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Abstract

Recently, social tagging systems have been widely applied in web systems and some physical
properties have been found applications in efficiently and effectively personalized recommenda-

tion. Social tags can provide highly abstract information about not only item contents but also

personalized preferences, hence they might help generate better personalized recommendations.

However, how to find out the relevant yet diverse items that are not associated with any tag re-

mains an open question for us. In this paper, we assume a basic attraction may exist for each

item. Moreover, considering both personal and global vocabulary, as well as such attractor, we

apply diffusion-based recommendation algorithm in weighted social tagging networks. We then

evaluate it in a real-world data set Del.icio.us. Experimental results demonstrate that the usage
of both tag information and attractor can significantly improve diversity of personalized recom-

mendations, and thus it can be regarded as an alternative recommendation method.
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1. Introduction

The exponential growth of web information has led people into an information overload era:

they face too much information to be able to find out those most relevant and interesting for them.

It is almost impossible to evaluate all these alternatives by themselves. Consequently, an urgent

problem of how to automatically get the relevant information for us emerges.

Personalized recommender systems, using the personal information for recommendation, are
considered to be the most promising way to efficiently find out useful information. Thus far, per-
sonalized recommender systems have successfully found applications in e-commerce [1], such
as book recommendations in Amazon.com [2], movie recommendations in Netflix.com [3], video
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recommendations in TiVo.com [4], and so on. The design of an efficient recommendation al-

gorithm has become a joint focus from various research communities. A considerable amount

of algorithms have been proposed, of which Collaborative Filtering (CF) is one of the most
prominent techniques. However, The performances of many algorithms (e.g. CF) are strongly
limited by data sparsity. Additional information, such as user profiles [5], item contents [6] and

attributes [7], is used to filter out irrelevant information. Nevertheless, these applications are usu-

ally strongly restricted to respect personal privacy, or limited due to the lack of available content

information. On the other hand, social tagging systems, allowing users to freely assign words,
so-called tags, to their collections, provide helpful information of item content and individual

preference to better address the above issues. Tags are given by users themselves and therefore

represent the personal vocabulary and preference to some extent.

Recently, a considerable number of algorithms are designed to make use of tagging informa-

tion. Schenkel et al. [8] proposed an incremental threshold algorithm taking into account both

the social ties among users and semantic relations of different tags, which performs remarkably

better than the algorithm without tag expansion. Nakamoto et al. [9] created a tag-based con-
textual collaborative filtering model, where the tag information is treated as the users’ profiles.

Tso-Sutter et al. [10] proposed a generic method that allows tags to be incorporated to the stan-
dard collaborative filtering, via reducing the ternary correlations to three binary correlations and

then applying a fusion method to re-associate these correlations. Zhang et al. [11] and Shang
et al. [12] integrated tags into two bipartite networks to make better recommendation based on
diffusion method [13]. In addition, Shang et al. [14] discussed a degree-based weighting method
on social tagging networks.

In this paper, we introduce tag information of user-item pairs, as well as the attractor, to

improve the diversity of the recommendation [15, 16]. Recently, the significance of diversity has

attracted more and more attention in information filtering [17]. We consider the network with

tags as a social tagging system, which make the network contain more semantic relations among
items. These tags are words assigned freely by users to their collections in their own vocabularies,

so they might provide more helpful preference information for better recommendation under

the condition of respecting personal privacy. We use one benchmark data set, Del.icio.us, to
evaluate our algorithm. Experimental results demonstrate that the usage of tag information can

significantly improve both inter-diversity and intra-similarity of recommendations , and thus it

can be regarded as an alternative recommendation algorithm to provide user a wider vision.

2. Method

In this paper, we adopt a tag-based weighted variant of the diffusion-based method proposed

in [13] and here the weights are generated according to both personal and global vocabulary and

combined with an interest attractor of each user-item pair ε. A social tagging system consists of

three distinct sets, a user set U = {u1,u2,. . .,un}, an item set I = {i1,i2,. . .,im}, and a tag set T =
{t1,t2,. . .,tl}, respectively. Generally speaking, there are three kinds of user behaviors in tagging
systems. For a single user, s/he might 1) save an item (e.g. webpage) by serendipitous browsing

and not assign any tag to it in any case (e.g. lack of suitable words to describe it); 2) save an

item and assign some relevant tags to it definitely; 3) look into the baskets of other users’ items

via his favorite tags, select favorite items and collect them. Accordingly, the first way indicates

that items are basically attractive to users to some extent, while the others reveal that tags play

an important role in efficiently retrieving relevant and interesting items.
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2.1. Tag-based weighted networks

A weighted bipartite network can be generated according to users’ tagging behaviors. In

the weighted process, both the personal vocabulary space and global vocabulary are taken into

account. Moreover, the basic attraction of items is also considered as an important factor for

recommendation. As shown in Fig 1, three users and four items constitute a bipartite network,

while each edge represents a connection between a user and a specific item. The weight of each

edge is generated according to his/her tagging behavior:

