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Abstract

Knowledge and information make our lives easier and more enjoyable. In this
thesis we use techniques and concepts from statistical physics and probability
theory to explore several models of complex systems where information plays
a prominent role. When building these models we tried to capture main aspects
of real systems but also to keep the models simple and analytically solvable.

We begin the thesis with a short introduction to the field of complexity in
Chapter 1. Trying to be brief, we only mention basic notions in the field and
point to the relevant literature. Recommender systems serve to extract useful
information from the expressed opinions of users about a particular set of ob-
jects. We explore them in detail in Chapter 2, where we describe two novel
recommendation methods and compare them to other standard methods. In a
market, the vendor has limited information about preferences of the buyers and
the buyers have limited information about qualities (and other properties) of the
offered products. Focusing on these information deficiencies, in Chapter 3 we
present two complementary models which, while highly simplified, are able to
capture many aspects of marketing (such as product differentiation, competi-
tion of vendors, partial information asymmetry, etc.). History of stock prices or
rules of a game of chance also represent information which, when used prop-
erly, may allow one to make a profitable investment. Concerned mainly with
the Kelly approach which is based on information theory, in Chapter 4 we in-
vestigate the problem of portfolio choice and the role of (limited) information.
Finally, in Chapter 5 we provide a broader view on this thesis and on the science
of complexity in general.
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Resumé

La connaissance et l’information rendent notre vie plus facile et plus agréable.
Dans cette thèse nous utilisons des techniques et des concepts de la physique
statistique et de la théorie des probabilités afin d’explorer plusieurs modèles de
systèmes complexes où l’information joue un rôle important. Lors de la con-
struction de ces modèles, nous avons essayé de capturer les aspects principaux
des systèmes réels, mais aussi de garder les modèles simples et analytiquement
solubles.

Nous commençons la thèse avec une brève introduction aux systèmes com-
plexes dans le Chapitre 1. Tout en essayant d’être bref, nous introduisons les
notions de base de ce domaine et la littérature pertinente. Les “systèmes de
recommandation” servent à extraire les informations utiles à partir des opin-
ions exprimées par les utilisateurs sur un ensemble d’objets. Nous explorons
ces systèmes dans le Chapitre 2, où nous proposons deux nouvelles méthodes
de recommandation que nous comparons aux méthodes standards. Dans un
marché, le vendeur dispose d’informations incomplètes sur les préférences des
acheteurs et de même les acheteurs disposent d’informations incomplètes sur
la qualité (et d’autres propriétés) des produits proposés. En mettant l’accent sur
ces manques d’information, nous présentons dans le Chapitre 3 deux modèles
complémentaires qui, bien que très simplifiés, sont capables de capter de nom-
breux aspects de la commercialisation (tels que la différenciation des produits,
la concurrence entre vendeurs, l’asymétrie partielle de l’information, et ainsi de
suite). L’histoire de l’évolution du prix des actions ou les règles d’un jeu de
hasard représentent aussi des informations qui, lorsqu’elle sont utilisées cor-
rectement, peuvent permettre de faire un investissement rentable. En nous
préoccupant principalement de l’approche de Kelly qui est basée sur la théorie
de l’information, nous étudions dans le Chapitre 4 le problème de choix de
portefeuille et le rôle de l’information limitée. Enfin, nous donnons dans le
Chapitre 5 une vue d’ensemble sur cette thèse et sur la science des systèmes
complexes en général.
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2. Tao Zhou, Jie Ren, Matúš Medo, Yi-Cheng Zhang, Bipartite network pro-
jection and personal recommendation, Phys. Rev. E 76, 046115, 2007
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1 Complex systems, information,
and physics

I think the next century will be the century of complexity.
Stephen Hawking

Physics—raised by Newton, Laplace, Maxwell, and others—was long consid-
ered as a search for fundamental laws. It was assumed that once these are dis-
covered, everything will follow from them and the history of physics will come
to its end. Physicists were dissecting the investigated systems, studying the re-
sulting fragments, and hoping that later someone will come who will put the
pieces together. Complex behavior, when encountered, was considered to be a
result of our ignorance or our lack of control of the variables involved [1]. Ad-
mittedly, this reductionist approach has yielded many admirable achievements
ranging from celestial mechanics to quantum theories. Yet, the first cracks have
appeared on it with the advent of chaos theory [2–4] which learned us that sim-
ple rules can produce intrinsically complicated behavior and small changes can
lead to large effects.

As interesting as chaos theory is, it seems to be separated from real world
phenomena (with weather as one notable exception). To put it straight, chaos
seems more as a mathematical curiosity with profound fundamental conse-
quences than a useful tool providing useful implications for real life. Indeed,
systems around us are often complicated and rich but scarcely they are chaotic
in the mathematical sense. Does it mean that in fact reductionism is enough?
Not really, on the halfway between simplicity and chaos there is something
else—complexity [5].

1.1 Complexity and complex systems

Derived from the Latin word complexus (twisted together), complexity is well
captured by the famous phrase of Phil Anderson: “More is different.” To find a
less metaphoric explanation is difficult—complexity is a young field and even
the basic term “complex system” is not well defined yet. To obtain a better idea
it’s useful to think of systems which are not complex as in [5]. The classical me-
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1 Complex systems, information, and physics

chanic system, pendulum, is simple because it can be understood as a system
with one component (atoms constituting the pendulum are unimportant for its
behavior). When secondary effects are present (e.g., damping due to air friction,
torque due to the Coriolis force), they can be considered as small perturbations
and they do not give rise to new features. Another step could be a snowflake
which looks complicated and can be explained only when interactions of innu-
merable water molecules are considered. And yet, it’s not a complex system
because it’s too rigid, too ordered. One more step and there are chaotic systems
(such as the logistic map or the Lorentz attractor) without order, organization,
hierarchies, and stability. Hence, only when order and chaos are in balance we
say that a system is complex.

To be more illustrative, here are a few examples of complex systems.

• Cellular automata (with “Game of life” as a prominent example [6]).

• Swarm intelligence (systems where decentralized local interactions give
rise to self-organization) [7].

• Cells of living organisms (with complicated signaling and metabolic path-
ways) [8].

• The brain (a significant example of an adaptive complex system) [9].

• Epidemic spreading (which is similar to the percolation problem known
from statistical physics) [10].

• Human society, economy, and markets [11, 12].

Most of these systems belong to a specific class of “complex adaptive systems”.
By the word adaptive we mean that parts of the systems have the capacity to
change and learn from experience. The complex systems mentioned above have
an important common feature: they involve a mix of positive and negative ef-
fects mixed which yield, when acting together, complex patterns and behavior.
This idea is well illustrated on the example provided by Waldrop in [5]. When
water is spilled over a table, it forms complicated shapes. These shapes re-
sult from two opposite forces—gravitation which tries to spread water wide
and surface tension which tries to hold drops together. With only one of the
two forces present, the resulting shapes would be much simpler (a thin one-
molecule layer without surface tension or a one big drop without gravitation).1

Notably, such a mixture of opposing effects is investigated in our market model
in Sec. 3.1 where production of high quality goods lowers the vendor’s profits
and production of low quality goods lowers the vendor’s sales.

1For a statistical physicist, a more familiar example is the Ising model where spin-spin inter-
actions and heat fluctuations oppose each other. In this context, Philip Ball remarks that
“A phase transition arises from compromises.” [12].
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1.1 Complexity and complex systems

To provide an opposing force to the previous specific paragraph, we list some
general definitions of complex systems which were presented in the special edi-
tion of Science2 devoted to complexity.

• A complex system is a highly structured system, which shows structure
with variations (Goldenfeld and Kadanoff).

• A complex system is one whose evolution is very sensitive to initial condi-
tions or to small perturbations, one in which the number of independent
interacting components is large, or one in which there are multiple path-
ways by which the system can evolve (Whitesides and Ismagilov).

• A complex system is one that by design or function or both is difficult to
understand and verify (Weng, Bhalla, and Iyengar).

• A complex system is one in which there are multiple interactions between
many different components (Rind).

• Complex systems are systems in process that constantly evolve and unfold
over time (Brian Arthur).

Of course, attempts to cover the topic in a few pages are vain, an interested
reader can find more information in books [5, 11, 13–15]. For a brief overview
of complex systems see [16], for an early discussion see [17]. The science of
complexity is now mature enough to yield real life applications, for a collection
of examples see [18].

1.1.1 Algorithmic complexity

Algorithmic complexity (often called Kolmogorov complexity, descriptive com-
plexity, etc.) is a measure of the computational resources needed to repro-
duce a given object (usually data). For example, the string “aaaaaaaaaa” can
be reproduced by the single program “print ’a’ ten times” while the string
“4a0WUdf9as” has no obvious short description. Hence the algorithmic com-
plexity is small for ordered objects and large for objects with a high degree of
randomness. In particular, for strings of a certain length, the algorithmic com-
plexity is maximized by a string of random symbols (within the given character
table). This indicates that the complex behavior mentioned above, character-
ized by the presence of long-range coherence or patterns, is not described well
by algorithmic complexity. Simply, there are various notions of complexity and
one has to be careful when moving from one field to another.

It has been proven (independently by Solomonoff and Kolmogorov) that as
soon as one restricts ourself to universal languages (those in which a universal

2Science 284, No. 5411, 1999.
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1 Complex systems, information, and physics

Turing machine can be implemented), the choice of programming language is
asymptotically irrelevant. Yet there is another hitch—algorithmic complexity is
uncomputable. That means, there is no computer program that for any given
data finds the shortest program that produces the data. Even worse, it is in
general impossible to prove that a given program is the shortest one. The usual
way to overcome this obstacle is to use other description methods than general-
purpose universal languages mentioned above. Of course, there is a price one
has to pay for this simplification—for any more specific description method
there are some regularities in the data that become unnoticed.

1.1.2 Complex networks

In mathematics, graphs are investigated for centuries. However, it was not until
1959 when Hungarian mathematicians Erdös and Rényi devised the probabilis-
tic model of a graph where edges are drawn with a certain probability p [19].
They generalized graphs from static objects for which exact mathematical the-
orems can be proven to complicated structures for which the typical behavior
can be investigated. A real boom of interest in random graphs has come only
after two groundbreaking papers [20, 21] which provided not only interesting
mathematical models to study but also a connection to real systems which can
be described by these models. Nowadays, complex networks represent a very
active subfield of complex science. Research of networks focuses on under-
standing of their topological properties, empirical analyses, and designing of
new models. For excellent reviews of the field see [22–26].

Among the most important properties of complex networks is the small-
world effect (the shortest path between nodes of the network is short and scales
with the logarithm of the network size), high clustering coefficient (if node A
is connected with B and C, then B and C are connected with an excessive prob-
ability), scale-free degree distribution (the probability that a node has degree
at least k decays as k−α), and community structure (nodes of a network can
be divided into several groups which are strongly intraconnected and weakly
interconnected). Various processes on networks—for example percolation and
epidemiological processes, cellular automata, voter models, and diffusion—are
also intensively studied [27]. The last mentioned, diffusion on networks, is in
our focus in Secs. 2.2 and 2.4.

1.1.3 Power laws

The abundance of power laws in nature was known long before the complex sci-
ence was established. Perhaps the first observation of a power law dates back
to 1896 when the Italian economist Vilfredo Pareto in his book Cours d’Economie
Politique made the striking remark “in all countries and at all times the extreme
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1.2 Entropy and information

distribution of income and wealth follows a power law behavior”. By the power
law behavior of extreme values is meant that the distribution decays as an in-
verse power of those values, P (x) ∼ x−α for x large (for obvious reasons, the
name Pareto distribution is often used). Since Pareto’s investigation of income
and wealth distributions, power laws have been found in many other fields—
they describe city populations, sizes of earthquakes, sizes of Moon craters, fre-
quencies of word usages, firm sizes, numbers of scientific citations, and many
other quantities [28–30].

Power law distributions have several peculiar features. The three basic sta-
tistical quantities of a power-law distribution (mean, median, and mode) can
differ substantially, for α < 1 the mean is not even defined. By the scale trans-
formation x 7→ cx they preserve its functional form because P (cx) = c−αP (x).
This property led to one more name of power law distributions—they are often
labeled as scale-free. The lack of a typical scale is important because it allows
exceptional events to occur. While rare, they can have a sever impact on the
system behavior. As an example of an extreme event we can take the 22% drop
of the DJIA stock index in October 1987. If index returns would be governed
by the normal distribution, this 20-sigma event (the standard deviation of the
DJIA daily returns is roughly 1.1%) would have had the utterly negligible prob-
ability of the order of 10−176 which, with respect to the age of the universe,
means that the event is impossible. Thus, scale-free and other broad distribu-
tions are necessary to capture extreme behavior of systems. For a well-written
book about financial markets with strong emphasis on concepts of statistical
physics see [31].

The ubiquity of power laws is due to the fact that they result from many
theoretical models [32].3 In particular, power laws are often linked to critical
phenomena and complex systems [15].

1.2 Entropy and information

Entropy was originally introduced as a state function of a thermodynamic sys-
tem. It is defined by the relation ∆S = ∆Q/T and when multiplied by the
system temperature T , it can be understood as the amount of the system en-
ergy which cannot be used to do thermodynamic work. Later in statistical me-
chanics, entropy was linked to the number of possible microstates Ω compatible
with macroscopic properties of the system by the relation S = kB ln Ω and to the
probabilities of various microstates by the relation S = −kB

∑
i pi ln pi. Later on

it was shown that the principle of maximum entropy can be understood as the
footstone of statistical mechanics [33, 34].

3A less noble reason for the ubiquity of power laws is that empirical data are often misinter-
preted and a power law behavior is more a desire than a fact [30, 32].
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1 Complex systems, information, and physics

Meanwhile, information theory went its own way, arriving at Shannon en-
tropy which quantifies the minimum message length per symbol by the equa-
tion H = −

∑
i pi log2 pi (here pi is the probability of symbol i, binary coding

of symbols is assumed and thus the unit of H is bit) [35]. It can be shown that
this is the only formula (up to multiplication by a positive number) which is
simultaneously: continuous (with respect to small changes of the probabilities),
symmetric (with respect to reordering of possible outcomes), additive (i.e., in-
dependence on how a process is divided into parts), and maximized by evenly
distributed probabilities. Shannon entropy is often interpreted as a measure of
uncertainty: when tossing a coin where only two outcomes are possible, the
uncertainty is maximized for a fair coin (p1 = p2 = 1/2).

Closely related to Shannon entropy is the principle of minimum description
length [36] which is sometimes interpreted as the essence of science [34]. This
principle formalizes the famous Occam’s razor by searching for the hypothesis
that achieves the best compression of the data (thus, preferred are simple theo-
ries which explain a wide range of phenomena). The resulting tradeoff between
the complexity of the hypothesis and the complexity of the data given the hy-
pothesis is a natural barrier to overfitting. For an excellent and comprehensive
treatment of relations between probability theory and science see [37].

As we have seen, entropy in physics and entropy in information theory are
interconnected and both constitute bases in their fields. Furthermore, Shan-
non’s work on information theory was later extended to the financial analysis
by his PhD student J. L. Kelly. This extension, commonly known under the
name “Kelly game”, we investigate in detail in Sec. 4. In this thesis we usu-
ally use the word information in a looser sense without referring explicitely to
entropy, probabilities, and coding.

6



2 Physicists approach to
recommender systems

A wealth of information creates a poverty of attention.
Herbert Simon

The exponential growth of the Internet [38] and the World-Wide-Web [39] con-
fronts us with the information overload: we face far too many data and data
sources, making us unable to find the relevant results. As a consequence we
need automated ways to deal with the data, to filter out the information rel-
evant for us. One of the landmarks of information filtering is the advent of
Internet search engines [40, 41]. However, they cannot fully solve the prob-
lem of information overload because they are not personalized—with the same
query, different users receive identical answers. When historical track of users’
activities is available, personalized recommendation is likely to produce bet-
ter results than “recommendation for general audience”. Accordingly, personal
recommendation is often used in real online systems: music-sharing websites
(www.last.fm), book-sharing websites (www.booklamp.org), online shops
(www.amazon.com), social bookmarking (www.CiteULike.com), restaurants
recommendation (foodio54.com), and so forth. The Internet supplemented
with sophisticated social and recommendation tools has the potential to turn
the world into a real global village [42] where space and time barriers do not
exist anymore.

The importance of recommender systems for society and economy has re-
sulted in high activity in this research field with contributions from marketing
practice [43, 44], mathematical analysis [45], engineering science [46–48], but
also from physics community [49–52]. Among the main directions of research
we can mention correlation-based methods [53–55] and spectral methods [56–
59]. The field is developing rapidly [60]. For example, only recently it was
realised that the recommendation accuracy is not sufficient to quantify perfor-
mance of recommender systems. Instead, one should assess the full list of items
recommended to a given user, with the aim of maximising its usefulness as per-
ceived by the user [61–63]. Notably, focus on usefulness is a common practice
in commercial recommendation services (Google, for example) and represents
the major challenge also for academia.
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2 Physicists approach to recommender systems

As a prelude to the discussion of recommender systems, in the following sec-
tion we analyse a large dataset containing ratings from almost half million users
for more than 17 000 movies. In Sec. 2.2 we describe a new recommendation
method which is based on an analogy with the standard physics phenomenon,
diffusion. In Sec. 2.3 we compare performances of several recommendation
methods on various datasets. Finally in Sec. 2.4 we generalize the diffusion
recommendation method so that it can be used on unweighted data.

2.1 A glance at the users’ rating patterns

Testing datasets containing reliable user ratings are essential for development
of recommendation methods. For a long time, the standard dataset used in
most scientific papers was the one prepared by the lab GroupLens.1 It con-
tains approximately one million ratings from 6 040 users for 3 706 movies. At
the end of 2007, the DVD rental company Netflix has started a million dollar
competition, the Netflix Prize, for the best recommendation algorithm.2 For the
competition, a huge testing dataset containing more than 100 million ratings
from 480 189 users for 17 770 movies was released (the integer scale 1, 2, 3, 4, 5
is used). This dataset has one important advantage—it was generated using
opinions given by Netflix customers. This makes the data more reliable be-
cause they are produced by real people shortly after watching the movies. In
addition, these people have paid to see the movies and are interested to receive
good recommendations for future movies which will be also paid.

To gain intuition about users’ rating patterns, we first briefly overview basic
statistical properties of the Netflix dataset. In Fig. 2.1 we investigate how many
ratings individual users have given (left) and individual movies have received
(right). As can be seen, both distributions are very broad. This means that while
the average number of rating per user and per movie are around 200 and 5 600
respectively, there are many users who have given thousands ratings (movie
addicts) and several movies who have received hundreds thousands ratings
(so-called blockbusters). Heavy users are dangerous for two different reasons.
First, this minority of users can considerably influence the resulting recommen-
dations for all. Second, extreme users often turn out to be spammers trying
to influence the results in favor of a particular object. Spamming recommender
systems is a serious problem nowadays, we would like to investigate sensitivity
of various recommendation methods to spamming in future.

Rating patterns of users and movies can be quantified by computing their
averages and standard deviations, in Figs. 2.2 and 2.3 we show histograms of
these quantities. As can be seen, both users and movies are very heterogeneous,
differing largely both in the average ratings and in the dispersion of ratings.

1See www.grouplens.org.
2See www.netflixprize.com.
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2.1 A glance at the users’ rating patterns
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Figure 2.1: Distribution of given/received ratings for users (a) and movies (b).
The average numbers of ratings are indicated by vertical dashed
lines.
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Figure 2.2: Histogram of rating averages and standard deviations for users in
the Netflix dataset.
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Figure 2.3: Histogram of rating averages and standard deviations for movies in
the Netflix dataset.
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2.2 Opinion diffusion: a new recommendation
method

The danger is that it’s all too easy to find apparent patterns in
what’s really random noise. If you use these mathematical hallu-
cinations to predict ratings, you fail.

Wired magazine on the Netflix prize

In this section we describe a new recommendation method which is motivated
by the classical physical phenomenon: diffusion. This method can be used for
any data where users evaluate objects on an integer scale. Using data from a
real recommender application (GroupLens project) we show that the presented
model performs better better than the standard recommendation methods (for
a more detailed comparison see Sec. 2.3. A Green function method is proposed
to further reduce computation in some cases.

2.2.1 The model

In the input data, the total number of users we label as M and the total num-
ber of objects as N (since we focus here on the movie recommendation, instead
of the general term object we often use the term movie). To make a better dis-
tinction between these two groups, for user-related indices we use lower case
letters i, j, k, . . . and for movie-related indices we use Greek letters α, β, γ, . . . .
We assume that users’ assessments are given in the integer scale from 1 (very
bad) to 5 (very good). The rating of user i for movie α we denote viα. The
number of movies rated by user i we label ki. The rating data can be described
by the weighted bipartite graph where the link between user i and movie α is
formed when user i has already rated movie α and the link weight is viα. Such
a bipartite graph can give rise to two different types of graphs (often called
projections): object-to-object and user-to-user. A general discussion on informa-
tion networks can be found in [24], projections of bipartite graphs are closely
investigated in [64, 65].

The recommendation process starts with preparation of a particular object-
to-object projection of the input data. Projections usually lead to a loss of in-
formation. In order to eliminate this phenomenon, instead of merely creating a
link between two movies, we link the ratings given to this pair of movies. As a
result we obtain 25 separate connections (channels) for each movie pair. This is
illustrated in Fig. 2.4 on an example of a user who has rated three movies; as a
result, three links are created between the given movies. When we process data
from all users, contributions from all users shall accumulate to obtain an ag-
gregate representation of the input data: a weighted movie-to-movie network.
From the methodological point of view, this model is similar to the well-known

10



2.2 Opinion diffusion: a new recommendation method
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Figure 2.4: Graphical representation of the links created by a user who has rated
only movies 1 (rating 5), 2 (rating 3), and 3 (rating 4).

Quantum Diffusion process (see [66, 67]).
To each user we need to assign a weight. In general, if user i has rated ki

movies, ki(ki − 1)/2 links in the network are created (or fortified). If we set
the user weight to 1/(ki − 1), the total contribution of user i is directly propor-
tional to ki, and this is a plausible premise.3 Since the users who have seen only
one movie add no links to the movie-to-movie network, the divergence of the
weight 1/(ki − 1) at ki = 1 is not an obstacle.

Since between each pair of movies (α, β) we create multiple links, it is con-
venient to write their weights as a 5 × 5 matrix Wαβ . Each rating can be repre-
sented by a column vector in 5-dimensional space: rating viα = 1 we represent
as viα = (1, 0, 0, 0, 0)T , rating viα = 2 as viα = (0, 1, 0, 0, 0)T , and so forth. If the
vote has not been given yet, we set viα = (0, 0, 0, 0, 0)T . Then using the linking
scheme from Fig. 2.4 and the user weights 1/(ki − 1) we write

Wαβ =
M∑
i=1

viαv
T
iβ

ki − 1
, (2.1)

where we sum contributions from all users. In this way we convert the original
data represented by a weighted bipartite graph into a weighted object-to-object
network.

The non-normalized weights Wαβ form a symmetric matrix W with dimen-
sions 5N × 5N . By the column normalization of W we obtain an unsymmetric
matrix Ω. It describes a diffusion process on the underlying network with the
outgoing weights from any node in the graph normalized to unity (see also a
similar diffusion-like process in [68] and the PageRank algorithm4).

