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Upper Cenomanian pelagic sediments from the northern Alpine Helvetic fold-and-thrust belt (northern
Tethyan margin) coeval with Oceanic Anoxic Event (OAE) 2 are characterized by the temporal persistence of
micrite sedimentation and lack of organic carbon-rich layers. We studied an expanded section in the
Chrummflueschlucht (east of Euthal, Switzerland), which encompasses the OAE 2 time interval. In order to
identify the paleoceanographic and paleoenvironmental conditions during OAE 2 in this part of the northern
Tethyan margin, and more specifically to trace eventual changes in nutrient levels and oxic conditions, we
investigated the biostratigraphy (planktonic foraminifera), the bulk-rock mineralogy, and measured stable
carbon- and oxygen-isotopes, total phosphorus (P) and redox-sensitive trace-element (RSTE) contents.

We were able to determine — with some remaining uncertainties — the different planktonic forami-
niferal biozones characteristic of the Cenomanian—Turonian boundary interval (Rotalipora cushmani,
Whiteinella archaeocretacea and Helvetoglobotruncana helvetica zones). In the lower part of the section (R.
cushmani total range zone), the bulk-rock 6'3C record shows a long-term increase. Within sediments
attributed to the W. archaeocretacea partial range zone, 6'>C values reach a maximum of 3.3%, (peak “a”).
In the following the values decrease and increase again to arrive at a plateau with high 6">C values of
around 3.1%, which ends with a peak of 3.3%, (peak “c”). At the top of the section, in sediments
belonging to the H. helvetica total range zone, 6'>C values decrease to post-OAE values of around 2.2,
The last occurrence of R. cushmani is observed just above the positive §'3C shift characterizing OAE 2.

P contents display small variations along the section with a long-term decreasing trend towards the
top. Before the OAE 2 interval, P values show higher values and relatively good covariation with detrital
input, indicating higher nutrient input before OAE 2. In sediments corresponding to the onset of the §'>C
positive excursion, P content is marked by a sharp peak probably linked to a slowdown in sedimentation
rates and/or the presence of a small hiatus, as is shown by the presence of glauconite and phosphatic
grains. In the interval corresponding to OAE 2, P values remain low and increase slightly at the end of the
positive shift in the 6'3C record (in the H. helvetica total range zone).

The average contents of RSTE (U, V, As, Co, Mo and Mn) remain low throughout the section and appreciable
RSTE enrichments have not been observed for the sedimentary interval corresponding to OAE 2. No correlation
is observed with stratigraphic trends in RSTE contents in organic-rich deeper-water sections. The presence of
double-keeled planktonic foraminifera species during most of the Cenomanian/Turonian boundary event is
another evidence of relatively well-oxygenated conditions in this part of the northern Tethyan outer shelf.

Our results show that the Chrummflueschlucht section corresponds to one of the most complete
section for the Cenomanian—Turonian boundary interval known from the Helvetic realm even if a small
hiatus may be present at the onset of the §'3C record (peak “a”). The evolution of P contents suggests an
increase in input of this nutritive element at the onset of OAE2. However, the trends in RSTE contents and
the planktonic foraminifera assemblages show that the Helvetic realm has not been affected by strongly
depleted oxygen conditions during OAE 2.

* Corresponding author. Department of Earth Science, University of Bristol, Queen’s road, BS8 1R] Bristol, UK.
E-mail address: stephane.westermann@bristol.ac.uk (S. Westermann).
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1. Introduction

According to the original definition by Schlanger and Jenkyns
(1976), oceanic anoxic events (OAEs) represent exceptional
episodes in Earth’s history, which are marked by widespread dys-
oxic to anoxic conditions in the world oceans. These events resulted
in the extensive deposition of organic-rich sediments and changes
in the dynamics of the global carbon cycle leading, for instance, to
changes in the relative importance of inorganic and organic-carbon
reservoirs. The driving mechanisms behind OAEs are still under
debate. In the case of the formation of Cretaceous black shales,
different models have been proposed including — either alone or in
combination — large-scale increases in primary productivity,
world-wide expansion of oxygen-minimum zones and the inten-
sification of water-column stratification (Schlanger and Jenkyns,
1976; Arthur and Schlanger, 1979; Jenkyns, 1980; Scholle and
Arthur, 1980; Bralower and Thierstein, 1984; Pederson and
Calvert, 1990; Jenkyns, 2003; Pancost et al., 2004; Hardas and
Mutterlose, 2007; Pearce et al., 2009). Recently, the stratigraphic
distribution of redox-sensitive trace elements (RSTE; e.g., U, V, As,
Mo and Co) has been explored in OAE-related sediments
throughout the Mesozoic, in order to trace the temporal and spatial
evolution in oxygen contents (Algeo and Maynard, 2004; Bodin
et al,, 2007; Brumsack, 2006; Algeo and Maynard, 2008). In addi-
tion, the evolution in phosphorus (P) contents and accumulation
rates has been employed to trace both changes in the marine P cycle
and their impact on primary productivity rates, as well as the
influence of anoxic bottom-water conditions on the capacity of the
sedimentary reservoir to retain P (Ingall and Van Cappellen, 1990;
Van Cappellen and Ingall, 1994; Mort et al., 2007). These two
approaches represent valuable tools in unravelling the paleo-
ceanographic and paleoenvironmental conditions during OAEs
(e.g., Turgeon and Brumsack, 2006).