1. For a certain user uk(k = 1, 2, . . . , n), all the tags s/he has employed can be regarded as
his personal tag space Γ(uk). Thus the tag-based weight for one of his specific item, i j, is

defined as:

w(T )
k, j =

∑

t∈Γ(k, j)
( f reqkt ∗ log

|U |
|{u : t ∈ Γ(u)}| ), (1)

where Γ(k, j) is the set of tags which are assigned to item i j by uk, f reqkt is the frequency

of tag t used by uk in all his/her tagging history, |U | is the total number of users in the
whole data set. Γ(u) is the set of tags used by user k, and thus the denominator in the
logarithm term of Eq.1 is counted as the number of users who have used the tag t. Hence,
the most frequently used words by the whole community would not contribute much to

be considered as personalized information. This weighting method is firstly introduced as

TF-IDF [18] in Information Retrieval.
2. An attractor ε is integrated with w(T )

k, j as the total weight of the edge between uk and i j,

due to the fact that an essential preference exists between users and items, whatever uk

assigned tags to i j or not by any chance. This assumption ensures that the information

of users’ preferences to items without tags can be reserved and that zero-tag items would

have a more possible chance to be recommended by the proposed algorithm.

Then the final weight for any user-item pair would be the sum of these two factors:

wk, j = w(T )
k, j + ε. (2)

So each item collected by user uk can be assigned with a final weight in the way as mentioned

above, and the user-item bipartite network is also weighted according to users’ tagging behav-

iors. The parameter ε can be tuned in order to reach the best performance for recommendation.
Therefore, the final weight can indicate how the user likes to collect the item.

For the sake of easier understanding of the generation process of tag-based weights men-

tioned above, we give an example to make it clearer. In Fig. 1, u1 has collected three items: i1,
i2, i3 and i4, and s/he assigns tags: t1, t2, t3 for i1; t4 for i2; t1, t2, t3 for i3, and nothing for i4.
Therefore the frequency of each tag (t1, t2, t3, t4) used by u1 is respectively 2/7, 2/7, 2/7 and 1/7
. Meanwhile, the number of users who have collected those tags are 3, 2, 2, 1 respectively. As a

consequence, the final weight for u1 − i1 can be generated according to Eq. 1 and Eq. 2:

w1,1 =
∑

t∈Γ(11)
( f req1t ∗ log

3

|{u : t ∈ Γ(u)}| ) + ε = 0.232 + ε. (3)

Analogously, the other weights are generated as: w1,2 = 0.157 + ε, w1,3 = 0.232 + ε, and ε for
w1,4.
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Figure 1: Illustration of a social tagging system.

2.2. Recommendation via diffusion process

In order to provide better recommendations, we will use the weights generated by tag infor-

mation as mentioned above to make personalized recommendations via diffusion process. The

diffusion process allows the values transferred between users and items. For any certain user uk,

it includes two steps shown as follows:

Step 1: Distribute averagely the value of each item i j to the users who has collected it, and

then the value that a user ul will receive is:

pl =
∑

j∈Γ(uk)

wk, j

d(i j)
, (4)

where Γ(uk) is the set of items that have been collected by uk, and d(i j) is the degree of item i j in

the user-item bipartite network.

Step 2: Redistribute the value of each user ul to his/her collections according to the weight

defined in Eq (2). Finally, the final value rk, j corresponding to item i j will be summarized as:

rk, j =
∑

l∈Γ(i j)

(pl ∗ wl, j), (5)

where Γ(i j) is the set of users who collected item i j.

Therefore, each user uk has a final value vector �rk which is composed of rk, j. In the diffusion

procedure, the values are firstly distributed from items to users, and then in Step 2, the tagging
behaviors are taken into account again and the values are distributed to items based on the derived

weights. The final values can be considered as the scores for each item, making up uk’s value
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Table 1: Basic Information of the data set.

Value Description

9,998 number of users

287,531 number of items

136,311 number of tags

1,611,190 number of user-item relations

71,260 number of no-tag user-item relations

5,327,901 accumulative number of tags

vector �rk. Finally, these scores in the same vector are sorted in a descending order, and the items

with the top scores which have not been collected by uk will be recommended to him/her.

3. Experimental Results

We use a benchmark data set, Del.icio.us, to evaluate the proposed algorithm. Del.icio.us
is one of the most popular social bookmarking systems, which allows users not only to store,

organize and share personal bookmarks (URLs), but also to look into other users’ collections and

find what they might be interested in by simply keeping track of other users’ collections with the

same tags or items. The data used in this paper is crawled from the website http://del.icio.us/ in

May 2008. And we purified the meta data to guarantee that each user has collected at least one

item. Table 1 summarizes the basic statistical properties of the data set. To test the algorithmic

performance, we use all the data with tags and 23% of the data without tags as the training set,

and the residual data without tags as the probe set.