3Here one can recall the famous set of equations for PageRank G(i) of webpage i. It has the
form G(i) = α + (1 − α)

∑
j∼iG(j)/kj , where the subscript j runs over all the webpages

that contain a link to webpage i (j ∼ i), for details see [40]. Here a similar scaling of the
contributions by the inverse of the node degree arises. By a numerical solution of the set,
one obtains values G(i) which are essential for the Google search algorithm.

4Incidentally, PageRank algorithm normalizes the flux outgoing from a node in a similar way
and thus it also represents diffusion or a random walk. If one chooses the row normalization
instead, the resulting process is equivalent to heat conduction in the network.
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2 Physicists approach to recommender systems

Now we shall investigate the equation

Ωh = h, (2.2)

where h is a 5N -dimensional vector (the first 5 elements correspond to movie
1, next 5 elements to movie 2, etc.). Denote nαs (α = 1, . . . ,M , s = 1, . . . , 5) the
number of times movie α has been rated with the rating s. Here we exclude the
votes given by the users who have rated only one movie because these users do
not contribute to Ω. It is easy to prove that the vector

h∗ = (n11, . . . , n15, . . . , nN1, . . . , nN5)T (2.3)

is a solution of Eq. (2.2). Moreover, the solution is unique up to multiplication
by a constant and as we will see later, all vectors in the form λh, λ 6= 0, lead to
identical predictions. Denote L := 1− Ω the Laplace matrix, the forementioned
uniqueness of h∗ is equivalent to rank(L) = 5N − 1, which we prove in the
following paragraph. It is worthwhile to emphasize that the unique solution h∗

reproduces some features of the original input data, which strongly supports
rationality and relevance of the construction of Ω.

Using elementary row/column operations one can shift all the rows/columns
corresponding to the zero-rows/zero-columns of Ω to the bottom and right of
L, leading to

(
L′ O
O 1

)
, where O and 1 are the zero and the identity matrix. The

dimension of 1 we label as D, the dimension of L′ is then 5N −D. The matrix L′

has four properties: (i) All its diagonal elements are 1. (ii) All its non-diagonal
elements lie in the range [−1, 0]. (iii) The sum of each column is zero. (iv) In
each row, there is at least one non-diagonal nonzero element. One can prove
that the rank of any matrix with these four properties is equal to its dimension
minus one, 5N − D − 1 in this case. Since rank(1) = D, together we have
rank(L) = rank(L′) + rank(1) = 5N − 1. Details of the proof will be shown in
an extended paper.

The matrix Ω codes the connectivities between different ratings in the movie-
to-movie network, and could yield to a recommendation for a particular user.
Since the matrix represents only the aggregated information, in order to recom-
mend for a particular user, we need to utilize opinions expressed by this user.
We do so by imposing these ratings as fixed elements of h in Eq. (2.2). These
fixed elements can be considered as a boundary condition of the given diffu-
sion process; they influence our expectations on unexpressed ratings. In other
words, large weights in Ω represent strong patterns in user ratings (e.g., most
of those who rated movie X with 5 gave 3 to movie Y) and diffusion of the rat-
ings expressed by a particular user in the movie-to-movie network makes use
of these patterns.

The discussion above leads us to the equation

Ωihi = hi, (2.4)

12



2.2 Opinion diffusion: a new recommendation method

where Ωi := Ω for the rows corresponding to the movies unrated by user i and
Ωi := 1 for the remaining rows. Such a definition keeps entries correspond-
ing to the movies rated by user i preserved. The solution of Eq. (2.4) can be
numerically obtained in a simple iterative way. We start with h(0)

i where ele-
ments corresponding to the movies rated by user i are set according to these
ratings and the remaining elements are set to zero. Then by the iteration equa-
tion h(n+1)

i = Ωih
(n)
i we propagate already expressed opinions of user i over

the network, eventually leading to the stationary solution hi. Intermediate re-
sults h(n)

i contain information about the movies unrated by user i, which can
give rise to a recommendation. We obtain the rating prediction as the stan-
dard weighted average. For example, if for a given movie in hi we obtain the
5-tuple (0.1, 0.2, 0.4, 0.3, 0.0)T , the rating prediction is v̂ = 2.9. Notice that if a
user has rated no movies, we have to use a different method (for example the
movie average introduced later) to make a prediction. This feature is common
for recommender systems producing personalized predictions.

2.2.2 Avoiding the iterations

While simple, the iterative way to solve Eq. (2.4) has one important drawback:
the iterations have to be made for every user separately. Consequently, the
computational complexity of the algorithm is high. To get rid of this difficulty
we rewrite Eq. (2.4) as Lhi = ji, again L = 1 − Ω. Here the external flux ji is
nonzero only for the elements representing the boundary condition of user i.

The solution hi can be formally written in the form hi = Gji. This resembles
the well-known Green function approach: once G is known, hi can be found by
a simple matrix multiplication. While the source term ji is not a priori known,
we can get rid of it by reshuffling of the movies and grouping the boundary
elements in hi. After this formal manipulation we obtain(

hB
i

hF
i

)
=

(
GBB GBF

GFB GFF

)(
jB
i

0

)
, (2.5)

where B stands for boundary and F for free. Now it follows that hB
i = GBBj

B
i and

hF
i = GFBj

B
i , leading us to the final result

hF
i = GFBG−1

BBh
B
i . (2.6)

Since most users have rated only a small part of all M movies, the dimension of
GBB is usually much smaller than that of G and thus the inversion G−1

BB is cheap.
The last missing point is that since the matrix L is singular (as mentioned

above, rank(L) = 5N − 1), the form of G can not be obtained by inverting L.
Hence we use the Moore-Penrose pseudoinverse [69]

G = L† = lim
k→∞

[
1 + Ω + Ω2 + · · ·+ Ωk − kwRwL

]
, (2.7)

13



2 Physicists approach to recommender systems

wherewR andwL is the right and left eigenvector of Ω respectively, both corre-
sponding to the eigenvalue 1. For practical purposes, the infinite summation in
Eq. (2.7) can be truncated at a finite value k.

2.2.3 Personal polarization

Before the described method can be used in real life examples, there is one im-
portant technical problem. Each user has a different style of rating—some peo-
ple tend to be very strict and on average give low marks, some people prefer to
give either 1 or 5, some don’t like to give low marks, and so forth. Thus, ratings
cannot be grouped together in matrices Wαβ in the straightforward and naı̈ve
way we described before for they mean different things to different people.

To deal with this phenomenon, which we refer to as personal polarization,
unification of ratings from different users is used before summing users’ contri-
butions in the object-to-object network. Consequently, before reporting result-
ing predictions to a user, the output of the algorithm has to be shifted back to
the user’s scale and personalization is needed.

To characterize the rating profile of user i we use the mean µi and the stan-
dard deviation σi of the votes given by him, and we compare these values with
the mean mi and the standard deviation si of the ratings given by all users.
Notably, the quantities mi and si take into account only the movies rated by
user i—if a user has a low average rating because he has been rating only bad
movies, there is no need to manipulate his ratings. To conform a user rating
profile to the society rating profile we use the linear transformation

uiα = mi + (viα − µi)
si
σi
. (2.8)

Personalization of the predicted value is done by the inverse formula viα =
µi + (uiα−mi)σi/si. We can notice that while viα is an integer value, uiα is a real
number. Nevetheless, one can obtain its vector representation in the straightfor-
ward way: e.g.u = 3.7 is modelled by the vector (0, 0, 0.3, 0.7, 0)T ; the weighted
mean corresponding to this vector is equal to the input value 3.7.

2.2.4 Benchmark methods

In correlation-based methods, rating correlations between users are quantified
and utilized to obtain predictions. We present here one implementation of such
a method, which serves as a benchmark for the proposed diffusion model. The
correlation Cij between users i and j is calculated with Pearson’s formula

Cij =

∑∗
α(viα − µi)(vjα − µj)√∑∗

α(viα − µi)2
√∑∗

α(vjα − µj)2
, (2.9)
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2.2 Opinion diffusion: a new recommendation method

where we sum over all movies rated by both i and j (to remind this, there is
a star added to the summation symbols); Cij := 0 when users i and j have no
movies in common. Due to the data sparsity, the number of user pairs with
zero correlation can be high and the resulting prediction performance poor. To
deal with this effect, in [70] it is suggested to replace the zero correlations by
the society average of Cij . In the numerical tests presented in this Letter the
resulting improvement was small and thus we use Eq. (2.9) in its original form.
Finally, the predictions are obtained using the formula

v̂iα = µi +
∑′

j

Cij∑′
k Cik

(vjα − µj). (2.10)

Here we sum over the users who have rated movie α (prime symbols added to
sums are used to indicate this), the term

∑′
k Cik serves as a normalization factor.

As a second benchmark method we use recommendation by the movie aver-
age (MA) where one has v̂iα = mα, mα is the average rating of movie α. This
method is not personalized (for a given object, all users obtain the same predic-
tion) and has an inferior performance. As it is very fast and easy to implement,
it is still widely used. Notably, when unification-personalization scheme is em-
ployed together with MA, the predictions get personalized. As we will see later,
in this way the prediction performance is increased considerably without a no-
table impact on the computation complexity.

2.2.5 Numerical results

To test the proposed method based on opinion diffusion (OD) we use the Grou-
pLens project data, available at www.grouplens.org. The total number of
users is M = 943, the total number of movies is N = 1 682, and the ratings are
integer values from 1 to 5. The number of given ratings is 100 000, correspond-
ing to the voting matrix sparsity around 6%.

To test the described methods, randomly selected 10% of the available data is
transfered to the probe file P , and the remaining 90% is used as an input data
for the recommendation. Then we make a prediction for all entries contained in
the probe and measure the difference between the predicted value v̂iα and the
actual value viα. For an aggregate review of the prediction performance we use
two common quantities: root mean square error (RMSE) and mean absolute error
(MAE). They are defined as

MAE =
1

n

∑
P

|viα − v̂iα|, (2.11a)

RMSE =

[
1

n

∑
P

(viα − v̂iα)2

]1/2

, (2.11b)
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Figure 2.5: Prediction performance for the predictions v̂iα obtained by iterations

of Eq. (2.4) using various numbers of iterations steps.

no unification with unification

method RMSE MAE RMSE MAE

MA 1.10 0.87 0.98 0.77
CB 1.09 0.86 1.09 0.86
OD 1.00 0.80 0.93 0.73

Table 2.1: Comparison of the three recommendation methods: movie average
(MA), correlation-based method (CB), and opinion diffusion (OD).
Presented values are averages obtained using 10 different probes;
standard deviations are approximately 0.01 in all investigated cases.

where the summations go over all user-movie pairs (i, α) included in the probe
P and n is the number of these pairs in each probe dataset. To obtain a better
statistics, the described procedure can be repeated many times with different
selections of the probe data. We used ten repetitions which allowed us to com-
pute not only the average performances (represented by RMSE and MAE) but
also their standard deviations.

In contrast with the expectations, in Fig. 2.5 it can be seen that the prediction
performance is getting worse by a small amount when more than one itera-
tion of Eq. (2.4) is used to obtain the prediction. Probably this is due to the
presence of overfitting—starting from the second iteration, our expectations are
influenced not only by actually expressed ratings but also by our expectations
about unexpressed ratings obtained in previous iteration steps. Nevertheless,
as it will be shown later, the performance achieved by the first iteration is good
and justifies validity of the proposed model. In the following paragraphs we
use only one iteration to obtain the predictions. Consequently, the Green func-
tion method introduced above is not necessary—we decided to expose it in this
paper because it can be useful with other datasets.
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2.3 Comparison of recommendation methods

In Tab. 2.1 we compare the prediction accuracy for the movie-average method
(MA), the correlation-based method (CB), and for the opinion diffusion (OD).
To measure the prediction performances we use both RMSE and MAE as de-
fined above. All three methods are tested both with and without employing the
unification-personalization scheme. In accordance with expectations, for MA
and OD the performances with unification included are better than without it;
for the simplest tested method, MA, the difference is particularly remarkable.
By contrast, CB is little sensitive to the unification procedure and when we drop
the multiplication by σi/si from the unification-personalization process given
by Eq. (2.8), the difference disappears completely (which can be also confirmed
analytically). According to the prediction performances shown in Tab. 2.1 we
can conclude that the diffusion method outperforms the other two clearly in
all tested cases (RMSE/MAE, with/without unification). When computation
complexity is taken into account, it can be shown that if M > N , the proposed
method is more effective than correlation-based methods (but, of course, less
effective than using the movie average).

2.2.6 Conclusion

We have proposed a novel recommendation method based on diffusion of opin-
ions expressed by a user over the object-to-object network. Since the rating po-
larization effect is present, we have suggested the unification-personalization
approach as an additional layer of the recommender system. To allow a com-
putation reduction with some datasets, Green function method has been intro-
duced. The proposed method has been compared with two standard recom-
mendation algorithms and it has achieved considerably better results. Notably,
it is executable even for the large dataset (17 770 movies, 480 189 users) released
by Netflix (a DVD rental company, see www.netflixprize.com). In addi-
tion, our model is tune-free in essence—it does not require extensive testing
and optimization to produce a high-quality output. This is a good news for
practitioners.

2.3 Comparison of recommendation methods
Courage is going from failure to failure without losing enthusi-
asm.

Winston Churchill

In this section we overview several standard recommendation methods and
compare their accuracies on various datasets. To assess the prediction accuracy,
a small part of the input data is removed and constitutes the probe dataset. The
rest, training dataset, is then used as input for the tested methods. Compar-
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ing the predicted values with the corresponding probe entries, the root mean
square error (RMSE) can be calculated as given in (2.11ab). The usual way to
create the probe is by random selecting 10% of the input data. However, users
who have given many ratings then comprise a large part of the probe and the
results may be biased towards them. For this reason we limit number of probe
entries per user to ten. This choice leads to higher resulting RMSEs (compared
with the random 10%-selection) but it is more user-focused and hence more
representative.

For our tests we use various datasets, all of them containing ratings in the
integer scale 1, 2, 3, 4, 5. Dataset A is the smaller one of the two datasets which
have been prepared by the GroupLens project.5 Datasets B and C are based on
the original Netflix dataset. Dataset B contains randomly selected 5 922 movies
and 10 000 users who have rated at least 10 movies, by the random selection we
aim to capture properties of the large original data by a smaller subset. Dataset
C contains 3 000 movies which have [1 400; 5 400] ratings and 3 000 users who
have given [1 250; 1 500] ratings, this choice selectively picks a denser part (not
the densest!) of the original data. Finally dataset D is based on the data pre-
pared by the Eigentaste project, it contains ratings of 3 000 users for 100 jokes.6

Since the original ratings use the real scale [−10; 10], they have been transformed
by the simple linear mapping v 7→ 3 + v/4 and coarse-grained by rounding to
integer values.

Basic statistical properties of the datasets are summarized in Tab. 2.2. The
code given in the first column is used to refer to the dataset. The following three
columns give the number of users, objects, and ratings respectively. The data
sparsity is the ratio of the number of ratings to the maximum possible number
of ratings which is users × movies. In the last two columns are the minimal
number of ratings by a user (user min) and the minimal number of ratings of
a movie (movie min). As can be seen, the joke dataset D is much denser then
the other three datasets, with all objects having a large number of ratings. As
we will see later, higher density of the input data does not automaticaly provide
better prediction precision, the inner structure of the data can reverse the results
(for more details see [70]).

2.3.1 Standard recommendation methods

Before proceeding to numerical results, we describe the tested methods in de-
tail. Opinion diffusion is omitted here because it is implemented exactly as
described in Sec. 2.2 (with one diffusion step).

5For more information see www.grouplens.org.
6On the webpage eigentaste.berkeley.edu one can both appreciate joke recommenda-

tion and obtain more information about their research.
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2.3 Comparison of recommendation methods

code users objects ratings sparsity user min object min

A 943 1 682 100 000 6.30% 20 1
B 10 000 5 922 824 802 1.37% 10 1
C 3 000 3 000 567 456 6.31% 45 23
D 3 000 100 243 380 81.13% 36 1 160

Table 2.2: Basic statistical properties of the used datasets.

Object and user averages

Denoting the average rating given to object α as µα, a simple prediction for user
i can be obtained as

v̂iα = µα. (2.12)

As described in Sec. 2.2, this plain method can be improved by the unification-
repersonalization process. That means, denoting the average rating given by
user i as µi, the standard deviation of ratings given by user i as σi, the average
rating of all users on the subset of objects rated by user i as mi, and the stan-
dard deviation of all users on this subset as si, the ratings can be unified by
Eq. (2.8). Then for each object, the unified average rating µ′α can be computed.
By transforming back to the personal scale of user i we obtain the prediction

v̂iα = µi +
(
µ′α −mi)

σi
si
. (2.13)

This variation of the recommendation by object average we indicate with an
asterisk (*).

Similarly simple is the prediction by µi, the average rating of user i,

v̂iα = µi. (2.14)

Here the application of the unification-personalization process is not justified
and hence in our numerical tests we consider only this basic method.

User-user and object-object correlations

Similarities of users can be quantified by computing correlations between their
ratings, the standard choice being the Pearson correlation coefficient

cij =
1

|Cij|
∑
α∈Cij

(viα − µi)(vjα − µj)
σiσj

(2.15)

where Cij is the set of movies rated by both i and j. Consequently, the prediction
v̂iα can be obtained as a weighted average

v̂iα =

∑′
j λijvjα∑′
j λij

. (2.16)
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where we sum only over the users who have rated object α and the weights λij
depend on the user-user-correlations cij . While in the literature, several possible
choices of weights are discussed [59, 70, 71], in our numerical tests the best
performance was achieved by the simple formula λij = cijθ(cij)

√
|Cij|. That is,

we neglect negative correlations and multiply the weight by the square root of
the number of movies rated by both i and j (cij obtained with a larger overlap
has a larger statistical weight).

Correlations of object ratings can be employed in a very similar way. First we
calculate the correlations

cαβ =
1

Cαβ

∑
i∈Cαβ

(viα − µi)(viβ − µi)
σασβ

(2.17)

and then the weighted averages

v̂iα =

∑′
β λαβviβ∑′
β λαβ

(2.18)

where we sum only over the movies β that have been rated by user i. In our
tests, good performance was obtained by λαβ = cαβθ(cαβ)

√
|Cαβ|.

One could try to improve the correlation-based methods described above by
unification-personalization process. According to our numerical tests such ef-
forts are fruitless, yielding accuracy increase (measured by RMSE) less than one
percent for both user-user and object-object correlations.

Matrix factorization

There is a large class of techniques based on singular value decomposition. The
implementation described here is based on the algorithm used in the Netflix-
prize (see www.netflixprize.com) by team Gravity which hold the leading
position for several months [59].

Labeling the voting matrix as V, we try to approximate it by the product of
two matrices

V ≈ UO (2.19)

where U is a M ×K matrix, O is a K × N matrix, M is the number of users, N
is the number of objects, and K is an integer parameter of the model. Values uik
(k = 1, . . . , K) can be considered as K tastes of user i, values okα (k = 1, . . . , K)
asK features of object α. Notice that it is implicitely assumed that rating of user
i for object α is obtained as the inner product

∑K
k=1 uikokα of tastes and features.

Consequently, K can be described as the number of dimensions which is used
to characterize tastes and features.
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For a given U and O we can measure the differences between UO and actual
ratingsR contained in the voting matrix as

eiα = viα −
K∑
k=1

uikokα, (2.20)

TE =
∑

(i,α)∈R

e2
iα. (2.21)

Here eiα is the error for one particular rating and TE is the total error obtained
by summing over all ratings contained in the voting matrix V. Square root of
this value is often called training RMSE because it measures how well we ap-
proximate the “training” data stored in the voting matrix.

To find the matrices U,O that describe the actual ratings well, one should try
to minimize the total error TE. This can be achieved by applying the gradient
descent method. That means, for any (i, α) ∈ R we compute the gradients of
e2
iα

∂e2
iα

∂uik
= −2eiαokα,

∂e2
iα

∂okα
= −2eiαuik

and update the corresponding elements in the opposite direction of the gradi-
ents

uik → uik + η (2eiαokα), okα → okα + η (2eiαuik). (2.22)

The small parameter η is usually called learning rate, it controls how fast we
modify U and O. To prevent large values of uik and okα, in [59] the damping
parameter λ is introduced to the iterations as

uik → uik + η (2eiαokα − λuik), okα → okα + η (2eiαuik − λokα). (2.23)

As we will check by numerical simulations, λ > 0 indeed yields better accuracy
and the improvement is substantial, more than 6% (see Tab. 2.3). However, after
introduction of λ, interpretation of the method is less clear because stationary
points of Eq. (2.23) do not relate to eiα anymore.

To conclude, we summarize the matrix factorization method in steps.

1. Initialize U and O randomly, set small η and λ.

2. While RMSE obtained using the probe dataset decreases, repeat:

a) For each (i, α) ∈ R compute eiα and update matrices U,O according
to Eq. (2.23).

b) Calculate RMSE on the probe dataset.

While the idea behind the method is intuitively appealing, it has an important
drawback—to optimize the prediction performance, parameters K, η, λ have to
be tuned and the consequent optimization procedure involves lots of numerical
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Figure 2.6: (a) Prediction accuracy vs the number of hidden dimensions K for
η = 0.001 and λ = 0.2, both training and probe RMSEs are shown.
(b) Probe RMSE vs the optimization parameter λ. In both figures,
dataset A was used and the results are averaged over 10 different
probes.

tests. Moreover, the optimal values are not universal and for a different dataset
they must be optimized again. To better understand how the method behaves,
we examine how the prediction accuracy (measured by RMSE) depends on the
parameters K, η, λ for the dataset A. In Tab. 2.3 we show probe RMSE for vari-
ous η and λ. As can be seen, there is an optimal value for λ which is in our case
λ ≈ 0.2. By contrast, accuracy decreases with η and thus there is no optimal
value. Consequently, the chosen η is a trade-off between accuracy and compu-
tation speed (the number of iterations needed to reach the minimal RMSE is
inversely proportional to η).

In Fig. 2.6a we show both training and probe RMSE as functions of K for
fixed η = 0.001 and λ = 0.2. As can be seen, while increasing K allows us to
better reproduce the known ratings (i.e., it lowers the training RMSE), it does
not improve the prediction accuracy substantially (i.e., the probe RMSE does
not decrease much).7 Since computation speed is inversely proportional to K,
this is not a bad news—even a small value of K allows for almost optimal per-
formance. In Fig. 2.6b we show how the prediction performance depends on
the choice of λ. As can be seen, λ is an important parameter which needs to be
set very carefully. Since λ = 0 does not produce plausible results, the iterative
optimization of Eq. (2.21) cannot be replaced by some of the stochastic meth-
ods for global optimization in multidimensional spaces (simulated annealing,
genetic algorithms, etc.).

7For some datasets, the probe RMSE even grows when K is larger than a certain critical value
(see e.g. [59]). This is usually referred to as overfitting.
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η�λ 0.0 0.1 0.2 0.3 0.4

0.0001 0.984 0.947 0.920 0.926 0.947
0.0003 0.984 0.947 0.920 0.926 0.947
0.0010 0.984 0.947 0.921 0.926 0.949
0.0030 0.988 0.950 0.924 0.931 0.955
0.0100 1.033 0.974 0.947 0.962 0.990

Table 2.3: Prediction accuracy for various values of η and λ, K = 20 (dataset A,
results for one probe only).

method�dataset A B C D

object average 1.02 1.03 1.00 1.27
object average* 0.96 0.96 0.87 1.11

user average 1.04 1.02 0.97 1.16
user correlations 1.06 1.07 0.98 1.17

object correlations 1.00 0.98 0.91 1.13
matrix factorization 0.92 0.91 0.82 1.04

opinion diffusion 0.98 0.97 0.91 1.19
opinion diffusion* 0.94 0.94 0.85 1.09

Table 2.4: Accuracies (measured by RMSE) of the tested recommendation meth-
ods. Values are averages over to different probes, standard deviations
are less than 0.01 in all cases.

