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The inhomogeneous 3-Kelvin (3K) phase of the eutectic Sr2RuO4 with Ru inclusions nucleates
superconductivity at the interface between Ru and Sr2RuO4. The structure of the interface state and its
physical properties are examined here. Two superconducting phases are identified between the transitions
to the bulk phase at 1.5K and to the 3K phase. The nucleation of the 3K phase results in a state
conserving time reversal symmetry, which generates an intrinsically frustrated superconducting network
in samples with many Ru inclusions. At a lower temperature (>1:5K), a discontinuous (first order)
transition to an interface state breaking time reversal symmetry is found leading to an unfrustrated
network phase. It is shown that this phase transition located at a temperature between 1.5 and 3K would
yield the anomalous property showing that the critical current in such a network depends on the sign of
the current, reproducing recent experimental observations.
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1. Introduction

Sr2RuO4 is a quasi-two-dimensional strongly correlated
metal showing unconventional superconductivity with a bulk
critical temperature Tb

c ¼ 1:5K.1,2) There is strong evidence
that the superconducting phase has a spin-triplet odd-parity
character and breaks time reversal symmetry. The most
likely order parameter has a chiral p-wave symmetry
corresponding to a pairing state with the orbital structure
kx � iky and the triplet spin configuration corresponding
to Sz ¼ 0. This state is usually represented by the vector
gap function dðkÞ ¼ ẑzðkx � ikyÞ and is described as a two-
component order parameter, for example as dðkÞ ¼ �xẑzkx þ
�yẑzky.

Some years ago, an intriguing feature of Sr2RuO4–Ru
eutectic samples was discovered. Some of the Ru segregates
into mm-sized inclusions embedded within the parent
material Sr2RuO4. These samples show an onset to inho-
mogeneous superconductivity at approximately T� � 3K,
which turns into the bulk superconducting phase at T ¼
Tb
c .

3,4) This higher-temperature phase (Tb
c < T < T�) has

been called the ‘‘3-Kelvin’’ phase (3K phase). The early
suggestion that the superconductivity in the 3K phase has
filamentary nature, nucleating at the interface between Ru-
inclusion and Sr2RuO4,

5) receives strong support on the basis
of the behavior of the upper critical fields Hc2, which is
enhanced and shows a characteristic sublinear dependence
on jT � T�j.4,6) This theory is based on the assumption that,
for some as-yet unknown reason, the pairing interaction is
enhanced in Sr2RuO4 in the vicinity of the interface.5)

Interestingly, the effective symmetry lowering at the inter-
face implies the nucleation of a superconducting state, which
is different from that of the bulk state of Sr2RuO4 and does
not violate time reversal symmetry. For the two-dimensional
order parameter space of the p-wave state, i.e., dðkÞ ¼

�xẑzkx þ �yẑzky, quite general arguments lead to the conclusion
that the pairing state with the orbital symmetry k � n ¼ 0 (the
p-wave lobe parallel to the interface) is realized at T ¼ T�

(n is the normal vector of the interface).5) Consequently, the
transition from the 3K phase to the bulk superconducting
(chiral p-wave) phase is not merely a percolation transition
as in the case of conventional inhomogeneous superconduc-
tors. At least, time reversal symmetry breaking (TRSB) has
to occur on the way to the bulk phase.

In this study, we investigate the evolution of the 3K phase
towards the bulk superconducting phase of Sr2RuO4 in the
temperature range Tb

c < T < T�. In this context, we will
discuss three different phases for a closed interface of a Ru
inclusion, which we call the A-, A0-, and B-phases. The A-
phase appears at T� and is time-reversal-conserving. At
lower temperatures, a transition to a time-reversal-symme-
try-violating phase named A0-phase (B-phase) occurs, which
may have the same (different) topology as the A-phase. We
will show that the A- and A0-phases introduce phase
frustration, if we consider a network formed by the super-
conducting interfaces states of many Ru inclusions.5) On the
other hand, the topology of the B-phase yields a non-
frustrated network. Our investigation shows that the addi-
tional transition is of first order from the A-phase to the B-
phase; it breaks time reversal symmetry and simultaneously
changes the topology of the states on an inclusion. The B-
phase is then topologically identical to the bulk phase, which
is eventually reached by percolation. The additional tran-
sition is accompanied by observable effects such as
characteristic features of quasiparticle tunneling7–10) and
critical current.11)