The Late Cenomanian sedimentary record encompasses one of the
best-studied OAEs, labelled OAE 2 (Schlanger and Jenkyns, 1976;
Jenkyns, 1980; Schlanger et al., 1987; Jenkyns et al., 1994; Strasser
et al., 2001; Leckie et al., 2002; Sageman et al., 2006; Caron et al.,
2006; Mort et al., 2007; Voigt et al., 2007; Adams et al., 2010;
Montoya-Pino et al., 2010). Major climatic and paleoceanographic
changes have been associated with this event (Jenkyns et al., 1994;
Huber et al., 2002; Norris et al., 2002; Forster et al., 2007). The
onset of OAE 2 is characterized by an important positive excursion in
the 63C carbonate bulk-rock record of approximately 2.5%,
(Schlanger and Jenkyns, 1976; Jenkyns, 1980; Schlanger et al., 1987;
Gale et al., 1993; Erbacher et al., 1996; Jarvis et al., 2006; Voigt et al.,
2006). OAE 2 is also marked by an extinction event and turnover in
planktonic foraminifera, radiolaria and nannofossil assemblages
(Eicher and Worstell, 1970; Hart and Bigg, 1981; Caron and
Homewood, 1992; Leckie, 1985; Hart and Ball, 1986; Lamolda et al.,
1997; Grosheny and Malartre, 1997; Keller et al., 2001; Leckie et al.,
2002; Erba, 2004; Caron et al., 2006; Grosheny et al., 2006), a sea-
level rise (Haq et al., 1987) and a decrease in the 87Sr/3%sr ratio (Jones
and Jenkyns, 2001). Recently, Mort et al. (2007) showed that the onset
of OAE 2 correlates with a general increase in P-accumulation rates,
which may have triggered an overall increase in sea surface-water
productivity.

The northern Alpine Helvetic thrust-and-fold belt representing
the central part of the northern Tethyan margin remains an
underexplored area with regards to the OAE 2. This may be related
to the observation that organic-rich sediments and any other
obvious change in the lithological and mineralogical composition
are lacking in the corresponding formation (Seewen Formation;
Bolli, 1944; Féllmi and Ouwehand, 1987; Delamette, 1988; Follmi,
1989). This is in contrast to more distal shelf areas on the
northern Tethyan margin, which are presently locked up in

Ultrahelvetic units (Wagreich et al., 2008), and from the Briani-
connais domain (“Préalpes médianes”; Strasser et al., 2001), from
which organic-rich sediments related to OAE 2 have been
described.

We selected a well-preserved and expanded section in the
Chrummflueschlucht (central Switzerland), in order to study
paleoenvironmental change during OAE 2 in the Helvetic pelagic
environment, which does not appear to have been affected by
oxygen-depleted conditions. We carried out a bio- and chemo-
stratigraphic study to obtain appropriate age control and corre-
lated our results with published data from the sections of Pueblo,
Colorado (GSSP for Cenomanian—Turonian boundary, Pratt and
Threlkeld, 1984; Arthur et al., 1985; Kennedy et al., 2000; Keller
and Pardo, 2004), Wunstorf (Voigt et al., 2008) and Eastbourne,
southern England (Paul et al., 1999; Gale et al., 2005). The study of
the planktonic assemblages allowed us to evaluate the eventual
biotic effects in this part of the Tethyan realm. The bulk-rock
mineralogy, total P contents and oxygen-isotope ratios record
were used to trace paleoenvironmental change, and stratigraphic
RSTE distributions to reconstruct fluctuations in oxygen
concentration.

2. Geological setting and lithology

The Chrummflueschlucht section is located along a forest road
northeast of Einsiedeln (Canton of Schwyz, central Switzerland;
8°50'E, 47°05'N; Fig. 1). The base of the section consists of a sandy
and glauconitic limestone, which corresponds to the Kamm Bed —
the top lithostratigraphic unit of the Garschella Formation and
which is latest Albian to Middle Cenomanian in age (Fig. 2; Follmi
and Ouwehand, 1987). The remainder of the section is composed
of (hemi-)pelagic carbonates of Cenomanian and Turonian age, and
belongs to the Seewen Formation. The carbonate is consistently
micritic and rich in calcareous dinoflagellate cysts (c-dinocysts),
inoceramid prisms and planktonic foraminifera, which underlines
its pelagic origin. The section measured and sampled for this study
is lithostratigraphically divided into three parts. The first part is
composed of mostly massive limestone beds (2—18 m; Fig. 2),
which consist of wackestone rich in planktonic foraminifera and
pelagic crinoid remains. The second part of the section (18—30 m;
Fig. 2) is characterized by up to 95 cm thick limestone beds, which
become more thinly bedded towards the top and show a transition
from wackestone to packstone with smaller planktonic forami-
nifera at the base of this part. In the same part, we observe the
occurrence of radiolaria and bryozoan debris. We also note the
presence of Thalassinoides within this interval (from 18 to 23 m).
The last and uppermost part of the section (30 m to the top; Fig. 2)
corresponds to a succession of thinly-bedded carbonates, consist-
ing of wackestones with large planktonic foraminifera.