2.3.2 Results

Accuracies of the tested recommendation methods, as measured by RMSE, are
shown in Tab. 2.4. Values are obtained by averaging over ten different probes,
standard deviations are less than 0.01 in all cases (it decreases with the probe
size, as expected). We remind that asterisk-marked methods use the unification-
personalization process.

Finally, values shown in Tab. 2.4 allow us to draw several conclusions. First,
correlation-based methods, while intuitively appealing, yield accuracies which
are comparable with accuracies of plain averages (object and user average).
Since calculation of correlations is much more demanding then calculation of
averages, correlation-based methods are clearly least advisable among the tes-
ted methods. Second, when object average is supplemented by the unification-
personalization process, it performs remarkably well and there are only two
methods (matrix factorization and opinion diffusion*) which are superior to it.
In addition, the computation complexity and memory requirements of object
average* is much lower than for the two superior methods and hence it is a
very good candidate for “cheap” recommendation method. Third, matrix fac-
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torization was the most successful method, it outperformed opinion diffusion*
on all four datasets by 2%–5%. This is not surprising because opinion diffu-
sion* is tune-free in essence and hence it can lag behind methods with several
tunable parameters.8 This gives us a suggestion for future research: to amend
opinion diffusion with a small set of parameters which, when tuned appropri-
ately, could increase the prediction accuracy.

2.4 Application of diffusion to bipartite networks

While ratings of objects by users are naturally represented by a weighted bipar-
tite network, many other cases result in unweighted bipartite networks [72–80].
This motivates us to adapt the diffusion method to unweighted bipartite net-
works.

2.4.1 Projections of bipartite networks

Nodes of each bipartite network can be divided into two groups, let’s label these
groups as X and Y , such that links are only between nodes that do not belong
to the same group. To simplify such a network, projections on X-network (X-
projection where only the nodes from group X are present) or Y -network (Y -
projection where only the nodes from group Y are present) are used. For exam-
ple, in the simplest X-projection two nodes are connected when in the original
network they have at least one common neighbouring Y -node. Notice that such
a projection results in an unweighted network; for other studies of unweighted
projections of bipartite networks see [74, 75, 81–83]. Although some topological
properties can be qualitatively obtained from this unweighted version, the loss
of information is obvious: if two listeners have collected more than 100 music
groups each and only one music group is selected by both listeners, these two
listeners probably have quite different music taste. By contrast, if nearly 100
music groups belong to the overlap, the two listeners are likely to have very
similar habits. However, in the unweighted listener-projection, this two cases
have exactly the same graph representation.

Weighted projections reduce the loss of information. A straightforward way
is to weight each edge by the number of of common neighbours in the origi-
nal network [84–86]. However, this method is also quantitatively biased. For
example, in the empirical study of scientific collaboration networks [87] it is
suggested that the impact of one additional collaboration paper should depend
on the original weight between the two scientists. For example, one more co-
authorized paper for the two authors having only co-authorized one paper be-

8When taken to extreme, in addition to K,λ, η, all elements of the matrices U,O can also be
considered as tunable parameters.

24



2.4 Application of diffusion to bipartite networks

fore should have higher impact than for the two authors having already co-
authorized 100 papers. This saturation effect can be taken into account by in-
troducing a hyperbolic tangent function onto the simple count of collaborated
times [87]. Another suggestion is that two scientists whose names appear on a
paper together with many other co-authors know one another less well on av-
erage than two who were the sole authors of a paper [75]. Labeling the number
of co-authors as nC , the factor 1/(nC − 1) can weaken the contribution of huge
collaborations [88, 89].

However, the solutions above are chosen ad hoc, e.g.instead of the hyperbolic
tangent, many other candidates can be used. Weighting by the factor 1/(nC −
1) excludes the papers with only one author which is often the case in some
sciences (for example, more than half of the publications in Mathematical Reviews
have only one author [81]). In addition, for simplicity, the weighted adjacency
matrix {wij} is usually set to be symmetrical, that is,wij = wji. Obviously, in real
scientific collaboration networks, different authors may assign different weights
to the same co-authorized paper—it is probably the case that the author having
less publications may give a higher weight and vice versa. Hence, it is natural
to relax this constraint and search for an asymmetrical weighting method.

In the following we propose a weighting method with asymmetrical weights
and allowed self-connection (i.e., wii > 0). This method can be directly applied
as a personal recommendation algorithm, which performs remarkably better
than the widely used global ranking method (GRM) and collaborative filtering (CF).

2.4.2 Method

In the prospective X-projection, the weight wij can be considered as the impor-
tance of node i in j’s sense and in general it differs from wji. For example, in
the book-projection of a customer-book network, the weight wij between two
books i and j contributes to the strength of book i recommendation to a cus-
tomer provided he has brought book j. We assume that before the projection
is made, a certain amount of a resource (e.g., social influence in a recommen-
dation system) is associated with each X-node. Consequently, the weight wij
represents the proportion of the resource j would like to distribute to i.

A suitable form of wij can be obtained by studying the original bipartite net-
work. Since the network is unweighted, the unbiased allocation of the initial
resource of each X-node is equally among all its neighboring Y -nodes. Sub-
sequently, the resource collected on Y -nodes are equally redistributed back to
their neighboring X-nodes. An illustration of this resource-allocation process
for a simple bipartite network is shown in Fig. 2.7. There, the three X-nodes
(up) are initially assigned weights x, y and z. In the first step, from Y -nodes
(bottom). Merging the two steps in one, the final resources (x′, y′, z′) located on
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Figure 2.7: Illustration of the resource-allocation process in a simple bipartite
network. The assigned resources first flow fromX-nodes to Y -nodes
and then return back to X-nodes.

X-nodes can be obtained as x′

y′

z′

 =

 11/18 1/6 5/18
1/9 5/12 5/12
5/18 5/12 4/9

 x
y
z

 . (2.24)

Notice that the induced 3 × 3 matrix is column normalized, the element in the
ith row and jth column represents the fraction of resource the jthX-node trans-
ferred to the ithX-node. To conclude, the described resource-allocation process
yields a weighted adjacency matrix which captures relations between X-nodes.
In other words, we obtained a weighted X-projection of the original bipartite
network.

To generalize the concept explained above, let’s consider a bipartite network
G(X, Y,E), where X and Y are two groups of nodes and E is the set of edges.
The nodes in X are denoted by i = 1, . . . , n, the nodes in Y by α = 1, . . . ,m. The
initial resource located on the i-th X-node is xi ≥ 0. After the first step, all the
resource in X flows to Y and the resources yα on Y -nodes read

yα =
n∑
i=1

aiαxi
ki

(2.25)

where ki is the degree of node i and aiα is the adjacency matrix

aiα =
{ 1 (i, α) ∈ E,

0 otherwise. (2.26)
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In the next step, all resources flow back to X-nodes and the final resources x′i
read

x′i =
m∑
α=1

aiαyα/kα =
m∑
α=1

aiα
kα

n∑
j=1

ajαxj
kj

. (2.27)

This can be rewritten as

x′i =
n∑
j=1

wijxj, wij =
1

kj

m∑
α=1

aiαajα
kα

. (2.28)

In effect, wij contains contributions from all 2-step paths between i and j. The
matrix W = {wij}n×n represents the obtained weightedX-projection of the orig-
inal network. Using matrix formalism, the process can be described by the lin-
ear equation x′ = Wx.

It is worthwile to discuss some features of the proposed weighting method.
For convenience, we take the scientific collaboration network as an example but
our statements are valid also for other networks. First, W is not symmetric as

wij
kj

=
wji
ki
. (2.29)

This agrees with our daily experience: the weight of a single collaboration paper
is relatively small if the scientist has already published many papers (i.e., has a
large degree) and vice versa. Second, the diagonal elements of W are nonzero
and thus the information contained in links to Y -nodes with degree one is not
lost. Actually, the diagonal element is the maximal element in each column.
Only when all neighbours of node i are also neighbours of j, wii = wji (it can
occur that a student coauthors all papers with her supervisor). Consequently,
the ratio wji/wii ≤ 1 can be considered as research independence of i from j:
the smaller the ratio, the more independent the researcher is and vice versa.
Eventually, the global independence of i can be measured as

Ii =
n∑
j=1

(wji/wii)
2. (2.30)

Generally speaking, an author who often publishes papers alone or publishes
many papers with different coauthors is more independent. To obtain a better
understanding of this quantity, an extensive study of empirical data would be
necessary. Instead, we return to our original aim, to recommender systems.

2.4.3 Personal recommendation

Let’s label objects in the object-set by α = 1, . . . , n and users in the user-set by
i = 1, . . . ,m. If users are only allowed to collect objects (i.e., they do not rate
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them), their previous opinions can be stored in an n×m adjacency matrix {aαi}
where aαi = 1 if user i has already collected object α, and aαi = 0 otherwise.
We assume that the collected objects are appreciated by the users who collected
them. Consequently, the goal of a recommendation method is for each user
to pick up those uncollected objects which are likely to by appreciated by the
given user.

The degree of object α is kα =
∑m

i=1 aαi. The simplest available recommen-
dation method, global ranking method (GRM), sorts all objects in the descending
order of degree and recommended are the objects with highest degrees. Al-
though such a recommendation is not personalized which in turns leads to poor
performance of this method (see numerical comparison in the next section), the
method is widely used because it is simple and spares computational resources.
For example, the well-known Yahoo Top 100 MTVs, Amazon List of Top Sellers, as
well as lists of most downloaded articles in scientific journals, can all be consid-
ered as results of GRM.

Another widespread recommendation algorithm, collaborative filtering (CF), is
based on user-user similarities [48, 90]. The similarity of users i and j can be
introduced in the Pearson-like form

sij =

∑n
α=1 aαiaαj

min{ki, kj}
(2.31)

where ki =
∑n

α=1 aαi is the degree of user i and sij = sji. For any user-object pair
(i, α), if user i has not collected object α yet (i.e., aαi = 0), the score viα assigned
by CF (quantifying how likely α will be appreciated by i) is

viα =

∑m
j=1,j 6=i sijaαj∑m
j=1,j 6=i sij

. (2.32)

There are two factors contributing to a high value of viα. First, if the degree of
object α is high, there are many nonzero terms in the numerator of Eq. (2.32).
Second, if object α is frequently collected by users similar to user i, the resulting
value viα is large. The former effect accounts with the global information, the
latter effect provides personalization. Finally, for a given user i, uncollected
objects with highest values viα are recommended.

We propose a recommendation algorithm, which is a direct application of the
weighting method presented above. The layout is simple. First we compress
the bipartite user-object network by object-projection; the resulting weighted
network we label as G. Then for a given user i we put some resources on the
objects already collected. For simplicity we set the initial resource located on
each node of G as

oα = aαi. (2.33)

Thus, if object α has been collected by i then its initial resource is one, otherwise
it is zero. We emphasize that the initial configuration is different for different
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users and, similarly to the model presented in Sec. 2.2, it can be understood as
the initial condition in a diffusion process. According to the resource-allocation
process discussed above, the final resources are

o′α =
n∑
β=1

wαβoβ =
n∑
β=1

wαβaβi. (2.34)

Finally, the objects uncollected by the given user i are sorted according to o′α
and objects with highest values are recommended. We call this method network-
based inference (NBI), since it is based on the weighted network G. Note that, the
calculation of Eq. (2.34) have to be repeated m times (for each user).

2.4.4 Numerical results

For numerical tests of the described algorithms we use the dataset provided by
MovieLens project (see http://www.grouplens.org). The dataset contains
ratings of 1 682 movies (objects) by 943 users. Since the original data use the
integer rating scale 1, 2, 3, 4, 5, a coarse-graining procedure is necessary to obtain
an unweighted bipartite network. As in [71], we assume that a movie has been
collected by a user if the given rating is at least 3. If there is no rating or the
rating is 1 or 2, no link is drawn. Out of the original 105 ratings, 85 250 ratings
are at least 3 and thus the resulting sparsity of the adjacency matrix is only
5%. To test the recommendation algorithms, the data set (i.e., 85 250 edges) is
randomly divided into two parts: The training set contains 90% of the data, and
the remaining 10% of data constitutes the probe. The training set is treated as
known information, while no information from the probe set is allowed to be
used for prediction.

All three algorithms (GRM, CF, and NBI) provide a sorted list of recom-
mended objects for each user. For a user i, if a recommended object is in the
probe set, we quantify its position in the list. For example, if user i has 1 500 un-
collected movies, his recommendation list has the length 1 500. Consequently, if
a recommended object α is on 30th position from the top, we say that it’s a top
30/1 500 object and denote it by the relative rank riα = 20/1500 = 0.02. Since
the probe entries are actually collected by users, a good algorithm is expected to
place probe entries on top of recommended lists, leading to small average rank
r. Numeric results, averaged over all entries in the probe (and over different
probes), are 0.139, 0.120 and 0.106 by GRM, CF, and NBI respectively. Since NBI
yields the smallest value, we can say that among the three tested methods, NBI
performs best. Notably, the difference between NBI and GRM is approximately
the same as the difference between sophisticated CF and plain GRM.

To make our comparison more relevant to real-life recommendation systems,
we introduce a measure of algorithmic accuracy that depends on the length of
recommendation list. For a particular user, the recommendation list with the
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length GRM CF NBI

10 10.3% 14.1% 16.2%
20 16.9% 21.6% 24.8%
50 31.1% 37.0% 41.2%
100 45.2% 51.0% 55.9%

Table 2.5: The hitting rates for some typical lengths of recommendation list.

length L contains L highest recommended movies. For each movie α which is
included in the probe dataset we count one hit. The ratio of hit entries to the
probe size we call hitting rate (i.e., it quantifies the fraction of the probe dataset
discovered by recommendations). For a given L, the algorithm with a higher
hitting rate is better and vice versa. Obviously, the hitting rate grows with L
with the upper bound 1 for a sufficiently large L. The resulting hitting rates
for all three methods and various lengths L are shown in Tab. 2.5. Again, NBI
performs significantly better than GRM and CF.

2.4.5 Conclusion

Based on a particular projection of bipartite networks we proposed a recom-
mendation method. We measured its recommendation performance by two
different quantities and the obtained results we compared with results of two
other standard methods. According to both quantities, the proposed method
performs best. We emphasize that this model is only a first proposal, vari-
ous modifications can be explored to increase recommendation performance.
For example, the generalization of the initial condition oα = aαi to the form
oα = aαik

γ
α is investigated (the exponent γ is a free tunable parameter) in [63].

In [91], the simple rule o′ = Wo is replaced by o′ = (W+λ2W
2 +λ3W

3)owhich ef-
fectively introduces repetitions of the resource-allocation process; optimization
of λ2,3 yields λ2 < 0 and λ3 = 0.

If we denote 〈ku〉 and 〈ko〉 the average degree of users and objects in the bi-
partite network, the computational complexity of CF is O(m2〈ku〉 + mn〈ko〉)
where the first term accounts for the calculation of similarity between users
by Eq. (2.31) and the second term accounts for the calculation of the predicted
score by Eq. (2.32). Since n〈ko〉 = m〈ku〉 (both sides are equal to the total num-
ber of edges in the network), we are left with O(m2〈ku〉). The computational
complexity of NBI is O(m〈k2

u〉+mn〈ku〉) with two terms accounting for the cal-
culation of the weighted matrixwαβ and the final resources o′α respectively. Here
〈k2
u〉 is the second moment of the users’ degree distribution in the bipartite net-

work. Clearly, 〈k2
u〉 < n〈ku〉 and thus the complexity above can be simplified

to O(mn〈ku〉). Consequently, in systems where the number of users is much
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larger than the number of objects, NBI runs much faster than CF. In addition,
NBI requires n2 memory to store the weighted matrix {wij}, while CF requires
m2 memory to store the similarity matrix {sij}. Hence, NBI is able to beat CF in
all the three criterions of recommendation algorithm: accuracy, time, and space.
However, in some recommendation systems, as in bookmark sharing websites,
the number of objects (e.g., webpages) is much larger than the number of users,
thus CF may be more applicable.
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3 Probabilistic approaches to
market modeling

Human beings, viewed as behaving systems, are quite simple.
The apparent complexity of our behavior over time is largely a
reflection of the complexity of the environment in which we find
ourselves.

Herbert Simon

Vendors and buyers interacting in a market present another example of a com-
plex system. The complexity stems from various sources: many products and
product variants which differ in features and prices are simultaneously avail-
able, buyers are diverse, and the decision process of every singly buyer is com-
plex itself [92, 93]. The standard economics approach to modeling buyer deci-
sions in a market is built on maximization of the expected utility by each party
involved in the system (be it a buyer or a vendor). Since complexity of the prob-
lem is often enormous, there are serious concerns whether real customers can
act in a way described by this game-theoretic models [94]. However, it is not
our purpose here to criticize the use of the utility theory—an interested reader
can find deeper discussions works devoted to this topic in e.g. [93–95].

When a buyer forms an opinion about a product, quality and features of the
product jointly influence the outcome of buyer’s consideration (others factors,
e.g.price of the product, play also a role). We go in the direction of models of dis-
crete choice1 [96–98] and assume that customers’ decisions, while influenced by
perceived properties of the products, are probabilistic in nature. Using a proba-
bilistic consumer choice framework makes it possible to avoid utility functions
and hence our model can be understood as an alternative to the usual utility-
function approach.

We developed two novel market models where buyers’ decisions are prob-
abilistic. The first model focuses on product quality (Sec. 3.1), the second on
matching products’ features with buyers’ preferences (Sec. 3.2). While in reality
neither of the two influences can be neglected, the “divide & conquer” tactics
allow us to show that our simple assumptions yield rich behavior. The result-
ing complex complex systems with one vendor, several product variants, and

1The label “models of probabilistic choice” is also used.
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many heterogeneous buyers, are investigated by both analytical and numerical
techniques.

The discussed models were constructed to investigate effects of correlations
and limited information in complex systems. Although they are presented
in the context of economics, they provide general concepts and tools which
can be used to investigate many other problems where involved parties have
aligned, partially aligned, or antagonistic interests. We plan to use the estab-
lished methodology for our future research.

Before we proceed, it’s useful to make a clear distinction between quality
and preferences. Let’s imagine a large group of customers who are all asked to
review a given product. While the assessments naturally differ, their common
part can be attributed to the product’s quality and their variable part (which
differs from one customer to another) can be attributed to matching between
customers’ tastes and product’s attributes. In theoretical models, this matching
is often represented by a scalar product of the vector of customer’s tastes and
the vector of product’s attributes, see e.g. [57, 99].

3.1 Selection by quality

Science is simply common sense at its best.
Thomas Huxley

The interests of vendors and customers seem antagonistic a priori, the former
aiming at decreasing quality and increasing price, whereas the latter wishing
exactly the opposite. The situation is fortunately more complex, the interests
of both sides being sometimes compatible. Intuitively, a vendor may sell more
items by increasing their perceivable quality, making everybody happier. But
the situation is more subtle because of asymmetric information: the vendor
knows much better than his prospective customers the real quality of his prod-
ucts. In Akerlof’s famous Lemon Problem, the customers have no means to as-
sertain the quality of products, which leads to a no-trade paradox [100]. When
the customers are better equipped, optimal quality emerges [101–103]. One of
the main issues is to understand under which conditions a manufacturer should
diversify his production. Economics literature has approached this problem
mainly with the help of utility functions. Several aspects have been studied,
among them optimal quality-based product differentiation [104], firm compe-
tition by quality [105] and by price [106], the relation between product quality
and market size [107], etc. (see [108, 109] for a review). We take the point of view
of a monopolistic vendor faced to consumers deciding to buy one of his prod-
ucts according to their perception of its quality; using a probabilistic consumer
choice framework makes it possible to avoid utility functions.
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Figure 3.1: The acceptance probability PA(Q,α) for various values of α.

3.1.1 Single product

We assume that the only difference between products lies in their quality Q ≥ 0
which is therefore the main quantity of interest here. With a suitable choice of
units, one can write the profit of a vendor per item sold as 1−F (Q) where F is an
increasing function and F (1) = 1. For the sake of simplicity, we take F (Q) = Q;
F (Q) ∝ Q2 is also found in the literature but does not alter qualitatively our
results. While Q could in principle be greater than one, a vendor would never
choose it, hence our analysis is restricted to Q ∈ [0, 1] (this constraint will be
relaxed by introduction of prices in Sec. 3.1.3).

We assume that a customer buys a product of quality Q with probability
PA(Q). While there are many possible choices, e.g.those of Refs. [108, 110] or
piece-wise linear functions as in Ref. [103], we shall mainly use

PA(Q,α) =
(
1− 1

α+1

)
Qα (α ≥ 0) (3.1)

where α is the acceptance parameter: for small α, PA is mostly flat, resulting in
a lack of quality discrimination; as α grows, the core of PA shifts towards higher
quality, which reflects enhanced discrimination abilities (see Fig. 3.1). We will
use the shorthands “ignorant” for buyers with a small α and “informed” for
those with a large α; an ignorant buyer is quite likely to reject even a perfect
product.

If there areN buyers with acceptance parameters αi (i = 1, . . . , N ), faced with
a single product of quality Q, the vendor’s expected profit X is

X(Q) = (1−Q)
N∑
i=1

PA(Q,αi)− Z. (3.2)

where Z represents the fixed part of production costs due, for instance, to the
initial investment needed to setup the manufacturing plant. Assuming that N
is large, the fluctuations of X can be neglected. The structure of this expression
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is similar to the profit function introduced in [108]. Since X ′(0) > 0, X ′(1) < 0,
and X(Q) is continuous, there is at least one Q maximizing X in (0, 1).

In the following we adopt the point of view of the vendor and hence optimize
his expected profit X .

Homogeneous population

When there is only one type of buyers, the expected profit simplifies to X(Q) =
N(1−Q)PA(Q,α)− Z which reaches its maximum at

Q∗(α) =
α

α + 1
. (3.3)

Expectedly, Q∗(α) increases when the buyers have a sharper eye. The total op-
timal profit reads

X∗(α) = N
αα+1

(α + 1)α+2
− Z. (3.4)

In Fig. 3.2 we report the expected optimal profit per customer x∗(α) := X∗(α)/N
as a function of α for z := Z/N = 0.05. When z > 0, a vendor only makes a profit
when the quality is not too high or too low. Accordingly x∗(α) has a maximum
at α0 ≈ 0.65. Therefore, if the vendor cannot easily change Q, he should target
a population with Q∗, or strive to modify the abilities of his prospective cus-
tomers to detect quality, thereby increasing his profit. When [0;α0), both the
consumers and the vendor benefit from an increase in Q; we shall call it the
cooperative region. Reversely, when α > α0 the vendor suffers from excessive
quality detection abilities of his customers; he could try a confusing market-
ing campain or rebranding so as to lower their abilities—this is the defensive
region. A similar behaviour has been observed in [111]. In our case, the fact
that the cooperative region is much smaller than the defensive region is a con-
sequence of the shape of PA. For instance, when the prefactor in PA(Q) changes
from 1− (α+ 1)−1 to 1− (α+ 1)−1/3, the size of the cooperative region increases
significantly.

