
TOPOLOGY OF POSITIVELY CURVED
8-DIMENSIONAL MANIFOLDS WITH SYMMETRY

ANAND DESSAI

We show that a simply connected 8-dimensional manifold M of positive sec-
tional curvature and symmetry rank ≥ 2 resembles a rank-one symmetric
space in several ways. For example, the Euler characteristic of M is equal to
the Euler characteristic of S8, �P2 or �P4. If M is rationally elliptic, then
M is rationally isomorphic to a rank-one symmetric space. For torsion-
free manifolds, we derive a much stronger classification. We also study the
bordism type of 8-dimensional manifolds of positive sectional curvature and
symmetry rank ≥ 2. As an illustration, we apply our results to various
families of 8-manifolds.

1. Introduction

We study the topology of positively curved 8-dimensional manifolds with symme-

try rank ≥ 2. A Riemannian manifold M is said to have positive curvature if the

sectional curvature of all its tangent planes is positive. The symmetry rank of M
is defined as the rank of its isometry group. Throughout this paper, all manifolds

are assumed to be closed, that is, compact without boundary.

At present only a few manifolds are known to admit a Riemannian metric of

positive curvature. Besides the examples of Eschenburg and Bazaikin (which are

biquotients of dimension 6, 7 or 13), all other simply connected positively curved

examples1 are homogeneous, that is, they admit a metric of positive curvature with

transitive isometry group (the latter were classified by Berger, Wallach, Aloff and

Bérard Bergery). In dimension greater than 24 all known examples are symmetric

of rank one.
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announced the discovery of new 7-dimensional examples with positive curvature.
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Classifications of various strength have been obtained for positively curved

manifolds with large symmetry; see the survey [Wilking 2007, Section 4]. Among

the measures of “largeness”, we shall focus on the symmetry rank.

Grove and Searle [1994] showed that the symmetry rank of a positively curved

simply connected n-dimensional manifold M is ≤ [(n + 1)/2], and that equality

occurs if and only if M is diffeomorphic to a sphere or a complex projective space.

Wilking [2003] proved that, if the symmetry rank of M is ≥ n/4+1 and if n ≥ 10,

then either M is homeomorphic to a sphere or a quaternionic projective space,

or M is homotopically equivalent to a complex projective space (it follows from

[Dessai and Wilking 2004] that “homotopically equivalent” can be strengthened to

“tangentially equivalent” in this classification). Building on [Wilking 2003], Fang

and Rong [2005] showed that, if the symmetry rank is no less than [(n −1)/2] and

if n ≥ 8, then M is homeomorphic to a sphere, a quaternionic projective space, or

a complex projective space.

In dimension eight, the rank-one symmetric spaces S8, �P2 and �P4 are the

only known simply connected positively curved examples. In this dimension, the

aforementioned work of Grove and Searle and of Fang and Rong says that a pos-

itively curved simply connected manifold M is diffeomorphic to S8 or �P4 if

the symmetry rank of M is ≥ 4, and homeomorphic to S8, �P2 or �P4 if the

symmetry rank is ≥ 3.

The main purpose of this paper is to give some information on the topology

of positively curved 8-dimensional manifolds with symmetry rank ≥ 2. Our first

result concerns the Euler characteristic:

Theorem 1.1. Let M be a simply connected 8-dimensional manifold. If M admits
a metric of positive curvature and symmetry rank ≥ 2, then the Euler characteristic
of M is equal to the Euler characteristic of S8, �P2 or �P4; that is, χ(M) = 2, 3

or 5.

This information on the Euler characteristic leads to a rather strong classification

if one assumes in addition that the manifold is rationally elliptic. Recall that a

closed simply connected manifold M is rationally elliptic if its rational homotopy

π∗(M) ⊗ � is of finite rank. A conjecture attributed to Bott asserts that any non-

negatively curved manifold is rationally elliptic; see [Grove and Halperin 1982,

page 172].

Theorem 1.2. Let M be a simply connected positively curved 8-dimensional man-
ifold of symmetry rank ≥ 2.

(1) If M is rationally elliptic, M has the rational cohomology ring and rational
homotopy type of a rank-one symmetric space, that is, of S8, �P2 or �P4.

(2) If M is rationally elliptic and H∗(M; �) is torsion-free, M is homeomorphic
to S8, diffeomorphic to �P2, or tangentially equivalent to �P4.
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If one drops the assumption on rational ellipticity and weakens the assumption

on the symmetry rank, one can still prove a bound on the Euler characteristic:

Theorem 1.3. Suppoer M is a simply connected positively curved manifold of even
dimension ≤ 8. Assume S1 acts smoothly on M. If some σ ∈ S1 acts isometrically
and nontrivially on M , then χ(M) ≥ 2.

This fits well with the Hopf conjecture on the positivity of the Euler character-

istic of even-dimensional positively curved manifolds.

To put our results in perspective, we briefly recall what is known about positively

curved manifolds in low dimensions. Next to surfaces, manifolds of positive curva-

ture are only classified in dimension 3; see [Hamilton 1982] and [Perelman 2002;

2003b; 2003a]. In higher dimensions, the only known obstructions to positive

curvature for simply connected manifolds are given by the Betti number theorem

of [Gromov 1981] and obstructions to positive scalar curvature (for example, the α-

invariant of Lichnerowicz and Hitchin, and the obstructions in dimension 4 coming

from Seiberg–Witten theory). In particular, the Hopf problem that asks whether

S2 × S2 admits a metric of positive curvature is still open.

The study of low-dimensional positively curved manifolds with positive sym-

metry rank began with Hsiang and Kleiner [1989] on 4-dimensional manifolds.

Their main result says that the Euler characteristic of a simply connected positively

curved 4-dimensional manifold M with positive symmetry rank is ≤ 3. Using

[Freedman 1982], they conclude that M is homeomorphic2 to S4 or �P2. Rong

[2002] showed that a simply connected positively curved 5-dimensional manifold

with symmetry rank 2 is diffeomorphic to S5. In dimension 6 and 7 there are

examples with symmetry rank 2 and 3, respectively, that are not homotopically

equivalent to a rank-one symmetric space [Aloff and Wallach 1975; Eschenburg

1982]. This indicates that, in these dimensions, a classification below the maximal

symmetry rank is more complicated.

Theorems 1.1 and 1.3 imply that, for many nonnegatively curved manifolds, any

metric of positive curvature must be quite nonsymmetric. For example, if M is of

even dimension ≤8 and has Euler characteristic <2 (for example, if M is a product

of two simply connected odd-dimensional spheres, or M is a simply connected Lie

group), then it follows from Theorem 1.3 that, for any positively curved metric g
on M , the only isometry of (M, g) sitting in a compact connected Lie subgroup of

the diffeomorphism group is the identity. As a further illustration of our results,

we consider the following classes of manifolds:

Product manifolds. Let M = N1 × N2 be a simply connected product manifold

of dimension 8 (with dim Ni > 0). It is straightforward to see that the Euler

characteristic of M is �= 2, 3 or 5. By Theorem 1.1, M does not admit a metric of

2According to the recent preprint [Kim 2008], M is diffeomorphic to S4 or �P2.
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positive curvature with symmetry rank ≥2. In particular, the product of two simply

connected nonnegatively curved manifolds N1 and N2 (for example, S4 × S4) does

not admit a metric of positive curvature and symmetry rank ≥ 2. It is interesting

to compare this with [Hsiang and Kleiner 1989], which implies that S2 × S2 does

not admit a metric of positive curvature and symmetry rank ≥ 1.