3. Methods

The biostratigraphy of the Chrummflueschlucht section is based
on planktonic foraminifera, which were determined using thin
sections of 102 samples in total. For the critical zones, especially for
the transition of the Rotalipora cushmani to the Whiteinella
archaeocretacea Zone, up to six thin-section replicates have been
prepared and examined per sample. The determination of the
different species was made using the systematics of Loeblich and
Tappan (1988) and the Chronos website (www.chronos.org), and
the planktonic zonal schemes of Robaszynski and Caron (1979,
1995).

The analysis of the bulk-rock mineralogy was carried out by
X-ray diffraction (Scintag XRD 2000 Diffractometer) based on
procedures described by Kiibler (1983) and Adatte et al. (1996). This
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Fig.1. A.Localisation of the Chrummflueschlucht section. B. Tectonic map of Switzerland with indication of the Helvetic realm (after Bodin et al., 2006). C. Late Cenomanian (93 Ma)

paleogeographic map of the western Tethys (redrawn after Scotese et al., 2001).

semi-quantitative method is based on non-oriented powder
samples with a precision of 5—10% for phyllosilicates and 5% for
grain minerals. We determined a detrital index [DI = Calcite/
(Quartz + Phyllosilicates + K-Feldspar + Na-Plagioclase)] to
observe changes in detrital influx.

Carbon- and oxygen-stable isotope analyses were performed on
powdered bulk-rock samples at the stable-isotope laboratory of the
Universities of Orsay (Paris XI, France) and Bern (Switzerland),
using VG SIRA 10 triple collector and a Finnigan Detla V Advantage
mass spectrometer respectively. The results were calibrated to the
PDB scale with the standard deviation of 0.05% for 6'3C and of 0.07%
for 6180.

Total P analysis was performed on bulk-rock samples, following
the procedure described in Bodin et al. (2006). The concentration of
PO4, expressed in ppm, is obtained by calibration with known
standard solutions, using an UV/Vis photospectrometer (Perking

Elmer UV/Vis Photospectrometer Lambda 10, A = 865 nm) with
a mean precision of 5%.

The determination of Al, Fe and redox-sensitive trace elements
was performed on bulk rock following the procedure described in
Bodin et al. (2007). The samples were attacked by suprapur nitric
acid and elements contents were determined by a quadrupole ICP-
MS (ELAN 6100, Perkin Elmer), using a quantitative mode with
a mean precision of 1-2% depending on the element under
consideration. The dissolution percentages determined after
filtration were about 95% of initial sample weight in the studied
section. Moreover, no correlation was observed between the
concentration of the different analysed samples and the dissolution
percentage obtained during the digestion procedure (Fig. 3). This
shows that the studied elements are present in the soluble biogenic
and authigenic phases and are not due to partial leaching of the
detrital insoluble fraction.
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Fig. 3. U contents in ppm versus the percentage of dissolution of the samples attacked
by suprapur nitric acid in the section of Chrummflueschlucht.

4. Data
4.1. Biostratigraphy

The chronological framework is based on the stratigraphic
distribution of planktonic foraminifera. In this study, 25 species
were recognized throughout the section, including the index
species of the Cenomanian—Turonian boundary interval. The
stratigraphic distribution of these species is shown in Fig. 4.
The three following assemblages have been distinguished based on
the zonal scheme defined by Robaszynski and Caron (1979, 1995).

The first assemblage (the first ~18 m of the section) is char-
acterised by the presence of Rotalipora species, including Rotali-
pora reicheli, Rotalipora gandolfi, Rotalipora appenninica, Rotalipora
greenhornensis, Rotalipora montsalvensis, Rotalipora brotzeni and
the Upper Cenomanian index species R. cushmani. The R. cushmani
Total Range Zone (TRZ) is defined by the FO of the index species
situated at 7 m above the base of the section, just after the last
occurrence (LO) of R. reicheli. The top of this zone is defined by the
last occurrence of R. cushmani. The FO of Whiteinella sp., Praeglo-
botruncana stephani and Praeglobotruncana gibba is located near
the top of the R. cushmani TRZ. The first assemblage ends with the
LO of R. cushmani, at 17.9 m, and the disappearance of Rotalipora
species.

