures. The results showed that DCX-positive cells

were present in the whole primate cerebral cortex and

also expressed glial and/or neuronal markers such as

glial fibrillary protein (GFAP) or neuronal nuclei (NeuN).

We also demonstrated that only DCX/GFAP positive

cells were able to proliferate and originate progenitor

cells in vitro. We hypothesize that these DCX-positive

cells in vivo have a role in cortical plasticity and brain

reaction to injury. Moreover, in vitro these DCX-positive

cells have the potential to reacquire progenitor charac-

teristics that confirm their potential for brain repair.
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Doublecortin (DCX) was first described in X-linked lis-

sencephaly and ‘‘double cortex’’ allelic human disorders

mapping to Xq22.3-Xq23. DCX is associated with arrest

of migrating cerebral cortical neurons (des Portes et al.,

1998; Gleeson et al., 1998). DCX was identified as the

microtubule-associated protein expressed by migrating

neuroblasts during a limited phase of their development

in both developing and adult mammals (Matsuo et al.,

1998; Francis et al., 1999; Gleeson et al., 1999; Brown

et al., 2003). DCX plays a crucial role for microtubule sta-

bilization (Gleeson et al., 1999) and nuclear translocation

during neuronal migration (Koizumi et al., 2006) as well

as in growth cone dynamics (Burgess and Reiner, 2000).

In the rodent nervous system, DCX expression is induced

in fast-dividing neuronal precursors, persists for �30

days, and is terminated thereafter as a consequence of

neuronal maturation (Brown et al., 2003). During the

important step of cell migration in neuronal development,

DCX participates in the regulation of microtubule dynam-

ics and stability during neuronal morphogenesis (Horesh

et al., 1999). In the adult brain it is now commonly

accepted that DCX is expressed in areas of neurogenesis,

indeed in the subventricular zone as well as the hippo-

campus. Outside these neurogenic niches, DCX was

previously thought to be almost absent (Omori et al.,

1998; Brown et al., 2003). However, more recently the

presence of DCX-positive cells was described in the cere-

bral cortex of guinea pig, cat, and primate, suggesting
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that these cells might be developing interneurons (Xiong

et al., 2008; Cai et al., 2009). Based on recent animal

studies, it is now conceivable that some precursor cells in

the human cortex proceed to the neuronal lineage (Jess-

berger et al., 2005). As a consequence, cells expressing

the marker of immature neurons (DCX) might be detecta-

ble in adult human neocortex and play a role, not as a

neurogenic marker, but in glia-to-neuron signaling media-

ting synaptic or metabolic plasticity (Verwer et al., 2007).

In human brain, some have argued in favor of the cru-

cial role of DCX in neuronal migration based on its expres-

sion in cytomegalic neurons and balloon cells in the corti-

cal lesions of tuberous sclerosis and focal cortical

dysplasia. These lesions show a disturbance in laminar

architecture and cell differentiation (Mizuguchi et al.,

2002). Since its pattern of expression is observed in

different neuronal developmental contexts, DCX has been

considered a possible internal indicator for neurogenesis

(Brown et al., 2003). Evidence from animal models indi-

cates that during injury, such as ischemic events or sei-

zure induction, the neurogenic response is associated

with the transient increased expression of DCX in adult

rodent brain (Arvidsson et al., 2002; Brown et al., 2003;

Couillard-Despres et al., 2005). Observations in rodents

during increased physical activities, environmentally

enriched conditions, or aging demonstrated that DCX was

closely correlated with the neurogenesis in two specific

brain structures: the subventricular zone (SVZ) and the

subgranular zone of the dentate gyrus (DG) (Brown et al.,

2003; Couillard-Despres et al., 2005; Rao et al., 2005).

Moreover, DCX continued to be expressed in many cells

of the adult rat telencephalon apart from the rostral mi-

gratory stream, especially in the corpus callosum and the

piriform cortex, suggesting that continuous migration of

neuronal precursors may still occur in these areas during

adulthood (Nacher et al., 2001). More recently, the pres-

ence of newly generated neurons has been described in

the adult rat paleocortex layer II (Pekcec et al., 2006;

Shapiro et al., 2007a,b). These cells appear to be gener-

ated during embryonic development mainly at embryonic

day (E)15.5 and persisted in the paleocortex layer II over

time (Gomez-Climent et al., 2008). DCX-positive cells

have also been described in the cortex layer II of the adult

guinea pig (Xiong et al., 2008). In nonhuman primate

piriform cortex and in the human olfactory bulb, newly

generated neurons are also observed by immunostaining

with other neurogenesis markers such as polysialylated

neural cell adhesion molecule (PSA-NCAM), beta-tubulin-

III, collapsin response mediator protein-4, neuronal

nuclear protein, and DCX (Bernier et al., 2002). The

presence of newly generated neurons was also described

in the primate striatum after a single injection of an

adenovirus vector expressing brain-derived neurotrophic

factor (BDNF) (Bedard et al., 2006). In human brain, a

recent study based on autopsy and surgically resected

tissue from 60 patients first reported the presence of

DCX-positive cells in the neocortex, where a minority of

them also expressed the astrocytic marker glial fibrillary

protein (GFAP) (Verwer et al., 2007).

The aims of the present study were to delineate the

DCX expression in primate neocortex, the distribution of

DCX-positive cells in the cerebral cortex, and to show

their potential link with the progenitor adult brain cells

obtained in culture from neocortical biopsies (Arsenijevic

et al., 2001; Brunet et al., 2002, 2003), a technique that

we have developed over a decade. This technique repre-

sents a new source of cells for transplantation since

these progenitors survive over time after reimplantation

and differentiate into neurons (Brunet et al., 2005). The

potential therapeutic impact is being evaluated for func-

tional recovery and brain repair in nonhuman primate

models of brain injury or neurodegenerative disease.

MATERIALS AND METHODS

This report is based on tissue from human and nonhu-

man primate brains. The pieces of cerebral cortex and

brains were obtained from three adult cynomolgus mon-

keys (Macaca fascicularis). Biopsies and brains were also

obtained from two adult African green monkeys (Chloro-

cebus sabaeus) from St. Kitts Biomedical Research Foun-

dation (St. Kitts-Nevis). Pieces of six brain resections

from human neurosurgery were obtained from trauma

(n ¼ 4) and epilepsy neurosurgeries (n ¼ 2) in accord-

ance with the local ethical committee of Lausanne

University Hospital. The animal tissues were obtained in

accordance with the Guide for Care and Use of Laboratory

Animals (ISBN 0-309-05377-3; 1996) and approved by

Swiss veterinary authorities, including the cantonal

Survey Committee on Animal Experimentation and the

Federal Veterinary Office (BVET, Bern, Switzerland).