Connected sum of rank-one symmetric spaces. Cheeger [1973] has shown that

�P4 � ±�P4, �P4 � ±�P2 and �P2 � ±�P2 admit a metric of nonnegative

curvature. The Euler characteristic of these manifolds is 8, 6 and 4, respectively.

By Theorem 1.1, none of them admits a metric of positive curvature and symmetry

rank ≥ 2.

Cohomogeneity-one manifolds. Grove and Ziller [2000] constructed invariant met-

rics of nonnegative curvature on cohomogeneity-one manifolds with codimension-

two singular orbits. Using this construction, they exhibited metrics of nonnegative

curvature on certain infinite families of simply connected manifolds that fiber over

S4, �P2, S2 × S2 or �P2 � ±�P2 [Grove and Ziller 2000; 2008]; see also the

survey [Ziller 2007]. In dimension 8, the Euler characteristic of all these manifolds

turns out to be �= 2, 3, 5. Again, by Theorem 1.1, none of them admits a metric of

positive curvature and symmetry rank ≥ 2.

Biquotients. Another interesting class of manifolds known to admit metrics of non-

negative curvature are biquotients. A biquotient of a compact Lie group G is the

quotient of a homogeneous space G/H by a free action of a subgroup K of G,

where the K-action is induced from the left G-action on G/H . Note that any

homogeneous space can be described as a biquotient by taking one of the factors

to be trivial. If G is equipped with a biinvariant metric, the biquotient M = K\G/H
inherits a metric of nonnegative curvature, a consequence of O’Neill’s formula for

Riemannian submersions. As pointed out by Eschenburg [1992], a manifold M
is a biquotient if and only if M is the quotient of a compact Lie group G by a

free action of a compact Lie group L , where the action of L on G is given by a

homomorphism L → G × G together with the two-sided action of G × G on G
given by (g1, g2)(g) := g1 · g · g−1

2 .

The topology of biquotients has been investigated in [Eschenburg 1992; Singhof

1993; Kapovitch 2002; Kapovitch and Ziller 2004; Totaro 2002]. Kapovitch and

Ziller [2004] have classified biquotients with singly generated rational cohomol-

ogy. Combining their classification with the first part of Theorem 1.2 gives this:

Corollary 1.4. A simply connected 8-dimensional biquotient of positive curvature
and symmetry rank ≥ 2 is diffeomorphic to S8, �P4, �P2 or G2/SO(4).

In view of Theorems 1.1 and 1.3, the examples above contain plenty of examples

of simply connected nonnegatively curved manifolds with positive Ricci curvature
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for which the metric cannot be deformed to a metric of positive curvature via a

symmetry-preserving process such as the Ricci flow.

The paper is structured as follows: In Section 2, we recall basic geometric and

topological properties of positively curved manifolds with symmetry. In Section 3,

we prove the statements on the Euler characteristic. In Section 4, we prove our

classification theorem 1.2 for rationally elliptic manifolds and the corollary 1.4 for

biquotients. In the final Section 5, we study the bordism type of positively curved

8-dimensional manifolds with symmetry.

2. Tools from geometry and topology

On the topological side, the proofs rely on arguments from equivariant index theory

(Theorem 2.4) and the cohomological structure of fixed point sets of smooth actions

on cohomology spheres and cohomology projective spaces (Theorem 2.5).

On the geometric side, the proofs rely on the work of Hsiang and Kleiner on

positively curved 4-dimensional manifolds with symmetry (Theorem 2.3), the fixed

point theorems of Berger, Synge and Weinstein for isometries [Kobayashi 1972,

Chapter II, Corollary 5.7; Synge 1936; Weinstein 1968], and the following two

properties of totally geodesic submanifolds, which we state for further reference:

Intersection theorem [Frankel 1961]. Let M be a connected positively curved
manifold of dimension n, and let N1 and N2 be totally geodesic submanifolds of
dimension n1 and n2, respectively. If n1 + n2 ≥ n, then N1 and N2 intersect.

Here, the dimension of a manifold is defined to be the maximal number occur-

ring as the dimension of a connected component of it. Similarly, the codimension

of a submanifold N of a connected manifold M is defined to be the minimal number

occurring as the codimension of a connected component of N in M .

Building on the intersection theorem, Frankel [1966, page 71] observed that

the inclusion of a connected totally geodesic submanifold N is 1-connected if the

codimension of N in M is at most half of the dimension of M . Using a Morse

theory argument, Wilking proved the following far-reaching generalization:

Connectivity theorem [Wilking 2003]. Let M be a connected positively curved
manifold, and let N1 and N2 be connected totally geodesic submanifolds of codi-
mension k1 and k2, respectively.

(1) Then the inclusion Ni ↪→ M is (n−2ki +1)-connected.

(2) If k1 + k2 ≤ n and k1 ≤ k2, then the intersection N1 ∩ N2 is a totally geodesic
submanifold, and the inclusion of N1 ∩ N2 in N2 is (n−(k1 +k2))-connected.

The connectivity theorem leads to strong restrictions on the topology of posi-

tively curved manifolds with large symmetry. Wilking [2003] used this property to

classify positively curved manifolds of dimension n ≥ 10 (respectively, n ≥ 6000)
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with symmetry rank ≥ n/4+1 (respectively, ≥ n/6+1). For further reference, we

point out the following rather elementary consequences:

Corollary 2.1. Let M be a simply connected positively curved manifold of even
dimension n = 2m ≥ 6.

(1) If M admits a totally geodesic connected submanifold N of codimension 2,

then N is simply connected. Moreover, the integral cohomology of M and N
is concentrated in even degrees and satisfies H 2i (M; �) ∼= H 2 j (N ; �) for all
0 < 2i < n and 0 < 2 j < n − 2.

(2) If M admits two different totally geodesic connected submanifolds N1 and N2

of codimension 2, then M is homeomorphic to Sn or homotopy equivalent to
�Pm.

Proof. Part (1) follows directly from the connectivity theorem; see [Wilking 2003].

For the convenience of the reader, we recall the argument. We begin with a more

general discussion:

Let M be an oriented n-dimensional connected manifold, and N
i

↪→M an ori-

ented connected submanifold of codimension k. Let u ∈ Hk(M; �) be the Poincaré

dual of the fundamental class of N in M . Then, the cup product with u is given by

the composition

Hi (M; �)
i∗−→ Hi (N ; �)

∼=−→ Hn−k−i (N ; �)
i∗−→ Hn−k−i (M; �)

∼=−→ Hi+k(M; �)

of maps, where the second and fourth map are the Poincaré isomorphism maps

of N and M , respectively; see for example [Milnor and Stasheff 1974, page 137].

Now, assume that the inclusion i : N ↪→ M is (n−k−l)-connected. Then it is

straightforward to check that the homomorphism

∪u : Hi (M; �) → Hi+k(M; �), x �→ x ∪ u,

is surjective for l ≤ i < n − k − l, and injective for l < i ≤ n − k − l (for all this,

see [Wilking 2003, Lemma 2.2]).

In the first part of the Corollary 2.1, we have k =2. By the connectivity theorem,

the inclusion N ↪→ M is (n−3)-connected, that is, l = 1. Hence, the map ∪u is

surjective for 1 ≤ i < n − 3, and injective for 1 < i ≤ n − 3. Since M is simply

connected and N ↪→ M is at least 3-connected, the first part follows.

Next, assume N1 and N2 are different totally geodesic connected submanifolds

of codimension 2. The second part of the connectivity theorem implies that N :=
N1 ∩ N2 ↪→ N1 is a totally geodesic submanifold, and that the inclusion N :=
N1 ∩ N2 ↪→ N1 is at least 2-connected.