The second assemblage (from 17.9 to 31.1 m) is defined by the
common presence of Whiteinella species (W. archaeocretacea,
Whiteinella praehelvetica, Whiteinella baltica and Whiteinella
paradubica) and marked by the presence of by the common
presence of double-keeled Dicarinella species (Dicarinella hagni,
Dicarinella algeriana, Dicarinella canaliculata, Dicarinella imbri-
cata), and P. gibba. This foraminiferal assemblage shows a change
in the last three meters of this interval with the decrease in
abundance of double-keeled species relative to the forms with
inflated chambers. This second assemblage characterizes the W.
archaeocretacea Partial Range Zone (PRZ) which is defined by the
LO of R. cushmani and the FO of Helvetoglobotruncana helvetica.
The Cenomanian—Turonian boundary is situated within this
zone.

The upper part of the section characterizes the H. helvetica TRZ,
which is defined by the FO of the index species H. helvetica (at
31.2 m). This third assemblage marks the appearance of four new
taxa (H. helvetica, Marginotruncana coronata, Marginotruncana
sigali and Falsotruncana sp.) indicating an Early to Middle Turonian
age.

4.2. Stable carbon- and oxygen-isotope data

Bulk-rock stable-isotope curves (6'0 and 6'3C) from the
Chrummflueschlucht section are plotted in Fig. 5. The 6'>C curve
shows a progressive increase in values in the first part of the section
(from the base to 10m) with values ranging from 2.0 to 2.79,
(VPDB). In the interval between 10 and 15.5 m, §'3C values remain
quite stable and fluctuate around 2.7%, At 18 m, the 6'3C record
shows a first relative maximum of 3.3%,, following the LO of R.
cushmani. Thereafter, the 63C values decrease and show two
maxima at 19.3 m and 20.8, respectively. After a trough between
21 and 23 m, 6'3C values increase again and arrive at a plateau
(between 24 and 30m) with values of around 3.1%, The plateau
ends with a distinct peak at 28.8 m. Near the top of the section, in
sediments characterized by the FO H. helvetica zone, the 6'>C record
decreases to post-excursion values (approximately around 2.25%,).
Given the planktonic foraminifera distribution, we will consider the
first peak following the LO of R. cushmani as the onset of the
positive 6'3C excursion and the last peak before the decrease of the
613C values as the end of the OAE 2 positive excursion.

The bulk-rock oxygen-isotope data record a smooth and
progressive decline in 680 from —2.6 to —3.4%, in the first part of
the section (from the base to 12 m). In the following part of the
section, from 12 to 18 m (close to the LO of R. cushmani), the 6'80
record shows relative stable values (around —2.79%,) followed by
a negative spike (minimum at —3.69%,) at about 18 m. Thereafter,
6180 values exhibit an increasing trend and remain quite high in the
remainder of the section, with values of around —39%,.

4.3. Bulk-rock mineralogy

At Chrummflueschlucht, the sediments consist essentially of
calcite, with minor inclusions of quartz and phyllosilicates (Fig. 6).
Calcite content ranges between 85 and 97% with an upward-
increasing trend. Quartz and phyllosilicates show low values, from
the detection limit to 11% for quartz and to 5% for phyllosilicates,
respectively. These minerals exhibit higher values in the glauco-
nite-rich Kamm Bed (in the 2 first meters of the section). A second
interval of higher quartz and phyllosilicate contents is located at
~12 m. Two further enrichments are observed in sediments at the
onset of the positive 6'3C shift (at about 15 m) and below the §'3C
plateau ( ~ 23 m), respectively. K-feldspar and Na-plagioclase occur
only sporadically throughout the section.

The DI shows highest values at the onset of the 6'3C shift and
within the trough between the peaks and the plateau. DI, phyllo-
silicates and the unquantified minerals show similar trends, sug-
gesting that most of the unquantifieds have a detrital origin, with
a high component of phyllosilicates.

4.4. Total phosphorus contents

Total P contents range from 117 to 1097 ppm (Fig. 7). P-accu-
mulation rates were not calculated because of uncertainties in the
attribution of absolute ages. In the first 15 m of the section, in
sediments attributed to the R. cushmani TRZ, P contents display
small variations superimposed on a long-term decreasing trend
with values reaching from ~500 to ~150 ppm. In the following,
the P trend exhibits a positive spike, reaching a maximum of
1097 ppm in sediments representing the transition of the R. cush-
mani and W. archaeocretacea zones, coeval with the first positive
peak in 6'3C. After this first peak in 6'3C, P values remain quite low,
fluctuating between 150 and 200 ppm. In sediments corresponding
to the end of the positive shift in 6'>C (within the H. helvetica zone)
a smooth increase is observed (290 ppm), coeval with the decrease
in the 6'3C record.
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diagenetic processes did not affect the stable-isotope record too strongly.

