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We describe the preparation and characterisation of inorganic-organic hybrid block copolymer silver
nanoparticles via the preparation of spherical multi-responsive polymeric micelles of poly(N-methyl-2-
vinyl pyridinium iodide)-block-poly(ethylene oxide), P2MVP3g-b-PEO,1; and poly(acrylic acid)-block-
poly(isopropyl acrylamide), PAAss-b-PNIPAAmgg in the presence of AgNOs. Hence, the P2MVP and PAA
segments were employed to fix Ag" ions within the micellar core (25 °C) or shell (60 °C), while the
PEO segments ensured spontaneous reduction of Ag* ions into metallic Ag, as well as colloidal stabilisa-
tion. Spherical and elongated composite core-shell(-corona) nanoparticles (CNPs) were formed contain-
ing several small, spherical silver nanoparticles within the micellar core or shell. As the co-assembly of
the oppositely charged copolymers into micelles is electrostatically driven, the CNPs can be destabilised
by, for example, addition of simple salts, i.e., the CNPs are stimuli responsive. CNP size and morphology
control can be achieved via the preparation protocol. For example, heating to 60 °C, i.e., above the PNI-

PAAm LCST, results in core-shell-corona CNPs with the Ag-NPs situated in the aggregate shell.

1. Introduction

The preparation of stable, monodisperse metallic nanoparticles
has been topic of active research for many years. Nowadays, many
researchers also employ polymer-assisted fabrication routes to
prevent the particles from undergoing self-aggregation and chem-
ical reactions; that is, to overcome stability problems related to the
high surface energy of inorganic nanoparticles [1,2]. Metal precur-
sors (or preformed nanoparticles) may be loaded or ‘trapped’ into
already formed polymeric micelles, but alternatively, they may
also be used to induce micellisation of the otherwise soluble block
copolymers [2-6]. Via nucleation and growth processes within the
composite nanoparticles (CNPs), the initially formed primary metal
atoms may further aggregate into clusters, resulting in either one
single colloid per micellar core or into several small colloids within
a micellar core [7]. Recently, also bimetallic colloids have been
formed in solution [8]. In general, the formation of the metal nano-
particles from the metal precursor typically involves the addition
of a reducing agent (e.g., LiAlH4, NaBH,4, HoN-NH,, LiBEtsH, or Hy)
and semiconductor nanoparticles can be obtained by addition of
H,S to the metal precursors to form metal sulfides [1-3,6,9,10].
Various applications have been suggested for the resulting hybrid
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organic-inorganic particles, including their potential as quantum
dots (i.e., fluorescent nanoparticles) [1,8,9], catalysts [1,6,11], par-
ticle growth modifiers [5,12], and MRI contrast agents [13-15].

In aqueous solutions, electrostatically driven co-assembly of
charged copolymers and oppositely charged metal precursors gives
rise to the formation of so-called complex coacervate core micelles
(C3Ms) [16], also known as polyion complex (PIC) micelles [17],
block ionomer complexes (BIC) [18], and interpolyelectrolyte com-
plexes (IPEC) [19]. Examples include Au- and Pt-NP formation in
aqueous mixtures of P2VP-b-PEO and a wide variety of Au and
Pt-NP precursors [6,20], comicellisation of y-Fe,O; and PTEA-b-
PAAm [13], and La(OH);-NP formation in aqueous solutions con-
taining La>* ions and PAA-b-PAAm copolymers [5,21,22]. Inspired
by the spontaneous formation of silver nanowires in the presence
of PMAA-b-PEO [4], i.e., without addition of a reducing agent, and
the numerous studies on NP formation in the presence of P2VP
and P4VP-containing copolymers (exhibiting a rather high affinity
for many metal precursors due to the formation of coordination
bonds between the metal ions and the pyridinium segments
[6,7,23]), we decided to study Ag-NP formation in C3Ms consisting
of poly(N-methyl-2-vinyl pyridinium iodide)-block-poly(ethylene
oxide), P2MVP5g-b-PEO,1; and poly(acrylic acid)-block-poly(iso-
propyl acrylamide), PAAss-b-PNIPAAmgg. As suggested by Zhang
et al. [4], the presence of PEO should ensure the spontaneous
reduction of Ag® to Ag through oxidation of the oxyethylene
groups, while the polyelectrolyte segments should coordinate with
the Ag® ions, so that the C3Ms may serve as a template for the
spontaneous formation of silver nanoparticles.
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In a previous publication [24], we have shown that micelles of
P2MVP35-b-PEO,;; and PAAss-b-PNIPAAmgg are responsive to a
number of experimental parameters, such as pH, ionic strength,
and temperature. The C3Ms reversibly associate and dissociate
upon cycling the ionic strength of the solution through the
so-called “critical ionic strength” (corresponding to the ionic
strength above which micelles can no longer be detected), which
is approximately 105 mM for this particular system [24]. Upon
raising the temperature from 25 °C to 60 °C, the C3Ms undergo a
structural transition from core-shell C3Ms at T =25 °C with the
polyelectrolyte blocks in the core to a core-shell-corona system
at T =60 °C with the polyelectrolyte blocks in the shell. In the pres-
ent contribution, we will demonstrate that the responsive nature
of complex coacervate core micelles renders them an attractive
candidate for polymer-assisted fabrication and stabilisation of sil-
ver nanoparticles (Ag-NPs). We will show that the size and location
of Ag-NPs within the micellar carrier can be controlled through
preparation of the complexes at various temperatures as these
are coupled to distinct morphologies of the micelles and hence, dif-
ferent loci of the polyelectrolyte segments to which the Ag-NPs are
coordinated. Furthermore, we will show that a controlled release of
Ag-NPs is easily achieved through the addition of a simple mono-
valent salt NaNOs.