If the codimension of N in N1 is 2, the map H 0(N1; �) → H 2(N1; �) (given by

multiplication with the Poincaré dual of N in N1 for some fixed orientation of N ) is
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surjective by the connectivity theorem. Hence, b2(M)=b2(N1)≤1. Using the first

part of the Corollary 2.1, we conclude that M is an integral-cohomology sphere if

b2(M) = 0, or an integral-cohomology �Pm if b2(M) = 1. If b2(M) = 0, then M
is actually homeomorphic to Sn by the work of [Smale 1961]; if b2(M) = 1, then

M is homotopy equivalent to �Pm since M is simply connected.

Next, assume the codimension of N in N1 is 1. Using the connectivity theorem,

we see that the inclusion N ↪→ N1 is (n−3)-connected. Arguing along the lines

above, it follows that M is homeomorphic to Sn . This completes the proof of the

second part. �

Remark 2.2. For 8-dimensional manifolds, one can show that, under the assump-

tions of Corollary 2.1(2), M is homeomorphic to S8 or homeomorphic to �P4. This

follows from the Sullivan’s classification of homotopy complex projective spaces

[1996]; see the argument in [Fang and Rong 2005, page 85].

Another important geometric ingredient in our proofs is the classification (due

to Hsiang and Kleiner) up to homeomorphism of positively curved 4-dimensional

manifolds with positive symmetry rank.

Theorem 2.3 [Hsiang and Kleiner 1989]. If M is a positively curved simply con-
nected 4-dimensional manifold with positive symmetry rank, the Euler character-
istic of M is 2 or 3, and hence M is homeomorphic to S4 or �P2 by Freedman’s
work.

In particular, S2 × S2 does not admit a metric of positive curvature and positive

symmetry rank. Note that Theorem 1.1 gives analogous restrictions for the Euler

characteristic in dimension 8.

Among the topological tools used in the proofs are the classical Lefschetz fixed

point formula for the Euler characteristic, the rigidity of the signature on oriented

manifolds with S1-action, and its applications to involutions [Hirzebruch 1968], as

well as the Â-vanishing theorem of Atiyah and Hirzebruch [1970] for S1-actions

on Spin-manifolds.

Theorem 2.4. Let M be an oriented manifold with a smooth nontrivial S1-action,

and σ ∈ S1 be the element of order 2. If M S1
and Mσ denote the fixed point

manifolds with respect to the S1-action and the σ -action, respectively, then

(1) χ(M) = χ(M S1
);

(2) the equivariant signature signS1(M) is constant as a character of S1;

(3) sign(M) = sign(M S1
), where the orientation of each component of the fixed

point manifold M S1
is chosen to be compatible with the complex structure of

its normal bundle (induced by the S1-action) and the orientation of M ; and
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(4) the signature of M is equal to the signature of a transversal self-intersection
Mσ◦ Mσ .

If , in addition, M is a Spin-manifold, then

(5) the Â-genus vanishes and

(6) the connected components of Mσ are either all of codimension ≡ 0 mod 4

(even case), or are all of codimension ≡ 2 mod 4 (odd case).

Proof. Part (1) is just a version of the classical Lefschetz fixed point theorem; see

for example [Kobayashi 1972, Theorem 5.5]. We give here a simple argument:

For any prime p, choose a triangulation of M that is equivariant with respect to

the action of �/p� ⊂ S1 on M . Then a counting argument shows that χ(M) ≡
χ(M�/p�) mod p. For p large enough, this implies that χ(M) = χ(M S1

) (note

that the proof also applies to nonorientable manifolds).

Part (2) follows directly from the homotopy invariance of cohomology, or from

the Lefschetz fixed point formula of Atiyah, Bott, Segal and Singer (see [Atiyah

and Singer 1968, Theorem 6.12, page 582]), as explained for example in [Bott and

Taubes 1989, page 142].

For part (3), we consider as a function in λ ∈ � the S1-equivariant signature

signS1(M)∈ R(S1)∼= �[λ, λ−1], and compute the limit λ→∞ using the Lefschetz

fixed point formula; details can be found in [Hirzebruch et al. 1992, page 68].

Part (4) is a result of Hirzebruch; see [Hirzebruch 1968; Atiyah and Singer 1968,

Proposition 6.15, page 583]. Hirzebruch shows that the signature of a transversal

self-intersection Mσ ◦ Mσ is the equivariant signature signS1(M) evaluated at σ .

The claim follows from the rigidity of the signature; see part (2).

Part (5) is the celebrated Â-vanishing theorem of Atiyah and Hirzebruch [1970].

Using the Lefschetz fixed point formula, they show that the S1-equivariant Â-genus

extends to a holomorphic function on � that vanishes at infinity. By a classical

result of Liouville, this function has to vanish identically.

For a proof part (6), see [Atiyah and Bott 1968, Proposition 8.46, page 487]. �
We also point out certain properties of smooth actions on cohomology spheres

and cohomology projective spaces:

Theorem 2.5. (1) If M is a �/2�-cohomology sphere with a �/2�-action, the
�/2�-fixed point manifold is again a �/2�-cohomology sphere, or is empty.

(2) If M is an integral-cohomology sphere with an S1-action, the S1-fixed point
manifold is again an integral-cohomology sphere, or is empty.

(3) If M is a �/2�-cohomology complex projective space with a �/2�-action
such that the �/2�-action extends to an S1-action, then each component of the
�/2�-fixed point manifold is again a �/2�-cohomology complex projective
space.
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(4) The action of an involution on a �/2�-cohomology �P2 cannot have only
isolated fixed points.

Proof. The first two statements are well-known applications of Smith theory; see

[Bredon 1972, Chapter III, Theorems 5.1 and 10.2]. The last two statements follow

directly from the general theory on fixed point sets of actions on projective spaces;

see [Bredon 1972, Chapter VII, Theorems 3.1 and 3.3]. �

3. Euler characteristic

Here we prove the statements on the Euler characteristic given in Section 1.

Theorem 1.3. Let M be a simply connected positively curved manifold of even
dimension ≤ 8. Assume S1 acts smoothly on M. If some σ ∈ S1 acts isometrically
and nontrivially on M , then χ(M) ≥ 2.

Proof. Since σ ∈ S1 acts nontrivially, the dimension of M is positive; that is,

dim M = 2, 4, 6 or 8. In dimension ≤ 4, the theorem is true for purely topological

reasons (Poincaré duality). So, assume the dimension of M is 6 or 8. Note that Mσ

is nonempty [Weinstein 1968] and the connected components of the fixed point

manifold Mσ are totally geodesic submanifolds. Each is of even codimension,

since σ preserves orientation.

If Mσ contains a connected component of codimension 2, then, as pointed out

in Corollary 2.1, the connectivity theorem implies that all odd Betti numbers of M
vanish. Hence, χ(M) ≥ 2 by Poincaré duality.

So, assume codim Mσ > 2. Note that any connected component F ⊂ Mσ is

an S1-invariant totally geodesic submanifold of even dimension ≤ 4. If F is not a

point, then F inherits positive curvature from M . In this case, F or a twofold cover

of F is simply connected by [Synge 1936]. Hence the Euler characteristic of any

connected component of Mσ is positive. From the Lefschetz fixed point formula

for the Euler characteristic (see Theorem 2.4(1)), we get

χ(M) = χ(M S1

) = χ
(
(Mσ )S1) = χ(Mσ ) =

∑

F⊂Mσ

χ(F) ≥ 1.

Here, equality holds if and only if Mσ is connected and χ(Mσ )=1. If so, Mσ must

have the �/2�-cohomology of a point, of �P2, or of �P4. Note that the connected

components of M S1 = (Mσ )S1
are orientable submanifolds of even dimension ≤ 4.