2. Model Formulation

To illustrate the most relevant features of the 3K phase,
we first consider a single Ru inclusion modeled as a cylinder
of radius R whose central axis lies along the z-axis of the
tetragonal crystal lattice of Sr2RuO4. Here, we focus on the�E-mail: hirono@sci.u-hyogo.ac.jp
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superconductivity in the two-dimensional x–y plane and use
the in-plane p-wave spin-triplet pairing as the dominant
superconducting instability. Assuming for the bulk phase
the chiral p-wave spin-triplet state, we represent the
order parameter by the vector gap function as dðr; kÞ ¼
�þðrÞẑzðkx þ ikyÞ þ ��ðrÞẑzðkx � ikyÞ. With this order parame-
ter, we now write a Ginzburg–Landau (GL) free energy for
the region belonging to Sr2RuO4 around a single cylindrical
Ru inclusion (r > R),

F ¼ f0

Z
r>R

d3r

�
�ðrÞj�j2 þ 1

6
fj�j4 þ 2j�þj2j��j2g

þ fjD�þj2 þ jD��j2g þ 2�2ðr� AÞ2

þ 1

2
fðD��þÞ�ðDþ��Þ þ c.c.g

�
: ð1Þ

We use dimensionless units for our formulation, and the
notation � ¼ ð�þ; ��Þ, �ðrÞ ¼ T=TcðrÞ � 1. With the r-
dependence of the critical temperature TcðrÞ, we incorporate
the local enhancement of the pairing interaction. We
introduce the operators D ¼ r� iA with D� ¼ Dx � iDy

and A as the dimensionless vector potential. The units are
chosen so that the zero-temperature coherence length �0 is
the unit length, the order parameter reaches j�þj2 or j��j2 ¼
�� in the uniform bulk state below Tb

c (2-fold degenerate
state), and the vector potential is given in units of �0=2��0
(�0 ¼ hc=2e is the flux quantum). Moreover, � is the usual
GL parameter and f0 is the free energy per unit volume. A
straightforward variational calculation shows that the coor-
dinate separation of the order parameter in eq. (1) is
adequate here with N as the quantum number characterizing
different topological sectors of the order parameter [see
eq. (3)].

In order to model the narrow region of enhanced super-
conductivity at the interface, we introduce the spatially
dependent TcðrÞ in the following form:

TcðrÞ ¼ Tb
c þ

T0

cosh½ðr � RÞ=d� for r 	 R: ð2Þ

Here, d is the width of the region close to the interface where
Tc is locally enhanced with a maximum Tb

c þ T0 at the inter-
face. At this moment, we ignore the magnetic field (A ¼ 0)
and investigate first the nucleation of superconductivity.

With the given geometry and order parameter choice, it is
advantageous to turn to cylindrical coordinates ðr; �; zÞ. The
GL equations allow to separate the dependences of the order
parameters in radial and azimuthal coordinates into the form
(assuming homogeneity along the z-axis),

��ðrÞ ¼ ��ðrÞeiðN
1Þ�; ð3Þ
where N is an integer corresponding to the phase winding
number of dðr; kÞ around the cylinder, since the order
parameter is single-valued. This representation reflects the
cylindrical symmetry of our model geometry and gives
rise to the following symmetry properties. One finds d !
d expðiN�Þ for a rotation of the system, � ! � þ � and
�k ! �k þ �, owing to the factor kx � iky � jkj expð�i�kÞ
and the phase factor of eq. (3). Here, we always keep the
orientation of the d vector fixed parallel to the z-axis. The
formulation of the boundary conditions is most conveniently
performed with the radial and azimuthal components of the
order parameter defined as

�rðr; �Þ ¼
1ffiffiffi
2

p ½�þðrÞ þ ��ðrÞ�eiN�;