In the following, we will refer to the silver nanoparticles with
the abbreviations (Ag-)NPs, to the micellar carriers as (complex
coacervate core) micelles, C3Ms, or carriers, and to the combina-
tion of Ag-NPs and C3Ms as hybrid organic-inorganic nanoparti-
cles and composite nanoparticles (CNPs).

2. Materials and methods
2.1. Materials

Poly(N-methyl-2-vinyl pyridinium iodide)-block-poly(ethylene
oxide), P2MVP55-b-PEO51; (M., = 13 kg mol~!) has been synthes-
ised by sequential anionic polymerisation [25,26] (polydispersity
index, PDI ~ 1.01), followed by quaternisation with methyl iodide
(degree of quaternisation ~89%). Poly(acrylic acid)-block-poly(iso-
propyl acrylamide), PAAss-b-PNIPAAmgg (M, = 14 kg mol™!) has
been synthesised by RAFT (PDI ~ 1.10), according to a procedure
described elsewhere [24,27]. All polymers and other chemicals
were used as received, without further purification. Chemical
structures are given in Scheme 1 [Subscripts correspond to the de-
gree of polymerisation].

2.2. Sample preparation

Aqueous polymer stock solutions were prepared by dissolution
of known amounts of polymer into Milli-Q water to which NaNO;
was added to obtain [NaNOs] =1 mM, followed by a pH-adjust-
ment to pH=7.7+0.1 using 0.1 and 1.0 M NaOH and HNOs. The
stock solutions were mixed in a 1:1 ratio of chargeable groups;
i.e., at a mixing fraction, f, of 0.5. For pH = 7.7, this mixing fraction
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corresponds to the so-called preferred micellar composition (PMC)
[24]. The mixing fraction, f. is defined as the ratio between the
number of positively chargeable monomers and the sum of the
numbers of positively and negatively chargeable monomers, i.e.,