4.5. Redox-sensitive trace elements which are commonly used to interpret changes in paleoredox
conditions (Algeo and Maynard, 2004; Tribovillard et al., 2006;

We investigated the stratigraphic behaviour of the following Algeo and Lyons, 2006). The average values for U, V, As, Co and
redox-sensitive trace elements: U, V, Co, Mo, As, Mn and Fe, all of Mo correspond to approximately 0.5, 2.3, 0.6, 2.3 and 0.7 ppm,
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respectively (Fig. 7). In the first part of the section (from the base to
12 m), U and V contents show higher values ranging around 0.8 and
2.5—3 ppm, respectively. Consequently, U and V contents decrease
in sediments attributed to the R. cushmani zone and remain low
throughout the rest of the section, showing higher fluctuations in
the first 20 m of the section, with values between the detection
limits and 3 ppm. In the second part of the section, As shows rather
low and constant values. Co displays an intermediate behaviour
between V and As. The lower part of the Co trend shows variations
similar to As (with values between 1 and 6 ppm). In the second part
of the section (from 20 m to the top), Co contents shows rather low
values with a slight increase at ~32 m. Mo contents remain quite
constant along the entire section and deviate towards higher values
only in the interval coeval with the decrease in 6'3C values. Mn
shows values between 125 and 920 ppm. Mn concentrations
exhibit a long-term decreasing trend in the first part of the section
reaching a minimum of about 200 ppm in sediments corresponding
to the plateau in 6'3C. In the following, Mn values increase again to
pre-OAE values. Fe shows a decreasing trend from the base of the
section to the first 20 m. Above 20 m, Fe contents increase slightly
and at ~32 m, Fe values display an increase towards 8000 ppm. Al
contents are well correlated with the evolution of phyllosilicate
contents, except for the interval corresponding to the §3C plateau.
Al contents show higher values in the first 10 m of the section,

followed by a small decrease at ~15 m. Thereafter, Al values
increase slowly and show a peak at ~32 m.

5. Discussion
5.1. Stable isotopes, biostratigraphy and chronology of the OAE 2

The reliability of 6'80 and 6'>C data in bulk-rock sediments is
largely dependent upon the degree of diagenesis, which primarily
affects oxygen-isotope values by lowering the 80/0 ratio in
sediments (e.g., Schrag et al., 1995). By cross-plotting all 6'%0 and
613C values, no significant correlation has been observed for the
Chrummflueschlucht section (Fig. 5, R?> = 0.0572), suggesting that
late diagenetic and tectonic processes did not affect the stable-
isotope values too severely.

The OAE 2 is characterized by a globally recognized positive
excursion in 6'3C in both carbonate and organic matter (Schlanger
and Jenkyns, 1976; Jenkyns, 1980; Pratt and Threlkeld, 1984; Gale
et al., 1993; Jenkyns et al., 1994; Leckie et al., 2002; Tsikos et al.,
2004; Caron et al., 2006; Jarvis et al., 2006; Grosheny et al., 2006;
Voigt et al., 2006, 2007; Mort et al., 2007; Takashima et al., 2010).
The typical shape of the C—T boundary positive excursion, as
observed in the GSSP section at Pueblo, Colorado (Pratt and
Threlkeld, 1984; Sageman et al., 2006) and in Eastbourne, United
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Fig. 7. Phosphorus, redox-sensitive trace elements and aluminium distributions (in ppm) for the Chrummflueschlucht section. Grey lines correspond to five-point average curves

for each element.

Kingdom (Paul et al., 1999; Gale et al., 2005) is characterized by (1)
a first increase in 6'3C values (peak “a”), (2) a trough interval, (3)
a second peak (peak “b”) and (4) a prolonged plateau which ends
with a less distinctive peak (peak “c”) (Fig. 8; Jarvis et al., 2006 and
references therein). In more expanded sections, four peaks are
recognized (peaks A—D, Voigt et al., 2008).

In the Chrummflueschlucht section, the overall shape of the 613¢
curve is well comparable to Pueblo and Eastbourne, however with
a smaller amplitude (~1%,) and a gradual increase preceding the
OAE 2 excursion (Fig. 8). Peaks “a” and “c” are well recognizable;
they mark the onset and the end of the C/T boundary excursion,
respectively, reaching both a maximum of ~3.39%, (Fig. 8). Despite
this similar trend in the §'3C record, the distribution of planktonic
foraminifera during the OAE 2 interval shows some differences
with the characteristic bio-events of C/T boundary defined at
Pueblo (Cobban and Scott, 1972; Caron et al., 2006) and Eastbourne
(Paul et al., 1999; Keller et al., 2001). At Chrummflueschlucht, R.
cushmani disappears approximately 50 cm below peak “a”, whereas
the LO of this index species is observed immediately above peak “a”
at Pueblo (Keller and Pardo, 2004; Caron et al., 2006; Jarvis et al.,
2006) and in the trough between peaks “a” and “b” at Eastbourne
(Keller et al., 2001; Caron et al., 2006; Jarvis et al., 2006; Fig. 8).
Another particularity of the Chrummflueschlucht section lies in the
proximity of the LO’s of R. greenhornensis and R. cushmani, and
the FO of D. hagni which coincides with peak “a”. This suggests the
presence of a small hiatus at the onset of OAE 2 at Chrummflues-
chlucht. The abrupt change in microfacies observed within this
interval and the relatively high proportion of glauconite and
phosphatic grains in thin sections is in favour of a hiatus associated
with reworked sediments. The presence of reworked sediments is
frequent in the Seewen formation for this time interval (Féllmi and
Ouwehand, 1987; Follmi, 1989). This may imply that the first peak
in the 6'3C record at Chrummflueschlucht does not represent the
whole peak “a” but rather a combination of the onset and the end of
the peak observed at Pueblo or Eastbourne (Fig. 8).