��ðr; �Þ ¼
iffiffiffi
2

p ½�þðrÞ � ��ðrÞ�eiN�:
ð4Þ

These two order parameters are differently affected by
boundary effects due to their interference effects under
surface scattering. These effects can be implemented by
using the following standard boundary condition at the
interface (r ¼ R);

d�	

dr

����
r¼R

¼ �	ðRÞ
‘	

; ð5Þ

where 	 stands for ‘‘r’’ or ‘‘�’’. Here, ‘	 is the so-called
extrapolation length characterizing the boundary effect for
each component (for example, see, ref. 12). We assume
‘� ! 1, since the tangential component of a Cooper pair
wave function at an interface is not affected by (specular)
surface scatterings.13) On the other hand, there is a
suppression of the radial component (sign change order
parameter under reflection at the interface) requiring a finite
value of ‘r. In our model, we neglect the superconducting
component induced in the Ru inclusion, assuming an
interface of very low transmissivity, consistent with our
assumption of the boundary condition. This model will now
be used to derive a phase diagram of the 3K phase.

3. Phases and Phase Diagram

For given N and T , we can now determine the r

dependence of the order parameter by varying the GL free
energy including the boundary conditions. We find three
states which are of interest for the discussion of the 3K
phase, which we named the A-, A0-, and B-phases. They are
distinguished by time reversal symmetry and the phase
winding number N (see Fig. 1). The A-phase is a state
conserving the time reversal symmetry (�� 6¼ 0 and �r ¼ 0)
and with N ¼ 0. Both the A0- and B-phases violate the time
reversal symmetry with N ¼ 0 and N ¼ �1, respectively
(�� 6¼ 0 and �r 6¼ 0).

At T ¼ T�, the A-phase nucleates, corresponding to
�þðrÞ ¼ ���ðrÞ / ��ðrÞ according to eq. (4). As a result
of the boundary conditions (‘� ¼ 1), the order parameter
��ðrÞ is the largest at the interface r ¼ R and falls off
exponentially on the length scale �0ðTÞ � j�ðr 
 RÞj�1=2

with increasing r. Because N ¼ 0, the internal phase
structure of the p-wave pair wave function yields the phase
difference � across a Ru inclusion for the order parameters
��ðrÞ in eq. (3) (see Fig. 1).

The A0-phase is also in the topological sector of N ¼ 0. A
second-order transition from the A-phase may lead to this
phase at a temperature below T�. This transition breaks
the time reversal symmetry introduced by the continuous
appearance of the subdominant component �r. From eq. (4),
we find that the A0-phase breaks the balance between the
amplitudes j�þðrÞj and j��ðrÞj because �r 6¼ 0 and �� 6¼ 0.
In this way, one of the two order parameters ��ðrÞ be-
comes predominant as the temperature is lowered, and will
eventually decide the chirality of the bulk superconducting
phase.

In contrast to the A and A0-phases, the B-phase is a state
with N 6¼ 0. We distinguish the two degenerate states �þ 6¼
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0 and �� ¼ 0 with N ¼ 1 and �þ ¼ 0 and �� 6¼ 0 with
N ¼ �1. Consequently, the dependence on � cancels in
the representation of the order parameter in eq. (3), unlike
the A- and A0-phases. Therefore, this state has the same
symmetry and phase topology as the homogeneous bulk
phase of Sr2RuO4, as can be easily deduced from Fig. 1.
Therefore, the B-phase naturally connects to the bulk phase
occurring at Tb

c .
In the next step, we examine the sequence of transitions

in the temperature range between T� and Tb
c (Fig. 2). It can

be anticipated that below the onset of superconductivity at
T ¼ T�, a second transition at a temperature T ¼ T 0 leads
to either the A0-phase or the B-phase. The latter transition
(A ! B) would be of the 1st order, since it involves a
discontinuous change in the winding number (N ¼ 0 !
N ¼ �1). In order to determine which of the two states
is reached, we have to compare their free energies. The
parameters are set to Tb

c ¼ 1:5K of the pure Sr2RuO4 and
d ¼ 0:5 in �0 units in eq. (2). T0 is adjusted so as to obtain
the nucleation temperature for the A-phase to T� � 3K.
Note that, on a qualitative level, the following results are
insensitive to the choice of these parameters.