[n,]
]+ [n]
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The control samples A, B, and C were prepared by mixing the fil-
tered P2MVP33-b-PEO,1; and PAAss-b-PNIPAAmgg stock solutions
(1x over a 0.45 pm Schleicher and Schuell filter). The samples D,
E, F, and K were prepared by mixing the filtered P2MVPsg-b-
PEO,;; and PAAss-b-PNIPAAmgg stock solutions, followed by
addition of an excess of AgNOs (e.g., [Ag'] > [P2(M)VP]), and
centrifugation for at least 20 min at 13,000 rpm, to remove the pre-
cipitated Agl formed through complexation of Ag® with the
P2MVP* counterions, i.e., I". The supernatant was decanted into a
vial and AgNO; was again added in excess (e.g, [Ag'] >
[P2(M)VP]). Now, no more precipitation is observed, indicating
that in the previous step all I~ counterions have been replaced by
NO; counterions. The control samples A, B, and C without silver
ions, and the samples D, E, F, and K with silver ions were placed
in the fridge (A, D, K) or in a programmable thermostated bath. Sil-
ver containing P2MVPsg-b-PEO,; stock solutions for samples H
and ] were prepared by addition of AgNOs; to the filtered
P2MVP35-b-PEO,1; stock solution, followed by the same procedure
as used in the preparation of samples D, E, and F to get rid of the
insoluble salt Agl. The stock solutions of P2MVP3g-b-PEO2;; and
PAAss-b-PNIPAAmgg for the control samples G and I without silver
ions, and for the samples H and ] with silver ions were placed in the
fridge (G, H) or in the thermostated bath (I, ]J). Sample B was heated
from 25 °C to 60 °C with a rate of 0.03 °C min~'!, while the samples
G, E, F, and the stock solutions for the samples I and ] were kept at
33 °C for 23 h, followed by heating from 33 °C to 60 °C in ~25 min.
The P2MVP3g-b-PEO;;; and PAAs5-b-PNIPAAmgg stock solutions for
samples G, H, I, and ] were mixed at T =25 (G, H) and 60 °C (I, ]) one
full day after storage in the fridge or the thermostated bath. A con-
centrated NaNOs; solution
was added to samples C and F ~36 h after their preparation. A
summary of the preparation protocol of the various samples is
given in Table 1.

2.3. Dynamic light scattering (DLS)

Dynamic light scattering measurements have been performed
on (1) an ALV light scattering instrument equipped with an ALV-
5000/60 x 0 digital correlator and a Lexel 85 400 mW argon ion
laser operated at a wavelength of 514.5 nm, on (2) an ALV light
scattering instrument equipped with an ALV-5000 digital corre-
lator and a Spectra Physics 2000 1 W argon ion laser operated at
a wavelength of 514.5nm, and on (3) an ALV light scattering
instrument equipped with an ALV-5000 digital correlator and a
100 mW DPSS laser operated at a wavelength of 532 nm. In all
three setups, a refractive index matching bath of filtered cis-decalin

Scheme 1. Chemical structure of the polymers used in this study. (Left) Poly(acrylic acid)-block-poly(isopropyl acrylamide), PAAss-b-PNIPAAmgs; (right) poly(N-methyl-2-
vinyl pyridinium iodide)-block-poly(ethylene oxide), P2MVP3g-b-PEO,;;. Note that 38 denotes the sum of the number of quaternised and non-quaternised monomers (~11%).

The numbers beside the brackets denote the degree of polymerisation.
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Table 1

Overview of the various samples in this study (see also text for further details). AgNO3 was added after C3M formation in samples D, E, F, and K, while AgNO3; was added to the
P2MVP5g-b-PEO,; stock solution prior to C3M formation in samples H and J. Samples A, B, C, G, and I are control samples for D, K (A), E (B), F (C), H (G), and J (I) to which no AgNO3
is added. ® Radii are given in nanometres, the ionic strength is given in mM.

Sample AgN03 tAgNO3 [N3N03] Tformation Tstorage Rh,BODCl Rh,90°e

A Control (D, K) - 1 25 25 18.2+0.3 19.3+04
B Control (E) - 1 25¢ 60 47.2+0.7 56.7 £1.0
C Control (F) - >ler 25¢ 60 58.6+1.7 -

Df AgNO3 to C3Ms 1 25 25 64.2+1.0 104.8+2.9
Kf AgNO5 to C3Ms 1 25 25 238+03 93.1+2.6
E AgNO; to C3Ms 1 25°¢ 60 98.0+3.1 118.0+£9.0
B AgNO5 to C3Ms >ler 25¢ 60 123.6 £6.3 -

G control (H) - 1 25 25 - 19.6 £ 0.7
H AgNO3 to P2MVP3g-b-PEO;14 1 25 25 - 60.6 £ 0.7

I control (J) = 1 60°¢ 60 = 63.6+1.6
] AgNO5 to P2MVP3g-b-PEO;14 1 60°¢ 60 - 89.6 £5.6