Tissues from St. Kitts monkeys were obtained with the

approval of the St. Kitts’s Institutional Animal Care and

Use Committee (IACUC) and imported under an importa-

tion agreement (38925) under the Convention for Trade

in Endangered Species (CITES), although the St. Kitts

monkeys are not endangered.

Antibody characterization
The primary antibodies are described in detail in

Table 1. The four anti-DCX antibodies were raised against

a synthetic peptide (manufacturer’s technical informa-

tion), which corresponds to amino acids 385–402 of

human DCX. The manufacturer’s positive controls are

mouse brain lysate (Abcam, Cambridge, MA), hDCX:293T

and the human neuroblastoma SK-N-SH cell line lysates
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(Santa Cruz Biotechnology, Santa Cruz, CA) and rat brain

lysate (Millipore, Bedford MA; Chemicon, Temecula, CA).

For all four antibodies the peptides used were totally

homologous with the monkey sequences based on the

GenBank database (Macaca mulatta XM_001100519 and

Pongo abelii XM_002831997). All four antibodies against

DCX showed the same immunohistochemistry and were

confirmed by western blots. As expected, all these anti-

sera detected a 40–45-kDa band in human and monkey

brain cell lysates (Figs. 4 and S1).

The three anti-GFAP antibodies detected a 50–55-kDa

band in human and monkey brain cell lysates and stained

cells with the classic morphology and distribution of fibril-

lary astrocytes (Benton et al., 2008; Komitova et al.,

2009). The anti-Nestin antibody that was raised against a

recombinant protein corresponding to amino acids 1464–

1614 (Messam et al., 2000) detected a 200–220-kDa

band in human and monkey brain cell lysates. According

to the manufacturer’s information, the anti-vimentin poly-

clonal antibodies do not work for western blot but stained

cells with the classic morphology of glial progenitors

(Ponti et al., 2006; Pecchi et al., 2007).

The specificity of the secondary conjugated antibodies

was controlled by omitting the first antibody and crossre-

action was also verified. In brief, during the first incuba-

tion only one primary antibody was present, for example,

mouse anti-GFAP. The second incubation was done with

the corresponding species secondary antibodies against

mouse Ig, rabbit Ig, goat Ig, and guinea pig Ig conjugated

with Alexa 488, Alexa 597, and Alexa 680, with a counter-

staining of nuclei with DAPI. All secondary antibodies

were controlled for crossreaction through incubation

without primary antibody (Supplemental Data Fig. S2).

Production of in vitro adult human and
nonhuman primate brain cells

The 1-cm3 piece of resected cortex was washed three

times in phosphate-buffered saline (PBS) supplemented

with 33 mM glucose, 60 mg/L penicillin, and 100 mg/L

streptomycin. If delayed more than 2 hours before seed-

ing cells in culture, the brain samples were kept in Hiber-

nate A Medium (BrainBits, UK) at room temperature, as

lower temperatures were disadvantageous for viability.

Under a sterile environment, cortical tissue was washed

another three times in sterile PBS-glucose with antibiotics

and well orientated from the cortical surface to the white

matter, sliced with a razor blade to obtain enriched frac-

tions in the different gray matter (GM), and white matter

(WM) layers as shown in Figure 1.

For each slice, primary cultures were generated by

mincing and mechanically triturating the tissue with fire-

polished glass pipettes of decreasing diameters. Cells

were plated at 250,000 cells/cm2 in RPMI 1640 medium

(Gibco, Gaithersburg, MD) supplemented with glucose

25 mM, glutamine 2 mM, 10–20% preselected fetal

bovine serum (pFBS), and an antibiotic/antimycotic cock-

tail (A7292 Sigma-Aldrich, Buchs, Switzerland) directly on

a glass coverslip for immunocytochemistry or on plastic

dishes at 37�C in a water-saturated atmosphere contain-

ing 6.5% CO2 / 93.5% air.

For each fraction, primary cultures were generated by

mincing and mechanically triturating the tissue with fire-

polished glass pipettes of decreasing diameters. Cells

were plated at 250,000 cells/cm2 in RPMI 1640 medium

(Gibco) supplemented with glucose 25 mM, glutamine

2 mM, 10–20% pFBS, and an antibiotic/antimycotic cock-

tail (A7292, Sigma-Aldrich) directly on a glass coverslip

TABLE 1.

Antigen Immunogen/peptide Species Catalog Number and Source

BrdU Bromodeoxyuridine conjugated
to bovine serum albumin

Mouse monoclonal
igG1 clone Bu20a

M0744, Dako, Glostrup, Denmark

DCX YLPLSLDDSDSLGDSM rabbit polyclonal IgG ab18723, Abcam, Cambridge, MA
DCX DLYLPLSLDDSDSLGDSM goat polyclonal IgG Sc-8066, Santa Cruz Biotechnology, California, USA
DCX YLPLSLDDSDSLGDSM guinea pig polyclonal IgG AB2253, Millipore, Billerica, Massachusetts, USA
DCX YLPLSLDDSDSLGDSM guinea pig polyclonal IgG AB5910, Millipore, Billerica, Massachusetts, USA
GFAP purified pig spinal cord GFAP Mouse monoclonal lgG1

clone GA5
G3893, Sigma-Aldrich, Buchs, Switzerland

GFAP Purified bovine GFAP Chicken polyclonal IgY AB5541, Millipore, Billerica, Massachusetts, USA
GFAP Purified cow spinal cord GFAP rabbit polyclonal IgG Z0334 DAKO, Glostrup, Denmark
Nestin 150 amino-acid nestin fragment

coupled to glutathione S-transferase
(Messam etal., 2000)

rabbit polyclonal IgG AB5922, Millipore, Billerica, Massachusetts, USA

NeuN Purified cell nuclei from mouse brain Mouse monoclonal lgG1
clone A60

MAB377, Millipore, Billerica, Massachusetts, USA

vimentin Purified porcine eye lens vimentin Mouse monoclonal lgG1
clone V9

M0725, Dako, Glostrup, Denmark
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for immunocytochemistry or on plastic dishes at 37�C in

a water-saturated atmosphere containing 6.5% CO2/

93.5% air.

Observation of cultures with phase contrast micros-

copy or with light microscopy after fixation and staining

with hematoxylin revealed the same morphological char-

acteristics in human and nonhuman primary brain cell cul-

ture. Characterization was done by immunocytofluores-

cence for glial markers such as GFAP, vimentin, and

neural stem cell/progenitor markers such as nestin and

DCX.

Immunohistochemistry
Immunohistological staining was performed on 50-lm

thick formalin-fixed cryosections or 4-lm thick formalin-

fixed paraffin-embedded sections. Immunohistological

characterization was done for glial markers such as GFAP

and vimentin, neuronal markers such as neuronal nuclei

(NeuN), and neural stem cell/progenitor markers such as

nestin and DCX.