Our numerical evaluation of the variational equations with
the given parameters yields a transition from the A-phase
to the B-phase at T 0 � 2:4K (see Fig. 2), which is of the
1st order for the reason discussed above. The continuous
transition between the A- and A0-phases has a lower critical
temperature (T 00 � 2:2K) and is consequently not realized.
We have confirmed that the transition temperature T 0 shows
little sensitivity on the radius R of the Ru inclusion as long as
R 
 1 (length unit �0). Therefore, in the case of the single
Ru inclusion, we conclude that the first-order transition
(A ! B) occurs at a temperature below the 3K phase
nucleation at T ¼ T�. The B-phase then evolves into the
bulk phase at T ¼ Tb

c extending throughout the whole
sample.

4. Nature of the Two Phases

In this section, we consider two characteristic properties
of the A- and B-phases that can help identify the two phases
experimentally.

4.1 Spontaneous currents
We may physically distinguish the A-phase from the B-

phase by the fact that the latter carries a spontaneous current
that flows along the interface. This is a consequence of the
TRSB, while the change in the topology of the states
(N ¼ 0 ! N ¼ �1) is less important in this context.5) The
expression of the supercurrent is easily derived from the GL
free energy [eq. (1)] by using the derivative with respect to
the azimuthal vector potential. In the present cylindrical
geometry, the radial component of the supercurrent vanishes
for symmetry reasons. The azimuthal component is given as

j�ðrÞ ¼
2

r
½ðN þ 1Þ�2þðrÞ þ ðN � 1Þ�2�ðrÞ � N�þðrÞ��ðrÞ�

� ��ðrÞ
@�þðrÞ
@r

þ �þðrÞ
@��ðrÞ
@r

: ð6Þ

Obviously, this current vanishes in the A-phase where N ¼ 0

and �þ ¼ ���. In the B-phase, on the other hand, current
flows near the interface. Note that the expression of the
current in eq. (6) and the numerical result shown in Fig. 3 do
not include the screening effects (i.e., the vector potential is
not determined self-consistently). The Meissner–Ochsenfeld
screening is of minor importance here since the bulk of the

+i+i

+i

+i

+i
+i

+i

+i

+i+i
+i

+i

Fig. 1. Topological structure of the A-, B-, and metastable A0-phases.
(a) The A-phase corresponds to a time reversal symmetric state with

N ¼ 0 (winding property). The tangential component of a pair wave

function is arranged in such a way as to keep the phase constant around

the interface. However, it yields, a diametral phase shift � due to the

internal structure of the tangential p-wave state, as indicated in the figure.

The perpendicular component vanishes. (b) The A0-phase with N ¼ 0 is

TRSB due to a finite perpendicular p-wave component. (c) The B-phase is

TRSB with N ¼ �1 and has a topological structure compatible with that

in the bulk phase, ẑzðkx � ikyÞ.
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Fig. 2. Temperature dependence of the free energy difference FN¼0ðTÞ �
FN¼1ðTÞ between the states with winding numbers N ¼ 0 and 1. The two

plots correspond to those in the cases of different-sized Ru inclusions with

radii R ¼ 2 and 10 in �0 units. The first-order transition from the A-phase

(N ¼ 0) to the B-phase (N ¼ 1) occurs at T 0 � 2:4K.
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material is not superconducting. The currents are rather
small and sparse so that it would be difficult to directly
observe the magnetic field generated by those currents, for
example, by scanning SQUID or Hall probes. Moreover, the
observation of the magnetic fields by means of 	SR zero-
field relaxation rate measurements is likely difficult owing
to the small volume fraction. Below, we will discuss that
critical current measurements may be viewed as evidence of
the realization of phase transition below T�, which leads to a
TRSB state.

4.2 Coupling between inclusions
Some eutectic Sr2RuO4–Ru samples contain regions with

a rather high density of Ru inclusions. In these systems,
superconducting condensates nucleating at the interfaces of
neighboring inclusions can overlap, if they are separated by a
length on the order � � �0=