Heterogeneous buyers

Heterogeneity brings in more surprises. Let us split the population into two
groups, group i = 1, 2 consisting of Ni buyers with acceptance parameter αi;
the proportion of group i is denoted by ci := Ni/N . The vendor’s expected
profit reads

X(Q) = N(1−Q)
[
c1PA(Q,α1) + c2PA(Q,α2)

]
− Z. (3.5)

It is not possible to maximize X analytically. The result of numerical investi-
gations is shown in Fig. 3.3 as a function of c2 for α1 = 0.1 (ignorant buyers)
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Figure 3.2: Optimal vendor’s profit per buyer x∗ as a function of α for z = 0.05.
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Figure 3.3: Optimal product quality Q∗ (left) and vendor’s optimal profit x∗

(right) versus c2 for various values of α2; α1 = 0.1, z = 0.01.

and various choices of α2. As expected, as the proportion of informed buyers
increases, Q∗ grows. But a surprising behaviour is found for instance when
α2 = 3: at c2 ≈ 0.32 the optimal quality changes discontinuously. This is be-
cause X(Q) has two local maxima. While for small c2 the small-Q peak yields
the largest profit, its relative height decreases as c2 increases; accordingly the
discontinuous transition occurs when the heights of the two maxima are equal.
In Fig. 3.3 we also show the dependence of the optimal profit per buyer x∗ on c2.
When group 2 has α2 < α0 (e.g., α2 = 0.5), adding people with more demands
regarding quality is beneficial to the vendor (Eq. (3.4)) and X is an increasing
function of c2. By contrast, when α2 > α0 the optimal profit first decreases as
almost nobody of group 2 will buy anything and does so as long as group 2
has less influence on Q∗ than group 1. Then group 2 supercedes group 1 and
imposes its quality demands; the discussion generalises to an arbitrary number
of groups. In other words, when society is too heterogeneous, it is impossible
to satisfy all buyer groups with one product.

37



3 Probabilistic approaches to market modeling

0 0.2 0.4 0.6 0.8 1
Q

1

0

0.2

0.4

0.6

0.8

1

PS (1)

σ = 0
σ = 1
σ = 3
σ = ∞

Figure 3.4: The probability to select variant 1 as a function of its quality Q1 for
various values of the selection parameter σ. In total three variants
are displayed, the qualities Q2 = 0.5 and Q3 = 0.2 are fixed.

3.1.2 Multiple products

Now we assume that the vendor displays M product variants of different qual-
ity, at equal prices for the sake of simplicity, and that each buyer buys at most
one item. A purchase is a two-step process, as a shopper has also to decide on a
variant. The choice is also assumed to be probabilistic: variant m = 1, . . . ,M is
chosen according to

PS(m|Q, σ) =
Qσ
m∑M

m′=1Q
σ
m′

. (3.6)

Here σ ∈ [0;∞) quantifies the selection ability of a given buyer. When σ is large,
the buyer almost surely selects the best variant; on the contrary when σ = 0,
PS(m) = 1/M for all m, i.e., the buyer has no discerning power. Since PS is nor-
malized, each buyer purchases at most one item. Similar expressions appear in
works on the influence of advertisement [110] and non-price competition [108],
but other choices of functions would also be reasonable, such as exponentials
as in the Logit model. All Qσ

m′ have equal weight in Eq. (3.6); Sec. 3.1.2 gener-
alizes this expression in order to take into account the proportions of displayed
items. Finally, a more complete discussion on the plausibility of PS is given in
Sec. 3.1.4.

To summarize, the variant m with the quality Qm is bought by buyer i with
probability PS(m|σi,Q)PA(Qm, αi). As a consequence, if the vendor displays M
variants to N buyers, his expected profit is

X(Q) =
M∑
m=1

(1−Qm)

( N∑
i=1

PS(m|Q, σi)PA(Qm, αi)

)
−MZ. (3.7)

This equation can be easily extended to account for special circumstances. For
example, when Z is large, it may be profitable to produce one variant and
achieve quality differentiation by artificially damaging a fraction of the produc-
tion, e.g.by disabling some features [112]. In this case two variants with qualities
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Figure 3.5: a) Optimal profits per buyer as a function of c2; x∗1: solid and dotted
lines, x∗2: broken and dashdot lines shown only when quality differ-
entiation occurs. b) Optimal quality as a function of c2, curves for
Q∗1 and Q∗2 are only shown when x∗2 > x∗1. Values of parameters are
α1 = 0.2, α2 = 3.0, σ1 = 0.5, and σ2 = 3.0.

Q1 > Q2 are displayed but the profit per item sold is 1 − Q1 for both of them
and the initial cost is reduced to Z.

Quality differentiation

For the sake of simplicity, we focus on two groups of customers consisting of
Ni members with acceptance parameter αi and selection power σi (i = 1, 2).
The question is whether the vendor should display one or two products. In our
framework, the answer is entirely determined by the respective optimal profit
of each possibility, denoted by X∗1 (Q) and X∗2 (Q1, Q2).

Since manufacturing two products requires twice as much initial investment
(by hypothesis), the region in which X∗2 > X∗1 shrinks when z increases. This
appears clearly in Fig. 3.5 where we plot the optimal profits versus c2 = N2/N
for two values of z. In addition, when X∗2 > X∗1 , the two optimal qualities Q∗1
and Q∗2 differ significantly. Quite clearly, the lower quality targets the group of
ignorant buyers while the higher quality is for informed buyers. Remarkably,
when c2 > 0.68, the lower optimal quality is even smaller than the optimal qual-
ity α1/(α1 + 1) = 1/6 corresponding to a homogeneous population of ignorant
customers. Notably, this downward distortion in a situation of a monopolistic
vendor is also reported in [113].

Biased selection

Beyond M = 2, quality differentiation is equivalent to displaying more of the
low-grade products. This suggests to introduce weights rm (

∑M
m=1 rm = 1) in

the selection probability PS of Eq. (3.6), taking into account for instance the
effective visibility of each product due to advertisement or display position in
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Figure 3.6: Optimal qualities (a) and the optimal profit (b) versus r2 of the pre-
mium variant (α1 = 0.2, α2 = 3, σ1 = 0.2, σ2 = 2, z = 0.01, c2 = 0.5,
M = 2).

shops. The selection probability generalizes to

P ′S(m|Q, r, σ) =
rmQ

σ
m∑M

m′=1 rm′Qσ
m′

. (3.8)

Customers with high σ are able to pick the better product even when its effective
proportion is small.

To study the effects of the proposed generalization, we use once again two
groups of customers and choose the parameters so as to set the system in the
quality differentiation region. Results of numerical optimization of the optimal
profit are reported in Fig. 3.6, r2 denotes the proportion of the premium variant.
Differentiation occurs in a limited range of r2: when r2 is either too small or too
large, buyers effectively notice only one variant and it is preferable for the ven-
dor to produce only that one. In addition, x∗ has a maximum at r2 ≈ 0.08, which
comes from hiding the high quality variant to ignorant buyers while keeping it
accessible to informed buyers.

3.1.3 Price

Let us now consider the price as a free parameter and investigate how the ven-
dor should fix it optimally. Denoting the price by p, the profit per item is p−Q
which means that the maximum quality is Qmax = p. In particular, if the vendor
wishes to produce a better product that Qmax, the price needs to be increased.
The acceptance probability generalizes to (α ≥ 0, p ∈ [Q;α + 1])

PA(Q, p, α) =

(
1− p

α + 1

)(
Q

p

)α
. (3.9)

It satisfies two constraints: first, the higher the price, the smaller the acceptance
probability. Second, because of the p/(α+1) term, the sensitivity towards prices
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Figure 3.7: Optimal profit x∗ vs acceptance parameter α: fixed price (solid line,
the same curve as in Fig. 3.2) and variable price (dashed line), z = 0.

decreases as sensitivity to quality increases; similarly, quality must be judged
with respect to price, hence the (Q/p)α term. The discussion of the previous
sections corresponds to p = 1.

We restrict our analysis to the simplest case of N identical buyers and one
product. The expected profit reads

X1(Q, p) = N(p−Q)

(
1− p

α + 1

)(
Q

p

)α
with p ≤ α + 1 and Q ∈ [0; p], it is maximized by

Q∗ =
α

2
, p∗ =

α + 1

2
. (3.10)

Expectedly, the more informed the buyers, the better the products should be,
but the vendor can charge a higher price. Because p∗ − Q∗ = 1/2 is a constant,
there is no incentive in this model for exceptionally high prices for high quality
variants. In Fig. 3.7, the resulting optimal profit per buyer x∗ is shown together
with the optimal profit when the vendor has fixed the price at 1. The liberty
to set the price can increase the profit of the vendor quite considerably. The
difference of profit for α > 1 (informed buyers) is due to the fact that the ven-
dor is allowed to charge a higher price for the high quality demanded by the
buyers. By contrast, for α < 1 the main improvement comes from the fact that
PA(Q, p, α) does not vanish when Q→ 0 and p < 1.

3.1.4 Discussion of the model plausibility

In order to better understand the need for both selection and acceptance proce-
dures, it is worthwhile to consider some alternatives. One possibility to simplify
our assumptions is to keep only the acceptance process with each displayed
variant accepted or not according to the acceptance probability PA. When M
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variants with the qualities Q1, . . . , QM are displayed, the probability P ′ that a
given customer accepts at least one of them is

P ′(Q1, . . . , QM) = 1−
M∏
a=1

[
1− PA(Qa)

]
. (3.11)

As M increases, P ′ converges to one. This means that the vendor can attract the
buyers by displaying a large number of very bad products which is generally
not the case. However, flooding of customers by low quality occurs under some
special circumstances. This economics of spamming is briefly discussed in the next
Appendix.

Another approach is to reduce the model to the best product selection gov-
erned by the selection probability PS . Since this probability is normalized to
one, each buyer surely buys one of the displayed variants and the vendor’s
profit maximization consequently yields zero quality. Obviously, such an opti-
mal solution is pathological. One could eventually consider replacing the unity
in the equation

∑M
m=1 PS(m|Q, σ) = 1 by an increasing function of the displayed

qualities but this is effectively equivalent to our two step decision process. Thus
we see that nor the selection step is sufficient to model the purchase process.

Finally, the generalization to diverse proportions of displayed variants, intro-
duced in section 3.1.2, gives an additional argument. We see that while in the
selection step both quality and proportion play their roles, in the final accep-
tance step it is only quality what matters. Thus these two steps are intrinsically
different and attempts to merge them are artificial.

3.1.5 Conclusion

Due to the complexity of markets and human behaviour, attempts to propose
a theory of the whole are illusory. However, simple models can bring insight
to simple mechanisms at work in the real economy. Assuming probabilistic
buyer behaviour, we formalized buyers’ abilities, spanning from the zero infor-
mation to the perfect information limits. Adopting the vendor’s point of view,
we examined the compromise between low quality which minimizes produc-
tion costs and high quality which maximizes sales. In particular, the fact that
customers are heterogeneous forces vendors to diversify their production. In
other words, the large variety of products in free-market economies reflects in
part the the information gathering and processing abilities of customers.

3.2 Selection by individual preferences
Truth is much too complicated to allow anything but approxima-
tions.

42



3.2 Selection by individual preferences

John von Neumann

The standard economics textbooks make the supply-demand law as one of the
pillars of the modern economic theory. However, many people, especially eco-
nomists (see for example [114]), gradually realize that the most important factor
is missing in the traditional supply-demand law. The study of complex sys-
tems [115–117] has already led to novel approaches to market phenomena. In
a previous work [111], a simple framework was introduced to treat both qual-
ity and information capability, yielding a generalized supply-demand law. It
was assumed that a product is characterized by a single scalar variable: quality.
However, in the modern economy we face a much more complex world where
products have many attributes and consumers have heterogeneous tastes [103].
These preferences cannot be simply represented as price and quality alone.
Therefore we generalize [111] to allow multiple variants of each product as well
as many different tastes among consumers.

In consequence the producers face a dilemma: whether to target the average
taste by producing a single or a few variants to leverage the economy of scale,
or to match precisely each consumer’s taste [118]. We shall see that the answer
depends on the information level that the producers may access: whether they
know, and how well they know the consumers’ preferences. In addition, pro-
ducers face also the nonlinear production costs. All the factors have to compro-
mise to yield a combined result that gives various degrees of product diversity.
With our approach, the supply-demand problem of producers with the capabil-
ity of producing variations and consumers’ diverse tastes becomes a matching
problem [119, 120], where many mathematical and statistical mechanic tools are
available to handle the complexity of the combinatorial problem.

To summarize, in this section we propose a simple market model and in-
vestigate its behavior under various circumstances. First we do not consider
correlations between preferences of the parties included in the system. While
unrealistic, this assumption allows us to discover basic properties of the model
and outline the way of reasoning which can be used also in later, more realis-
tic considerations. Then we discuss correlations and the ways how they can be
introduced to the system. Finally we discuss how the system behavior changes
under presence of correlations.

3.2.1 General framework: one vendor with many buyers

Let’s begin with a market where only one vendor and M buyers are present.
The vendor can produce N different variants of a product (e.g., many different
shoes). With regard to the market, he has to decide which variants it is optimal
to produce. We assume that all buyers satisfied with the offer buy one item,
others stay out of the trading. Buyers in the market we label with lowercase
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Latin letters (i = 1, . . . ,M ). The different variants the vendor can produce we
label with Greek letters (α = 1, . . . , N ). The price of variant α we label as Pα.
We assume that every variant can be produced in as many pieces as it is needed
and as fast as it is needed.

The simple structure sketched above offers us enough space to model basic
features of real markets. To establish a mathematical model for the market we
have to introduce some assumptions about participants’ preferences and their
consequences on the trading process. To keep complexity of the model at min-
imum we assume that buyer’s opinion about a variant can by represented by
one scalar quantity, which we call cost and label it with x; we assume x ∈ [0; 1].
The smaller is the cost xi,α, the bigger is the probability that buyer i is satisfied
with variant α when asked. Preferences of the vendor are easier to introduce;
they are represented by costs which he suffers during production and sale of a
particular variant. The cost for variant α we label yα and after a proper rescal-
ing of monetary units yα ∈ [0; 1]. To simplify our considerations, we arrange the
variants in order of cost: y1 < y2 < · · · < yN .

We stress a conceptual difference between vendor’s and buyer’s costs. The
seller’s cost yα is strictly monetary—it represents a real amount of money (al-
though in arbitrary units). In contrast, the buyer’s cost xi,α has no tangible in-
terpretation, it simply represents something as airy as happiness with the given
variant.

The vendor is able to produce N different variants. However, when he is
producing more variants, his expenses grows due to need of an additional in-
vestment. The vendor’s tendency to produce only few different variants can be
modeled e. g. by a nonlinearity of expenses (doubled production of one sin-
gle variant does not require doubled expenses). We adopt another approach;
we assume that to initiate the production of a variant, the vendor has to pay
additional charge Z > 0 (this represents initial costs).

Now let’s assume that the vendor offered k most favorable variants (thus
α = 1, . . . , k, k ≤ N ) to customers and the number of units sold of variant α is
nα. The total vendor’s profit is

X(k, {nα}) =
k∑

α=1

nα(Pα − yα)− kZ. (3.12)

Here the last term kZ comes for the initial costs of k produced variants, Pα − yα
is the profit for one sold unit of variant α. Due to the monetary rescaling used to
confine yα to the range [0; 1], units for profit, initial costs and prices are arbitrary.

It is natural to assume that when buyer i is asked about interest to buy variant
α, the decision is based on the cost xi,α. We formalize this by the assumption
that the probability of acceptance is a function of the variant cost; this function
we call acceptance function. Obviously, f(x) is a decreasing function of the cost
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Figure 3.8: A particularly simple choice for the buyers’ acceptance function
f(x).

x. Moreover, we assume f(0) = 1. This means that if a buyer considers a variant
to be the perfect one, she surely buys it.

When we offer a random variant to one buyer, the acceptance probability is∫ 1

0

π(x)f(x)dx ≡ p. (3.13)

Here π(x) is the probability distribution of cost x (i.e., it defines what “to offer
a random variant” really means). The probability p of accepting a random pro-
posal is an important parameter of the model. From our everyday life we know
that largely we do not agree to such an offer. For this reason we assume p � 1
in our calculations.

One example of a reasonable choice for the acceptance function is

f(x; p) =

{
1− x/2p (0 ≤ x ≤ 2p),

0 (2p < x).
(3.14)

with p < 0.5 (see Fig. 3.8). This choice is especially convenient due to its sim-
plicity. If we now assume the uniform distribution of the buyer’s costs, π(x) = 1
for 0 ≤ x ≤ 1, parameter p of the acceptance function Eq. (3.14) is just the prob-
ability p of accepting a random offer introduced in the previous paragraph.

In the rest of this section we assume that the prices of all variants are the same
and equal to 1, Pα = 1. This relieves us from many technicalities, and helps
to highlight important features of the model. Nevertheless, generalization to
various prices is straightforward.

3.2.2 No correlations in costs

We begin our investigation with the simplest case of the presented model—the
market without correlations, where all costs yα and xi,α are mutually indepen-
dent. We model this by costs uniformly distributed in the range [0; 1]. To keep
variants ordered, we first draw their costs and then we renumber all variants
achieve y1 < y2 < · · · < yN . It follows that after averaging over realizations, the
formula 〈yα〉 = α/(N + 1) holds.
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Vendor without knowledge of buyers’ preferences

If a vendor wants to discover which variants are most acceptable for buyers, in
a market without correlations each buyer has to be asked for preferences. This
cannot be done in big markets, thus it is natural to investigate the case with
no information about buyers’ preferences on the vendor’s side. In Sec. 3.2.2
we show that even an expensive global opinion survey brings only a negligible
contribution to the vendor’s income.

Without any information about preferences, the vendor is not able to discover
which variants are most favored by buyers. Therefore the best strategy is to
offer variants that are most favorable from his point of view. Let’s label the
number of variants the vendor is willing to offer as k. We assume that all these
variants are available to buyers simultaneously, similarly to different types of
shoes available in a shoe shop. Every buyer goes through the offered variants
and decides whether some of them are suitable or not.

From the buyer’s point of view, the vendor makes random proposals; the
probability of accepting one particular offer is thus by definition equal to p. The
probability PA that one particular buyer accepts one of k proposed variants is
complementary to the probability (1− p)k of denying all offered variants. Thus
we have

PA = 1− (1− p)k ≈ 1− e−pk, (3.15)

where the approximation used is valid for pk � 1, i.e.for very choosy consumers
(than p is a small quantity) and a small number of offered variants. Now the
average number of items sold by the vendor to all M buyers is MPA. Since
no correlations are present, the average number of items sold of variant α is
〈nα〉 = MPA/k, it is a decreasing function of k.

The quantity of vendor’s interest is the total profit X introduced in Eq. (3.12).
Its expected value can be found using 〈nα〉, 〈yα〉, and PA. We obtain

XU(k) = M
(
1− e−pk

)(
1− 1 + k

2(N + 1)

)
− kZ. (3.16)

Here the subscriptU reminds that we are dealing with an “uninformed” vendor.
This function is sketched in Fig. 3.9 for three different choices of initial cost Z.
The optimal number of variants the vendor should offer maximizes his profit.
One can easily show that when X ′U(0) < 0, XU(k) < 0 for all k > 0. Thus the
condition X ′U(0) < 0, which can be rewritten as Z > Mp, characterizes a market
where the optimal vendor’s strategy is to stop the production and stay idle.

Since for every product numerous numerous variations can be made, the to-
tal number of variants the vendor can offer, N , is large. Thus we are allowed
to assume that the optimal number of offered variants satisfies the condition
kopt � N and solve the maximization condition X ′U(k) = 0 approximately. We
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Figure 3.9: Expected profit of the vendor without informations, XU(k), drawn
against k for small value of initial costs (solid line), medium initial
costs (dashed line) and high initial costs (dotted line). In the last case
the condition Z > Mp is fulfilled and the optimal vendor’s strategy
is to stop the production.
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Figure 3.10: The optimal number of offered variants and the optimal profit as
functions of initial cost Z for M = 500, N = 2 000, and p = 0.05.
Numerical results (empty circles) are averages over 1 000 realiza-
tions, analytical results (solid lines) come from Eq. (3.17). For the
optimal profit arbitrary units are used.

obtain

kopt =
1

p
ln
Mp

Z
, Xopt = M − Z

p

(
1 + ln

Mp

Z

)
, (3.17)

where Xopt is the optimal expected profit, Xopt = XU(kopt). The used approx-
imations are valid when Z � M/N and p � 1. In Fig. 3.10, these results are
shown to match a numerical treatment of the problem. In the figure we see how
the initial cost Z influences diversity of the vendor’s production: decreasing Z
increases differentiation of the vendor’s supply in full agreement with expecta-
tions.

Improvement of the vendor’s profit by a sequential offering of variants

So far we dealt with a very passive approach of the vendor. While offering k
variants to the market, he had no influence on the sale. In consequence, due
to the absence of correlations in the system, every offered variant had the same
average number of items sold. In a big market this is a natural approach. While
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3 Probabilistic approaches to market modeling

the use of advertising can promote some variants, its treatment exceeds our
scope.

In a small market a personal offering is possible. The vendor can promote
favorable variants to increase the profit simply by offering the most favorable
variant first. If a buyer is not interested, the second most favorable variant
follows, etc. The average sale of the first variant is 〈n′1〉 = Mp, for the second
variant it is 〈n′2〉 = M(1 − p)p and in general we have 〈n′α〉 = Mp(1 − p)α−1.
Hence the expected total sale is

k∑
i=1

Mp(1− p)i−1 = M
[
1− (1− p)k

]
.

This is equal to the expected total sale MPA of the uninformed vendor in the
previous section. We can conclude that the vendor’s profit improvement (if
any) does not come from an increased total sale but rather from an increased
sale of the variants that are more profitable for the vendor.

Now we investigate the optimal number of variants to offer in this case, k′opt.
Since 〈n′α〉 decreases with α, at some moment it is not profitable to offer one
more variant and the vendor’s profit is maximized. The corresponding equa-
tion 〈n′α〉 = 〈n′α〉〈yα〉 + Z can be solved with respect to α, leading to k′opt. When
the total number of possible variants N is big, 〈yα〉 � 1 and the term 〈n′α〉〈yα〉
can be neglected. The approximate solution is then

k′opt ≈
ln(Z/Mp)

ln(1− p)
. (3.18)

This optimal number of variants to offer is smaller than kopt given by Eq. (3.17).
We can also notice that when p is small, using approximation ln(1 − p) ≈ −p
we are left with k′opt ≈ kopt. This is an intriguing property—by the two different
approaches we obtained the same result. To compare k′opt in markets with dif-
ferent sizes, we plot it as a function of Z/M in Fig. 3.11. As can be seen, in a big
market (M & 100 000) Eq. (3.18) fits well a numerical simulation of the system.

One can examine also the increase of the vendor’s profit caused by the change
of the sale method. Using previous results, the approximate formula ∆Xopt ≈
Z[1 + ln(Mp/Z)]/(Np2) can be obtained. We see that when the total number of
variants N is big, sequential offering results in a small growth of the vendor’s
profit. Nevertheless, in a system with a limited offer (small N ) or with very
choosy buyers (very small p), the improvement can be substantial.