¢ The column tagno, reads ‘to C3Ms’ when AgNO3 was added after C3M formation, while ‘to P2MVP3g-b-PEO;;;" denotes AgNO3 addition prior to C3M formation. The
column AgNOs denotes ‘control’ if no AgNO3; was added to the sample and ‘AgNO53’ if AgNO5 was added to the sample. Tgormation/°C refers to the temperature at which the C3Ms
were prepared, i.e., the temperature at which the P2MVP-b-PEO and PAA-b-PNIPAAm stock solutions were mixed. Tgorage/°C corresponds to the temperature at which the
C3Ms were stored after preparation, i.e., after mixing the P2MVP-b-PEO and PAA-b-PNIPAAm stock solutions.

b A premixed Ag*/P2ZMVP-b-PEO solution was added to a PAA-b-PNIPAAm stock solution (stored at 33 °C for 23 h, followed by heating from 33 °C to 60 °C in ~25 min), so
that PAA-b-PNIPAAm had already formed micelles with a PNIPAAm core and a PAA corona, as Ty > LCSTpnipaam-

¢ Sample B was heated from 25 °C to 60 °C with a rate of 0.03 °C min~!, while the samples C, E, F, and the stock solutions for the samples I and ] were kept at 33 °C for 23 h,
followed by heating from 33 °C to 60 °C in ~25 min.

4 DLS measurements were performed ~3 days after C3M formation in samples A-F, and K, and prior to addition of NaNOs to raise [NaNO3] > I, in samples C and F.

¢ DLS measurements were performed ~7 days after C3M formation in samples A-F, and K, and ~4 days after C3M formation in samples G-] and addition of NaNOj to raise
[NaNOs] > I in samples C and F.

f Samples D and K are identical, but AgNO; was added on different times after C3M formation to be able to follow the kinetics of Ag nanoparticle formation more carefully.

See text and caption to Fig. 4 for further details.

surrounded the cylindrical scattering cell, and the temperature was
controlled using (1) a Haake F8-C35 thermostat, (2) a Haake F3-K
thermostat, and (3) a Haake Phoenix II-C25P thermostat.

The second-order correlation function, G,(t), was recorded 5
times per angle, 0, at 6 =90° or at 19 angles (35° < # < 135°, incre-
ments of 5°) to evaluate the angular dependence of the diffusion
coefficient, D. DLS experiments have been analysed using the
method of cumulants. The diffusion coefficient extrapolated to
zero angle, D°, has been obtained from the slope in a plot of the
average frequency, I" versus g> and has been calculated into a
hydrodynamic radius, R} via the Stokes—Einstein equation.

2.4. Cryogenic transmission electron microscopy (cryo-TEM)

Cryo-TEM observations were carried out at 100 K on a Philips
CM12 Microscope operating on at 120 kV. Samples were prepared
on Quantifoil® grids (R2/2, 200 mesh grids with a pattern of 2 um
holes in a support film) using the Vitrobot®. Images were taken un-
der low dose conditions. For details see [28]. Samples A, D, G, H, K,
and AgNOs containing P2MVPsg-b-PEO,;; solution for sample H
were blotted at T =25 °C. Samples B, E, I, ], and AgNO5 containing
P2MVP35-b-PEO,1; solution for sample ] were blotted at T =60 °C.
In between storage and blotting, the temperature was carefully
kept at 60 < T < 65 °C. Blotting was performed at least 96 h after
the last sample preparation step, i.e., either mixing of the (Ag-con-
taining) P2MVP3g-b-PEO32¢; and PAAss-b-PNIPAAmgg stock solu-
tions (samples A, B, G, H, I, and ]) or addition of AgNOs to the
preformed C3M solutions (samples D, E, and K).

3. Results and discussion
3.1. Micelle formation in the absence of AgNOs

As reported previously, spherical micelles (R} = 13.6 nm) are
formed spontaneously in aqueous mixtures of P2MVP3g-b-PEO51,
and PAAss-b-PNIPAAmgg at T=25 °C [24]. They appear to be in
coexistence with a (small) number of large (loose) aggregates, as
a ‘fast’ and a ‘slow’ mode is observed in dynamic light scattering