ffiffiffiffiffij�jp
only. A composite of many

inclusions can form a superconducting network in the 3K
phase whose properties are influenced by the structure of the
order parameter on the interfaces. The region of overlapping
condensates on neighboring inclusions can be viewed as a
weak link or a superconductor/normal metal/superconductor
(SNS) Josephson junction. The energetically favored state
is realized when the overlapping order parameters have
identical phases on both interfaces, as in a standard
Josephson junction. For the A-phase condensate, the require-
ment of identical phases leads to the configurations shown in
Fig. 4 (left panel): the p-wave lobes at the closest point align
with the same phase (‘‘0-phase’’) corresponding to parallel
arrows for the two upper inclusions in Fig. 4. Such an
arrangement leads to the opposite orientation of the arrows
winding around these two inclusions.5) This is a consequence
of the phase structure of the p-wave Cooper pairs. This type
of coupling prefers the ‘‘þ to �’’ (winding) configuration
of the phases of the superconducting order parameters and,
consequently, gives rise to frustration as depicted for the ‘‘�-
phase’’ coupling at the lower inclusion in Fig. 4 (left panel),
analogous to the case of a triangle of antiferromagnetically
coupled Ising spins. It has been earlier speculated that this
frustration would yield a non trivial spatial dependence of the
order parameter phase and would be visible in the magnetic
response of the system, e.g., in ac susceptibility. Thus far,
such frustration effects have not been clear observed in
experiments.

In contrast to the A-phase, the B-phase has the property in
which neighboring inclusions with overlapping condensates
would energetically prefer a configuration where both
interfaces carry a state of the same chirality, as shown in
Fig. 4 (right panel). This ferro-like coupling does not lead
to frustration. The spontaneous supercurrents around the
inclusions have the same circular orientation, corresponding
to a ‘‘ferromagnetic’’ coupling of the orbital moments as
the stable configuration. Therefore, the transition between
the A- and B-phases also influences the network properties,
removing order parameter phase frustrations. In particular,
we expect that the circular currents could introduce magnetic
flux in the voids of the network, which may be interesting for
the response of the system as well as the critical current.

5. Signature of the T0-Transition in Critical Current
Measurements

In this section, we address the question of how the
transition between the A- and B-phases can be observed
experimentally. Since both phases are filamentary, thermo-
dynamic bulk properties such as specific heat would unlikely
provide a sufficiently large signal that is measurable.
Interestingly, the supercurrents carried by the network of
filamentary condensates turn out to give a probe for a
transition within the 3K phase. Recent experiments actually
gave evidence of a qualitative change in the critical current
at T ¼ 2:3K.11) To explain this finding, we assume that
the superconducting network percolates and can carry a very
small but finite supercurrent through the sample. Some
essential properties of the current flow in such a network are
captured by a simple model configuration composed of one
loop formed by superconducting paths, as shown in Fig. 5.
The important feature of such a SQUID-like structure [Fig. 5
(lower panel)] is the multiple connectivity that makes the
current flow susceptible to magnetic fluxes threading the
network.

In our ‘‘network’’ the supercurrent splits into two
branches, i.e., 1 and 2, corresponding to upper and lower
rows of Ru inclusions, respectively, in Fig. 5 (upper panel).
For our SQUID-model, we assume each of these two
branches as single Josephson contact with its specific sin-
like current phase relation:

I ¼ I1 þ I2 ¼ Ic1 sin
þ Ic2 sinð
þ �Þ; ð7Þ
where we characterize the branches by their intrinsic critical
currents Ic1 and Ic2. These describe the effective current

-0.12

-0.08

-0.04

0

 0.04

 10  14

RRu=10, T=1.9K

J 
(r

)

r

B-phase (N=1)

d=0.5

Fig. 3. Spontaneous current around a Ru inclusion in the B-phase

originating from the TRSB at T ¼ 1:9K above Tb
c . The radius of the

Ru inclusion is R ¼ 10 and the interface is located at r ¼ 10 in �0 units.

Meissner–Ochsenfeld screening is not included in this result.

Fig. 4. Inhomogeneous systems with multiple Ru inclusions. Frustration

occurs in the A-phase (left panel), while no frustration occurs in the B-

phase (right panel). Spontaneous currents in the B-phase have the same

circular orientation.
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phase relation in the two chains of the Ru inclusions in
Fig. 5 (upper panel). The phase coherence of the super-
conducting order parameter is described by the phases 
 and
� where the latter takes into account the phase difference
along the two branches due to the magnetic flux � enclosed
in the loop, given in a simple effective form as

� ¼ 2�

�0

½�þ LðI1 � I2Þ�: ð8Þ

Note that � represents the magnetic flux induced not
only by external magnetic fields, but also by spontaneous
currents running along the Sr2RuO4–Ru interfaces in the B-
phase. These spontaneous currents are not included in the
Josephson currents, as they need not to pass between Ru
inclusions. The second term represents the contribution to
the flux due to the Josephson currents running through the
network, specifically through the two arms of the SQUID
structure, with L as an effective self-inductance. For
simplicity, we assume the two arms to be symmetric in
geometry such that their contributions to the induction are
identical with opposite signs, while the Josephson coupling
strengths are different for the two arms (Ic1 6¼ Ic2) in order to
introduce asymmetry necessary to avoid the cancelation of
the current-induced contribution to �.