The determination of peak “b” is more questionable. In the
sections of Pueblo, Eastbourne and Wunstrof, peak “b” is coeval
with the “Heterohelix shift” (Leckie, 1985; Leckie et al., 1991, 1998;
Nederbragt and Fiorentino, 1999; Huber et al., 1999; Caron et al.,
2006; Jarvis et al., 2006). This event follows the disappearance of
complex keeled morphotypes. At Chrummflueschlucht, two peaks
of similar amplitude follow peak “a” but no change in the distri-
bution of Heterohelicids has been observed along the section. It is
therefore difficult to discriminate which of these two peaks
corresponds to peak “b”. In any case, the coincidence of the LO of
Anaticinella ssp. with the last peak of these two maxima (at 20.8 m),
indicates that we are still in the Cenomanian.

The following plateau in stable carbon-isotope values is
comparable to the plateau in the Pueblo section, suggesting that the
Chrummflueschlucht preserves a relatively complete succession of
the Cenomanian—Turonian boundary. The Lower Turonian FO of H.
helvetica is observed in an interval following peak “c” (Fig. 8),
during the subsequent negative excursion in the §'3C record, which
marks the end of the OAE 2 excursion, in analogy to Pueblo (Keller
and Pardo, 2004; Caron et al., 2006; Desmares et al., 2007).

The similarity in the ¢6'3C excursions between the Chrumm-
flueschlucht and Pueblo sections, with as only deviation a probable
merger of a part of peak “a”, shows that the Chrummflueschlucht
section records a large part of OAE 2 6'3C positive excursion. It also
indicates that the Chrummflueschlucht section constitutes one of
the most complete sections in the Helvetic thrust-and-fold belt for
the Upper Cenomanian—Lower Turonian known so far.

5.2. Planktonic foraminifera as environmental proxies

The microfossil  assemblages  through the  Cen-
omanian—Turonian boundary interval show distinct differences in
their morphologies through time, which are related to different
ecological conditions (Caron and Homewood, 1982; Hart and Bailey,
1979; Hart, 1980). A first group consists of K-selected species
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(MacArthur and Wilson, 1967), which characterize large trocho-
spiral, keeled, forms with complex morphotypes and inferred long
reproduction cycles (Caron, 1983; Grosheny and Malartre, 1997;
Keller et al., 2001; Caron et al., 2006; Robaszsynski et al., 2010).
They dominate the planktonic assemblages from the R. cushmani
and the H. helvetica TRZ, which are periods characterized by well-
oxygenated water with low nutrient levels allowing a specific
diversification and the development of more sophisticated mor-
photypes (Grosheny and Malartre, 1997; Caron et al., 2006; Mort
et al., 2007). The second group is composed of globular trocho-
spiral and biserial forms with small and simple morphotypes (e.g.,
Whiteinella and Heterohelix), which mainly lived in the upper-water
column with high nutrient levels (Hart and Leary, 1989; Petters,
1980; Jarvis et al., 1988; Grosheny and Malartre, 1997; Leckie
et al, 1998; Keller and Pardo, 2004). They are interpreted as
r-selected species (MacArthur and Wilson, 1967) and date from the
W. archaeocretacea PRZ.

The global disappearance of complex K-selected forms with long
reproduction cycles (rotaliporoids) at the onset of OAE 2 has been
explained by the development of oxygen-depleted conditions in
the deeper part of the water column (Leckie, 1987; Leckie et al.,
1998; Keller and Pardo, 2004; Caron et al., 2006). This change in
the morphology of planktonic foraminifera is also observed in the
Chrummflueschlucht section. At Chrummflueschlucht, however,
the planktonic assemblage attributed to the W. archaeocretacea PRZ
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is dominated by large morphotypes of the double-keeled genera
Dicarinella and Praeglobotruncana. The planktonic foraminifera
turnover characterizing the C/T boundary in this part of the Tethys
is, therefore, atypical compared to other oceanic settings. This is
interpreted as relatively favourable conditions in the Helvetic
pelagic realm during OAE 2.

The same morphotypes have also been observed at the wadi
Bahloul section, Tunisia, and their episodic appearance during the
Late Cenomanian part of the W. archaeocretacea PRZ has been
interpreted as the result of the episodic return to less stressful
conditions (Caron et al., 2006).