This implies that the case χ(M)= 1 can only happen if M S1
is a point; see [Bredon

1972, Chapter VII, Theorem 3.1].

However, a smooth S1-action on a closed orientable manifold M cannot have

exactly one fixed point. To show this, consider the Lefschetz fixed point formula

[Atiyah and Singer 1968] for the S1-equivariant signature signS1(M). The local

contribution for signS1(M) at an isolated S1-fixed point extends to a meromorphic
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function on �, which has at least one pole on the unit circle; see for example [Bott

and Taubes 1989, page 142]. Since signS1(M), being a character of S1, has no

poles on the unit circle, the S1-action cannot have exactly one fixed point (more

generally, this is true for any diffeomorphism of order pl , with p an odd prime, as

shown by [Atiyah and Bott 1968, Theorem 7.1]). Hence, χ(M) ≥ 2. �
We remark that the proof simplifies drastically if M has positive symmetry rank;

see for example [Püttmann and Searle 2002, Theorem 2]. Note that, by the result

above, any metric of positive curvature on S3× S3, S2× S3× S3, S3× S5 or SU (3)

must be very nonsymmetric.

In the remaining part of this section, we restrict to positively curved simply con-

nected 8-dimensional manifolds with symmetry rank ≥ 2, and prove the statement

on the Euler characteristic given in Theorem 1.1.

Let T be a two-dimensional torus that acts isometrically and effectively on M ,

let T2
∼= �/2� × �/2� denote the 2-torus in T, and let σ ∈ T be a nontrivial

involution, that is, σ ∈ T2 with σ �= id.

By the fixed point theorem of [Weinstein 1968], the fixed point manifold Mσ is

nonempty. Each connected component F of Mσ is a totally geodesic T-invariant

submanifold of M . Since σ preserves orientation, F is of even codimension. By

Berger’s fixed point theorem (see [Kobayashi 1972, Chapter II, Corollary 5.7]), the

torus T acts with fixed point on F .

Lemma 3.1. F is orientable. If dim F �= 6, then F is homeomorphic to S4, �P2,

S2 or a point.

Proof. If dim F = 6, then F is simply connected by the connectivity theorem, and

hence orientable.

Next, suppose that dim F = 4 and T acts trivially on F . In this case, we can

choose an S1 subgroup of T such that M S1
contains a 6-dimensional connected

component Y , and F is a T -fixed point component of Y . In this case, by [Grove and

Searle 1994, Theorem 1.2] M , Y and F are diffeomorphic to spheres or complex

projective spaces,

Suppose that dim F = 4 and T acts nontrivially on F . In this case, we can

find a subgroup S1 ⊂ T and a connected component Y of M S1
such that F ∩ Y

has positive dimension. If dim Y = 6, then M is diffeomorphic to S8 or �P4; see

[Grove and Searle 1994, Theorem 1.2], and F is a �/2�-cohomology sphere or a

�/2�-cohomology complex projective space; see Theorem 2.5. Since the universal

cover of F is homeomorphic to S4 or �P2 (see Theorem 2.3), we conclude that

F is simply connected and homeomorphic to S4 or �P2. If dim Y = 4, then Y is

homeomorphic to S4 or �P2 by Theorem 2.3. It follows from Theorem 2.5 that

any connected component of Y ∩ F is a �/2�-cohomology sphere or a �/2�-

cohomology complex projective space. Since F ∩ Y has positive dimension, we
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have χ(F)≥2. Applying Theorem 2.3 again, we conclude that F is homeomorphic

to S4 or �P2.

Finally, assume that dim F = 2. We choose an S1 subgroup of T that fixes

F pointwise. Let Y be the connected component of M S1
that contains F . If

Y is 2-dimensional, then F = Y is orientable of positive curvature and hence

diffeomorphic to S2. If Y is 6-dimensional, then M is diffeomorphic to S8 or

�P4 [Grove and Searle 1994, Theorem 1.2], which implies that F ∼= S2. If Y is

4-dimensional, then we may assume that T acts nontrivially on Y (otherwise, we

can replace Y by a 6-dimensional connected component for some other S1 sub-

group). By Theorem 2.3, Y is homeomorphic to S4 or �P2. Using Theorem 2.5,

we conclude that F is diffeomorphic to S2. �

In the proof of Theorem 1.1, we will use the concept of the “type” of an involu-

tion at a fixed point component of the T2-action. This concept is defined as follows:

For each nontrivial involution σ ∈ T2 and each connected component X of MT2 ,

we consider the dimension of the connected component F of Mσ containing X .

For fixed X , this gives an unordered triple of dimensions, which we call the type
of X . Note that F is orientable by Lemma 3.1. Since the action of T is orien-

tation-preserving on F , any connected component X of MT2 is a totally geodesic

T-invariant submanifold of even dimension. By Berger’s fixed point theorem (see

[Kobayashi 1972, Chapter II, Corollary 5.7]), X T is nonempty.

We will use the following information on type, which can be easily verified by

considering the isotropy representation at a T-fixed point in X .

Lemma 3.2. (1) The type of X is (6, 6, 4), (6, 4, 2), (6, 2, 0), (4, 4, 4), (4, 4, 0)

or (4, 2, 2).

(2) X is an isolated T2-fixed point if and only if X is of type (6, 2, 0), (4, 4, 0) or
(4, 2, 2).

Example 3.3. Let M be the quaternionic plane

�P2 = {[q0, q1, q2] | qi ∈ �, (q0, q1, q2) �= 0},
where [q0, q1, q2] denotes the orbit of (q0, q1, q2) with respect to the diagonal

action of nonzero quaternions on �3 from the right. Consider the action of T =
S1 × S1 = {(λ, μ) | λ, μ ∈ S1} ⊂ � × � on M via

(λ, μ)([q0, q1, q2]) := [λ · √μ · q0,
√

μ · q1,
√

μ · q2].
Note that although the square root

√ · is only well-defined up to sign, the action is

independent of this choice. Let σ1 and σ2 be the involutions in the first and second

S1 factor of T, and let σ3 := σ1 ·σ2 denote the third nontrivial involution. Then, we
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have the following fixed point manifolds:

Mσ1 = {[1, 0, 0]} ∪ {[0, q1, q2] | qi ∈ �, (q1, q2) �= 0} ∼= pt ∪ S4,

Mσ2 = {[q0, q1, q2] | qi ∈ �, (q0, q1, q2) �= 0} ∼= �P2,

Mσ3 = {[ j · q0, q1, q2] | qi ∈ �, (q0, q1, q2) �= 0} ∼= �P2,

MT2 = {[1, 0, 0]} ∪ {[0, q1, q2] | qi ∈ �, (q1, q2) �= 0} ∼= pt ∪ S2

Hence, the type of X = pt is (4, 4, 0), and the type of X = S2 is (4, 4, 4).

The proof of Theorem 1.1 is based on the next three lemmas.

Lemma 3.4. If dim Mσ =6 for some involution σ ∈ T, then the Euler characteristic
of M is 2 or 5.

Proof. Let N ⊂ Mσ be the connected component of dimension 6. Note that all other

connected components are isolated σ -fixed points, by the intersection theorem. In

view of Corollary 2.1, the odd Betti numbers of M and N vanish, and the even

Betti numbers satisfy b2(M) = b4(M) = b6(M) = b2(N ) = b4(N ). In particular,

we have χ(M) − χ(N ) = b2(M). By the Lefschetz fixed point formula for the

Euler characteristic (see Theorem 2.4(1)), this difference is equal to the number of

isolated σ -fixed points.