(DLS) experiments. From static light scattering (SLS) experiments,
the C3Ms were found to consist of about 16 cationic and 11 anionic
copolymers. Upon addition of NaNOs, the C3Ms were found to
swell until above ~105 mM NaNOs micelles could no longer be de-
tected. Temperature-induced aggregation was observed upon rais-
ing the temperature from 25 °C to temperatures above the LCST of
PNIPAAm (~33 °C). Aggregate size and mass were found to be
dependent on temperature, and for fast scan rates (>0.03 °C min '),
on scan rate and history. The aggregate structure at 60 °C was
found to be of the ‘core-shell-corona’ type; i.e., the aggregates con-
sist of a PNIPAAm core, surrounded by a coacervate shell, stabilised
by a PEO corona. Cryo-TEM images on the control samples A
(T=25°C) and B (T=60°C), i.e., in the absence of AgNOs, are pre-
sented in Fig. 1. The greyish dots in Fig. 1a, corresponding to the
micellar cores of the core-shell C3Ms in sample A (T¢= T < 25 °C),
are much smaller (R~4nm) than those observed in Fig. 1b
(R~ 16 nm), corresponding to the aggregate core (and possibly
shell) of the core-shell-corona micelles in sample B, which was
heated from 25 °C to 60 °C with a rate of 0.03 °C min~"! shortly after
mixing the polymer stock solutions.

3.2. Nanoparticle formation within preformed C3Ms

Upon addition of AgNOs to the preformed C3Ms depicted in
Fig. 1a so that [Ag"] >> [P2(M)VP], precipitation occurs, as an insol-
uble Agl salt is formed due to complexation of Ag* with I ions (see
materials and methods section). After removal of this precipitate,
further addition of AgNOs3; does not result in precipitation. In
analogy to the coordination of Ag* with PMAA segments and Au
and Pt-NP precursors with P2VP segments in aqueous mixtures
of PMAA-b-PEO/Ag" [4] and P2VP-b-PEO/Au and Pt-NP precursors
[6,20], silver ions are now selectively incorporated into the C3M
cores as they contain pyridinium and acid groups. This results in
the spontaneous (that is, without the addition of a reducing agent)
formation of silver nanoparticles within the C3Ms, as manifested
by a gradual yellowish/reddish coloration of the Ag-containing
solutions in samples D and K (Fig. 2). In the cryo-TEM images,
we observe tiny dark dots corresponding to silver nanoparticles
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Fig. 1. Cryo-TEM images of a 1:1 mixture of P2MVP3g-b-PEO,; and PAAss-b-PNIPAAmgg at: (a) T =25 °C (sample A) and (b) T=60 °C (sample B). The black circles indicate

core-shell C3Ms in sample A and core-shell-corona micelles in sample B.

Fig. 2. Pictures of samples A-K, taken over 10 days after micellisation. The sample codes correspond to those given in Table 1. Ag-NP formation is manifested by a yellowish/
reddish coloration of the Ag-containing samples, being samples D, E, F, H, ], and K. Precipitation of the Ag-NPs is observed after addition of NaNOs to raise [NaNOs] > I,
(sample F), while no precipitation is visible for [NaNO3z] = 1 mM (sample E). (For interpretation of color mentioned in this figure the reader is referred to the web version of the

article.)

(R <4 nm) and larger greyish spots corresponding to the C3M cores
(Fig. 3). Clearly, there is quite some variation in particle size, aggre-
gation state, and shape. In both images, (near) spherical, as well as
elongated (open arrows), worm-like structures can be observed.
Besides, there is a non-negligible amount of approximately spher-
ical objects of considerably higher (circles) and lower (closed

| —

100 nm

arrows) contrast than average. These results are in agreement with
the DLS measurements, where Rpgo- Was found to be larger for
samples D and K than for sample A (Table 1). Moreover, deviations
from linearity are observed in R versus ¢ in the low-q region
(cumulant analysis of DLS results), which are caused by the pres-
ence of a (small) number of large (loose) aggregates as observed

Fig. 3. Cryo-TEM images of a 1:1 mixture of P2MVP35-b-PEO,1; and PAAss-b-PNIPAAmgsg in the presence of AgNO; at T = 25 °C. The sample was blotted: (a) ~8 days (sample
D) and (b) ~7 days (sample K) after addition of AgNOs. Circles and closed arrows indicate approximately spherical objects of considerably higher (circles) and lower (arrows)
contrast than average. Several elongated, worm-like structures are indicated with open arrows. Note that the two samples are very similar, although they correspond toa 24 h
difference in Ag" addition. Note that - on the contrary - these images are very different from those obtained for samples prepared at 60 °C as shown in Fig. 5.
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Fig. 4. Cumulant results. (a) I as a function of ¢* and (b) R as a function of g for (A) sample A, 3 days after C3M formation in absence of Ag", () sample D, 3 days after C3M
formation, ~52 h after addition of Ag*, ((J) sample K, 3 days after C3M formation, ~29 h after addition of Ag*, and (+) sample ], 6 days after addition of Ag" to the P2MVPsg-b-