The immunoreactions were revealed with biotinylated

secondary antibodies followed by the immunoperoxidase

Vectastain Elite system (PK-6100, Vector Laboratories,

Burlingame, CA) and DAB substrate kit (SK-4100, Vector

Laboratories) and counterstained with Mayer’s hematoxy-

lin solution (MHS32, Sigma-Aldrich). The DAB immuno-

staining was observed under light microscope (BX40

Olympus) for DAB. The immunohistofluorescence was

performed with fluorescent dye conjugated secondary

antibodies. The macroscope images were obtained using

the Odyssey system (LI-COR, Bad Homburg, Germany)

that consists of scanning at 700 nm and 800 nm infrared

fluorescent dyes with a resolution of 21 lm per pixel. The

higher-magnification images were observed under an epi-

fluorescent microscope (IX81 Olympus) equipped with

FITC, Cy3, Dapi, and infrared 680 nm filters for multichan-

nel images that were acquired with two image analysis

programs (CellM, Olympus or MorphoPro, Explora-Nova).

To eliminate possible autofluorescence in cortex tissue

the sections were treated before slice mounting with a

solution of 1% Sudan Black II in a solution of 70% ethanol

(Fig. S2).

Histological observation and quantification
Drawings and cell counting of immunostained sections

were made with an Olympus BX40 epifluorescence micro-

scope equipped with a motorized X–Y-sensitive stage and

a video CDD camera connected to a computerized image

analysis system (Explora Nova, La Rochelle, France).

Images were acquired using three software programs

(Mosaic, Morpho Expert, and Fluo3D; Explora Nova) that

apply the same contrast and time exposition for acquisi-

tion to objectively compare series of staining. The images

were then generated in tiff format to be included in figure

with Adobe Photoshop CS4 (San Jose, CA). Representa-

tive 50-lm slices separated by 5 mm were used (seven

sections per animal, n ¼ 2). For each section, five cortical

columns were drawn and the layers were outlined for

each column. The threshold for DAB staining and the cell

surface limits from 50–500 lm2 were applied to auto-

matically identify all DCX-positive cells. The threshold of

Mayer nuclei staining and the limit of nuclei surface from

10–80 lm2 were applied to automatically identify all cells

(Mercator, Explora Nova). A visual control for these DCX-

positive cells and nuclei identifications was done on 20 of

260–300 fields per column. The obtained visual counts

confirmed the accuracy of the automatic counting

method for determining the percentage of DCX-positive

cells compared to total cells in the layers and columns.

Western blot
Total homogenates were obtained from human cortex

cryosections and held in RIPA lysis buffer (Santa Cruz Bio-

technology). The protein concentration was quantified

using the Pierce BCA Protein Assay Kit (Thermo Fisher

Scientific Waltham, MA). Ten lg were loaded per well on

Nupage 4–12% Bis Tris gel (Invitrogen, Life Technology,

Carlsbad, CA), run at 200V constant and transferred on

PVDF membrane (PerkinElmer, Zaventem, Belgium). The

Figure 1. Outline of the cortical slicing method. As described in

the text, the cortical biopsy was oriented from glia limitans to

white matter. It was then sliced parallel to the cortical surface

with a razor blade to obtain four or six layer-enriched fractions.

Each fraction was then separately minced and dissociated to

obtain cell cultures or to extract total RNA. In parallel, gray mat-

ter and white matter fractions were also minced and dissociated

as described previously (Brunet et al., 2002).
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membranes were first incubated in Odyssey Blocking

Buffer (OBB) (LI-COR), then with antibodies against

DCX (the same as for immunohistochemistry) and

Actin (Mouse AC74, Sigma-Aldrich), all diluted in OBB at

1/2,000. The membranes were then washed three times

in PBS for 10 minutes and incubated with appropriate

secondary antibodies conjugated with AlexaFluor 680

dye (Invitrogen, Life Technology) or with IRDye 800 (Rock-

land Immunochemicals, Gilbertsville, PA). After three

washes with PBS the membranes were scanned with the

infrared system Odyssey (LI-COR).

Reverse-transcription polymerase chain
reaction (RT-PCR)

Total RNA from fresh slice fractions and pellets of cells

was extracted with Trizol (Invitrogen) and 200 ng total

RNA was used for first strand synthesis using MulVRT-

M0253S (New England Biolabs, Beverly, MA) as described

by the supplier. PCR was performed with Polymerase Kit

(Qiagen, Chatsworth, CA) with 5 pmol of specific primers

per reaction. The specific primers for DCX and nestin

were designed to amplify the mRNA 1021–1494 (Access.

No. AJ003112) and 714–1433 (Access. No. X65964)

human sequences respectively and were homologous

for the corresponding 1021–1494 (Access. No.

XM_001100519) and 850–1567 (Access. No. AY650322)

monkey sequences. For actin mRNA as control, two

primer panels were used to amplify the 375–1154

(Access. No. X00351) human sequence and the 197–906

(Access. No. AB004047) monkey sequence. All specific

forward and reverse primers for RT-PCR were designed

on different exons to avoid any genomic contamination.

All PCRs were performed in the Personal Thermocycler

(Biometra, Germany) with one first denaturation step (3

minutes, 94�C), followed by 35 cycles of denaturation

(94�C, 30 seconds), annealing (60�C, 30 seconds), and

elongation (72�C, 60 seconds) and a final extension step

(72�C, 10 minutes). The linearity of the amplifications

through 35 cycles was controlled as previously described

(Waselle et al., 2009). The infrared fluorescent nucleic

acid dye Syto60 (Molecular Probes, Eugene, OR) was

incorporated within the loading buffer (1/6,000) in order

to detect and quantify the amplicons with the Odyssey

infrared imaging system (LI-COR) after migration on a

0.8% agarose gel. To confirm the specificity of the mRNA

RT-PCR amplification, amplicons were subcloned with

pGEM-T easy vector system I (Promega, Madison WI) and

sequenced.

Incorporation of BrdU
The proliferation marker bromodeoxyuridine (BrdU;

Sigma-Aldrich) was used to investigate the specific phe-

notype of the proliferating cells. As positive controls, glio-

blastoma cell lines (LN308) were used in the same condi-

tions for BrdU incorporation as human and nonhuman

primate adult brain cell primoculture. At the three time-

points (6 days in vitro [DIV], 28 DIV, and 35 DIV) of the

cell culture, the adult brain cells were incubated 24 hours

before PAF fixation with a 5 lM final concentration of

BrdU added to the culture medium. The BrdU was

detected after a pretreatment with HCl 2N for 2 minutes.