Suppose isolated σ -fixed points do occur (otherwise, b2(M)= 0 and χ(M)= 2).

Using Lemma 3.2(2), we see that an isolated σ -fixed point is an isolated T2-

fixed point, of type (6, 2, 0) or (4, 4, 0). If some isolated σ -fixed point is of

type (6, 2, 0), then M contains a 6-dimensional fixed point manifold different

from N . In this case, M is homeomorphic to S8 or homotopy equivalent to �P4;

see Corollary 2.1(2). In particular, χ(M) = 2 or 5.

We now consider the remaining case. Suppose all isolated σ -fixed points are of

type (4, 4, 0). We fix a nontrivial involution σ1 ∈ T different from σ , and denote by

F1 the 4-dimensional connected component of Mσ1 (note that F1 is unique and has

nonempty intersection with N , by the intersection theorem). Each isolated σ -fixed

point, being of type (4, 4, 0), is contained in F1, and hence the number d of isolated

σ -fixed points is equal to χ(F1) − χ(F1 ∩ N ). Since T acts nontrivially on F1,

Theorem 2.3 tells us that χ(F1) ≤ 3. Using Lemma 3.2, we see that the connected

components of (F1∩N )T2 are necessarily 2-dimensional of type (6, 4, 2). It follows

from Lemma 3.1 that at least one of the connected components of (F1 ∩ N )T2 is

diffeomorphic to S2. Hence, b2(M) = d = χ(F1) − χ(F1 ∩ N ) ≤ 1, which in turn

implies χ(M) = 2 or 5. �
Remark 3.5. Under the assumptions of Lemma 3.4, M is homeomorphic to S8

or �P4. This follows from the proof above, together with the work of Smale [1961]

on the high-dimensional Poincaré conjecture, and Sullivan’s classification [1996]

of homotopy complex projective spaces.
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Lemma 3.6. If dim Mσ = 2 for some involution σ ∈ T, then χ(M) = 2.

Proof. We first note that the assumption on dim Mσ implies that the signature

of M vanishes, by Theorem 2.4(4). Since χ(M) ≡ sign(M) mod 2, the Euler

characteristic χ(M) is even.

By Lemma 3.4, we may assume that the dimension of the fixed point manifold

Mτ is ≤ 4 for every nontrivial involution τ of T . Using Lemma 3.2, we see

that every T2-fixed point component is an isolated fixed point of type (4, 4, 0) or

(4, 2, 2).

Let σ1 and σ2 denote the nontrivial involutions distinct from σ . Without loss

of generality, we may assume that dim Mσ1 = 4. Let F1 denote the 4-dimensional

connected component of Mσ1 . Since T acts nontrivially on F1, the universal cover

of F1 is homeomorphic to S4 or �P2 by Theorem 2.3. Since all T2-fixed points are

isolated, the involution σ acts on F1 with isolated fixed points. By Theorem 2.5,

F1 cannot be a cohomology �P2. Hence, χ(F1) ≤ 2.

If dim Mσ2 < 4, then any T2-fixed point component is contained in F1 and hence

χ(M) = χ(F1) = 2 by Theorem 1.3. So assume Mσ2 contains a 4-dimensional

connected component F2. Arguing as above, we see that χ(F2) ≤ 2. Note that

F1 and F2 intersect by the intersection theorem, and F1 ∩ F2 consists of isolated

σ -fixed points. Hence, χ(M) = χ(F1) + χ(F2) − χ(F1 ∩ F2) ≤ 3. Since χ(M)

is even (as pointed out above) and no less than 2 (by Theorem 1.3), the lemma

follows. �
Lemma 3.7. If dim Mσ = 0 for some involution σ ∈ T, then χ(M) = 2.

Proof. The proof is very similar to that of Lemma 3.6. By Theorem 2.4(4), the

signature of M vanishes. In particular, χ(M) is even.

Applying Lemma 3.2, we see that a connected component of MT2 is of type

(6, 2, 0) or (4, 4, 0). If some component has type (6, 2, 0), then, since χ(M) is

even, the Euler characteristic of M is equal to 2 by Lemma 3.4.

So, assume all components of MT2 are of type (4, 4, 0). Let σ1 ∈T be a nontrivial

involution distinct from σ , and let F1 denote the unique 4-dimensional connected

component of Mσ1 . Note that MT2 ⊂ F1. By Theorem 2.3, χ(F1) ≤ 3. Since

χ(M) is even, we get χ(M) = χ(MT2) = χ(F1) ≤ 2. Now, the lemma follows

from Theorem 1.3. �
Proof of Theorem 1.1. Using the lemmas above, we may assume that dim Mσ = 4

for every nontrivial involution σ ∈ T. In view of Lemma 3.2, every connected T2-

fixed point component X is of type (4, 4, 0), (4, 2, 2) or (4, 4, 4). In the first two

cases, X is an isolated fixed point, whereas in the third case an inspection of the

isotropy representation shows that X is of dimension two.

Let σi ∈ T for i = 1, 2, 3 denote the nontrivial involutions, and let Fi denote the

unique 4-dimensional connected component of Mσi . By the intersection theorem,
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any two of the Fi intersect. Since T acts nontrivially on Fi , we have χ(Fi ) ≤ 3 by

Theorem 2.3. If χ(Fi ) = 3 for some i , that is, if Fi is homeomorphic to �P2, then

Fi contains a T2-fixed point component of positive dimension (see Theorem 2.5),

which is necessarily of type (4, 4, 4). Hence, if none of the T2-fixed point compo-

nents is of type (4, 4, 4), then χ(Fi ) ≤ 2 for all i , and

χ(M) =
∑

i

χ(Fi ) −
∑

i< j

χ(Fi ∩ Fj ) ≤ 3 · 2 − 3 = 3.

Since χ(M) ≥ 2 by Theorem 1.3, we are done in this case.

In the other case, the intersection of the Fi contains a 2-dimensional T2-fixed

point component X of type (4, 4, 4). It follows from Lemma 3.1 and Theorem 2.5

that X is diffeomorphic to �P1. Hence χ(M) ≤ 3 · 3 − 2 · 2 = 5 with equality

holding if and only if each Fi is homeomorphic to �P2. Moreover, in the equality

case, the T2-fixed point components distinct from X are all of type (4, 2, 2), and

for each σi the fixed point manifold Mσi is the union of Fi and a 2-dimensional

sphere.

We claim that χ(M) �= 4. Suppose to the contrary that χ(M) = 4. Then we

may assume that at least one of the Fi (say, F1) has Euler characteristic equal to 3.

Now, χ(M) = 4 implies that the fixed point manifold Mσ1 is the union of F1 and

an isolated fixed point q (in fact, arguing as for X , we see that any σ1-fixed point

component of positive dimension distinct from F1 would be diffeomorphic to �P1,

implying that χ(M) > 4). Note that q, being an isolated σ1-fixed point, must be of

type (4, 4, 0). Hence, q belongs to F2 and F3. This implies that χ(F2)=χ(F3)=3.

On the other hand, F T2

1 is the union of X and a point q ′, distinct from q, which is

of type (4, 4, 0) or (4, 2, 2). If q ′ has type (4, 4, 0), then χ(F2) ≥ 4 or χ(F3) ≥ 4,

which contradicts χ(F2) = χ(F3) = 3. If q ′ has type (4, 2, 2), then χ(Mσ2) ≥ 5

and χ(Mσ3) ≥ 5, which contradicts χ(M) = 4.

Hence, χ(M) �= 4. Since χ(M) ≤ 5 and χ(M) ≥ 2 (by Theorem 1.3), we get

χ(M) = 2, 3, 5. �
Recall that, for an nonorientable even-dimensional manifold of positive curva-

ture, a two-fold cover (the orientation cover) is simply connected [Synge 1936].