PEO,1; stock solution, and ~64 h after C3M formation.

previously [24], and/or non-spherical particles (Fig. 4). Samples A
and K show the smallest deviation from linearity, consistent with
the fact that the smallest amount of aggregates and/or non-spher-
ical particles was observed in the cryo-TEM images of these sam-
ples, and furthermore, they contain the smallest particles, and
are thus closest to the Rayleigh limit (R < 4/20).

The NP induced increase in Ry, g¢- is a rather slow process, occur-
ring on a timescale of several days. For example, about 3 days after
C3M formation and 29 h after addition of Ag®, Rngo-~23.8+
0.3 nm (sample K), while after 52 h, Ry gp- ~ 64.2 = 1.0 nm (sample
D). About 7 days after C3M formation, and 132 h after addition of
Ag', Rnoo-~93.1+2.6nm, while after 155h, Rpgo-~ 104.8 %
2.9 nm. The particles continue to grow for several days, but the
absolute difference in particle size becomes smaller with increas-
ing time after Ag* addition, indicating the existence of a maximum
particle size. While the Ag-NPs appear to be randomly distributed
within the micellar cores of about 8 nm in diameter, they are
mostly found at the periphery of the larger and darker spherical
objects (circles). The slow kinetics and random Ag-NP distribution
is in agreement with the results of Zhang et al., who observed Ag-
NP formation within an aging time of 5 h in the PMAA-b-PEO/Ag"
system. Contrary to their system, where the formation of smooth
silver nanowires was observed after >54 h of aging, we do not ob-
serve aggregation into clusters of continuous Ag-NPs. Still, some
elongated, worm-like objects containing several separated Ag-
NPs are clearly observed. One might hypothesise that NP formation
at a different f. may lead to the incorporation of a larger number of
silver ions, and could thus potentially lead to the formation of con-
tinuous metal nanowires.

The encircled aggregates in Fig. 3 resemble the objects found in
sample E (Fig. 5), where the first stages of NP formation take place
at 33 °C, as the sample was kept at 33 °C for 23 h, followed by heat-
ing from 33 °C to 60 °C in ~25 min. Here, most objects appear
spherical with R ~ 7-10 nm, containing small NPs on the periph-
ery, confirming the core-shell-corona structure of P2MVPsg-b-
PEO,1; and PAAss-b-PNIPAAmgg aggregates at elevated tempera-
tures. As Ag* coordinates with the PAA and/or P2(M)VP monomers
in the coacervate layer, the NPs should be formed at the periphery
of the core, i.e., in the shell of the core-shell-corona particles,
where they are indeed observed. The cryo-TEM images suggest
that the cores of the CNPs of sample E are smaller than those of
sample B, ie., 14-20 nm instead of ~32 nm, in agreement with
our previous findings on aqueous mixtures of P2MVP3g-b-PEO51,
and PAAss-b-PNIPAAmgg in the absence of Ag®, where quick
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Fig. 5. Cryo-TEM image of sample E. AgNO; was added to a 1:1 mixture of
P2MVP3g-b-PEO;;; and PAAss-b-PNIPAAmgg, followed by storage at 33 °C for 23 h
and consecutive heating from 33 °C to 60 °C in ~25 min. The sample was blotted at
T=60°C for ~7 days after addition of AgNOs. The inset is a schematic represen-
tation of a core-shell-corona particle containing one silver nanoparticle in the shell.

heating to 60 °C resulted in smaller particle sizes [24]. However,
Table 1 shows that, 3 days after C3M formation, the Ry, 9o- of CNPs
(sample E, F) are larger than those of the aggregates without Ag-
NPs (sample B, C). A tentative explanation might be that there is
an increased tendency for secondary aggregation in the Ag-con-
taining samples due to the oxidation of the oxyethylene groups.
As observed for the CNPs at T = 25 °C, R, 90- increases with increas-
ing time after Ag" addition.