Here we should notice, that the stopping condition “income greater than ex-
penses” introduced above can be hard to use in practice. It is because n′α is a
random quantity and can drop to the disadvantageous region n′α < Z + n′αyα
even when 〈n′α〉 is big enough to cover the expenses. Thus for the vendor it
is not enough to simply check profitability of the sale of one particular variant
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Figure 3.11: Successive offering: numerical and analytical results for the vendor
using stopping condition described in the text in the markets with
various sizes (on horizontal axis we have q ≡ Z/M ). All numerical
results are obtained as average of 10 000 realizations with p = 0.05,
N = 2 000; solid line represents Eq. (3.18).

n′α. Rather he has to take into account sales of all previously offered variants.
This is especially important in systems with a small number of buyers M where
relative fluctuations are bigger. This effect is shown in Fig. 3.11 where numer-
ical results for the vendor blindly using the stopping condition are shown for
various market sizes. Clearly as M increases, numerical results approach the
analytical result Eq. (3.18).

Competition of two vendors

In real markets we seldom find a monopolist vendor; competition and partition
of the market is a natural phenomenon. To investigate the model behavior in
such a case we introduce the second vendor to the market. We assume that the
vendors differ by initial costs, which are Z1 and Z2. Again we do not consider
the influence of advertisements and reputation, albeit they are vital in a market
competition.

The course of the solution is similar to the one leading to Eq. (3.16). We label
the number of variants offered by vendor 1 as k1, the number of variants offered
by vendor 2 as k2, and we assume that there is no overlap between offered
variants. The aggregate sale of two buyers is MP ′A where

P ′A = 1− (1− p)k1+k2 ≈ 1− exp[−p(k1 + k2)].

With our assumptions about the equal status of the vendors, every offered vari-
ant has the same average sale. Therefore both vendors gain the share propor-
tional to the number of variants they offer. Thus vendor 1 takes k1/(k1+k2 of the
total sale and vice versa. When k1/N, k2/N � 1, we can simplify the expected
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Figure 3.12: The optimal number of variants to offer (left) and the optimal profit
(right) for vendor 1 (solid line) and for vendor 2 (dashed line)
against Z1. The initial cost of the second vendor is Z2 = 5.0,
M = 500, and p = 0.05.

profits to the form

X1(k1, k2) = M
(
1− e−p(k1+k2)

) k1

k1 + k2
− k1Z1, (3.19a)

X2(k1, k2) = M
(
1− e−p(k1+k2)

) k2

k1 + k2
− k2Z2. (3.19b)

Both parties maximize their profits by adjusting k1 and k2. The corresponding
system ∂k1X1(k1, k2) = 0, ∂k2X2(k1, k2) = 0 cannot be solved analytically but its
numerical treatment is straightforward. The result is shown in Fig. 3.12 where
we have fixed the initial cost Z2 to investigate how kopt and Xopt for both ven-
dors vary with Z1.

We see that at Z1 ≈ 12 vendor 1 stops the production for he cannot stand the
competition of vendor 2. By putting k2 = 0 in the equations ∂k1X1(k1, k2) = 0
and ∂k2X2(k1, k2) = 0 we obtain the expression for the value Z∗1 when this price-
out occurs

Z∗1 =
Mp

ln(Mp/Z2)

(
1− Z2

Mp

)
. (3.20)

It is in a good agreement with the values found by a numerical simulation of
the model. Important feature of this result is that it depends on the initial price
Z2 of the competitive vendor—decreasing the production costs can expel others
from the market.

One can notice that when vendor 1 tries to increase the profit by deliberately
increasing k1 (with the intention to increase the sale), the term −k1Z1 prevents
the success of this strategy. As a result, the vendors have to adapt to each other.
In mathematic terms, X1(k1opt, k2opt) ≥ X1(k1, k2opt). At the same time, the sum
of profits is not maximized at k1opt and k2opt. It is more profitable to remove the
less efficient producer (the one with the higher value of initial costs). This is
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3.2 Selection by individual preferences

an analogy of a real market where ruining (or taking over) of a competitor can
improve company profit.

Informed vendor

Now we would like to investigate the artificial case of the market where the
vendor knows costs xi,α of all buyers. This knowledge can be used to increase
the optimal profit. We start with a simpler question: if the vendor offers only
one variant, how much the sale can be increased by a good choice of the variant?

The probability that buyer i is agreeable to buy variant α is f(xi,α). Since
costs xi,α are random and independent, only the average acceptance probability
p plays a role and the number of users willing to buy this variant, nα, is thus bi-
nomially distributed with the mean 〈nα〉 = Mp and the variance σ2 = Mp(1−p).
When the number of buyers M is big, we can pass to a continuous approxima-
tion and assume the normal distribution of nα

f(nα) ≈ 1√
2πσ

exp

[
−(nα −Mp)2

2σ2

]
. (3.21)

The biggest value from the set {nα} (α = 1, . . . , N ) we label as m. This is the
number of potential buyers for the most accepted variant and the vendor does
the best when by offering this variant. The probability density fN(m) (often
called extremal distribution) is

fN(m) =
N√
2πσ

exp

[
− (m−Mp)2

2σ2

](
1

2
+

1

2
Erf

[
m−Mp

σ
√

2

])N−1

. (3.22)

The multiplication by N appears because we do not care which one of all N
variants is “the most accepted” one and the error function term represents the
probability that the remaining N − 1 variants are less accepted.

Since we are interested in big values of N , we expect that the difference 〈m〉−
M is big in comparison with σ. Therefore we use the approximation Erf(x) ≈
1 − exp[−x2]/

√
πx2, which is valid for x � 1. When the error function value is

close to one, we can also use the approximation (1 − x)N ≈ exp[−Nx] (x � 1)
to obtain

fN(m) ≈ N√
2πσ

exp

[
− (m−Mp)2

2σ2
− σN√

2π

exp
[
− (m−Mp)2/2σ2

]
m−Mp

]
.

This form is too complicated to obtain an analytical result for 〈m〉. Instead we
compute the most probable value m̃

m̃ ≈Mp+ σ

√
2 ln

σ3N√
2π

.
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Figure 3.13: The relative growth of the vendor’s sale δ is drawn against the total
number of buyers M . Solid lines represent the analytical result,
outcomes from numerical simulations are shown as symbols.

Here the first term Mp represents the average value of the sale and the addi-
tional term represents the gain arising from the additional vendor’s knowledge.
To get a better notion about the sale growth we use the relative sale growth

δ ≡ m̃−Mp

Mp
≈

√
1

Mp
ln
pMN2

2π
. (3.23)

To simplify the formula, the assumption p� 1 has been used. A comparison of
this result with a numerical simulation of the model is shown in Fig. 3.13. As
can be seen, a good agreement is obtained.

When δ � 1, all vendor’s information is indeed useless and the average sale
improvement is negligible. The inequality δ � 1 leads to the condition

N2 � 2π

Mp
eMp. (3.24)

Thus when the number of variants is not large enough, buyers’ opinions in the
uncorrelated market cannot be used to increase the vendor’s sale and profit.

From the previous results we can draw useful implications about the vendor
with perfect information, offering more than only one variant. When the total
number of variants N is big, the number of variants offered by the vendor is
small in comparison with N . Therefore the average sale of all offered variants
is increased at most by δ given by Eq. (3.23) and the same applies to the total
sale. However, the vendor is interested mainly in his profit. When we take
into account different costs yα of variants, the resulting growth of the income
due to the informations is even smaller than δ because the variant with the
highest sale can have a high cost for the vendor. Thus condition Eq. (3.24) is
has more general consequences. It specifies the circumstances when even the
perfect information about buyers’ preferences do not help the vendor to achieve
a significant improvement of his profit.
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3.2 Selection by individual preferences

3.2.3 Correlations in the system

Now we would like to add one important flavor to the model—correlations.
They arise from conformity of people’s tastes (buyer-buyer correlations) and
from the fact that high quality preferred by buyers results in high costs on the
vendor’s side (buyer-vendor anticorrelations). To approach the behavior of a
real market, we investigate how these correlations influence our results ob-
tained so far. Before doing so, we briefly discuss correlations from a general
point of view.

Measures of correlations

A correlation is the degree to which two or more quantities are associated. We
shall discuss different ways how to measure correlations and how to introduce
them to the system. In particular, we would like to measure the correlation
between two lists (vectors) of costs: xi and xj (two buyers) or xi and y (a buyer
and the vendor). All lists of our interest have lengthN and contain real numbers
between 0 and 1. A common choice for the correlation measure is Pearson’s
correlation coefficient r. For lists x and y it is defined as

r2 =

[∑N
α=1(xα − x)(yα − y)

]2

∑N
α=1(xα − x)2

∑N
α=1(yα − y)2

. (3.25)

This measure is sensitive to non-linear transformations of values in lists x and
y. In addition, since it originates in the least-square fitting of the data by a
straight line, it measures only a linear correlation. For this reasons, we use a
different correlation measure, Kendall’s tau. For lists x and y it is given by the
formula

τ =
2

N(N − 1)

∑
α<β

σαβ, σαβ = sgn [(xα − xβ)(yα − yβ)] (3.26)

and it ranges from +1 (exactly the same ordering of lists x and y) to −1 (re-
verse ordering of lists); uncorrelated lists have τ = 0. Notably, Kendall’s tau is
insensitive to all monotonic mappings of the data. This is the strongest prop-
erty we can expect from a correlation measure—more general transformations,
nonmonotonic mappings, can sweep out any structure present in the data.

Lists with a given correlation degree

We would like to construct a set of lists that have mutual values of Kendall’s tau
equal to τ0. Such a set would represent lists of buyers’ preferences in an equally
dispersed society. Since buyers’ tastes are to a certain extent similar, we expect
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Figure 3.14: The upper boundMm as a function of τ0 for two different lengths of
lists N . In both cases the upper bound Mm is the same over a large
part of the region τ0 < 0 and drops to 1 when τ0 → 1.

positive correlations with τ0 > 0. Nevertheless, in the following discussion we
do not confine ourself to this region.

First we address a different question. Let’s assume that between lists 1 and
2 there is τ12, between lists 1 and 3 there is τ13. Does it imply any constraints
on τ23? The answer is yes. It can be shown (see Sec. 3.2.5) that τ23 fulfills the
inequality

|τ12 + τ13| − 1 ≤ τ23 ≤ 1− |τ12 − τ13|, (3.27)

which is an analogy of the triangular inequality for side lengths of a triangle.
From Eq. (3.27) we can draw various simple conclusions. First, if we want to
construct three lists which have pairwisely τ0, it is possible only for −1/3 ≤
τ0 ≤ 1.2 Thus it is impossible to have more than two lists which are perfectly
anticorrelated. Another simple result is that when τ12 = −1, inevitably τ23 =
−τ13.

Now the question is whether we are able to create the whole system ofM lists
which all have pairwisely Kendall’s tau equal to τ0. It can be shown (see [121])
that the upper bound for M is

Mm =

{
2 + log2

(1−τ0)(N−1)N
4

(τ0 ≥ 0),

min
[
2 + log2

(1−τ0)(N−1)N
4

, 2 log2
1−τ0
−τ0

]
(τ0 < 0).

(3.28)

As can be seen in Fig. 3.14, this quantity grows slowly with the list length N .
Therefore to model a market with a large number of equally correlated buyers
we would need an enormous number of possible variants.

2An example for lists with the pairwise value τ0 = −1/3: x1 = {3, 2, 1}, x2 = {2, 1, 3} and
x3 = {1, 3, 2}.

54



3.2 Selection by individual preferences

0 0.2 0.4 0.6 0.8 1
t

0

0.2

0.4

0.6

0.8

1

〈τ 〉

〈τxy 〉
〈τxx 〉

Figure 3.15: Kendall’s tau vs. t for the correlated lists given by Eq. (3.29).

How to create correlated lists

In the previous paragraphs we found that the society with a fixed mutual corre-
lation degree of buyers is limited in its size. Therefore to introduce correlations
to the presented market model we need a different approach. While copulas
represent a general tool (see e.g. [122, 123]), they are useful mainly for numeri-
cal simulations and offer only small possibilities for analytical results. Here we
adopt a simpler way—the costs xi and y are obtained by

xi,α =
1

2
+ st

(
α− 1

N − 1
− 1

2

)
+ (1− t)

(
si,α −

1

2

)
, yα =

α− 1

N − 1
, (3.29)

where sα,j is a random quantity distributed uniformly in the range [0; 1] (for
other possibilities see [121]). The complicated form of the xi,α has a simple
meaning. The vendor’s costs grow uniformly with α and buyers’ costs are con-
nected to the vendor’s by the parameter t ∈ [0; 1]. The term proportional to
1 − t introduces a noise to the system, resulting in differences between buyers’
and vendor’s lists. Finally, the term 1/2 represents the average value of buyers’
costs. It is easy to check that xi,α given by Eq. (3.29) is confined to the range
[0; 1] for every t ∈ [0; 1] and s = ±1. The overall distribution of costs is uniform
in the range [0; 1] and thus we avoid the problems of Eq. (3.29). Moreover, this
construction is simple enough to tract the proposed model analytically.

Using the techniques shown in Sec. 3.2.5 we can find Kendall’s tau in this
case. In the limit N →∞ one obtains

〈τxy〉 =

{
s
6

(
4u− u2

)
(u ≤ 1),

s
6

(
6− 4

u
+ 1

u2

)
(u > 1),

, 〈τxx〉 =

{
u2

15

(
10− 6u+ u2

)
(u ≤ 1),

1
15

(
15− 14

u
+ 4

u2

)
(u > 1),

(3.30)
where again u ≡ t/(1− t). Plots of 〈τxy〉 and 〈τxx〉 are shown in Fig. 3.15.
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3.2.4 Uninformed vendor in the market with correlations

When we discussed the market without correlations, the probability distribu-
tion of the variant cost πα(xi,α) was independent of α. Consequently, the prob-
ability of accepting variant α

PA(α) =

∫
D

πα(xi,α)f(xi,α)dxi,α (3.31)

was also independent of α (we labeled PA ≡ p). As a result, when we change
the acceptance function f(x) while preserving the quantity

∫ 1

0
π(x)f(x)dx, the

derived results remain unchanged. In the presence of correlations we witness
a very different picture: the detailed shape of the acceptance function f(x) is
important.

To keep the algebra as simple as possible, from now on we adopt the sim-
plest choice for f(x): the step function f(x) = 1 − Θ(x − p). This means that a
buyer accepts a proposed variant only when its cost is smaller than p. In addi-
tion we assume cost correlations created using Eq. (3.29). When the vendor has
no information about the preferences of buyers, similarly to Sec. 3.2.2 the best
strategy is to produce vendor’s most favorable variants. First we focus on the
case of positive correlations; in Eq. (3.29) we set s = 1 and 0 ≤ t ≤ 1. Using
Eq. (3.31) and the chosen step acceptance function f(x), the probability that one
buyer accepts variant α is

PA(α) =


0 1 + (N − 1) p

t
< α,

1
1−t

[
p− t α−1

N−1

]
1 + (N − 1)p+t−1

t
< α < 1 + (N − 1) p

t
,

1 α < 1 + (N − 1)p+t−1
t
.

(3.32)

Since we expect the total number of variants N to be very large and p rather
small, the second region makes the major contribution and thus we simplify
Eq. (3.32) to PA(α) ≈ (p− tα/n)/(1− t).

When the vendor is simultaneously offering his k most favorable variants,
the probability that a particular buyer denies all of them is

PD(k) =
k∏

α=1

[
1− PA(α)

]
=

k∏
α=1

(
1− p

1− t

)(
1 +

tα

N(1− t+ p)

)
. (3.33)

Since N is big, we use the approximation 1 − x ≈ exp[−x] to evaluate this ex-
pression analytically, leading to

PD(k) ≈
(

1− p

1− t

)k k∏
α=1

exp

[
− tα

N(1− t+ p)

]
≈

≈ exp

[
− pk

1− t
+

tk2

2N(1− t+ p)

]
. (3.34)
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Here we used also 1− p/(1− t) ≈ exp[−p/(1− t)] which is valid when p/(1− t)
is small. When this is not the case, denying probability PD(k) approaches zero
and thus accepting probability is virtually one regardless to the approximation
used.

With respect to Eq. (3.29), the sum of expected vendor’s costs can be written
as

kZ +
k∑

α=1

MPS(α)
α− 1

N − 1
≈ kZ +

k∑
α=1

MPS(α)
α

N
. (3.35)

Here the first term represents fixed costs for producing k different variants,
PS(α) is the probability that to one buyer variant α is sold. Since the proba-
bility that of the successful trade is 1−PD(k), from the condition

∑k
α=1 PS(α) =

1− PD(k) we can deduce

PS(α) =
PA(α)∑k
α=1 PA(α)

[
1− PD(k)

]
. (3.36)

This corresponds to the portioning of the probability 1−PD(k) among k variants
according to their probability of acceptance.

Now we can use Eqs. Eq. (3.34), Eq. (3.35) and Eq. (3.36) to write down the
expected profit of the vendor offering his k topmost variants X(k). It’s not pos-
sible to carry out the maximization of this expression analytically—numerical
techniques have to be used to find kopt and Xopt. Results are shown in Fig. 3.16
as lines together with outcomes from a numerical simulation of the model; a
good agreement is found for st > 0. Results confirm that positive correlations
between buyers and the vendor increase the vendor’s profit. This pattern is
most obvious in the case t = 1 when the vendor can offer only the most favor-
able variant and still every buyer buys it.

In the numerical results shown in Fig. 3.16 we can notice one striking feature.
When st < 0, kopt changes rapidly andXopt falls to zero quickly. Such a behavior
is rather surprising for one do not expect abrupt changes in the region st < 0
when there were none in the opposite region st > 0. The reason for this behavior
is simple—when s = −1, vendor’s most preferred variants have cost too high
to be accepted by a buyer. This effect can be quantified. When buyers’ costs are
generated by Eq. (3.29), the inequality xi,α ≥ t(N − α)/(N − 1) holds. Due to
the acceptance function only the variants with cost smaller than p are accepted.
Therefore only variants with α ≥ αmin can be possibly accepted, where

αmin = 1 + (N − 1)
t− p
t
≈ N(1− p/t). (3.37)

Thus with negative correlations in the market, the vendor is able to sell the most
favorable variant (the one with α = 1) only if p ≥ t. When p < t, the vendor
sells no variants α = 1, . . . , αmin − 1. Since αmin grows steeply with t (already
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Figure 3.16: The optimal number of variants to produce (left) and the optimal
profit drawn against st for two different values of the initial cost
Z. Lines show analytical results derived above, symbols represent
numerical simulations (averages of 1 000 realizations), model pa-
rameters are set to N = 2 000, M = 500, p = 0.05. The decay of both
quantities for st < 0 is in agreement with Eq. (3.37).

with t = 2p one obtain αmin = N/2), the vendor offering his top k variants has
to offer too many of them and he suffers both big initial costs and big costs yα.
As a result the vendor is pushed out of the market.

Without detailed investigation we can infer the system behavior when the
step acceptance function is replaced by a different choice. In the limit of careless
buyers with f(x) = C, the influence of correlations vanishes and both kopt and
Xopt do not depend on st and the model simplifies to the case investigated in
Sec. 3.2.2. Thus as f(x) gradually changes from the step function to a constant
function, the dependence on st gets weaker. In particular, if the largest cost x for
which f(x) > 0 is x0 (for the step function x0 = p), in Eq. (3.37) p is replaced by
x0. As a consequence, αmin = decreases and the steep decline of Xopt in Fig. 3.16
shifts to a lower value of st.

3.2.5 Technicalities

Here we discuss two technical problems which are related to this section.

Proof of τ–inequality

Let’s have three lists x,y, z consisting of N mutually different real numbers.
The Kendall’s τ for lists x and y can be written as τxy = (Pxy − Nxy)/T where
Pxy is the number of pairs α < β that satisfy (xα − xβ)(yα − yβ) > 0, Nxy is the
same with a negative result of the product, and T = N(N − 1)/2 is the total
number of different pairs α, β. For the given values τxy and N it follows that

Pxy = T (1 + τxy)/2, Nxy = T (1− τxy)/2. (3.38)
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Figure 3.17: An illustration of the proof. The first case (left) has the biggest pos-
sible value of Pyz, the second case has (right) the smallest possible
value of Pyz.

We would like to find bounds for τyz when τxy and τxz are given. First we
reorder lists x,y, z so that lists x is sorted in the descending order and for
α < β it is xα − xβ > 0. This rearrangement does not affect the values of
Pxy, Pxz, Pyz, Nxy, Nxz, Nyz and thus the values of Kendall’s tau between lists re-
main also unchanged.

Since now all differences xα − xβ are positive, from τxy we can deduce that
there are Pxy positive differences yα−yβ andNxy negative differences. Similarly,
Pxz differences zα − zβ are positive and Nxz are negative. The values of Pyz
and Nyz depend on the relative ordering of lists y and z. The biggest possible
value of Pyz occurs when positive differences yα − yβ are aligned with positive
differences zα−zβ (see Fig. 3.17). By contrast, the smallest value of Pyz (and thus
the smallest value of τyz) occurs when positive differences yα − yβ are aligned
with negative differences zα − zβ .

From Fig. 3.17 we see that Pyz and Nyz fulfill the inequalities

Nyz ≥ |Pxy −Nxz|, Pyz ≥ |Pxy − Pxz|.

Using Pab +Nab = T and Eq. (3.38) we obtain

T
2
|τxy − τyz| ≤Pyz ≤ T − T

2
|τxy + τyz|,

−T + T
2
|τxy − τyz| ≤ −Myz ≤ −T

2
|τxy + τyz|.

These two inequalities, summed together and divided by T , yield Eq. (3.27).

Expected values of 〈τ〉

For lists created using Eq. (3.29) we can rearrange terms in Eq. (3.26) as follows

〈τxx〉 =
2

N(N − 1)

∑
α<β

〈σαβ〉 = 〈σαβ〉.

Moreover, σαβ can be rewritten as

〈σαβ〉 = P++ + P−− − P−+ − P+− = 1− 2P−+ − 2P+− = 1− 4P+−.
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3 Probabilistic approaches to market modeling

Here P++ is the probability that both xα − xβ and x′α − x′β are positive and so
forth, the formulae P+− = P−+, P++ +P−−+P−+ +P+− = 1 are used. According
to Eq. (3.29) we write

xα − xβ = (1− t)(aα − aβ) + t(cα − cβ) ≡ (1− t)A+ tC,

x′α − x′β = (1− t)(bα − bβ) + t(cα − cβ) ≡ (1− t)B + tC

where A,B,C lie in the range [−1; 1] and are equally distributed with the den-
sity %(A) = 1− |A|. Now we have (t/(1− t) ≡ u)

P (+− |C) =

{
1
2
(uC)2

[
1− 1

2
(uC)2

]
(C ≤ 1/u),

0 (C > 1/u).

If u ≤ 1, the first case applies to all possible values of C, P (+ − |C) = 0 is
possible only if u > 1. Finally, using

P (+−) =

∫ 1

−1

P (+− |C)%(C) dC

with %(C) = 1− |C| it follows that

〈τxx〉 =

{
u2

15

(
10− 6u+ u2

)
(u ≤ 1),

1
15

(
15− 14

u
+ 4

u2

)
(u > 1).