Hence, Theorem 1.1 implies this:

Corollary 3.8. Let M be an nonorientable 8-dimensional manifold. If M admits a
metric of positive curvature and symmetry rank ≥ 2, then χ(M) = 1.

4. Rationally elliptic manifolds

In this section, we apply Theorem 1.1 to rationally elliptic manifolds. Recall that

a closed simply connected n-dimensional manifold M is rationally elliptic if its

rational homotopy π∗(M)⊗� is of finite rank. Rational ellipticity imposes strong
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topological constraints. For example, Halperin has shown that the Euler character-

istic of a rationally elliptic manifold is nonnegative, and that all odd Betti numbers

vanish if the Euler characteristic is positive; see [1977, Theorem 1′, page 175].

By work of [Friedlander and Halperin 1979, Corollary 1.3], the sum of degrees of

generators of π2∗(M) ⊗ � := ⊕
i π2i (M) ⊗ � is ≤ n,

On the other hand, the class of rationally elliptic manifolds contains some in-

teresting families, for example, Lie groups, homogeneous spaces, biquotients and

manifolds of cohomogeneity one. Also, all simply connected manifolds presently

known to admit a metric of nonnegative curvature are rationally elliptic.

Using the information on the Euler characteristic given in Theorem 1.1, we

obtain the following classification result for rationally elliptic manifolds. I thank

Mikiya Masuda for explaining to me the properties of �/2�-cohomology �P4’s

with T-action that are used in the proof.

Theorem 1.2. Suppose M is a simply connected positively curved 8-dimensional
manifold of symmetry rank ≥ 2.

(1) If M is rationally elliptic, M has the rational cohomology ring and the ratio-
nal homotopy type of a rank-one symmetric space, that is, of S8, �P2 or �P4.

(2) If M is rationally elliptic and H∗(M; �) is torsion-free, then M is homeo-
morphic to S8, diffeomorphic to �P2, or tangentially equivalent to �P4.

Proof. (1) We will show that M has the rational cohomology ring of S8, �P2 or

�P4. From this, one easily deduces that M is formal. Hence, M has the same

rational homotopy type as S8, �P2 or �P4.

By Theorem 1.1, the Euler characteristic of M is 2, 3 or 5. Since M is rationally

elliptic, the rational cohomology ring of M is concentrated in even degrees; see

[Halperin 1977, Theorem 1′, page 175]. If χ(M) = 2 or χ(M) = 3, then M has

the rational cohomology ring of S8 or �P2, respectively; this follows directly from

Poincaré duality. If χ(M) = 5, then the rational cohomology ring of M belongs to

one of the following three cases:

(1) b2(M) = 0 and b4(M) = 3;

(2) b2(M) = b4(M) = 1, and x2 = 0 for a generator x of H 2(M; �);

(3) b2(M) = b4(M) = 1, and x2 �= 0 for a generator x of H 2(M; �).

According to [Friedlander and Halperin 1979, Corollary 1.3], the sum of degrees

of generators of π2∗(M) ⊗ � is ≤ 8. This excludes the first two cases. In fact, in

the first case the minimal model of M must have three generators of degree 4, and

in the second case the minimal model of M must have generators of degree 2, 4

and 6. So, only the third case can occur; that is, b2(M)= b4(M)= 1 and x2 �= 0 for

a generator x of H 2(M; �). By Poincaré duality, M has the rational cohomology

ring of �P4.
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(2) Now assume that M is rationally elliptic and H∗(M; �) is torsion-free. If

χ(M) = 2, then M is rationally a sphere by (1). Since H∗(M; �) is torsion-free,

in this case M is an integral cohomology S8. Being simply connected, M is a

homotopy sphere and hence homeomorphic to S8 by [Smale 1961].

If χ(M) = 3, then M is an integral-cohomology �P2 by Poincaré duality. We

choose the orientation of M for which the signature of M is one. Note that M is

3-connected, and hence M is a Spin manifold. By the Atiyah–Hirzebruch vanish-

ing theorem (see Theorem 2.4(5)), the Â-genus of M vanishes (this follows also

from the result of Lichnerowicz [1963] on the vanishing of the Â-genus for Spin

manifolds with positive scalar curvature). Since in dimension eight the space of

Pontryagin numbers is spanned by the Â-genus and the signature, the manifolds

M and �P2 have the same Pontryagin numbers.

From [Smale 1962, Theorem 6.3], it follows that M admits a Morse function

with three critical points. The classification results of Eells and Kuiper [1962,

theorem on page 216] for these manifolds imply that the diffeomorphism type of

M is determined by its Pontryagin numbers, up to connected sums with homo-

topy spheres. In particular, M and �P2 are homeomorphic and diffeomorphic,

up to connected sums, with a homotopy sphere. Recently, Kramer and Stolz used

Kreck’s surgery theory to show that the action of the group of homotopy spheres

on �P2 via connected sum is trivial; see [2007, Theorem A]. Hence, M and �P2

are diffeomorphic.

Finally, we consider the case when χ(M) = 5. From (1), we know already

that M is a rational cohomology �P4. Below, we will show that M is in fact

an integral cohomology �P4. Assuming this for the moment, we now prove that

M is tangentially equivalent to �P4; that is, there exists a homotopy equivalence

f : M → �P4 such that f ∗(T �P4) and T M are stably isomorphic.

We first note that M and �P4 are homotopy equivalent since M is an integral

cohomology �P4 and simply connected. In the early 1970s, Petrie conjectured

that a smooth S1-manifold N that is homotopy equivalent to �Pn has the same

Pontryagin classes as �Pn; that is, the total Pontryagin class p(�Pn) is mapped

to p(N ) under a homotopy equivalence N → �Pn . Petrie’s conjecture holds for

n = 4 [James 1985]. Hence, the homotopy equivalence f : M → �P4 maps

the Pontryagin classes of �P4 to the Pontryagin classes of M . In this situation

M and �P4 are tangentially equivalent [Petrie 1973, page 140]. We sketch the

argument: Since H∗(M; �) is torsion-free, the condition on the Pontryagin classes

implies that the complexified vector bundles T M ⊗� and f ∗(T �P4)⊗� agree in

complex K-theory. When M is a homotopy complex projective space of complex

dimension �≡ 1 mod 4, the complexification map KO(M) → K(M) is injective.

Hence, the real vector bundles T M and f (T �P4) are stably isomorphic (in fact,

they are isomorphic, since they have up to sign the same Euler class).
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To complete the proof, we need to show that M is an integral cohomology �P4.

We choose the orientation of M for which the signature of M is 1. Since H∗(M; �)

is torsion-free, it follows from Poincaré duality that M is a twisted �P4; that is,

there are generators x2i ∈ H 2i (M; �) for i = 1, 2, 3, 4, and an integer m > 0, such

that x8 is the preferred generator with respect to the chosen orientation, and

x2 · x6 = x2
4 = x8, x2

2 = m · x4, x2 · x4 = m · x6.

Let T denote the 2-dimensional torus that acts isometrically and effectively

on M , let T2
∼= �/2� × �/2� denote the 2-torus in T, and let σ ∈ T2 be a non-

trivial involution. By Theorem 2.4(4), the codimension of Mσ is 2 or 4. If the

codimension of Mσ is 2, then M is an integral cohomology �P4; that is, m = 1.

This follows directly from the proof of Corollary 2.1.