The immunocytofluorescence was done with mouse anti-

BrdU antibody (744, Dako, Glostrup, Denmark), rabbit

anti-DCX antibody (ab18723 Abcam) and chicken anti

GFAP (AB5541, Chemicon) and the appropriate fluoro-

chrome conjugated secondary antibodies against mouse

Ig (Alexa 488, A-11032 Invitrogen, Life Technology), rab-

bit Ig (Alexa 594, A-11034 Invitrogen, Life Technology),

and chicken Ig (IRDye 700, 603-130-126, Rockland

Immunochemicals). The nuclei were counterstained with

DAPI. Immunostained cells were observed using an

epifluorescent microscope IX81 (Olympus).

Cell counting of BrdU-positive cells
Cell counting per coverslip was determined by the sum

of four fields on one coverslip. The total cell number was

determined by counting DAPI-counterstained nuclei. The

colocalization of BrdU with other markers such as GFAP

or DCX were done by co-immunocytofluorescence before

counting. The mean of cell number was established with

the six independent cell cultures from three patient

biopsies.

RESULTS

All data derived from the brain of two species of nonhu-

man primate (cynomolgus monkeys (Macaca fascicularis)

and St. Kitts green monkeys (Chlorocebus sabaeus) were

identical and therefore are presented below together.

DCX-positive cells are present in nonhuman
primate neocortex

In the nonhuman primate cerebral cortex, the immuno-

histochemical analysis showed that the expression of

DCX was not restricted to the subgranular zone of the hip-

pocampus or to the subventricular zone but DCX was also

found in the cerebral cortex (Fig. 2A). This DCX expres-

sion was highly localized at the glia limitans, in layer II

and layer V of the cortex (Fig. 2B–E). This expression was

also observed in human cortex and confirmed by compar-

ing three different sources of antibody against DCX

(Supplemental Data Fig. S1). The cell counting on

DAB-immunostained nonhuman primate brain sections

showed that 4.55 6 1.58% of total cells expressed DCX

in whole neocortex. In terms of percentage of positive
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Figure 2. DCX-immunohistochemistry done on macaque brain cryosection with guinea pig antibody against DCX (Chemicon). The mosaic

reconstruction (A) was a part of cerebral cortex in the right precentral gyrus at the level of superior precentral sulcus. (B–E) correspond

to boxes labeled (b to e) in (A): DCX was expressed in nonhuman primate cortex, in cells with long processes in the glia limitans and layer

I (B), in pyramidal cell bodies in layer II (C) and in layer V (D), and in small stellar cells at the border between GM and WM (E). The nuclei

were counterstained with Mayer’s hematoxylin solution (MHS32, Sigma-Aldrich). Note that this DCX distribution was through all the neo-

cortex with no significant difference in intensity or density. F: Distribution of DCX-positive cells in the cortical layers. The counts for DCX

and total nuclei were done in 35 cortical columns (5 columns per section, 7 sections per animal, n ¼ 2)) and in 12 areas of hippocampal

subgranular zone (HC) (3 areas per section, 4 sections). The first eight boxplots represent the distribution in the glia limitans, the six corti-

cal layers, and the white matter next to the gray. The ‘‘whole cortex’’ boxplot corresponds to the pooled counts in all layers. The results

are expressed in percentage of DCX-positive cells versus total nuclei. Note that there was no significant difference between cortical layers,

whereas there were significantly fewer DCX-positive cells (nearly 4-fold less) in cortical structures compared with the subgranular zone of

hippocampus (analysis of variance [ANOVA], Bonferroni multiple comparison ***P < 0.001). Scale bars ¼ 100 lm in A; 25 lm in B–E.
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cells, no significant differences were observed between

cortical structures or between cortical layers (Fig. 2F).

Furthermore, this percentage of DCX-positive cells is sig-

nificantly lower (near 4-fold) in cortical structures than in

the hippocampal subgranular zone, where 19.62 6 3.74%

of cells were DCX-positive. Higher magnifications showed

that the cells expressing DCX were not shaped homogene-

ously; indeed, DCX-positive cells with long processes were

observed in the glia limitans and in the layer I (Fig. 2B),

DCX pyramidal cell bodies with neuronal shapes were

stained in layer II (Fig. 2C) and V (Fig. 2D) and small stellar

DCX-positive cells were located at the limit between GM

and WM (Fig. 2E). The immunohistofluorescence to detect

Figure 3. Coronal sections of St. Kitts green monkey brain infra-

red immunostained for DCX (guinea pig antibody, Chemicon) and

GFAP or DCX and NeuN detected with Odyssey Infrared scanner

(LICOR) at a resolution of 21 lm per pixel. Fixed monkey brain

sections were cut in two half-sections, one incubated with guinea

pig anti-DCX and mouse anti-NeuN antibodies and the second

one incubated with guinea pig anti-DCX and rabbit anti-GFAP anti-

bodies followed by the appropriate infrared fluorochrome conju-

gated secondary antibodies (see Materials and Methods). The left

frontal cortex half-section was immunostained for DCX (in ma-

genta pseudocolor (A)) and NeuN (in green pseudocolor (C)) with

the overlay (B); the right frontal cortex half-section was immuno-

stained for DCX (in magenta pseudocolor (D)) and GFAP (in green

pseudocolor (F)) with the overlay (E). (G,I) Only the overlays

obtained as in (B) and (H,J) as in (E) for more caudal sections;

the green squares outline the subventricular zone in (G,H) and

the hippocampus in (I,J), respectively. Note that if the main DCX-

immunostaining is colocalized with NeuN, the glia limitans and

the limit between white and gray matter (white arrows) also

presents colocalization. Also note that DCX is detectable in whole

cortex from frontal to occipital lobes. Scale bars ¼ 1 cm.

Figure 4. Western blot done with three polyclonal antibodies

against DCX: (A) rabbit antibody (ab187723, Abcam); (B) guinea

pig antibody (AB2253, Chemicon); (C) goat antibody (sc-8066

Santa Cruz Biotechnology); and (D) actin (Mouse AC74, Sigma-

Aldrich). The western blot was done with one homogenate done

with normal adult human brain cortex biopsy (lane 1), and two

homogenates done from monkey brain obtained in vitro from the

WM and the GM fractions (lanes 2 and 3, respectively). L corre-

sponds to the SeeBlue ladder (Invitrogen).

Figure 5. RT-PCR done with total RNA extracted from human

neocortical layering slice-enriched fractions and from adult human

brain cell cultures. DCX mRNA was present in all fractions from

human cortex and in cell cultures from the first days in vitro

(DIV7) except in the meninges and in the deeper WM fraction

(slice 6). Nestin mRNA was not detectable under the same RT-

PCR conditions except slightly in the GM cell culture (DIV7). Actin

mRNA was used as control to establish the relative ratio of DCX/

Actin using Syto60 infrared intensity presented in the graph at

the bottom (this experiment is representative of the six slicing

experiments done with four human and two nonhuman primate

biopsies).
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DCX with the Odyssey infrared scanner showed that in

addition to expression in the subventricular zone (Fig. 3C)

and the subgranular zone of the hippocampus (Fig. 3D),

DCX was also observed in the whole cerebral cortex (Fig.