Only near the end of the W. archaeocretacea PRZ, a strong
diminution in Dicarinella and Praeglobotruncana species and
a dominance of Whiteinella is observed. Since sedimentological and
geochemical indications for oxygen-depleted conditions are
missing for this particular part of the section (see below), this shift
towards r-selected species is probably a reflection of global rather
than regional conditions.

5.3. Paleoenvironmental conditions in the Helvetic realm
during OAE 2

The bulk-rock mineralogical composition and especially the
detrital index (DI) provide valuable information on environmental
and climatic change. Low DI values indicate higher continental
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runoff, and vice versa. In the Chrummflueschlucht section, the
interval corresponding to the positive 6'>C excursion is marked by
an increase in detrital influx (low DI values). This interval is also
characterized by a positive correlation of the stratigraphic trends in
DI, P and Al contents, suggests a coupling between runoff and P
delivery. The lower DI and higher P values may indicate higher
nutrient levels during this time interval. The increase in P contents
has been observed in other sections of the Tethys and the North
Atlantic indicating a change in continental runoff and nutrient
influx and/or intensification in upwelling during the Late Cen-
omanian (Mort et al., 2007). This inferred change in nutrient input
may have triggered an increase in primary productivity and
a concomitant increase in 6'3C values (Ingall et al., 1993; Van
Cappellen and Ingall, 1994; Fo6llmi, 1995; Mort et al., 2007).
Organic-rich sediments are, however, lacking in the Chrumm-
flueschlucht section. Black shales related to OAE 2 have been found
in the Ultrahelvetic Zone (Strasser et al., 2001; Wagreich et al.,
2008) indicating increased organic-matter production and/or
better preservation in deeper, distal parts of the northern Tethyan
shelf.

Following the first maximum in the 6'3C curve, P contents are
less well correlated with Al contents and DI variations: Al values
increase and DI values generally decrease in sediments attributed
to the W. archaeocretacea zone, whereas P contents remain low.
This has also been observed in other sections and has been
attributed to the decreased retention capacity of P in sediments
during OAE 2 (Mort et al., 2007). Of interest is the observation that
the same trend is observed in sections submitted to different
degrees of oxygen depletion during OAE 2. The fact that this trend is
also observed in Chrummflueschlucht, despite the obvious lack of
anoxia during OAE 2, is an indication that the diminution in P burial
rates is a global phenomenon (cf. Follmi, 1995).
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Changes in detrital influx are partly associated with high values
in the 6'®0 record. The observed pattern in oxygen stable-isotopes
recorded at Chrummflueschlucht is comparable to the published
curves of the sections at Eastbourne and Gubbio (Jenkyns et al.,
1994; Tsikos et al., 2004) and also with the section of Rehkogel-
graben in the Ultrahelvetic unit (Wagreich et al., 2008). Oxygen
stable isotopes in carbonates are more affected by diagenesis
compared to carbon isotopes (Schrag et al., 1995), but the good
agreement between Chrummflueschlucht and other sections of the
northern Tethys indicates that the long-term variations in the 6'%0
signal represent a consistent trend (Fig. 9). However, the magnitude
of the temperature change based on bulk-rock oxygen-isotopes is
difficult to constrain because of the diagenetic alteration of fossil
carbonate (Gale and Christensen, 1996; Wilson et al., 2002; Voigt
et al., 2004) and the uncertainty with regards to the isotopic
composition of the Cretaceous seawater (Wilson et al., 2002; Keller
and Pardo, 2004; Voigt et al., 2004; Kuhn et al., 2005). The Cen-
omanian—Turonian transition corresponds to the onset of the
interval of peak Cretaceous warmth, which reached its thermal
maximum in the Late Turonian (Clarke and Jenkyns, 1999; Wilson
et al,, 2002). The decreasing trend in 6'%0 values before the onset
of the OAE 2 is consistent with a warmer climate associated with
higher rates in continental runoff. During OAE 2, a brief cooling
episode is recognized based on southward migrations of boreal
fauna (Jefferies, 1962; Jenkyns et al., 1994; Gale and Christensen,
1996), on oxygen-isotope records and TEXgs data (Norris et al.,
2002; Wilson et al., 2002; Voigt et al., 2004; Forster et al., 2007;
Sinninghe Damsté et al., 2010). At Chrummflueschlucht, the small
plateau of higher oxygen-isotope values at the onset of OAE 2 (peak
“a”) may relate to this cooling episode. An alternative explanation
consists in an input of fresh water at the onset of the shift (Sageman
et al., 1998; Keller et al., 2008). At Chrummflueschlucht, the good
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Fig. 9. Change in 6'%0 through the end-Cenomanian OAE 2 in the sections of Eastbourne (Tsikos et al., 2004), Rehkogelgraben (Wagreich et al., 2008) and Chrummflueschlucht. Dark