The quantity 〈τxy〉 can be derived in the same way.
The variance of τxx can be found by a direct computation of 〈τ 2

xx〉. We have

τ 2
xx =

1

N2(N − 1)2

(∑
α 6=β

σ2
αβ +

∑
α6=β

∑
γ 6=δ

σαβσγδ

)
.

The averaging procedure is straightforward. At the end we obtain

σ2
τ = 〈τ 2

xx〉 − 〈τxx〉2 ≈
4

N

(
〈σαγσγβ〉 − 〈σαβ〉2

)
,

where terms proportional to higher powers of 1/N were neglected. The vari-
ance is largest when t = 0, for t = ±1 obviously στ = 0.

3.2.6 Conclusion

In this section we proposed a simple market model. While accessible to analyt-
ical solutions, it exhibits many features of real markets—diversification of the
vendor’s production and market competition are used as examples. The diver-
sification is presented as an interplay between the vendor’s pursuit to follow the
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3.2 Selection by individual preferences

buyers’ tastes and the costs growing with the number of produced variants. We
also show that in a market with many buyers without preferences correlations,
the knowledge of these preferences doesn’t increase the vendor’s profit. When
correlations are introduced to the system, many technical complications arise.
Nevertheless, the results are consistent with the expectations: a positive cor-
relation between the buyers’ and vendor’s costs improves the vendor’s profit.
Also, when interests of the two parties diverge (the correlation are negative),
the vendor is able to make only a small or even no profit.
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4 Entropy, information and
portfolio optimization

I was seldom able to see an opportunity until it had ceased to be
one.

Mark Twain

Portfolio optimization is one of the key topics in finance. It can be character-
ized as a search for a satisfactory compromise between maximization of the
investor’s capital and minimization of the related risk. The outcome depends
on properties of the investment opportunities and on the investor’s attitude to
risk but crucial is the choice of the optimization goals. The problem has been
pioneered by Markowitz in [124], where the Mean-Variance efficient portfolio
has been introduced: it minimizes the portfolio variance for any fixed value of
its expected return. Since this rule can be only justified under somewhat unreal-
istic assumptions (namely a quadratic utility function or a normal distribution
of returns, in addition to risk aversion), it should be considered as a first ap-
proximation of the optimization process. Later, several optimization schemes
inspired by Markowitz’s work has been proposed [125–127]. For a recent thor-
ough overview of the portfolio theory see [128, 129].

A different perspective has been put forward by Kelly in [130], where he
shows that the optimal strategy for the long run can be found by maximising
the expected value of the logarithm of the wealth after one time step. The op-
timality of this strategy has long been treated and proven in many different
ways [131–133] and, according to [134], it can be successfully used in real finan-
cial markets. Although the Kelly criterion does not employ a utility function,
as pointed out by the author himself, a number of economists have adopted the
point of view of utility theory to evaluate it [135–138]. Recently, the superiority
of typical outcomes to average values has been discussed from a different point
of view in [139, 140]. A generalization of the Kelly’s ideas led to the universal
portfolios proposed in [141].

The original concept of Kelly focuses on a single investment in many succes-
sive time periods. In section 4.1 we briefly discuss this original problem and
present main results. In section 4.2 we generalize the classic Kelly game by
introducing simultaneous risky games and risky games with unknown proper-
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4 Entropy, information and portfolio optimization

ties. These extensions are well suited for investigating the effects of diversifica-
tion and limited information on investment performance. However, in complex
models of real investments, important features can get unnoticed. Therefore we
replace realistic assumptions about the available investment opportunities (e.g.,
a log-normal distribution of returns) by simple risky games with binary out-
comes. In section 4.3 we derive various analytical results for a more realistic
case when investment returns have a log-normal distribution. Finally, in sec-
tion 4.4 we propose a new quantity to characterize the influence of correlations
on investment performance and examine it both in artificial and real conditions.

4.1 Short summary of the Kelly game
In the long-run, thus defined, a penny invested at 6.01% is
better—eventually becomes and stays greater—than a million
dollars invested at 6%.

Harry Markowitz

In the original Kelly game, an investor (strictly speaking, a gambler) with the
starting wealth W0 is allowed to invest a part of the available wealth in a risky
game and this investment is repeated many times. In each turn, the risky game
has two possible outcomes: with the probability p the stake is doubled, with the
complementary probability 1 − p the stake is lost. The winning probability p
is constant and known to the investor, the investor neither consumes nor adds
new cash to his portfolio.

We introduce the game returnRwhich is defined asR := (Wr−Wi)/Wi where
Wi is the invested wealth and Wr is the resulting wealth. For the risky game
described above the possible returns per turn are +1 (win results in Wr = 2Wi)
and−1 (loss results inWr = 0). Since properties of the risky game do not change
in time, the investor bets the same fraction f of the actual wealth in each turn.
The wealth then follows a multiplicative process, after N turns it is equal to

WN(R1, . . . , RN) = W0

N∏
i=1

(1 + fRi) (4.1)

where Ri is the game return in turn i. If we label the number of winning turns
as w, it simplifies to the form

WN(w) = W0 (1 + f)w(1− f)N−w. (4.2)

Since the successive returns Ri are independent, from Eq. (4.1) the average
wealth after N turns can be written as (averages over realizations of the risky
game we label as 〈·〉)

〈WN〉 = W0 〈1 + fRi〉N = W0

[
1 + (2p− 1)f

]N
. (4.3)
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4.1 Short summary of the Kelly game

Maximization of 〈WN〉 can be used to optimize the investment. Since for p <
1/2, 〈WN〉 is a decreasing function of f , the optimal strategy is to refrain from
investing: f ∗ = 0. By contrast, for p > 1/2 the quantity 〈WN〉 increases with
f and thus the optimal strategy is to stake everything in each turn: f ∗ = 1.
Then, while 〈WN〉 is maximized, the probability of a bankrupt in first N turns is
1− (1− p)N . Thus in the limit N →∞, the investor bankrupts inevitably. Thus,
maximization of 〈WN〉 is not a good criterion for a long run investment.

In his seminal paper [130], Kelly suggested maximization of the exponential
growth rate of the investor’s wealth

G = lim
N→∞

1

N
log2

WN

W0

(4.4)

as a criterion for investment optimization; without affecting results, we use nat-
ural logarithm instead. Due to the multiplicative character of WN , G can be
rearranged as

G = lim
N→∞

1

N

N∑
i=1

ln
(
1 + fRi

)
= 〈lnW1〉, (4.5)

Notice that while we investigate investments within a long time horizon, the
wealth W1 after turn step plays a prominent role in the optimization. For the
risky game introduced above is 〈lnW1〉 = p ln(1 + f) + (1− p) ln(1− f) which is
maximized by the investment fraction

fK(p) = 2p− 1. (4.6)

When p < 1/2, fK < 0 (a short position) is suggested. Here we allow only non-
negative investment fractions and thus for p < 1/2 the optimal investment is
fK = 0. For p ≥ 1/2, the maximum of G achieved by fK can be rewritten as

GK(p) = ln 2− S(p), (4.7)

where S(p) = −
[
p ln p + (1 − p) ln(1 − p)

]
is the entropy assigned to the risky

game with the winning probability p. The additional term ln 2 is due to our
choice of the basis of the logarithms.

If we define the compounded return per turn RN by the formula WN =
W0 (1 + RN)N and its limit value as R := limN→∞RN , it can be shown that
R = exp[G] − 1. Thus maximization of R leads again to Eq. (4.6). While G is
usually easier to compute than R, in our discussions we often use R because it
is more illustrative in the context of finance. Hence the maximum of R can be
of interest; usingRK = exp[GK]− 1 we get

RK(p) = 2pp(1− p)1−p − 1. (4.8)

When p = 1/2,RK = 0; when p→ 1,RK = 1.
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4 Entropy, information and portfolio optimization

There is one more way to fK. If the winning probability is p, in a large number
of turnsN there will be on averageNpwinning andN(1−p) loosing turns. Since
in a winning turn wealth is multiplied by 1 + f and in a loosing turn by 1 − f ,
one can write the typical wealth after N turns as

W typ
N = W0 (1 + f)Np(1− f)N(1−p). (4.9)

For a given p, this expression is maximised by f ∗ = 2p−1. Thus, Kelly’s criterion
can be restated as maximization of the typical outcome.

The results obtained above we illustrate on a particular risky game with the
winning probability p = 0.6. Since p > 0.5, it is a profitable game and a gambler
investing all the available wealth has the expected return 〈R〉 = 2p − 1 = 20%
in one turn. However, according to Eq. (4.6) in the long run the optimal invest-
ment fraction is fK = 0.2. Thus, the expected return in one turn is reduced to
0.2 × 20% = 4%. For repeated investment, the average compounded return R
is a better quantity to measure the investment performance. From Eq. (4.8) it
follows that in this case it is equal to 2.0%. We see that a wise investor gets
in the long run much less than the illusive return 20% of the given game (and
a naive investor gets even less). In the following section we investigate how
diversification (if possible) can improve this performance.

After discussion of basics we are ready to put Kelly’s criterion to a somewhat
wider perspective. It can be said that the Kelly-optimal portfolio offers a com-
promise between trend following (an asset with a long term good performance
gets a large share of the optimal portfolio) and trend reversing (price increases
lead to selling of shares). This description applies also to Cover’s universal
portfolios which were obtained as a generalization of the Kelly’s approach.

4.2 Diversification and limited information in the
Kelly game

All models are wrong, but some are useful.
George Box

In this section we analyse three modifications of the original Kelly game. First
we assume that instead of one gam played in many rounds, there are several
games which can be played simultaneously. The obtained results we use to
compare the outcomes of outsider who maximise their gains by diversification
and insiders who maximise their gains by finding additional information about
the available investment opportunities. In the last part we waive the assump-
tion that the game properties (e.g., the winning probability p) are exactly known
to the investor—we investigate what happens when they need to be inferred
from past outcomes.
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4.2 Diversification and limited information in the Kelly game

4.2.1 Simultaneous independent risky games

Now we generalize the original Kelly game assuming that there areM indepen-
dent risky games which can be played simultaneously in each time step (corre-
lated games will be investigated in a separate work). In game i (i = 1, . . . ,M )
the gambler invests the fraction fi of the actual wealth. Assuming fixed prop-
erties of the games, this investment fraction again does not change in time. For
simplicity we assume that all games are identical, i.e.in each one with the prob-
ability p the invested wealth is doubled and with the probability 1 − p the in-
vestment is lost. Thus the return Ri of game i has two possible values, −1 and
+1. Since the available games are identical, the optimal investment fractions
are equal—we set fi = f . Thus, the investment optimization is simplified to
a one-variable problem.

Notice that with the given set of risky games, there is the probability (1− p)M
that in one turn all M games are loosing. In consequence, for all p < 1 the opti-
mal investment fraction f ∗ is smaller than 1/M and thusMf ∗ < 1 (otherwise the
gambler risks getting bankrupted and the chance that this happens approaches
one in the long run). Thus, there is no incentive for borrowing additional money
for the investment.

If in one turn there are w winning and M − w loosing games, the investment
return is (2w −M)f and the investor’s wealth is multiplied by the factor 1 +
(2w −M)f . Consequently, the exponential growth rate is

G = 〈lnW1〉 =
M∑
w=0

P (w;M, p) ln
[
1 + (2w −M)f

]
, (4.10)

where P (w;M, p) =
(
M
w

)
pw(1 − p)M−w is a binomial distribution. The optimal

investment fraction is obtained by solving ∂G/∂f = 0. If we rewrite 2w −M =
[f(2w−M) + 1− 1]/f and use the normalization of P (w;M, p), we simplify this
equation to

M∑
w=0

P (w;M, p)

1 + (2w −M)f
= 1. (4.11)

For M = 1 we obtain the well-known result f ∗1 = 2p− 1, for M = 2 the result is
f ∗2 = (2p − 1)/(4p2 − 4p + 2). Formulae for M = 3, 4 are also available but too
complicated to present here; for M ≥ 5, Eq. (4.11) has no closed solution. This
motivates us to investigate analytical approximations of the optimal investment
fraction f ∗. In complicated cases where such approximations perform badly,
numerical algorithms are still applicable [142].

Approximate solution for an unsaturated portfolio

By an unsaturated portfolio we mean the case when a small part of the available
wealth is invested, Mf ∗ � 1. Then also |(2w −M)f ∗| � 1 and this allows us to
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4 Entropy, information and portfolio optimization

use the expansion 1/(1 + x) ≈ 1− x+ x2 ± . . . (|x| � 1) in Eq. (4.11). If we take
only the first three terms into account, we obtain

∑M
w=0 P (w;M, p)

[
1 − f(2w −

M) + f 2(2w −M)2 ± . . .
]

= 1. After the summation, the approximate formula
for the optimal investment fraction follows

f ∗(p) =
2p− 1

M(2p− 1)2 + 4p(1− p)
. (4.12)

When p − 1/2 � 1/M , this result simplifies to f ∗ = 2p − 1; this means that the
gambler invests in each game as if other games were not present. Notice that
for M = 1, 2, Eq. (4.12) is equal to the exact results obtained above.

Approximate solution for a saturated portfolio

By a saturated portfolio we mean the case when almost all available wealth is
invested, 1 −Mf ∗ � 1. The extreme is achieved for p = 1 when the solution is
f ∗ = 1/M as all wealth is distributed evenly among the games. We introduce
the new variable x := 1/M − f and rewrite Eq. (4.11) as

P (0;M, p)

xM
+

M∑
w=1

P (w;M, p)

2w/M − x(2w −M)
= 1.

Since according to our assumptions 0 < x � 1/M , to obtain a leading order
approximation for f ∗ we neglect x in the sum which is then equal to M

2
〈1/w〉.

The crude approximation 〈1/w〉 ≈ 1/〈w〉 leads to the result

f ∗ =
1

M

[
1− 2p(1− p)M

2p− 1

]
. (4.13)

Notice that in the limit p→ 1 we obtain f ∗ = 1/M as expected.
Approximations Eq. (4.12) and Eq. (4.13) can be continuously joined if for

p ∈ [1
2
; pc] the first one and for p ∈ (pc; 1] the second one is used. The boundary

value pc is determined by the intersection of these two results. In Fig. 4.1, a com-
parison of the approximations with numerical solutions of Eq. (4.11) is shown
and a good agreement can be seen for most parameter values. As Fig. 4.1a
shows, the largest deviations appear for a mediocre number of games (M ' 5)
and a mediocre winning probability (p ' pc).

4.2.2 Diversification vs information

In real life, investors have only a limited information about the winning prob-
abilities of the available risky games. These probabilities can be inferred using
historical wins/losses data but these results are noisy and the analysis requires
investor’s time and attention (we investigate it in detail in Sec. 4.2.3). At the
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Figure 4.1: The comparison of numerical results for the optimal investment
fraction f ∗ (shown as symbols) with the analytical results given in
Eq. (4.12) and Eq. (4.13) (shown as solid lines). (a) The total invest-
ment Mf ∗ as a function of p. (b) To judge better the approximation
for a saturated portfolio, the univested fraction 1−Mf ∗ is shown as
a function of p.

same time, insider information can improve the investment performance sub-
stantially. A similar insider-outsider approach can be seen in the classical pa-
per on efficient markets [143] and in a simple trading model [144]. We try to
model the described situation by a competition of two investors who can invest
in multiple risky games; each of these risky games has the winning probabil-
ity alternating randomly between p + ∆ and p − ∆ (with even odds, p > 1/2,
∆ ≤ 1 − p). The insider focuses on one game in order to obtain better informa-
tion about it—we assume that the exact winning probability is available to him.
By contrast, the outsider knows only the time average p of the winning proba-
bility. The lack of information he tries to compensate by investing in multiple
risky games. Both strategies have their advantages, below we investigate when
the outsider performs better than the insider.

The insider knows the winning probability in each turn and thus the optimal
investment fraction is given by Eq. (4.6). If p − ∆ > 1/2, the insider invests
in each turn. If p − ∆ ≤ 1/2, the insider invests only in those turns when the
winning probability is p + ∆ which means that the risky game is profitable.
Combining the previous results, the exponential growth rate of the insiderGI =
〈lnW1〉 can be simplified to

GI =

{
1
2

[
ln 2 + S(p+ ∆)

]
p−∆ ≤ 1/2,

1
2

[
ln 2 + S(p+ ∆)

]
+ 1

2

[
ln 2 + S(p−∆)

]
p−∆ > 1/2,

(4.14)

where S(p) is the entropy of the risky game with the winning probability p as
in Eq. (4.7). About the outsider we assume that he invests in M identical and
independent risky games. From his point of view, each risky game is described
by the average winning probability p. Consequently, the exponential growth
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rate of his investment is given by Eq. (4.10) and for the optimal investment
fraction results from the previous section apply.

Now we can find the limiting values of the amplitude ∆ above which the
insider performs better that an outsider investing in two or more games. That
is, we want to solve the equation

GI(p,∆) = GO(p,M) (4.15)

with respect to ∆. Although the outsider’s optimal investment fraction can be
found analytically for M ≤ 4, due to the form of GI(p,∆) it is impossible to
obtain an analytical expression for ∆. An approximate solution can be derived
by expanding GI(p,∆) in powers of ∆. First terms of this expansion has the
form

GI(p,∆) =


1
2

[
GK(p) + ∆

(
ln p− ln[1− p]

)
+ ∆2

2

(
1
p

+ 1
1−p

)]
p−∆ ≤ 1/2,

GK(p) + ∆2

2

(
1
p

+ 1
1−p

)
+ ∆4

12

(
1
p3

+ 1
(1−p)3

)
p−∆ > 1/2.

By substituting this to Eq. (4.15) we obtain a quadratic (when p − ∆ ≤ 1/2) or
biquadratic (when p − ∆ > 1/2) equation for ∆ which can be solved analyti-
cally. In this way we get ∆(p,M); when ∆ is larger than ∆(p,M), at given p
and ∆ the insider performs better than an outsider diversifying into M games.
When p− 1/2� 1, using expansions of GI(p,∆) and GO(p,M) the lowest order
approximation of ∆ is ∆(p,M) = (p − 1/2)(

√
2M − 1). To review the accuracy

of our approximations, in Fig. 4.2 analytical results are shown for M = 2, 3, 4
together with numerical treatment of Eq. (4.15). Notice that the proposed ap-
proximation works better for M = 2. This is because in this case p − ∆ > 1/2
and therefore the Taylor series for GI(p,∆) can be used up to order ∆4 to obtain
the approximate analytical solution. In Fig. 4.2 one can notice that the higher
is the winning probability p, the harder it is for the insider to outperform the
outsider.

4.2.3 Finite memory problem

As it has been already mentioned, in real life investors lack information on the
exact value of the winning probability p—it has to be inferred from the available
past data. In addition, since p can vary in time, it may be better to focus on a
recent part of the data and obtain a fresh estimate. To model the described
situation we assume that the investor uses only game outcomes from the last
L turns for the inference and that the winning probability p is fixed during this
period (a generalization to variable p will be also discussed). The impact of
uncertainty on the Kelly portfolio is closely investigated in [145] where certain
prior information and long-term stationarity of p are assumed.
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Figure 4.2: The limiting value ∆(p,M) when the investment performances of
the insider investing in one game and the outsider investing in
M games are equal. Numerical solutions of Eq. (4.15) are shown
as symbols, analytical results obtained as described in the text are
shown as lines.

Let’s label the number of winning games in last L turns as w (w = 0, . . . , L).
The resulting information about p can be quantified using the Bayes theorem
(for a discussion of the Bayes theorem see e.g.[146]) as

%(p|w,L) =
π(p)P (w|p, L)∫ 1

0
π(p)P (w|L, p) dp

. (4.16)

Here π(p) is the prior probability distribution of p and P (w|L, p) is the proba-
bility distribution of w, given the values p and L. Due to mutual independence
of consecutive outcomes, P (w|L, p) is a binomial distribution and P (w|L, p) =(
L
w

)
pw(1− p)L−w. All information available to the investor is represented by the

observation of w winning games in last L turns—there is no additional informa-
tion entering the inference. Therefore we assume the maximum prior ignorance
by choosing π(p) = 1 for p ∈ [0; 1] (a so-called uniform prior). For the chosen
distributions P (w|p, L) and π(p), Eq. (4.16) simplifies to the form

%(p|w,L) =
(L+ 1)!

w!(L− w)!
pw(1− p)L−w. (4.17)

This represents the gambler’s information about p after observing w wins in the
last L turns.

Now instead of one fixed value for the winning probability p, only the prob-
ability distribution %(p) is known. In such a case, maximization of G = 〈lnW1〉
results in f ∗ = 2〈p〉− 1. We prove this theorem for a special case of two possible
winning probabilities p1 and p2: P (p1) = P1, P (p2) = P2, P1 + P2 = 1 (extension
to the general case is straightforward). The exponential growth rate can be now
written as

G = (P1p1 + P2p2) ln(1 + f) + (1− P1p1 − P2p2) ln(1− f).
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Figure 4.3: The ratio ξ := R(p, L)/RK(p) as a function of the memory length L.

This is maximized by f ∗ = 2(P1p1 + P2p2)− 1. Since P1p1 + P2p2 = 〈p〉, we have
proven that

f ∗ = 2〈p〉 − 1. (4.18)

From Eq. (4.17) follows 〈p〉 = (w + 1)/(L+ 2) and consequently

f ∗(w,L) =
2w − L
L+ 2

(4.19)

for w ≥ L/2. Since we do not consider the possibility of short selling (f < 0)
in this work, f ∗ = 0 for 2w < L. Notice that even when w = L (all observed
game are winning), f ∗ < 1. This is a direct consequence of the gambler’s noisy
information about p.

It is instructive to compute the exponential growth rate G(p, L) of an investor
with the memory length L. If the winning probability p is fixed during the
game, we have

G(p, L) =
L∑

w=0

P (w|p, L)
[
p ln(1 + f ∗(w,L)) + (1− p) ln(1− f ∗(w,L))

]
. (4.20)

Consequently, the compounded return isR(p, L) = exp[G(p, L)]− 1. This result
can be compared with RK(p) of an investor with the perfect knowledge of p
given by Eq. (4.8). In Fig. 4.3a, the ratio ξ := R(p, L)/RK(p) is shown as a func-
tion of L for various p. Notice that when p is smaller than a certain threshold
(which we numerically found to be approximately 0.63), R(p, L) < 0 for some
L. As L increases, the investor’s information about p improves and ξ → 1. It
can be shown (see [147]) that G(p, L) ≈ GK(p, L)− 1/(2L).

When p is small, a very long memory is needed to make a profitable invest-
ment: e.g.for p = 0.51, L ≥ 1 761 and for p = 0.52, L ≥ 438 is needed. This is in
agreement with the experience of finance practitioners, according to them the
Kelly portfolio is sensitive to a wrong examination of the investment profitabil-
ity (a scientific analysis of this problem can be found in [148]). However, one
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should not forget about the a priori distribution π(p) which is an efficient tool to
control the investment. For example, to avoid big losses in a weakly profitable
game, π(p) constrained to the range [0; 3/4] can be used. In turn, if the game
happens to be highly profitable and p > 3/4, such a choice of π(p) reduces the
profit.