Now we consider the measurement of the critical current
in this network, which corresponds to the maximal super-
current that can be transfered from one end to the other. In
the time-reversal-invariant A-phase, spontaneous currents
and flux � are absent (� ¼ 0). Obviously, the maximal
current which can flow through the SQUID network is
independent of current direction, as can be easily verified
from eqs. (7) and (8), because the reversal of current I ! �I

is implemented by 
 ! �
 leading to Ii ! �Ii (i ¼ 1; 2).
In contrast, in the B-phase, spontaneous supercurrents

at the interfaces of Ru inclusions generate a finite flux �

in the loop, which remains basically unaffected by the
small Josephson currents. Thus, the analysis of our model
shows an explicit symmetry breaking for the current reversal
I ! �I. The change in the sign of 
 does not lead any-
more to a reversed current in the SQUID, because the
flux � is fixed in the TRSB phase. Together with the
contribution of the current induced flux, this leads to the
effect that the maximal current I becomes direction-depend-
ent. � determines the magnitude of the critical current
difference that changes sign at � ¼ n�0=2, as shown in
Fig. 6.

In their experiment, Hooper et al.11) found that the
critical current for given contacts does not depend on the
orientation of the current flow above T � 2:3K. However,
below 2.3K, a finite difference continuously appears for
supercurrents flowing in the positive or negative direction.
This is in good qualitative agreement with our simple
network model.

6. Conclusions

In this study, we investigated the phase diagram of the
3K phase of eutectic Sr–2RuO4–Ru samples, where super-
conductivity nucleates on the interface of Ru metal
inclusions. For a single Ru inclusions, we find a sequence
of two phases. At T� � 3K, a time-reversal-symmetry-
conserving phase (A-phase) nucleates on the interface. At
a lower temperature T 0, a transition to a time-reversal-
symmetry-breaking phase (B-phase) appears. This transition
is discontinuous (weakly first order) because the A- and B-
phases have different phase winding numbers at a closed
(cylindrical) interface. In contrast to the A-phase, the B-
phase carries spontaneous supercurrents at the interface due
to the TRSB. These currents are most likely responsible
for the anomalous behavior of the critical current, which
is different for positive and negative current directions, as
observed in an experiment below 2.3K.11) Thus, we propose
to identify the onset of this anomalous behavior as the
transition between the A- and B-phases. Further experiment
on the quasiparticle tunneling that finds the onset of zero-
bias anomalies in the tunneling spectrum below 2.4K also
indicates a phase transition within the 3K phase.8–10) This
behavior also fits well within our phase diagram and will be
discussed in detail elsewhere.

Φ

Φ

2

I1

I

I

I

II
1

2

Ru
Ru

Sr  RuO

Ru

RuRu

Ru

2 4

Fig. 5. Simple SQUID network model. Upper panel: The superconducting

network formed by the condensates around Ru inclusions, as depicted

here, can be viewed as a multiply connected system where the super-

current can branch and flow in different paths. Lower panel: The

configuration of the upper panel can be modeled as a SQUID-like system

with two branches, which incorporates the essential features of a network.

Note that, in the B-phase, spontaneous currents flow around each

inclusion with the same circular orientation such that a net flux occurs

through the loop.

-0.4 -0.2 0 0.2 0.4
Φ / Φ

0
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0.1

(I
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-I
c-  )

 / 
(I

c+
+

I c-  )

Fig. 6. Difference between the critical currents for opposite directions of

I: Iþc and I�c for critical currents in positive and negative directions,

respectively. The plots have been taken using the parameters, I1c=I2c ¼ 4

and LI1c=�0 ¼ 0:1 (solid line) and 0.05 (dashed line).
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