3.3. Nanoparticle formation after premixing Ag* and P2MVP-b-PEO

Fig. 6 shows cryo-TEM images of samples G and H (T = 25 °C),
where G is the control sample, i.e., in the absence of Ag*, and H is
the sample where C3M formation occurred after premixing of Ag*
and P2MVP3g-b-PEO,;. Both images depict objects of R~ 4 nm
(approximately the same size as in Fig. 1a), while in Fig. 1b we
can again clearly observe the NP formation. However, contrary
to samples D and K (Fig. 3), nearly all objects are spherical, and
hardly any elongated, worm-like structures are observed. As ob-
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Fig. 6. Cryo-TEM images of a 1:1 mixture of P2MVP3g-b-PEO;;; and PAAss-b-PNIPAAmgsg: (a) in the absence (sample G) and (b) in the presence (sample H) of AgNO; at
T =25 °C. Sample H was blotted ~8 days after addition of AgNO5 to the P2MVP35-b-PEO;1; stock solution, and ~6 days after mixing the stock solutions of cationic and anionic
polymers (i.e., ~52 h passed between addition of AgNO; to the P2MVP35-b-PEO;; stock solution and mixing of the stock solutions).

served for Ag-NP formation after C3M formation, premixing of
Ag* with P2MVP5g-b-PEO,;; before C3M formation results in CNPs
with larger Rpoo- than the corresponding C3Ms without Ag-NPs
(i.e., compare Ry gqo- Of samples H and G, and those of samples D,
K, and A).

When C3M formation occurred at T= 60 °C after premixing of
Ag" and P2MVPss-b-PEO;; (Sample ], Fig. 7b), i.e., after formation
of PAAss-b-PNIPAAmgg micelles with a hydrophobic PNIPAAm core
and a negatively charged PAA corona, large aggregates of
R ~ 16 nm are observed, as in the control sample I (Fig. 7a) in ab-
sence of Ag®, and in addition tiny dark spots corresponding to
Ag-NPs, larger and darker than in samples D, K, H (where micelli-
sation occurred at T = 25 °C), and sample E (where micellisation oc-
curred at T=60°C). Contrary to those samples, there is a
considerable amount of Ag-NPs that appear not to be associated
with the aggregate cores, i.e., they are not found within or on the
periphery of the objects, but are seemingly ‘free’. This is in agree-

ment with the observation of (partial) macroscopic precipitation
in sample ], as the free Ag-NPs, i.e., without stabilisation by poly-
mer micelles, are colloidally instable.

3.4. Environment-sensitive stabilisation

In the previous sections, we have shown that composite nano-
particles (CNPs) consisting of two oppositely charged block copoly-
mers P2MVPsg-b-PEO,1; and PAAss-b-PNIPAAmgg and Ag-NPs are
formed spontaneously, i.e., without addition of a reducing agent,
in aqueous solutions. We have demonstrated possibilities to tune
the size of the Ag-NPs, the size and shape of the composite
nanoparticles, and the location of the Ag-NPs within the CNPs.
Key parameters are the temperature at which the CNPs are pre-
pared and the order of mixing of the individual components. At
room temperature, upon addition of Ag" after comicellisation of
the block copolymers, the resulting core-shell CNPs contain

Fig. 7. Cryo-TEM images of a 1:1 mixture of P2MVP3g-b-PEO,1; and PAAss-b-PNIPAAmgs: (a) in the absence (sample I) and (b) in the presence (sample ]) of AgNO3 at T = 60 °C.
Sample ] was blotted ~8 days after addition of AgNO3 to the P2MVP35-b-PEO,;; stock solution, and ~6 days after mixing the stock solutions of cationic and anionic polymers
at T=60 °C (i.e., ~52 h passed between addition of AgNO5 to the P2MVP35-b-PEO,4; stock solution and mixing of the stock solutions). See also Fig. 4 for DLS experiments on

this sample.
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several small Ag-NPs in the micellar core of spherical and worm-
like micelles (samples D and K). Upon premixing Ag® and
P2MVP35-b-PEO,14, followed by addition of this solution to the
PAAss-b-PNIPAAmgg solution, the resulting CNPs are of comparable
size, but now nearly all objects are spherical and hardly any elon-
gated, worm-like structures are observed (sample H). When the
C3Ms formed at room temperature are heated to T=60 °C in the
presence of Ag®, the resulting core-shell-corona CNPs are larger
and contain several Ag-NPs in the micellar shell (sample E). Upon
premixing Ag* and P2ZMVPsg-b-PEO, 1, and addition of this solution
to a PAAss-b-PNIPAAmgg solution at T=60°C, ie., containing
preformed PAAss-b-PNIPAAmgg micelles (sample J), similar core-
shell-corona CNPs are formed containing larger Ag-NPs, in coexis-
tence with a considerable amount of non-associated ‘free’ Ag-NPs,
leading to (partial) macroscopic precipitation.