Another interpretation of the finite memory problem

The optimal investment of a gambler with the memory length L can be inferred
also by the direct maximization of the exponential growth rate. In addition to
Eq. (4.20), from the investor’s point of view G needs to be averaged over all
possible values of p, leading to

G(L) =

∫ 1

0

π(p) dp
L∑

w=0

P (w; p, L)
(
p ln[1+f(w,L)]+(1−p) ln[1−f(w,L)]

)
. (4.21)

This quantity can be maximized with respect to the investment fractions f(w,L)
which is equivalent to the set of equations ∂G(L)/∂f(w,L) = 0 (w = 0, . . . , L).
For π(p) = 1 in the range [0; 1] this set can be solved analytically and yields the
same optimal investment fractions as given in Eq. (4.19).

The statistical models described above use π(p) as a model for the gambler’s
a priori knowledge of the winning probability p. This a priori knowledge can
be caused by the lack of gambler’s information but also it can stem from the
fact that p changes in time. Then π(p) represents the probability that at a given
moment, the winning probability is equal to p. Since such an evolution of game
properties is likely to occur in real life, we investigate it in detail in the following
paragraph. Notice that the possible changes of p in time are the key reason why
a gambler should use only a limited recent history of the game.

As explained above, the evolution of p can be well incorporated to π(p). Con-
sequently, if the changes of p are slow enough to assume that within time win-
dow of the length L the winning probability is approximately constant, all the
analytical results above hold in the same form and thus the optimal investment
is given by Eq. (4.19). To test this conclusion, we maximizedG numerically with
f(w,L) as variables (w = 0, . . . , L) for five separate realizations of the game,
each with the length 1 000 000 turns and L = 10. In each realization, the winning
probability changed regularly and followed the succession 0.5 → 1 → 0 → 0.5.
As a maximization method we used simulated annealing [149, 150]. In Fig. 4.4,
the result is shown together with f ∗(w,L) given by Eq. (4.19) and a good agree-
ment can be seen. Thus we can conclude that with a proper choice of π(p), the
analysed model describes also a risky game with a slowly changing winning
probability.
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Figure 4.4: A comparison of the analytical optimal fractions f ∗(w,L) with re-
sults of numerical maximization of G for L = 10 and N = 1 000 000.
Various symbols are shown for five independent realizations of the
risky game.

4.2.4 Conclusion

In this work we examined maximization of the exponential growth rate, origi-
nally proposed by Kelly, in various scenarios. Our main goal was to explore the
effects of diversification and information on the investment performance. To
ease the computation, instead of working with real assets we investigated sim-
ple risky games with binary outcomes: win or loss. This allowed us to obtain
analytical results in various model situations.

In the case when multiple independent investment opportunities are simul-
taneously available we proposed two complementary approximations which
yield analytical results for the optimal investment fractions. Based on these re-
sults, we proposed a simple framework which can be used to investigate the
competition of the uninformed investor (the outsider) who diversifies his port-
folio and the informed investor (the insider) who focuses on one investment
opportunity. We found the conditions when gains from the diversification ex-
ceed gains from the additional information and thus the outsider outperforms
the insider.

Finally we investigated the performance of the Kelly strategy when the re-
turn distribution (in our case the winning probability of a risky game) is not
known a priori. When the past game outcomes represent the only source of
information, we found a simple analytical formula for the optimal investment.
We showed that for a weakly profitable game, a very long history is needed to
allow a profitable investment. As game properties may change in time and thus
the estimates obtained using long histories may be biased, this is an important
limitation. With short period estimates suffering from uncertainty and long pe-
riod estimates suffering from non-stationarity, the Kelly strategy may be unable
to yield a profitable investment. Closer investigation of the Kelly strategy under
realistic market conditions remains a future challenge.
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4.3 Kelly-optimal portfolios for lognormally
distributed returns

Sometimes your best investments are the ones you don’t make.
Donald Trump

In this section we discuss outcomes of the Kelly strategy in the case when in-
vestment returns are lognormally distributed. We derive analytical results for
optimal portfolios in various situations, as well as numerical solutions and com-
puter simulations. In addition we show that, in the limit of small returns and
volatilities, when borrowing is not allowed, the Kelly-optimal portfolio lies on
the Efficient Frontier. Furthermore, we analyse the conditions under which di-
versification is no longer profitable and the optimal portfolio condensates on a
few assets.

4.3.1 Simple model

We shall study the portfolio optimisation on a very simple model which leads
to lognormally distributed returns. Consider N assets, whose prices pi(t) (i =
1, . . . , N ) undergo uncorrelated geometric Brownian motions

pi(t) = pi(t− 1) eηi(t). (4.22)

Here the random numbers ηi(t) are drawn from Gaussian density distributions
of meanmi and varianceDi, and are independent of their value at previous time
steps. This model can be easily generalised to the case of non-Gaussian densities
and correlated price variations as it is discussed in Sec. 4.5.2. We further assume
the existence of a risk-free asset paying zero interest rate.

For the sake of simplicity, we do not include dividends, transaction costs and
taxes in the model. Hence, the return of asset i is

Ri(t) :=
pi(t)− pi(t− 1)

pi(t− 1)
= eηi(t) − 1.

It follows that the average return of this asset is µi := 〈Ri〉 = exp[mi +Di/2]− 1
and the volatility is σ2

i := 〈(Ri − µi)2〉 = (exp[Di] − 1) exp[2mi + Di]. Angular
brackets denote averages over the noise ηi(t).

A portfolio is determined by the fractions fi of the total capital invested in
each one of N available assets; the rest is kept in the risk-free asset. As both
Kelly strategy and the Efficient Frontier use one time step optimisation only, for
us the basic quantity is the wealth after one time step W1. If we set the initial
wealth to 1, W1 has the form

W1 = 1 +
N∑
i=1

fiRi = 1 +RP , (4.23)
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where RP :=
∑N

i=1 fiRi is the portfolio return. To simplify the computation we
assume infinite divisibility of the investment. Thus, the investment fractions fi
are real numbers and do not need to be rounded.

In the portfolio optimisation, some common constraints are often imposed
and can as well be applied in the present context. For instance, non-negativity of
the investment fractions fi ≥ 0 forbids short positions. The condition

∑N
i=1 fi =

1 indicates the absence of a riskless asset and
∑N

i=1 fi ≤ 1 does not allow the
investor to borrow money.

4.3.2 The Mean-Variance approach

The unconstrained maximisation of the expected capital gain results in the in-
vestment of the entire wealth on the asset with the highest expected return; this
strategy is sometimes referred to as risk neutral. If the investor has a strong
aversion to risk, on the other hand, one might be tempted to simply minimise
the portfolio variance σ2

P =
∑M

i=0 f
2
i σ

2
i . This leads to invest the entire capital on

the risk-free asset with no chance to benefit from asset price movements. The
Mean-Variance (MV) approach is much more reasonable as it allows to com-
promise between the gain and the risk. Here we remind basic results of this
standard tool.

With the desired expected return fixed at 〈RP 〉 = µP , the constrained min-
imisation of the portfolio variance σ2

P is performed using the Lagrange function
L = 〈R2

P 〉 + γ
(
〈RP 〉 − µP

)
with a Lagrange multiplier γ. The resulting optimal

fractions are

f ∗i = µP
µi
C2σ2

i

, where Ck =
N∑
j=1

µkj
σ2
j

. (4.24)

For µP = 0, f ∗i = 0 for all assets. As we increase µP , all optimal fractions
f ∗i grow in a uniform way and their ratios are preserved. At some value µ∗P we
reach

∑N
i=1 f

∗
i = 1, which means we are investing the entire capital. Any further

increase would require to borrow money, with Eq. (4.24) remaining valid as long
as the borrowing rate equals the lending rate (both set to zero here). The relation
between σP and µP is

σP = µP/
√
C2. (4.25)

This equation is often referred to as Capital Market Line (CML).
If there is no risk-free asset in the market, one has to introduce the additional

constraint
∑N

i=1 f
∗
i = 1. It follows that

σ2
P =

C0µ
2
P − 2C1µP + C2

C0C2 − C2
1

. (4.26)

The functional relation between the optimised σP and µP is called Efficient Fron-
tier (EF). Since there is only one point on the CML where

∑
i fi = 1, this line
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Figure 4.5: The expected return µP versus the standard deviation of the port-
folio σP . The assets are described by the following parameters:
m1 = 0.1, D1 = 0.04, m2 = 0.15, D2 = 0.09, m3 = 0.2, D3 = 0.25 (in
the graph they are shown as full circles). The dashed line represents
the CML from Eq. (4.25), the solid line is Efficient Frontier given by
Eq. (4.26), the tangent point of the two is the Market Portfolio. The
thick part of EF marks the region where all investment fractions are
positive.

is tangent to the EF. According to ref. [125], investors should only choose this
point, the Market Portfolio (MP), as the optimal portfolio of risky assets, with
the reminder of their wealth kept in cash. The results of this section are plotted
in Fig. 4.5 for a particular choice of three available assets.

4.3.3 The Kelly portfolio

Since the expected value of the investor’s capital is dominated by rare events, it
is not reasonable to form a portfolio by simply maximising 〈W (t)〉. The Mean-
Variance approach tries to solve this problem in a straightforward, yet criticis-
able way. We support here the idea that an efficient investment strategy can be
found by maximising the expected wealth cumulated in the long run, which is,
according to Kelly [130], equivalent to maximising the logarithm of the wealth
W1 after one time step. Thus the key quantity in the construction of a Kelly-
optimal portfolio is v := 〈lnW1〉, the average exponential growth rate of the
wealth. We remind that the quantity lnW1 is not a logarithmic utility function.

We should spend a word of caution about v. When
∑N

i=1 fi lies out of the
range [0, 1], there is a nonzero probability that W1 is negative and, as a conse-
quence, its logarithm is not defined. In order to obtain a generalisation of the
presented results to the case with fi 6∈ [0, 1] one needs to cope with the influence
of this singularity.

The authors of ref. [140] optimise v in a similar context, claiming that their
procedure corresponds to maximising the median of the distribution of returns.
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They consider short time intervals and thus small assets returns. Since RP � 1,
they use the approximation ln(1 + RP ) ≈ RP − R2

P/2 of the logarithm in the
expression of v before maximising it. However, while such an expansion is only
justified for RP � 1, the maximum of the resulting function is at RP = 1, in
contradiction with the hypothesis. We will develop a different approximation
in the following.

First, the unconstrained maximisation of v is achieved by solving the set of
equations ∂v/∂fi = 0 (i = 1, . . . , N ). After exchanging the order of the deriva-
tive and the average, we obtain the condition〈

Ri

1 +
∑

j fjRj

〉
= 0 (i = 1, . . . , N). (4.27)

In our case, Ri has a lognormal distribution and this set of equations can not be
solved analytically. With the help of the approximations introduced in Sec. 4.5.1
we shall work out approximative solution for some particular cases.

One risky asset

Let us begin the reasoning with the case of one risky asset. We want to find the
optimal investment fraction f of the available wealth. The remaining fraction
1−f we keep in cash at the risk-free interest rate which, without loss of general-
ity, is set to zero. This problem is described by Eq. (4.27) in one dimension; even
this simplest case has no analytical solution. Nevertheless, given the asset prop-
erties m and D, one can ask what is the minimal value m< for which it becomes
profitable to invest a positive fraction of the investor’s capital in the risky asset.
This can be found imposing f = 0 in Eq. (4.27), yieldingm< = −D/2. The oppo-
site limit corresponds to investing the entire capital in the risky asset; imposing
f = 1 yields m> = D/2.

We shall look for approximate solutions that are valid for small values of
D, which is the case treated in Sec. 4.5.1. Using approximation Eq. (4.63) in
Eq. (4.27) gives

em − 1

1− f + fem
+
D

2

em(1− f − fem)

(1− f + fem)3
= 0.

With respect to f , this is merely a quadratic equation. Since the solution is rather
long, we first simplify the equation using m,D � 1 as in Eq. (4.64), leading to
the result

f ∗ =
1

2
+
m

D
. (4.28)

When the assumption of asset prices undergoing a geometric Brownian motion
is valid, both m and D scale linearly with the time scale and f ∗ does not depend
on the length of the time step. Notice also that substituting m = ±D/2 gives
f ∗ = 0 and f ∗ = 1, in agreement with the bounds we found before by exact
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Figure 4.6: The optimal portfolio fraction f ∗: a comparison of the analytical re-
sult Eq. (4.28) with a numerical maximisation of 〈lnW1〉.

computation. The first order correction to Eq. (4.28) is m(4m2 −D2)/4D2 which
is, for m ∈ [−D/2, D/2], of order O(m). The validity of the presented approx-
imations can be easily tested by a straightforward numerical maximisation of
〈lnW1〉. As can be seen in Fig. 4.6, the numerical results are well approximated
by the analytical formula Eq. (4.28) even for D = 1.

Comparison with known results

First of all, for m,D � 1, one can approximate µ ≈ m+D/2 and σ2 ≈ D, which
makes the optimal portfolio fraction derived above equal to the one obtained
in [140]: f ′ = µ/(µ2 + σ2). However, if we check the accuracy of f ′, we find
a relative error up to 3% for D = 0.01, and for D = 0.25 we are already far
out of the applicability range with an error around 50%. Also, Eq. (4.28) is for
m,D � 1 identical to the well-known Merton’s result [151] which is derived
using the assumption of a logarithmic utility function.

Investment with continuous readjustment is described by the stochastic dif-
ferential equation

dW (t) = fW (t)
(
µI dt+ σI dZ

)
(4.29)

where f is the investment fraction, dZ is the standard white noise, and the
equation is written in the Itô sense [152, 153]. Since readjustment is continu-
ous, maximization of 〈lnW (T )〉 for a fixed deadline T is similar to maximiza-
tion of 〈lnWN〉 in the limit N → ∞. Using the convergence of random walk to
white noise, in [145] it is shown that the optimal investment fraction is equal
to f ∗ = µI/σ

2
I . To make wealth governed by Eq. (4.29) during the time period

∆t equivalent to the discrete time evolution described by Eq. (4.22), one must
set µI ∆t = m + D/2 and σ2

I ∆t = D. Consequently, the exact optimal fraction
derived in [145] is the same as our approximate result given in Eq. (4.28). This is
not surprising because continuous readjustment is equivalent to Eq. (4.22) with
m,D → 0.
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Constrained optimisation

The optimal portfolio fractions fi can be derived from Eq. (4.27) also for N > 1.
Using the same approximations as in the single asset case, we obtain the general
formula f ∗i = 1/2+mi/Di for i = 1, . . . , N . When

∑N
i=1 fi > 1, one has to borrow

money to follow the prescribed strategy. If borrowing is not allowed, we have
to introduce the constraint

∑N
i=1 fi = 1. This can be done by use of the Lagrange

function L(f , γ) = v+γ
(∑N

i=1 fi−1
)
. The optimal portfolio is then the solution

of the set of equations

N∑
j=1

fj = 1,

〈
Ri

1 +
∑N

i=1 fiRi

〉
+ γ = 0 (i = 1, . . . , N), (4.30)

where Ri = eηi − 1. Using the same approximations one obtains

f ∗i =
1

2
+
mi + γ

Di

. (4.31)

The Lagrange multiplier γ is fixed by the condition
∑

j f
∗
j = 1. It can occur

that even a profitable asset with mi > −Di/2 has a negative optimal invest-
ment fraction: a short position is suggested. If short selling is not allowed, this
asset has to be eliminated from the optimisation process. In consequence, un-
der some conditions, only a few assets are included in the optimal portfolio.
This phenomenon, which we call portfolio condensation, we study closer in
sections 4.3.3 and 4.3.3.

Now we can establish an important link to Markowitz’s approach: in the limit
µi, σi → 0 the constrained Kelly portfolio lies on the Efficient Frontier. We shall
prove this statement in the following. When all the assets have small µi and σi,
in Eq. (4.24) and Eq. (4.26) we can approximate µi ≈ mi + Di/2 and σ2

i ≈ Di,
leading to the approximative relation for the Efficient Frontier

σ2
P =

C̃0µ
2
P − 2C̃1µP + C̃2

C̃0C̃2 − C̃2
1

, where C̃k =
N∑
j=1

(mi +Di/2)k

Di

. (4.32)

For the Kelly portfolio we need to work out a similar approximation. Using
the condition

∑
i f
∗
i = 1, for γ in Eq. (4.31) we obtain γ = (C̃1 − 1)/C̃0. In the

relations µP =
∑

i fiµi and σ2
P =

∑
i f

2
i σ

2
i we use the approximations for µi, σi

introduced above. After substituting fi from Eq. (4.31), for the Kelly optimal
portfolio we get

µK =
C̃0C̃2 − C̃2

1 + C̃1

C̃0

, σ2
K =

C̃0C̃2 − C̃2
1 + 1

C̃0

. (4.33)
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Figure 4.7: The Efficient Frontier (EF) and the constrained Kelly portfolio (CKP)
in a particular case of three assets (asset parameters as in Fig. 4.5).
The thin solid line represents the EF. When short selling is forbidden,
we obtain a modified EF shown by the bold line. The open square
is the constrained Kelly optimal portfolio, while the filled one is the
Kelly’s optimum when short selling is forbidden.

Now it is only a question of simple algebra to show that µK and σK given by
Eq. (4.33) fulfill Eq. (4.32), which completes the proof. Similar, yet weaker, re-
sults can be found in the literature. For instance, Markowitz states in [138] that
“On the EF there is a point which approximately maximizes 〈lnW1〉.”

The results obtained so far are illustrated in Fig. 4.7, where we plot the Effi-
cient Frontier together with the constrained Kelly portfolio for the same three
assets as in Fig. 4.5. We show also results with one additional constraint: no
short selling allowed (i.e., investment fractions are non-negative). While the
original EF is not bounded (for any µP we can find an appropriate σP ), the EF
with the additional constraint starts at the point corresponding to the full in-
vestment in the least profitable asset and ends at the point corresponding to the
most profitable asset. The two lines coincide on a wide range of µP . In agree-
ment with the previous paragraph, the constrained Kelly portfolio lies close to
the EF and the same holds in the case with the additional constraint. For illus-
tration, the unconstrained Kelly portfolio for the same three assets has µP ≈ 1.35
and σP ≈ 1.43 with the total investment fraction

∑
i f
∗
i ≈ 6.5 far exceeding the

actual capital.

Condensation in the two asset case

To illustrate the condensation phenomenon we focus on a simple case here: two
risky assets plus a risk-free one, borrowing and short selling forbidden. As we
have already seen, without constraints f ∗i = 1/2 + mi/Di. Therefore, when
mi < −Di/2, fi is negative and due to forbidden short selling, asset i drops out
of the optimal portfolio. In Fig. Eq. (4.8) this threshold is shown for i = 1, 2 by
dashed lines. In the lower-left corner (A) we have the region where both assets
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Figure 4.8: The phase diagram of the two-asset system with D1 = 0.1 and
D2 = 0.2. In region A the investor is advised to use only the risk-free
asset. In regions B1, B2, and C the optimal investment is still partially
in the risk-free asset. In regions D1, D2, E, F1, and F2 one should in-
vest everything in the risky assets. While in regions C and E the
investment is divided between the two assets, in shaded regions F1

and F2 a nontrivial condensation arises: one is advised to invest all
wealth in one asset although the other one is also profitable.

are unprofitable and the optimal strategy prescribes a fully riskless investment.
When the results of the unconstrained optimisation sum up to one (f ∗1 + f ∗2 =

1), we are advised to invest all our wealth in the risky assets. If both assets are
profitable, this occurs whenm1/D1+m2/D2 = 0. When only asset i is profitable,
we should invest the entire capital on it only when mi equals, at least, Di/2. In
Fig. Eq. (4.8) these results are shown as a thick solid curve.

Since borrowing is not allowed, in the region above the solid line constrained
optimisation has to be used. The condensation to one of the two assets arises
when the optimal fractions (f ∗1 , f

∗
2 ) are either (1, 0) or (0, 1). We can find the

values m′1 and m′′1 when this happens. By eliminating γ from Eq. (4.30) and
substituting f1 = 1 and f2 = 0 we obtain the condition for the condensation on
asset 1:

〈
(eη1−1)/eη1

〉
=
〈
(eη2−1)/eη1

〉
. This can be solved analytically, yielding

m′1 = m2 +
D1 +D2

2
. (4.34)

This equation holds with interchanged indices for the condensation on asset 2,
thus m′′1 = m2 − (D1 + D2)/2. Finally, for m′′1 < m1 < m′1 the optimal portfolio
contains both assets. The crossover values m′1 and m′2 are shown in Fig. 4.8 as
dotted lines. They delimit the region where the portfolio condensates to only
one of two profitable assets. A complete “phase diagram” of the optimal invest-
ment in the two assets case is presented in Fig. 4.8 for a particular choice of the
assets’ variances.
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Many assets with equal volatility

We investigate here the case of an arbitrary large number N of available as-
sets. We assume that borrowing and short selling are forbidden, which makes
it possible to see a portfolio condensation. While the optimal portfolio fractions
are given by Eq. (4.31), to find which assets are included in the optimal port-
folio is a hard combinatorial task. To obtain analytical results, we simplify the
problem with the assumption that the variances of all assets are equal, Di = D
(i = 1, . . . , N ). The number of assets contained in the optimal portfolio is la-
belled as M .

Let us first sort the assets in order of decreasing mi, such that m1 > m2 >
· · · > mN . We form the optimal portfolio starting from the most profitable asset
m1, and adding the others one by one until the last added asset has a negative
optimal fraction fM+1 ≤ 0. Summing Eq. (4.31) from 1 to M , we can write γ as
γ(M) = D(M−1 − 1/2) − 1

M

∑M
1 mi. For the given realisation of {mi}, we can

find M by solving the equation fM = 0, which reads

mM +
D

M
=

1

M

M∑
i=1

mi. (4.35)

This relation tells us how many assets we should invest on, once their expected
growths and volatility are known. Notice that for M = 2 and D1 = D2 =
D, this result is consistent with that of Eq. (4.34) where a special case of the
condensation on two assets is described.

Let us follow now a statistical approach. If all mi are drawn from a given
distribution %(m), the value ofM depends on the current realisation. The typical
behaviour of the system can be found by taking the average over all possible
realizations and replacing mi by mi. The resulting portfolio size MT captures
the typical behaviour and depends on the distribution %(m) and on the number
of available assets N .

Uniform distribution of m

Let us first analyse the case of a uniform distribution of mi within the range
[a, b]. First we assume that all assets are profitable, i.e.a + D/2 > 0. For mi

are sorted in decreasing order, one can show mi = b − (b − a)i/(n + 1). Since
mi grows with i linearly, according to Eq. (4.31), f ∗i decreases with i uniformly.
Substituting mi for mi in Eq. (4.35), we obtain an equation for MT . Assuming
MT � 1, the solution has the simple form

MT =
√

2ND/(b− a). (4.36)

As it is shown in Fig. 4.9, this results agrees well with a numerical treatment of
the problem (based on Eq. (4.35)).
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Figure 4.9: The average size of the optimal portfolio MT and the inverse partic-
ipation ratio R for N assets with D = 0.01 and mi uniformly dis-
tributed in the range [0, 0.1]. Solid lines are the analytical solutions
reported in Eqs. Eq. (4.36) and Eq. (4.37), symbols stand for numeri-
cal results.