In order to evaluate comprehensively the performance of our proposed method, we adopt

three metrics: inter-diversity, intra-similarity and ranking score [13].

1. Inter-diversity. Inter-diversity [15] can be used to measure how diverse and personalized a

recommendation algorithm is. Hamming distance, which is adopted to quantify the inter-

diversity, is defined as

Hpq = 1 − Opq

L
, (6)

where Opq denotes the number of items overlapped in up’s and uq’s recommendation lists,

and L denotes the length of the recommendation list. Then we average the Hamming dis-
tance over all the user-user pairs to measure the diversity of recommendations. Therefore,

the larger the average value of Hamming distance is, the more personalized recommenda-

tions are.

2. Intra-similarity. Intra-similarity [16] takes into account the diverse recommendations to a
single user. For any user uk, the intra-similarity of uk’s recommendation list can be defined

as

Qk =
1

L(L − 1)
∑

p�q

spq, (7)
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Figure 2: Inter-diversity vs. ε. The results reported here are averaged over four independent runs, and in each running
the probe is obtained randomly from the data set without tags and both the residual data without tags and all the data

with tags are used as the training set.
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Figure 3: Intra-similarity versus ε. The results reported here are averaged over four independent runs, and in each

running the probe is obtained randomly from the data set without tags and both the residual data without tags and all the

data with tags are used as the training set.
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Figure 4: ranking score versus ε. The results reported here are averaged over four independent runs, and in each running
the probe is obtained randomly from the data set without tags and both the residual data without tags and all the data

with tags are used as the training set.

where spq is the similarity between item ip and iq, denoted as:

spq =
|Γ(ip)

⋂
Γ(iq)|√

d(ip)d(iq)
. (8)

Then we average the intra-similarities of all the users to obtain the intra-similarity of the

system. Therefore, the smaller the mean value of the intra-similarities is, the more diverse

the recommendation is to users.

3. Ranking score. Ranking score can be used as a measurement to evaluate the accuracy of
the recommendation method. For each user, an ordered queue (e.g.�rk for user uk) of all its

uncollected items can be provided by learning the training set. If the relation uk-i j is in the

probe set, the position value is the ratio of the position of i j to the length of the descending

ordered queue. Then we average the position values over all the data in the probe set. Thus

the average value is called ranking score, rs for short. Therefore, the smaller the ranking
score is, the higher the accuracy of the algorithm is.

The Experimental results of inter-diversity, intra-similarity and ranking score are shown re-
spectively in Figure 2, Figure 3 and Figure 4. We choose the method described in [13] as the

baseline method for comparison. The length of recommendation list is set to 10. These figures

show the change of our algorithmic performance with the gradual changes of attractor ε. It can be
seen that the curves trend to approach gradually the performance of the baseline method when ε is
larger than 1. It is because the proposed method is just almost the baseline method when ε is big
enough, e.g. ε = 1000. Since the mean tagged weight, of the training set is 〈w〉=0.1935, we pay
close attention to the parts of the curves in the interval ε ∈ [0.01, 0.1], in the range of which our
proposed method gives higher inter-diversity and lower intra-similarity than the baseline method.

However, the accuracy will decrease when we obtain high diversity, thus the proposed method
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Figure 5: Cumulative weight distribution of the dataset. The dash line shows the average weight.

can be considered as an alternative method of previous researches [11, 12, 13, 14] For example,

when ε = 0.06, our method gives inter-diversity and intra-similarity furtherly improved by about
17% and about 6% respectively. It indicates that both the tag information and the attractor are

useful to open a wider vision for users via recommendations. Additionally, in order to obtain

in-depth understanding of the role of ε, we subsequently measure the the weight effects. Figure 5
shows the cumulative weight distribution of all the user-item pairs. , from which we can see that

about 79.1% of data is smaller than 〈w〉. This might give a reasonable explanation that a small ε
corresponds to high diversity.

4. Conclusion and Discussion

In this paper, we proposed a tag-based weighted variant of mass diffusion-based method,

where the tag information and the item attractor are both introduced to enhance the diversity of

recommendation. The proposed method has two features. First, the tag information, including

personal and global vocabulary, makes the bipartite network more informative on semantics,

which can help recommend more diversely. Second, the introduction of basic attractor can lead

the recommendation more flexible according to the specific recommendation requirement.

How to give a better personalized recommendation is a challenge for information scientific

communities. Meanwhile, when we recognize the effect of tag information to recommendation,

we will further take into account some hybrid algorithms in the direction of combining tagging

information and physical dynamics in order to improve the performance of recommendation in

more aspects.
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