So, we are left with the case when dim Mσ = 4 for every nontrivial involution

σ ∈ T. Let σi ∈ T for i = 1, 2, 3 denote the nontrivial involutions. From the

discussion in the previous section (see the proof of Theorem 1.1), we recall the

following facts: For each σi , the fixed point manifold Mσi is the union of a 4-

dimensional connected component Fi and a 2-dimensional sphere S2
i . Moreover,

Fi is homeomorphic to �P2, the three Fi intersect in a 2-dimensional T2-fixed

point component X of type (4, 4, 4), and X is diffeomorphic to �P1. We choose

the orientation of Fi for which the signature of Fi is 1.

Therefore the normal bundle of X in M is isomorphic as a real vector bundle to

three copies of the Hopf bundle. In particular, the normal bundle is not spin and the

restriction of the second Stiefel–Whitney class of M to X is nonzero. This shows

that the restriction homomorphism fi
∗ : H 2(M; �) → H 2(Fi ; �) induced by the

inclusion fi : Fi ↪→ M maps x2 to an odd multiple of a generator x of H 2(Fi ; �) ∼=
H 2(�P2; �); that is, fi

∗(x2) = a · x with a odd. It follows from the Lefschetz

fixed point formula for the equivariant signature (see [Atiyah and Singer 1968])

and Theorem 2.4(4) that the Euler class e(νi ) of the normal bundle νi of Fi ↪→ M
is equal to the preferred generator x2 ∈ H 4(Fi ; �). Hence, fi

∗(x4) = e(νi ) = x2.

By restricting the identity x2
2 = m · x4 to Fi , we see that m = a2 is an odd square.

In particular, M is a �/2�-cohomology �P4.

Next, we recall from the proof of Theorem 1.1 that MT2 is the union of X and

three points pi for i = 1, 2, 3, with pi ∈ Fi . We fix a lift ξ ∈ H 2
T (M; �) of x2

and denote by wi the restriction of ξ to pi . By the structure theorem for rational

cohomology complex projective spaces [Hsiang 1975, Theorem VI.I, page 106],

the kernel of the restriction homomorphism H∗
T (M; �) → H∗

T (pi ; �) is generated

by (ξ − wi ).

The following argument, due to Masuda, shows that m is equal to 1. Let fi ! :
H∗

T (Fi ; �) → H∗+4
T (M; �) denote the equivariant Gysin map (or push-forward)
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induced by fi : Fi ↪→ M . For properties of the Gysin map, see for example [Masuda

1981, pages 132–133].

Claim 1: fi !(1) = (1/a2) (ξ − w j ) · (ξ − wk), where {i, j, k} = {1, 2, 3}.
Proof. Since p j and pk are not in Fi , the restriction of fi !(1) to each of these

points must vanish. Hence, fi !(1) is divisible by (ξ − w j ) · (ξ − wk). Comparing

degrees, we find that fi !(1)= c ·(ξ −w j )·(ξ −wk) for some rational constant c. By

restricting this identity to ordinary cohomology, we obtain x4 = c · x2
2 , and hence

c = 1/m = 1/a2. �

Claim 2: wi − w j is divisible by a2 in H 2(BT ; �).

Proof. From the first claim, we deduce that

fi !(1) − f j !(1) = 1

a2

(
(wi − w j ) · ξ − (wi − w j ) · wk

)
.

Since (1, ξ) is part of a basis for the free H∗(BT ; �)-module H∗
T (M; �), it follows

that (wi − w j ) is divisible by a2. �
Recall that any two T-fixed points pi and p j with i �= j are contained in a

T-invariant 2-dimensional sphere S2
k that is fixed pointwise by the involution σk

(where {i, j, k} = {1, 2, 3}). Consider the T-action on S2
k , and let mi j ∈ H 2(BT ; �)

denote the weight of the tangential T-representation at pi . Note that mi j is only

defined up to sign and that mi j = ±m ji (here and in the following the notation

α = ±β is a shortcut for α = β or α = −β).

Claim 3: ±a · mi j = wi − w j , and mi j is divisible by a.

Proof. First, note that the normal bundle of Fi in M restricted to pi has weights

±mi j and ±mik , where {i, j, k}= {1, 2, 3}. Hence, by restricting the identity given

in the first claim to the pi , we obtain the following identities in the polynomial ring

H∗(BT ; �): ±a2 · m12 · m13 = (w1 − w2) · (w1 − w3),

±a2 · m23 · m21 = (w2 − w3) · (w2 − w1),

±a2 · m31 · m32 = (w3 − w1) · (w3 − w2).

Since mi j and m ji agree up to sign, ±a · mi j = wi − w j . Using Claim 2, mi j is

divisible by a. �
Suppose X ⊂ MT. We can choose a subgroup S1 of T such that F1 is fixed

pointwise by S1. By Claim 3, the subgroup �/a � of S1 acts trivially on M . Since

the T-action is effective, we get a = ±1.

If X �⊂ MT , then MT consists of five isolated points {p, p′, p1, p2, p3}, where

p, p′ ∈ X and pi ∈ Fi . Recall that Fi is homeomorphic to �P2. In particular,

there is a unique T-invariant 2-dimensional sphere in Fi that contains p and pi .
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Consider the T-action on this sphere and let mi ∈ H 2(BT ; �) denote the weight

of the tangential T-representation at pi . Similarly, let m ′
i ∈ H 2(BT ; �) denote the

weight of the tangential T-representation that corresponds to p′ and pi . Note that

mi and m′
i are only defined up to sign.

Let w and w′ denote the restriction of ξ to p and p′, respectively. Since any

torus action on a homotopy �P2 is of linear type and x2 restricted to Fi is equal

to a times a generator of H 2(Fi ; �), we get

(1) ±a · mi = wi − w and ± a · m′
i = wi − w′.

Now consider the circle subgroup S ↪→ T defined by w = w′. Since T acts linearly

on Fi , the fixed point set F S
i is the union of X and pi .

For u ∈ H∗(BT ; �), let ū denote the restriction of u ∈ H∗(BT ; �) to H∗(BS; �).

Since w = w′, it follows from equations (1) that mi and m′
i agree up to sign. Since

T acts effectively on M and the weights mi j are divisible by a (see Claim 3), mi and

m′
i are both coprime to a.

Suppose m = a2 is not equal to 1. Consider the action of �/a � ⊂ S. Since

mi j is divisible by a, and mi and m′
i are both coprime to a, the connected �/a �-

fixed point component Z that contains p1 contains both p2 and p3 but does not

contain X . Hence, the S-equivariant Gysin map f! : H∗
S (Z; �) → H∗+4

S (M; �)

induced by the inclusion f : Z ↪→ M vanishes after restricting to X . Applying

the structure theorem for rational cohomology complex projective spaces [Hsiang

1975, Theorem VI.I, page 106] to M and Z , we find that f!(1) is divisible by

(ξ̄ − w)2. Comparing degrees, we see that there is a rational constant C such that

f!(1) = C · (ξ̄ − w)2. By restricting this identity to the T-fixed point pi , we obtain

±mi ·m′
i = C ·(wi −w)2. Using (1), we get C = ±1/a2. Hence (1/a2) ·(ξ̄ −w)2 ∈

H 4
S (M; �). Recall from Claim 1 that (1/a2) (ξ̄−w1)·(ξ̄−w2) is also in H 4

S (M; �).

Taking the difference of these two elements, we obtain

1

a2

(
(w2 − w1 + 2 · (w1 − w)) · ξ̄ + (w2 − w1 · w2)

) ∈ H 4
S (M; �).