2). It confirmed the presence of DCX from glia limitans to

the limit between GM and WM in the nonhuman primate

neocortex. Similar results were obtained on the cryosec-

tions derived from the five normal monkeys (threeMacaca

fascicularis and two Chlorocebus sabaeus). The main corti-

cal expression of DCX was localized in the GM of the fron-

tal section (Fig. 3A,B). At this resolution rate of 21 lm, a

colocalization with NeuN could be observed at a macro-

scopic histological level in the cortical neuronal layers

(Fig. 3A), but also with GFAP in the glia limitans and at the

limit between GM and WM (Fig. 3B). This pattern of nonhu-

man primate cortical expression of DCX has been

observed through all the neocortex, even though the

expression was stronger in the subventricular zone and in

Figure 6. A: Mosaic reconstruction of the Chlorocebus neocortex triple immunofluorostaining for DCX (rabbit antibody, Abcam), NeuN and

GFAP detected with Alexa 488, Alexa 594, and IRDye 700 nm conjugated secondary antibodies, respectively, with a counterstaining of

nuclei with DAPI (in blue (A)). DCX (in magenta (B)) was mainly shown in layer I (white arrows), and in layers II and V (yellow arrows) even

if it was distributed from the glia limitans (white arrows) to the limit between gray and white matter. DCX immunostaining colocalized with

NeuN (in green (C)) (yellow arrows), and also with GFAP (in orange pseudocolor (D)) (white arrows). Scale bars ¼ 100 lm.
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the subgranular zone of the hippocampus (Fig. 3C,D). DCX

was expressed in whole cortex and the comparison of the

infrared DCX-immunolabeling intensities revealed no sig-

nificant difference between the different cortical areas.

The expression of DCX was also confirmed by western

blot (Fig. 4A–C) done with one adult human cortical ho-

mogenate and two monkey brain homogenates obtained

from WM and GM fractions, and the same bands were

revealed with rabbit (Abcam), guinea pig (Chemicon), and

goat (Santa Cruz) immunoglobulins against DCX (Fig. 4A–

C; note that D represents the actin expression as control

for western blot loading).

By RT-PCR done with the ‘‘slicing’’ procedure (Fig. 1),

the DCX mRNA was detected in the human neocortex,

with a significantly higher expression in slices 3, 4, and 5

that mainly corresponded to the topography of layer IV

and to the limit between GM and WM (Fig. 5). The specific

forward and reverse DCX primers were designed on

exons 3 and 7 of the human gene sequence, respectively;

the size corresponded to the DCX mRNA sequence. For

three RT-PCR samples (one human and two monkeys),

the amplicons were subcloned, sequenced, and con-

firmed the complete homology with the DCX sequence.

With the same samples, under the same RT conditions,

the PCR for nestin did not reveal the presence of nestin

mRNA in cortical slices. However a slight nestin expres-

sion was detected in the GM cell culture after 7 days.

DCX is expressed in astrocytes and
neurons in nonhuman primate cortex

To identify the cell subtypes of DCX-positive cells

revealed by immunohistochemistry, co-immunofluores-

cence labeling was performed using the rabbit antibody

against DCX (Abcam). The same pattern was observed

with this rabbit anti-DCX antibody compared to that from

the guinea pig (Fig. 6). The mosaic reconstruction of the

cortex exhibited the same layer distribution of DCX. Cell

counting on triple immunofluorescence-stained sections

gave the same percentage, 4.336 1.48% of DCX-positive

cells versus total cells in a cortical column as shown

above with DAB staining. Higher magnification demon-

strated the presence of four subpopulations of DCX-posi-

tive cells (Fig. 7). First, small cells only expressed DCX

and represented 17.85 6 4.32% of the total DCX-positive

cells. The cells that only expressed DCX presented long

processes and small nuclei. No co-localizations were

observed with Iba1 (microglia/macrophage marker), nes-

tin (neural progenitor/stem cell marker), or vimentin (glial

progenitor marker) (data not shown). Second, 26.24 6
3.31% of the DCX-positive cells coexpressed NeuN and

represented 2.89 6 1.18% of the total NeuN positive

cells. The DCX-positive cells that coexpressed NeuN in

layer I (Fig. 7A–D) presented the typical shape of the

Figure 7. Higher magnification of the Chlorocebus neocortex tri-

ple immunofluorostaining for colocalization of DCX (rabbit anti-

body, Abcam) revealed in green (A,E,I), GFAP in red (B,F,J), and

NeuN in orange pseudocolor (C,G,K) on 5-lm paraffin sections;

(D,H,L) show the overlays of (A–C), (E–G), and (I–K) respectively,

with the nuclei counterstained with DAPI in blue. Note that a sub-

population of DCX-positive cells coexpressed NeuN (yellow

arrows) in layer I (A–D), in layer II (E–H), and layer V (I–L);

another one coexpressed GFAP (red arrows) in the glia limitans

(A–D) and at the limit between GM and WM (I–L); a third one

coexpressed NeuN and GFAP (white arrows); and a fourth subpo-

pulation did not express NeuN nor GFAP (green arrow) in layer II

(E–H) and in layer V (I–L). (See also Supplemental Data Figs. S2,

S3.) Scale bars ¼ 50 lm.
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Cajal-Retzius cells (Fig. 8). In layers II and V the DCX-

NeuN positive cells exhibited a pyramidal neuronal shape

(Figs. 2, 7E–H). Third, 26.44 6 6.03% of the DCX-positive

cells coexpressed GFAP and represented 11.66 6 4.06%

of the total GFAP-positive cells. The DCX-GFAP positive

cells also presented two types of shape. In the glia limi-

tans, these DCX-GFAP-positive cells had long processes

but, at the border between GM and WM, they were small

stellar cells (Fig. 7I–L). Fourth, 29.47 6 7.07% of DCX-

positive cells surprisingly coexpressed NeuN and GFAP.

Notably, 92.856 5.80% of the total GFAP and NeuN-posi-

tive cells expressed DCX (Fig. 7).

DCX-positive cells are present in adult brain
cell cultures from human brain biopsies

The DCX mRNA was detected in adult human brain

cells from the first days in vitro when nestin was only

slightly or not detectable (Fig. 5). The immunocytofluores-

cence also revealed the presence of DCX in cells after

DIV 10. At different timepoints the progression of the cell

culture and the expression of DCX were investigated. The

cell quantification by infrared Syto 60 nucleus labeling

showed that only enriched cell suspensions that con-

tained DCX-positive cells, cortical slices 1 and 3, and the

WM and GM fractions were able to survive over time (Fig.