grey bands indicate the position of the Peaks 1 and 2.
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correlation between trends in the DI and 6'30 records goes along
with a paleoclimatic interpretation of the latter record. A negative
spike in 6'80 values follows the onset of the positive 6'>C excursion.
This may be linked to a return to warmer and more humid climate
(Fig. 10). The second part of the positive shift shows an increasing
trend in the 6'80 record, which is associated with low detrital input.
Contrary to other places where a general warming is observed
(Jenkyns et al., 1994; Norris et al., 2002; Wilson et al., 2002; Voigt
et al., 2004; Forster et al., 2007; Sinninghe Damsté et al., 2010), at
Chrummflueschlucht, the evolution of the §'80 record suggests
a change in the regional hydrological cycle related to a possible
cooling and more contrasted climate or more arid period (Keller
et al., 2008).

5.4. Redox conditions in the Helvetic realm during OAE 2

The behaviour of P in relation to the change in planktonic
foraminiferal assemblages suggests a change towards oxygen-
depleted conditions in the western Tethys. Mort et al. (2007) sug-
gested a direct dependency between the evolution of redox
conditions and P-accumulation rates during OAE2, with lowered
P retention rates during dysoxic/anoxic conditions. The higher
P contents in sediments at the onset of the §'3C positive excursion,
followed by lower P values during the 6'>C excursion decoupled
from detrital proxies are in good agreement with this hypothesis.

Mn contents show a long-term decrease, which may be in favour
of oxygen-depleted conditions. Mn is generally not used as a pale-
oredox proxy due to its high mobility in reducing sediments
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(Tribovillard et al., 2006). However, a negative correlation is
frequently observed between Mn trapping and the development of
anoxic conditions (Frakes and Bolton, 1992; Brumsack, 1986; Kuhn
et al., 2005; Tribovillard et al., 2006). At Chrummflueschlucht, the
positive shift in 6'3C is coeval with a decrease in Mn contents. This,
together with the decoupling of the trends in the contents of P and
detrital proxies may indicate the beginning of oxygen depletion in
the water column. In the Pueblo section, enrichments in Co and Mo
indicate strong oxygen depletion in the Western Interior Seaway
(Snow et al., 2005). However, the suite of RSTE (U, V, Mo, Co, As)
shows no correlative enrichments along the section of Chrumm-
flueschlucht (Fig. 7). The higher values of U corresponds to higher
values in DI, and the trend in V contents is similar to the Al trend
indicating that these RSTE enrichments are principally of detrital
origin. This provides evidence for the absence of well-developed
anoxic conditions at this site of the Helvetic realm (Tribovillard
et al., 2006). However, one has to bear in mind that the onset of
the 6'3C positive shift may be related to a possible reduction in
sediment accumulation in the Chrummflueschlucht section, which
as such may represent a loss of information on the time period
directly after the onset of OAE2. The presence of Dicarinella and
Praeglobotruncana during most of the 6'3C positive excursion is
another argument against full-fletched anoxic conditions.

6. Depositional model and conclusions

The Chrummflueschlucht section provides a good opportunity
to reconstruct the effects of the Cenomanian—Turonian Boundary
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Eventin the pelagic environment of the Helvetic realm. The positive
613C excursion and the accompanying characteristic overturn in
planktonic foraminifera are documented in high detail.

The presence of keeled foraminifera and the moderate P and
detrital contents indicate a relatively low stress environment
during the R. reicheli Zone and most of the R. cushmani Zone. At the
onset of the §'3C positive excursion near the limit between the R.
cushmani and the W. archaeocretacea Zones, the P record shows
a rapid spike linked to the presence of glauconitic and phosphatic
grains. This probably corresponds to a small slowdown or a stop in
the sedimentation, which may have been linked to the end-Cen-
omanian sea-level rise (Haq et al., 1987), and results in an early
disappearance of R. cushmani in comparison to the Pueblo GSSP
section.

At the base of the W, archaeocretacea PRZ, the positive §'3C
excursion coincides with the disappearance of single-keeled
species, low P contents decoupled from detrital input and
a decrease in Mn contents. This may reflect increasing dysaerobic
conditions and an increasingly stressed environment. However, the
absence of organic-rich sediments and obvious RSTE enrichments,
and the abundance of doubled-keeled species during the lower part
of the OAE 2 interval suggest that full-fletched anoxic conditions
did not develop in the pelagic zone of the northern Tethyan margin.
The end of the 6'3C positive excursion is marked by the reappear-
ance of single- and double-keeled forms (H. helvetica TRZ).

The pelagic character of the section and the dominance of
planktonic foraminifera along the section indicate that the section
was situated in the deeper part of the shelf. The chemical redox
proxies place the section, however, well above the core of the
oxygen-minimum zone (OMZ), which probably fluctuated and
expanded onto the shelf during OAE 2. The paleoecological and
geochemical proxies observed at Chrummflueschlucht suggest that
anoxic conditions never reached the Helvetic pelagic part of the
northern Tethyan, southern European margin.
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