Since (1, ξ̄ ) is part of a basis of the free H∗(BS; �)-module H∗
S (M; �), it follows

that (w2 −w1 + 2 · (w1 −w)) is divisible by a2. Now (w2 −w1) is divisible by a2

by Claim 3, and a is odd. Hence (w1 −w) is divisible by a2. Using (1), we deduce

that a divides mi . This contradicts a2 �= 1 since mi is coprime to a. Hence m = a2

is equal to 1. �
We close this section with an application to biquotients. Recall that any biquo-

tient of a compact connected Lie group G is rationally elliptic and comes with a

metric of nonnegative curvature induced from a biinvariant metric on G.

Corollary 4.1. A simply connected 8-dimensional biquotient of positive curvature
and symmetry rank ≥ 2 is diffeomorphic to S8, �P4, �P2 or G2/ SO(4).
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Proof. According to Theorem 1.2, a simply connected positively curved 8-dimen-

sional biquotient with symmetry rank ≥ 2 is rationally singly generated. Rationally

singly generated biquotients where classified by Kapovitch and Ziller in [2004,

Theorem A]. In dimension 8, these are the homogeneous spaces given. �

Remark 4.2. From the classification of homogeneous positively curved manifolds,

it follows that G2/ SO(4) does not admit a homogeneous metric of positive curva-

ture. We do not know whether G2/ SO(4) admits a positively curved metric with

symmetry rank two.

5. Bordism type

In this section, we consider the bordism type of closed simply connected Riemann-

ian 8-manifolds with positive curvature. We determine the Spin-bordism type and

comment on the oriented bordism type for manifolds with symmetry rank ≥ 2.

In dimension eight, the Spin-bordism group 
Spin
8 is isomorphic to � ⊕ �,

and the Spin-bordism type is detected by Pontryagin numbers; see [Milnor 1963,

page 201]. Since in this dimension the Pontryagin numbers are uniquely deter-

mined by the Â-genus and the signature, it suffices to compute these numerical

invariants.

Proposition 5.1. Let M be an 8-dimensional Spin-manifold. If M admits a metric
of positive curvature and symmetry rank ≥ 2, then χ(M) = 2 or 3, and M is Spin-
bordant to S8 or ±�P2.

Proof. By the Atiyah–Hirzebruch vanishing theorem (see Theorem 2.4(5)) or al-

ternatively by the theorem of Lichnerowicz [1963], the Â-genus of M vanishes.

Hence, it suffices to show that the signature of M is equal to the signature of S8 or

±�P2; that is, we want to show that |sign(M)|≤1. If some isometry in T acts with

a fixed point component of codimension 2, this follows directly from Corollary 2.1

and Theorem 1.1 (in fact M is bordant to S8 since an integral-cohomology �P4 is

never spin). So assume that for any τ ∈ T the fixed point manifold

(∗) Mτ has no fixed point component of codimension 2.

Recall from Theorem 1.1 that χ(M) = 2, 3 or 5. If χ(M) = 2, sign(M) = 0.

To see this consider a subgroup S1 ⊂ T of positive fixed point dimension (that is,

dim M S1
> 0). By condition (∗), any connected component of M S1

is of dimension

no more than 4. It follows from Theorem 2.4(1) that M S1
is S2 or an integral coho-

mology S4. Since the signature of M is the sum of the signatures of the connected

components of M S1
, the signature of M vanishes; see Theorem 2.4(3).

If χ(M) = 3, then |sign(M)| = 1. The reasoning is similar to the one above.

Choose an S1 subgroup of T such that the fixed point manifold M S1
has a connected
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component F of dimension 2 or 4. Any such F is simply connected by [Synge

1936] and satisfies |sign(F)| ≤ χ(F) − 2. Since χ(M) = χ(M S1
) = 3 and the

signature of M is the sum of the signatures of the connected components of M S1

(taken with the appropriate orientation), we get |sign(M)| = 1.

Finally, we claim that the case χ(M)=5 cannot occur. First note that in this case

the signature of M is odd since sign(M) ≡ χ(M) mod 2. Let σi for i ∈ {1, 2, 3}
denote the three nontrivial involutions in T. It follows from condition (∗) and

Theorem 2.4(4) that Mσi contains a 4-dimensional connected component Fi (which

is unique by the intersection theorem). By Lemma 3.1, Fi is homeomorphic to S4

or �P2. Since M is spin, the action of σi must be even; see Theorem 2.4(6). Hence

Mσi is the union of Fi and isolated σi -fixed points. Using Lemma 3.2, we see that

each connected component of MT2 has type (4, 4, 4) or (4, 4, 0). In particular, any

T2-fixed point component is contained in some Fi .

To derive a contradiction, we will compute the Euler characteristic. Consider

the case when for one of the Fi , say F1, the Euler characteristic is equal to 3

and hence Fi is homeomorphic to �P2. Since σ2 acts nontrivially on F1, we get

Fσ2

1 = Fσ3

1 = S2 ∪{pt}, where S2 and pt are connected components of MT2 of type

(4, 4, 4) and (4, 4, 0), respectively. Hence, one of the other Fi , say F2, contains

S2 ∪ {pt}. This leads to the contradiction

5 = χ(M) = χ(MT2) = χ(F2) + χ(F3) − χ(F2 ∩ F3) ≤ 3 + 3 − 2 = 4.

So, assume χ(Fi ) = 2 for all i . Note that MT2 cannot contain a connected compo-

nent of type (4, 4, 4) since otherwise χ(M)= 2 by a computation similar to the one

above. Hence, each connected component of MT2 is of type (4, 4, 0). In particular,

the Fi intersect pairwise in different points, which gives the contradiction

5 = χ(M) =
∑

i

χ(Fi ) −
∑

i< j

χ(Fi ∩ Fj ) + χ(F1 ∩ F2 ∩ F3) ≤ 6 − 3 = 3.

In conclusion, we have shown that χ(M) �= 5, which completes the proof of the

theorem. �
A more natural and apparently more difficult problem is to understand the ori-

ented bordism type of an 8-dimensional positively curved manifold M with sym-

metry rank ≥ 2.

Wall [1960] has shown that the only torsion in the oriented bordism ring 
SO∗ is

2-torsion, and that the oriented bordism type of a manifold is determined by Pon-

tryagin and Stiefel–Whitney numbers. In dimension eight, 
SO
8 is isomorphic to

�⊕�. Hence, in this dimension the oriented bordism type of an oriented manifold

is determined by its Pontryagin numbers.

In contrast to the case of Spin-manifolds, the Â-genus does not have to vanish on

positively curved 8-dimensional oriented manifolds with symmetry (consider for
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example �P4). This makes the problem of determining the oriented bordism type

more difficult. One way to attack this problem is to prove the stronger statement

that for some orientation of M and some S1 ⊂ T , the S1-action has locally the

same S1-geometry as a suitable chosen S1-action on one of the symmetric spaces S8,

�P2 or �P4 (that two S1-manifolds have the same local S1-geometry just means

that there exists an equivariant orientation-preserving diffeomorphism between the

normal bundles of the S1-fixed point manifolds). Once this has been accomplished,

one can glue the complements of the normal bundles together to get a new manifold

W, with fixed point free S1-action, that is bordant to the difference of M and the

symmetric space in question. As observed by Bott [1967], all Pontryagin numbers

of a manifold with fixed point-free S1-action vanish and hence W is rationally zero-

bordant. Since the oriented bordism ring has no torsion in degree 8, the manifold

M is bordant to the symmetric space in question.

This line of attack can be applied successfully at least if χ(M) �= 5. Details will

appear elsewhere.

It is interesting to compare the results above with [Dessai and Tuschmann 2007],

in which it is shown that there exists an infinite sequence of closed simply con-

nected Riemannian 8-manifolds with nonnegative curvature and mutually distinct

oriented bordism type.
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