9J). Slice 4, which included a deeper cortical layer and

the limit between GM and WM, did not present viable

cells over time. Slice 2, which presented only few DCX-

positive cells at DIV 10, rapidly degenerated with no sur-

vival over time (Fig. 9D–F). Slices 1 and 3, the enriched

GM fraction and the enriched WM fraction that presented

DCX-positive cells, maintained a substantial population of

cells that survived over time and formed adult brain cell

aggregates (Fig. 9A–C,G–I).

The incorporation of BrdU revealed that some cells were

in S phase over 24 hours (Fig. 10). Fewer than 25 positive

cells per field were detected for BrdU from normal WM

and GM fractions. This number did not change over time

but the population continued to increase to a total of 45

cells per field at DIV 7, of 280 cells per field after 28 days.

At 35 days, the percentage of BrdU-positive cells only rep-

resented 9.8% despite 24 hours of exposure to BrdU (Fig.

10). Nearly all the BrdU-positive cells expressed DCX and

GFAP (white arrow, Fig. 10), although they were at the

metaphase stage of mitosis (yellow arrow, Fig. 10A–E).

The LN308 glioma cell line was used as the positive con-

trol for BrdU incorporation (Fig. 11) and showed that

69.2% per field of nuclei incorporated BrdU over 24 hours.

DISCUSSION

In the present study we demonstrated the expression

of DCX in the cerebral cortex of adult humans and two

species of monkeys. We discovered four different popula-

tions of DCX-positive cells. Indeed, the DCX-

Figure 8. The Chlorocebus neocortex triple immunofluorostaining on 50 lm floating prefrontal cortex cryosection for colocalization of DCX

(rabbit antibody, Abcam) in red (B), NeuN in green (C), and in the overlay (A) GFAP in orange with the nuclei counterstained with DAPI in

blue (A–D). The higher magnifications (B–D) show a cell that coexpressed NeuN and DCX (white arrows) and presented the typical shape

of the Cajal-Retzius cells. Scale bars ¼ 100 lm.
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immunoreactivity was localized in all the cerebral cortical

layers from the glia limitans and around the limit between

WM and GM. The DCX-positive cells had different shapes:

in layer I they presented the typical shape of the Cajal-

Retzius cells; in layers II and V they exhibited a pyramidal

neuronal shape. In the glia limitans they presented long

processes, whereas at the border between GM and WM

they were small stellar cells. We also demonstrated, using

mRNA and protein quantification, that DCX was detecta-

ble in all of the human neocortical tissues. The detection

Figure 9. Cell culture from neocortical layering slice enriched fractions immunostained for GFAP (in red) and DCX (guinea pig polyclonal

antibody, Chemicon) (in green) with a counterstaining of nuclei with DAPI (in blue). (A–C): slice 1 culture; (D–H): slice 2 culture; and (G–I):

slice 3 culture each shown at three different timepoints: DIV 10, 25, and 39. In slices 1 and 3 the presence of DCX-positive cells is

detected at all timepoints and the DCX population increases over time. After DIV 25, GFAP is just detected in a very few cells. (J): The

cell quantification done with the infrared DNA dye Syto60 showed that only enriched cell suspensions from slice 1, slice 3, WM and GM

fractions were able to survive over time. Note that these fractions contain DCX-positive cells in the early stage of culture. Scale bars ¼
50 lm.
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of DCX mRNA was performed by RT-PCR, which is more

sensitive than Northern blot (Omori et al., 1998).

Moreover, we demonstrated that the four DCX-positive

cell populations were colocalized, with different neuronal

and glial markers depending on their location in the cor-

tex: in layers I, II, and V the DCX-positive cells expressed

NeuN, whereas in the glia limitans and around the limit

between WM and GM the DCX-positive cells coexpressed

GFAP. In the glia limitans the DCX-positive cells with long

processes expressed GFAP and in the border between

GM and WM the small stellar DCX-positive cells also

expressed GFAP. The cells that only expressed DCX

presented long processes and small nuclei.

DCX-positive cells have been described in the neuro-

genesis niches of adult rodents (Brown et al., 2003; Couil-

lard-Despres et al., 2005; Rao et al., 2005), but they were

never detected in cortex except in the rat piriform cortex

where DCX was colocalized with NeuN, suggesting an

involvement in axonal or synaptic plasticity (Nacher et al.,

2001). Compared with total cell density, DCX-positive

cells were significantly less numerous in the cortex than

in the neurogenic subgranular zone of the hippocampus.

Nevertheless, DCX-positive cells in the cerebral cortex

represented a significant population, amounting to �4–

5% of all cortical cells. Furthermore, they were evenly

distributed among the four identified populations of DCX-

positive cells. This large distribution over the whole cortex

and subcortical areas would be related to the greater abil-

ity to elaborate interconnectivity between cortical struc-

tures in the more highly evolved simians and humans. We

hypothesize that this wide distribution of DCXþ cells may

have a close relationship with mammalian evolution, as

brain size has gradually increased (for review, see

Bradbury, 2005), in particular the cerebral cortex of the

more evolved species (for review, see Levitt et al., 1997).

Monkeys and humans have far more cortex than rodents,

and this enlarged cortex is associated with much slower

development (Allman et al., 1999). It may be that DCX

expression, which is a feature of immature neurons, is an

example of the retention of a juvenile trait of an ancestor

in the adults of the descendants, also known as a ‘‘pedo-

morphic’’ feature (Gould, 1992). The persistence of Cajal-

Retzius cells in adult human cerebral cortex as already

described (Martin et al., 1999) could also be another

argument for this hypothesis since some cells that coex-

press DCX and NeuN present the typical Cajal-Retzius

cell shape.

The evidence suggests now that the DCX cortical cells

are not stem cells, but they may have a neural progenitor

potential (Goldman et al., 1997; Palmer et al., 1999;

Bjorklund and Lindvall, 2000; Arsenijevic et al., 2001;

Brunet et al., 2002, 2005). These cells were certainly

present at the origin of the adult brain cell culture we

obtained in vitro with simian and human cortex; however,

this finding could not be reproduced with rodent brains,

where no DCX cortical cells could be detected. In this

report we demonstrate that the cells obtained in vitro

expressed DCX at the beginning of the culture. When the

cortex was sliced in layers, only the layers containing

DCX-positive cells were able to give viable cells over

time. The BrdU incorporation showed that only a few cells

were dividing and they expressed DCX and GFAP. The

number of dividing cells did not increase over time, which

suggests an asymmetric division. A dividing cell would

generate a quiescent progenitor cell that still expresses

DCX but not GFAP and a new dividing cell that expresses

DCX and GFAP. These proliferating cells were closely

associated with cells that have long GFAP-positive proc-

esses. This association of these cell types, which was

essential for the development of the culture over time,

should recreate the stem cell-like niche in vitro. This

niche, with few astrocytes that surround numerous DCX

and DCX/GFAP progenitors, represents an interesting

tool for cell therapy, since the astrocytes protect through

cell contact and ‘‘survival’’ factor delivery. We have al-

ready demonstrated the important rate of survival of such

cells after autologous reimplantation and their ability to

migrate and to differentiate into neurons in motor cortex

lesions in monkeys (Brunet et al., 2005) or to limit the TH

depletion in asymptomatic MPTP parkinsonian monkeys

(Brunet et al., 2009). These posttransplantation abilities

would also depend on the cell–cell interaction and the

progenitor properties of these cells as described in this

report.