In the previous sections, we have characterised the thermo-sen-
sitivity of the complexes of Ag-NP, PAAss-b-PNIPAAmgg and
P2MVP535-b-PEO,1; and utilised this feature to prepare CNPs of dif-
ferent size and shape containing several Ag-NPs within their core or
shell. As the complexes are formed by virtue of electrostatics
(Coulombic attraction and entropy gain through counterion re-
lease), they are also pH and salt-sensitive [ 16,24,29-31]. The former
arises from the weak (annealed) nature of the PAA segments; that
is, their charge is dependent on pH. As a consequence, we can desta-
bilise the CNPs by addition of a sufficiently large amount of acid,
such as HCJ, or salt, such as NaNOs. To demonstrate this environ-
ment-responsive character, we have prepared two identical
samples E and F, containing a colloidally stable mixture of Ag",
P2MVP35-b-PEO,1;, and PAAss-b-PNIPAAmgs. To one of these
samples, sample F, we have added a large amount of NaNOs such
that the ionic strength exceeds the so-called critical ionic strength
(but not the solubility limit of AgNOs), above which electrostatic
interactions become screened to the extent that the driving force
for micellisation vanishes. Consequently, the CNPs disintegrate
releasing the Ag-NPs into the solution. As these are no longer steri-
cally stabilised by a surrounding layer of swollen polymer seg-
ments, the Ag-NPs precipitate. A macroscopic two-phase system
is now formed with the heavy Ag-NPs in the bottom phase, as can
be detected from the dark coloration in the bottom of the test tube
in sample F (Fig. 2). On the contrary, in sample E, the CNPs are
colloidally stable and homogeneously dispersed throughout the
sample volume resulting in a coloration of the entire sample.

4. Conclusion

We have reported on the formation of silver containing
composite nanoparticles (CNPs) consisting of silver nanoparticles
(Ag-NPs), poly(N-methyl-2-vinyl pyridinium iodide)-block-
poly(ethylene oxide), P2MVP3g-b-PEO,;; and poly(acrylic acid)-
block-poly(isopropyl acrylamide), PAAss-b-PNIPAAmgg. Both the
Ag-NPs and the CNPs from spontaneously upon mixing of the dou-
ble hydrophilic block copolymers in the presence of silver ions;
that is, without the addition of a reducing agent such as NaBH,.
We have demonstrated possibilities to achieve control over the
size of the Ag-NPs, the size and shape of the CNPs, and the location
of the Ag-NPs within the CNPs. Spherical and elongated CNPs were
observed. Ag-NPs were found to colocalise with the polyelectrolyte
blocks within the CNPs. Temperature could be used to trigger a
structural transition from a core-shell structure at T=25°C to a
core-shell-corona structure at T=60°C , translocating the Ag-
NPs from the micellar core in the former into the micellar shell
in the latter. The most uniform and well-defined CNPs were
obtained by premixing Ag® and P2MVPsg-b-PEO,;; at room
temperature prior to addition of this solution to a solution of
PAAss-b-PNIPAAmgg at T=25°C (sample H). Finally, we have
shown that the colloidal stability of the CNPs is dependent on

the ionic strength of the solution: Ag-NP release from the CNPs
can easily be triggered by addition of a simple salt, such as NaNOs.

In summary, this work shows that complex coacervate core mi-
celles can be regarded as a promising candidate for polymer-as-
sisted synthesis and stabilisation of silver nanoparticles. Future
work might be directed towards the potential application of such
CNPs as environment-sensitive silver quantum dots and as antimi-
crobial agents in antifouling surface coatings that can be prepared
upon exposure of hydrophilic surfaces to a solution of Ag-NP con-
taining CNPs [32].
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