In conclusion, the presence of DCX-positive cells and

the ability to produce precursor cell cultures from the

primate cortex were demonstrated to be closely linked,

even if the cellular origin of the in vitro cells has to be

Figure 10. Immunostaining for BrdU (in green), GFAP (in yellow pseudocolor), and DCX (rabbit antibody, Abcam) (in magenta) with a coun-

terstaining of nuclei with DAPI (in blue). A–E: WM cells in vitro (case 173 DIV35); F–J: GM cells in vitro (case 173 DIV28). These two pan-

els show the detection of BrdU (A,F), DCX (C,H), GFAP (D,I), and Dapi (B,G) and the overlay of the four color pictures (E,J). The BrdU-

positive cells from normal WM and GM fractions expressed DCX and GFAP (white arrows) even if they were at the metaphase stage of mi-

tosis (yellow arrow). K: Quantification at three timepoints of DCXþGFAPþBrdUþ cells compared to BrdUþ cells and total cells. Results

are expressed by means and standard deviations of cell number per field (n ¼ 3 cases, five fields were counted per case, ***P < 0.001,

the two last points compared to the first one). Nearly all BrdUþ cells were DCX- and GFAP-positive. Note that the number of BrdUþ cells

did not significantly increase over time unlike the total cell number. Scale bars ¼ 50 lm.
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Figure 10.
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clearly more clearly defined through further experiments.

This specificity of adult primate DCX expression in the

cortex is likely associated with the evolution of primate

cortex. These DCX-positive cells should be investigated

further to determine their roles in synaptic and metabolic

plasticity and various neuropathologies. In the future,

these cells could play an important role in brain repair as

endogenous tools or as autologous transplant material af-

ter in vitro cell culture, possibly with less tumor liability

and without immunogenicity.
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tine Roulin, Françoise Tinguely, and Christiane Marti (his-

tology and behavioral evaluations), the staff of the

Fribourg University Animal Facility, Josef Corpataux, Lau-

rent Bossy, Bernard Bapst, and Bernard Morandi (animal

house keeping), and the staff of the St. Kitts Biomedical

Research Foundation for expert technical assistance.

LITERATURE CITED
Allman J, Hasenstaub A. 1999. Brains, maturation times, and

parenting. Neurobiol Aging 20:447–454.
Arsenijevic Y, Villemure JG, Brunet JF, Bloch JJ, Deglon N, Kos-

tic C, Zurn A, Aebischer P. 2001. Isolation of multipotent
neural precursors residing in the cortex of the adult human
brain. Exp Neurol 170:48–62.

Arvidsson A, Collin T, Kirik D, Kokaia Z, Lindvall O. 2002. Neu-
ronal replacement from endogenous precursors in the
adult brain after stroke. Nat Med 8:963–970.

Bedard A, Gravel C, Parent A. 2006. Chemical characterization
of newly generated neurons in the striatum of adult prima-
tes. Exp Brain Res 170:501–512.

Benton RL, Maddie MA, Minnillo DR, Hagg T, Whittemore SR.
2008. Griffonia simplicifolia isolectin B4 identifies a spe-
cific subpopulation of angiogenic blood vessels following
contusive spinal cord injury in the adult mouse. J Comp
Neurol 507:1031–1052.

Bernier PJ, Bedard A, Vinet J, Levesque M, Parent A. 2002.
Newly generated neurons in the amygdala and adjoining

cortex of adult primates. Proc Natl Acad Sci U S A 99:
11464–11469.

Bjorklund A, Lindvall O. 2000. Self-repair in the brain. Nature
405:892–893, 895.

Bradbury J. 2005. Molecular insights into human brain evolu-
tion. PLoS Biol 3:e50.

Brown JP, Couillard-Despres S, Cooper-Kuhn CM, Winkler J,
Aigner L, Kuhn HG. 2003. Transient expression of double-
cortin during adult neurogenesis. J Comp Neurol 467:1–10.

Brunet JF, Pellerin L, Arsenijevic Y, Magistretti P, Villemure JG.
2002. A novel method for in vitro production of human
glial-like cells from neurosurgical resection tissue. Lab
Invest 82:809–812.

Brunet JF, Pellerin L, Magistretti P, Villemure JG. 2003. Cryo-
preservation of human brain tissue allowing timely produc-
tion of viable adult human brain cells for autologous
transplantation. Cryobiology 47:179–183.

Brunet JF, Rouiller E, Wannier T, Villemure JG, Bloch J. 2005.
Primate adult brain cell autotransplantation, a new tool for
brain repair? Exp Neurol 196:195–198.

Brunet JF, Redmond DEJr, Bloch J. 2009. Primate adult brain
cell autotransplantation, a pilot study in asymptomatic
MPTP treated monkeys. Cell Transplant 18:787–799.

Burgess HA, Reiner O. 2000. Doublecortin-like kinase is asso-
ciated with microtubules in neuronal growth cones. Mol
Cell Neurosci 16:529–541.

Cai Y, Xiong K, Chu Y, Luo DW, Luo XG, Yuan XY, Struble RG,
Clough RW, Spencer DD, Williamson A, Kordower JH, Patrylo
PR, Yan XX. 2009. Doublecortin expression in adult cat and
primate cerebral cortex relates to immature neurons that de-
velop into GABAergic subgroups. Exp Neurol 216:342–356.

Couillard-Despres S, Winner B, Schaubeck S, Aigner R, Vroe-
men M, Weidner N, Bogdahn U, Winkler J, Kuhn HG, Aigner
L. 2005. Doublecortin expression levels in adult brain
reflect neurogenesis. Eur J Neurosci 21:1–14.

des Portes V, Pinard JM, Billuart P, Vinet MC, Koulakoff A, Carrie
A, Gelot A, Dupuis E, Motte J, Berwald-Netter Y, Catala M,
Kahn A, Beldjord C, Chelly J. 1998. A novel CNS gene
required for neuronal migration and involved in X-linked sub-
cortical laminar heterotopia and lissencephaly syndrome.
Cell 92:51–61.

Francis F, Koulakoff A, Boucher D, Chafey P, Schaar B, Vinet
MC, Friocourt G, McDonnell N, Reiner O, Kahn A, McConnell
SK, Berwald-Netter Y, Denoulet P, Chelly J. 1999. Double-
cortin is a developmentally regulated, microtubule-associ-
ated protein expressed in migrating and differentiating
neurons. Neuron 23:247–256.

Figure 11. LN308 glioma cell line as positive control for BrdU incorporation detected for BrdU (A, in green) and Dapi (B, in blue) with the

overlay (C). Note that more than 70% of cells incorporated BrdU during 24 hours. Scale bars ¼ 100 lm.

14

ht
tp
://
do
c.
re
ro
.c
h



Gleeson JG, Allen KM, Fox JW, Lamperti ED, Berkovic S,
Scheffer I, Cooper EC, Dobyns WB, Minnerath SR, Ross
ME, Walsh CA. 1998. Doublecortin, a brain-specific gene
mutated in human X-linked lissencephaly and double cor-
tex syndrome, encodes a putative signaling protein. Cell
92:63–72.

Gleeson JG, Lin PT, Flanagan LA, Walsh CA. 1999. Doublecor-
tin is a microtubule-associated protein and is expressed
widely by migrating neurons. Neuron 23:257–271.

Goldman SA, Nedergaard M, Crystal RG, Fraser RA, Goodman
R, Harrison-Restelli C, Jiang J, Keyoung HM, Leventhal C,
Pincus DW, Shahar A, Wang S. 1997. Neural precursors
and neuronal production in the adult mammalian forebrain.
Ann N Y Acad Sci 835:30–55.

Gomez-Climent MA, Castillo-Gomez E, Varea E, Guirado R,
Blasco-Ibanez JM, Crespo C, Martinez-Guijarro FJ, Nacher J.
2008. A population of prenatally generated cells in the rat
paleocortex maintains an immature neuronal phenotype
into adulthood. Cereb Cortex 18:2229–2240.

Gould SJ. 1992. Ontogeny and phylogeny–revisited and
reunited. Bioessays 14:275–279.

Horesh D, Sapir T, Francis F, Wolf SG, Caspi M, Elbaum M,
Chelly J, Reiner O. 1999. Doublecortin, a stabilizer of
microtubules. Hum Mol Genet 8:1599–1610.

Jessberger S, Romer B, Babu H, Kempermann G. 2005.
Seizures induce proliferation and dispersion of doublecor-
tin-positive hippocampal progenitor cells. Exp Neurol 196:
342–351.

Koizumi H, Higginbotham H, Poon T, Tanaka T, Brinkman BC,
Gleeson JG. 2006. Doublecortin maintains bipolar shape
and nuclear translocation during migration in the adult
forebrain. Nat Neurosci 9:779–786.

Komitova M, Zhu X, Serwanski DR, Nishiyama A. 2009.
NG2 cells are distinct from neurogenic cells in the post-
natal mouse subventricular zone. J Comp Neurol 512:
702–716.

Levitt P, Barbe MF, Eagleson KL. 1997. Patterning and specifi-
cation of the cerebral cortex. Annu Rev Neurosci 20:1–24.

Martin R, Gutierrez A, Penafiel A, Marin-Padilla M, de la Calle
A. 1999. Persistence of Cajal-Retzius cells in the adult
human cerebral cortex. An immunohistochemical study.
Histol Histopathol 14:487–490.

Matsuo N, Kawamoto S, Matsubara K, Okubo K. 1998. Clon-
ing and developmental expression of the murine homolog
of doublecortin. Biochem Biophys Res Commun 252:
571–576.

Messam CA, Hou J, Major EO. 2000. Coexpression of nestin
in neural and glial cells in the developing human CNS

defined by a human-specific anti-nestin antibody. Exp Neu-
rol 161:585–596.

Mizuguchi M, Yamanouchi H, Becker LE, Itoh M, Takashima S.
2002. Doublecortin immunoreactivity in giant cells of
tuberous sclerosis and focal cortical dysplasia. Acta Neuro-
pathol 104:418–424.

Nacher J, Crespo C, McEwen BS. 2001. Doublecortin expres-
sion in the adult rat telencephalon. Eur J Neurosci 14:
629–644.

Omori Y, Suzuki M, Ozaki K, Harada Y, Nakamura Y, Takaha-
shi E, Fujiwara T. 1998. Expression and chromosomal
localization of KIAA0369, a putative kinase structurally
related to Doublecortin. J Hum Genet 43:169–177.

Palmer TD, Markakis EA, Willhoite AR, Safar F, Gage FH.
1999. Fibroblast growth factor-2 activates a latent neuro-
genic program in neural stem cells from diverse regions of
the adult CNS. J Neurosci 19:8487–8497.

Pecchi E, Dallaporta M, Charrier C, Pio J, Jean A, Moyse E,
Troadec JD. 2007. Glial fibrillary acidic protein (GFAP)-posi-
tive radial-like cells are present in the vicinity of prolifera-
tive progenitors in the nucleus tractus solitarius of adult
rat. J Comp Neurol 501:353–368.

Pekcec A, Loscher W, Potschka H. 2006. Neurogenesis in the
adult rat piriform cortex. Neuroreport 17:571–574.

Ponti G, Aimar P, Bonfanti L. 2006. Cellular composition and
cytoarchitecture of the rabbit subventricular zone and its
extensions in the forebrain. J Comp Neurol 498:491–507.

Rao MS, Hattiangady B, Abdel-Rahman A, Stanley DP, Shetty AK.
2005. Newly born cells in the ageing dentate gyrus display
normal migration, survival and neuronal fate choice but endure
retarded early maturation. Eur J Neurosci 21:464–476.

Shapiro LA, Ng KL, Kinyamu R, Whitaker-Azmitia P, Geisert
EE, Blurton-Jones M, Zhou QY, Ribak CE. 2007a. Origin,
migration and fate of newly generated neurons in the adult
rodent piriform cortex. Brain Struct Funct 212:133–148.

Shapiro LA, Ng KL, Zhou QY, Ribak CE. 2007b. Olfactory
enrichment enhances the survival of newly born cortical
neurons in adult mice. Neuroreport 18:981–985.

Verwer RW, Sluiter AA, Balesar RA, Baayen JC, Noske DP,
Dirven CM, Wouda J, van Dam AM, Lucassen PJ, Swaab
DF. 2007. Mature astrocytes in the adult human neocortex
express the early neuronal marker doublecortin. Brain
130(Pt 12):3321–3335.

Xiong K, Luo DW, Patrylo PR, Luo XG, Struble RG, Clough RW,
Yan XX. 2008. Doublecortin-expressing cells are present in
layer II across the adult guinea pig cerebral cortex: partial
colocalization with mature interneuron markers. Exp Neurol
211:271–282.

15

ht
tp
://
do
c.
re
ro
.c
h