A more flexible measure of the level of condensation is the inverse participation
ratio (sometimes called the Herfindahl index), defined as R = 1/

∑N
i=1 f

2
i . It

estimates the effective number of assets in the portfolio: when all investment
fractions are equal, R = M , while when one asset covers 99% of the portfolio,
R ≈ 1. Using Eq. (4.31) we can write fi = A − Bi (B = (b − a)/(n + 1), the
detailed form of A is not needed for the solution). Passing from i = 1 to i = M ,
fi decreases linearly to zero. Therefore we can use the identity

∑M
i=1(A−Bi)2 =∑M

i=1(Bi)2 and obtain

R =
[
B2M(M + 1)(2M + 1)/6

]−1 ≈
[
B2M3/3

]−1 ≈ 3
4
M. (4.37)

In the last step we used formula Eq. (4.36) for the typical size of the optimal
portfolio. We see that a uniform distribution of mi leads to the participation
ratio proportional to the number of assets in the portfolio. In Fig. 4.9, Eq. (4.37)
is shown to match the numerical solution.

Power-law distribution of m

Now we treat the case of a distribution %(m) that has a power-law tail: %(m) =
Cm−α−1 for m > mmin. As long as M � N , the properties of the assets included
in the optimal portfolio are driven by the tail of %(m). In consequence, the de-
tailed form of %(m) for m < mmin is not important here. We assume that only a
fraction r of all assets falls in the region m > mmin.

Instead of seeking the typical portfolio size MT , we shall limit ourselves to
finding the conditions when a condensation on one asset arises. With this aim
in mind, we putM = 2 in Eq. (4.35), obtaining the equationm1−m2 = D. When
m1 −m2 > D, only asset 1 is included in the optimal portfolio. By replacing m1

andm2 with their medians m̃1 and m̃2, one obtains an approximate condition for
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Figure 4.10: Values of the power law exponent α1 at which condensation to one
asset arises for N = 1 000, r = 0.1, and mmin = 0.1. We compare
the analytical result (shown as the solid line) with a numerical sim-
ulation of the system (shown as filled circles). Below the line, the
optimal portfolio typically contains only one asset.

a system where such a condensation typically exists. Using order statistics [154]
we find the following expressions for the medians: m̃1 = mmin(Nr/ ln 2)1/α,
m̃2

.
= mmin(Nr/1.68)1/α. The equation m̃1−m̃2 = D thus achieved can be solved

numerically with respect to α. In this way we find the value α1 below which the
optimal portfolio typically contains only the most profitable asset. In Fig. 4.10
we plot the result as a function of D. For comparison, the outcomes from a
purely numerical investigation of the equation P (m1 −m2 > D) = 0.5 are also
shown as filled circles. Our approximate condition has the same qualitative
behaviour as the simulation, showing that the use of median gives us a good
notion of the optimal portfolio behaviour.

4.3.4 Conclusion

In this section we investigated the Kelly optimisation strategy in the frame-
work of a simple stochastic model for asset prices. We derived highly accurate
approximate analytical formula for the optimal portfolio fractions. We proved
that in the limit of small returns and volatilities of the assets, the constrained
Kelly-optimal portfolio lies on the Efficient Frontier. Based on the obtained an-
alytical results, we proposed a simple algorithm for the construction of the op-
timal portfolio in the constrained case. We showed that when borrowing and
short positions are forbidden, only a part of the available assets is included in
the optimal portfolio. In some cases the size of the optimal portfolio is much
smaller than the number of available assets –we say that a portfolio conden-
sation arises. In particular, when the distribution of the mean asset returns is
wide, there is a high probability that only the most profitable asset is included
in the Kelly-optimal portfolio.
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4.4 How to quantify the influence of correlations
on diversification

Don’t put all your eggs in one basket.
Adage

Most portfolio optimization strategies result in diversification because it allows
investors to decrease their exposure to the risk of single assets [155]. How-
ever, when assets are correlated, the improvement of investment performance
due to diversification is reduced. Since asset correlations are ubiquitous, rang-
ing from stock-stock correlations in one stock market to correlations between
different investments types in different countries, it is important to investigate
their influence on diversified portfolios [156–160]. In this section we attempt to
quantify how correlations reduce the benefits of diversification. To achieve this
we propose a new quantity, the effective size of a diversified portfolio, which is
based on the comparison with a fictitious portfolio of uncorrelated assets. For
two different optimization strategies (the Mean-Variance portfolio [124] and the
Kelly portfolio [130]) we obtain analytical expressions for their effective sizes.
Obtained results are used to study real market data (stocks from the Dow Jones
Industrial Average and the S&P 500).

4.4.1 Correlations and the Mean-Variance portfolio

First we introduce the notation used in this section. If the initial and final asset
values are w0 and w1 respectively, the asset return during the given time period
is defined as R := (w1 − w0)/w0. If we follow the value of asset i over many
subsequent time periods, it is possible to find the expected values µi := 〈Ri〉
and Vi := 〈R2

i 〉 − 〈Ri〉2, closely related is the standard deviation σi =
√
Vi. The

standard tool to measure correlations is the Pearson’s formula; for assets i and
j it reads

Cij :=
〈RiRj〉 − 〈Ri〉〈Rj〉

σiσj
, (4.38)

by definition Cij ∈ [−1; 1] and Cii = 1. These values form the correlation matrix
C. When returnsRi andRj are independent, 〈RiRj〉 = 〈Ri〉〈Rj〉 andCij = 0. The
same holds when one of the assets is risk-free, i.e.its return has zero variance.
Although in practice each investment carries a certain amount of risk, short
term government-issued securities are often used as proxies for risk-free assets.
Here we assume that a risk free asset is available and has zero return.

To construct a portfolio, the investor has to divide the current wealth W
among M available assets. This division can be characterized by investment
fractions: fi is the fraction of wealth invested in asset i (i = 1, . . . ,M ). Assum-

86



4.4 How to quantify the influence of correlations on diversification

ing unit initial wealth, after one time period it becomes

W1 = 1 +
M∑
i=1

fiRi. (4.39)

Here Ri is the return of asset i during the period. When investment fractions
are fixed, the investor’s wealth follows a multiplicative random walk and after
T periods it becomes

WT =
T∏
t=1

(
1 +

M∑
i=1

fiRi,t

)
. (4.40)

Here Ri,t is the return of asset i in the period t.
The Mean-Variance approach to the portfolio optimization has been proposed

in [124] (for later discussions see [129, 158, 161]). Despite its flaws (e.g., only the
expected return and its variance are used to characterize a portfolio) it is still
a benchmark for other optimization methods. From Eq. (4.39), the expected
return RP := 〈W1〉 − 1 and the variance VP := 〈W 2

1 〉 − 〈W1〉2 follow as

RP =
M∑
i=1

fiµi, VP =
M∑
i,j=1

fifjCijσiσj. (4.41)

For a given RP , the optimal portfolio is defined as the one which minimizes
VP (equivalently, one can maximize RP with VP fixed). To focus purely on the
influence of correlations we assume that all M games are identical (µi = µ and
σi = σ). Using Lagrange multipliers, for a desired expected return RP the mini-
mal portfolio variance is

V ∗P (RP ,M,C) =
σ2R2

P

µ2
∑M

i,j=1(C−1)ij
(4.42)

where C−1 is the inverse of the correlation matrix C.
Now we look at Eq. (4.42) from a new perspective: we compare it with the op-

timal variance of the portfolio of m uncorrelated assets with identical mean re-
turns and variances V ∗P (RP ,m, I); here I is the identity matrix. The portfolio size
when these variances are equal we call the effective size of the correlated port-
folio and label it as mef. By solving the equation V ∗P (Rp,M,C) = VP (Rp,mef, I)
we obtain

mef =
M∑
i,j=1

(C−1)ij. (4.43)

Otherwise stated, when investing in M correlated assets, the portfolio variance
is the same as for mef uncorrelated assets. Notice that mef given by Eq. (4.43)
depends only on the correlation matrix and not on the portfolio parameters
µ, σ,RP .
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Now we review the special case with uniform correlations between the assets:
Cij = C for i 6= j, C ∈ [0; 1]. Then C−1 can be found analytically as

(C−1)ii =
1 + (M − 2)C

(1− C)[1 + (M − 1)C]
, (C−1)ij =

−C
(1− C)[1 + (M − 1)C]

. (4.44)

and Eq. (4.43) consequently simplifies to

mef =
M

1 + (M − 1)C
. (4.45)

When C = 1 (perfectly correlated assets), mef = 1; when C = 0 (uncorrelated
assets), mef = M ; when C = −1 and M = 2, the portfolio variance can be totally
eliminated and mef → ∞. A remarkable consequence of Eq. (4.45) is that in
the limit M → ∞, mef → 1/C. This means that diversification into arbitrary
many assets with mutual correlation C is equivalent to investment in only 1/C
uncorrelated assets. Another interesting case is a block diagonal matrix C which
has square matrices C1, . . . , CN along the main diagonal and the off-diagonal
blocks are zero matrices. It can be shown that Eq. (4.43) then yields

mef = mef(C1) + · · ·+mef(CN). (4.46)

Thus, the effective portfolio size is the sum of effective sizes for each block Ci
separately. This form of C is an extreme case of the sector structure discussed in
Sec. 4.4.2.

It is instructive to compare the results obtained above with the simple in-
vestment distributed evenly among all assets. If we again assume identical
returns and variances of the assets, Eq. (4.41) simplifies to RP = Mfµ, VP =

σ2f 2
∑M

i,j=1Cij where f is the fraction of wealth invested in each single asset.
The desired value of RP now determines both f and VP . By comparison with
the variance of a portfolio of uncorrelated assets we obtain the effective size of
the even investment in the form

m′ef =
M

1 + (M − 1)〈C〉
(4.47)

where 〈C〉 is the average of the off-diagonal elements of C, the prime symbol
indicates that the even investment is considered.

The effective portfolio size mef is different from the inverse participation ratio
(also called the Herfindahl index) which is defined as IPR = 1/

∑M
i=1 f

2
i (fi is the

fraction of wealth invested in asset i). While the former quantifies the influence
of correlations, the latter quantifies how unevenly is wealth invested in different
assets.
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4.4.2 Correlations and the Kelly portfolio

Now we investigate how the concept of the effective portfolio size applies for
the Kelly portfolio. As we have already shown, the exponential growth rate
G of the investment can be written as G = 〈lnW1〉 where W1 is the investor’s
wealth after one time step. Assuming investment into M simultaneous games,
G can be written as

G =

〈
ln
[
1 +

M∑
i=1

fiRi

]〉
. (4.48)

For M ≥ 5, one can maximize Eq. (4.48) by numerical techniques [142] or by
analytical approximations (see Sec. 4.2.1 for details) as we do below.

To investigate the effect of asset correlations on the Kelly portfolio, we con-
sider M individual assets with the correlation between assets i and j computed
by Eq. (4.38) and labeled as Cij . Differentiation of Eq. (4.48) with respect to fi
yields ∑

R

P (R)Ri

1 +
∑M

j=1 fjRj

= 0 (4.49)

where P (R) is the probability of a given vector of returns R = (R1, . . . , RM)
and the summation is over all possible R (when returns are continuous, inte-
gration must be used). For M > 4, this equation has no analytical solution.
Assuming that the investment return

∑M
i=1 fiRi is small (which is plausible if

the considered time period is short), we can use the expansion 1/(1 +x) ≈ 1−x
to obtain

M∑
j=1

fj〈RiRj〉 = 〈Ri〉 (i = 1, . . . ,M). (4.50)

This set of linear equations gives the first approximation to fi: when 〈Ri〉 and
〈RiRj〉 are known, the optimal investment fractions f ∗i can be obtained. Higher
order expansion of 1/(1+x) results in higher order cross terms of returns which
are generally difficult to compute.

As before, to focus on the influence of correlations we assume identical return
distributions of the assets; we set 〈Ri〉 = µ, σi = σ for i = 1, . . . ,M , consequently
〈RiRj〉 = µ2 + σ2Cij . After substitution to Eq. (4.49), the optimal investment
fractions are

f ∗ =
µ (C−11)

σ2 + µ2
∑M

i,j=1(C−1)ij
(4.51)

where 1 is the M -dimensional vector with all elements equal to 1. The effective
portfolio size is obtained mef by a comparison with a portfolio of uncorrelated
assets. One way to do this is by comparing the total invested wealth in both
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cases. Thus, mef is defined as the solution of
M∑
i=1

f ∗i (M,C) = mef f
∗(mef, I). (4.52)

Using Eq. (4.51) we obtain

mef =
M∑
i,j=1

(C−1)ij (4.53)

which is exactly the same expression of mef as Eq. (4.43) in the Mean-Variance
approach; the effective portfolio size is a common quantity for these two opti-
mization schemes. However, this exact correspondence is true only when the
first order approximation is used to solve Eq. (4.49).

It is possible to define the effective number of assets mef differently: as the
number of mutually uncorrelated assets when the expected exponential growth
rateG(mef, I) is equal to the growth rateG(M,C) withM correlated assets. These
two definitions are similar and yield similar results. For practical reasons (the
total investment fraction is easier to handle analytically than the exponential
growth rate), we confine our analysis to the former one.

Special case with identical correlations

Assuming identical asset correlations, Cij = C for i 6= j (C ∈ [0; 1]), Eq. (4.53)
simplifies to

mef =
M

1 + (M − 1)C
. (4.54)

Contrary to the exact formula Eq. (4.45), this result is based on the first order ap-
proximation in Eq. (4.49). To review the accuracy of the resulting mef, we treat
the problem numerically. Since with identical correlation all assets are equal,
the optimal investment is distributed evenly among them. Thus, maximiza-
tion of the exponential growth rate G simplifies to a one-variable problem and
Eq. (4.49) is replaced by

∑
R

P (R)
∑M

j=1 Rj

1 + f
∑M

j=1 Rj

= 0. (4.55)

To proceed, one needs to specify the joint distribution of returns, P (R). To do so
we use simple assets with binary outcomes: Ri = 1 (which we label as +i) and
Ri = −1 (which we label as −i). To induce the correlations we use an artificial
hidden asset h with the outcome +h with the probability p and −h with the
probability 1 − p. Finally, asset returns are drawn conditionally on the hidden
asset according to

P (+i|+h) = p+ (1− p)
√
C, P (−i|−h) = 1− p+ p

√
C, C ∈ [0; 1]. (4.56)
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Figure 4.11: The effective size of the Kelly portfolio: a comparison of the ap-
proximate result Eq. (4.54) with numerical treatment of Eq. (4.55)
for various winning probabilities. The total number of assets is
M = 10.

It can be shown that P (+i) = p, P (−i) = 1 − p, Cij = C; thus the proposed
construction satisfies our demands. The distribution P (R) is now given by the
formula

P (R) = P (+h)
M∏
i=1

P (Ri|+h) + P (−h)
M∏
i=1

P (Ri|−h) (4.57)

and Eq. (4.55) can be solved, yielding the optimal fraction f ∗. Consequently,
the definition relation Eq. (4.52) allows us to interpolate mef for any M, p,C (in-
terpolation is needed because the right side of the definition equation can be
numerically computed only for integer mef). In Fig. 4.11 we compare this result
with Eq. (4.54). As can be seen, when the investment return is small (p = 0.60
and less), the approximate result performs well. When p = 0.70, differences
appear for mediocre values of C.

Finally, we use the established framework to investigate the sensitivity of
portfolio performance to the estimate of asset correlations. We assume that all
assets have pairwise correlation equal C but the investor optimizes the invest-
ment assuming a wrong value C ′. In Fig. 4.12, the resulting growth rate G∗

is shown as a function of C ′. As can be seen, underestimation of correlations
(C ′ < C) decreases investment performance dramatically—a naive investor
supposing zero correlations can even end up with diminishing wealth. By con-
trast, a similar overestimation of C results in only a mild decrease of G.

Estimates of the effective portfolio size

One can ask whether Eq. (4.53) can be approximated by a simpler formula. Mo-
tivated by Eq. (4.54), the natural guess is

mef =
M

1 + (M − 1)〈C〉
, (4.58)
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Figure 4.12: The optimal exponential growth rate G∗ for an investor assum-
ing a wrong magnitude of the asset correlations. The actual value
C = 0.2 is marked with the vertical dash-dot line, the winning prob-
ability is p = 0.55.

we approximate diverse correlations by their average. Since the resulting mef

is the same as Eq. (4.47): this approximation is equivalent to distributing the
investment among the assets evenly.

In real markets, assets can be divided into sectors with correlations higher
between assets in the same sector than between assets in different sectors. This
sector structure can be used to obtain an improved estimate of mef. Given N
sectors, we denote the intra-sector correlation between the assets from sector I
by C̃II and the inter-sector correlation between the assets from sectors I and J
by C̃IJ (for indices labeling sectors we use capital letters). Here C̃II and C̃IJ are
simple averages (I, J = 1, . . . , N )

C̃II =
1

M2
I

∑
i,j∈I

Cij, C̃IJ =
1

MIMJ

∑
i∈I,j∈J

Cij, (4.59)

where MI is the number of assets in sector I . As a result, an N -dimensional
matrix C̃ is formed. In C̃II we sum also over diagonal elements of the asset
correlation matrix C as it is convenient for our further computation.

Due to the simplifying assumption of identical intra-sector correlations, the
optimal investment fractions are identical within a sector and the optimization
problem simplifies to N variables fI . Similarly to Eq. (4.48), the exponential
growth rate is now

G =

〈
ln
[
1 +

N∑
I=1

fI
∑
i∈I

Ri

]〉
. (4.60)

By the same techniques as before, we obtain the estimate of the effective portfo-
lio size

mef =
M∑

I,J=1

(C̃−1)I,J , (4.61)
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its accuracy will be examined in the following section. Notably, the sector-based
estimate of mef for the Mean-Variance approach is identical.

4.4.3 Correlations in real financial data

Here we test our results on real financial data, keeping two goals in mind. First,
to investigate actual values of the effective portfolio size. Second, to examine the
accuracy of mef estimates derived above. We use prices of stocks from the Dow
Jones Industrial Average (DJIA) and the Standard & Poor’s 500 (S&P 500) which
are well-known and common indices consisting of 30 and 500 U.S. companies
respectively.

Comparing index and stock variances

Using the daily data for the period 8th April 2004–14th December 2007, we
compute daily returns of the DJIA and stocks included by the formulaR(t+1) =
(w(t + 1) − w(t))/w(t), with w(t) denoting the adjusted closing index value on
the trading day t. The DJIA value is the sum of the prices of all components,
divided by the Dow divisor which changes with time. This effect can be ignored
because changes of the divisor are mostly negligible.

During the given period, the variance of the DJIA daily returns was σ2
DJIA ≈

5.22·10−5, the average variance of the daily returns of the DJIA components was
σ2

C ≈ 1.73·10−4. These two figures contradict the assumption of zero correlations
because then the variance should scale with the number of assetsM as 1/M (this
follows also from Eq. (4.42) when C = I is substituted). By dividing σ2

C/σ
2
DJIA

we obtain an alternative estimate of the effective number of assets (this estimate
was used already in [162]). In our case it is equal to 3.31 which is much less than
the total number of stocks in the DJIA.

Alternatively, we can estimate the effective number of assets using the results
of our analysis above. From daily returns, asset correlations can be computed
by Eq. (4.38), resulting in 〈C〉 = 0.322. Together with the number of stocks
M = 30, Eq. (4.58) yields mef ≈ 2.90. This is in a good agreement with the value
3.31 obtained by a different reasoning in the previous paragraph.

The effective size

For our analysis we use the same data about the DJIA stocks as in the previ-
ous section, for S&P 500 we use the approximately 15 years period period from
2nd January 1992–15th February 2008 and those 338 stocks out of the current
500 which were quoted in the stock exchange during the whole period. As
mentioned above, from the daily financial data one can estimate the correla-
tion matrix C. Consequently, the effective portfolio size can be obtained using
C−1 and Eq. (4.43), Eq. (4.53); it can be approximated using a sector division
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Figure 4.13: The effective size mef for the DJIA stocks (a) and the S&P 500 stocks
(b), computed directly from C, from sector division, and from 〈C〉.
The estimate of the effective size obtained by comparison of vari-
ances in Sec. 4.4.3 is shown as a thick cross. Individual realisations
fluctuate around the plotted averages with the amplitude approxi-
mately one or less.

and Eq. (4.61); or it can be approximated using 〈C〉 and Eq. (4.58). The stock
division into nine sectors is obtained from http://biz.yahoo.com/p with
the industry sectors: basic materials, conglomerates, consumer goods, finance,
healthcare, industrial goods, services, technology, and utilities. Using a differ-
ent sector division (obtained i.e.by minimizing the ratio of intra- and inter-sector
correlations) does not influence the results substantially. To obtain the depen-
dency of mef on the portfolio size M , we select a random subset of M stocks
from the complete set and compute mef for this subset; sensitivity to the subset
selection is eliminated by averaging over 5 000 random draws.

The results of the described analysis are shown in Fig. 4.13. For small port-
folio sizes (less than approximately ten stocks), the estimates of mef based on
the sector structure or on the average correlation perform well. For a larger
portfolio, the sector structure gives a better description of mef than the average
correlation. Nevertheless, both estimates saturate at M ' 20 while the exact mef

obtained from the complete correlation matrix continues to grow. We see that
the effect of heterogeneous correlations increases with M and even the sector
structure is then insufficient to describe the system.

The limited horizontal scale in Fig. 4.13 is due to noisy estimates of large
correlation matrices from the data with a finite time horizon T . As we are de-
termining M(M − 1)/2 correlations from MT prices, when T is not very large
compared to M , we face underdetermined system of equations [163] (the prob-
lem is also known as the curse of dimensionality). It is possible that in Fig. 4.13,
the excessive slope of mef for 5 years data and the complete correlation matrix
(in comparison with the slope of the curve for 15 years data) is a signature of
this effect. With more frequent financial data, larger portfolios would be easily
accessible.
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Figure 4.14: Time evolution of the effective sizemef and the average yearly stock
return RA for the DJIA stocks, based on the sliding one year time
window.

There is one particular point to be highlighted. According to Eq. (4.47), the
estimate of mef by the average correlation 〈C〉 is equal to the effective size m′ef of
the portfolio containing all available assets with even weights. Such investment
was investigated e.g.in [164] where it was suggested that the benefits of diver-
sification are exhausted already with a portfolio of ten assets—this result is in
agreement with Fig. 4.13. However, since m′ef is lower than the effective sizes
obtained directly from a sector division and much lower than those obtained
directly from C, we conclude that with an evenly distributed investment one
cannot fully exploit the benefits of diversification.

Finally, in Fig. 4.14 we show time evolution of mef for 20 current stocks from
the DJIA.1 We use the daily data from the period Jan 1973–Apr 2008 and the
sliding window with the length one year to obtain estimates of the correlation
matrix and compute mef from C−1. In the same figure we show also the average
yearly return of the selected stocks (also estimated on the one-year basis). As
we see, mef varies with a large amplitude, being as low as two at the end of 80’s
and peaking almost at seven during 1994.

4.4.4 Conclusion

In this work we investigated the influence of correlations on portfolio optimiza-
tion. This is an important issue—as can be seen in Fig. 4.12, underestimation of
correlations can lead to a significant reduction of investment performance. To
measure the influence of correlations we suggested a new quantity—the effec-
tive portfolio size mef. Obtained analytical results are accompanied with nu-
merical tests on real financial data. Notably, for most investigated cases, this
effective size is much smaller than the actual portfolio size. In particular, evenly
distributed investment turns out to be rather ineffective way of diversification.

1The selected stocks are AA, BA, CAT, DD, DIS, GE, GM, HON, HPQ, IBM, JNJ, KO, MCD,
MMM, MO, MRK, PG, UTX, WMT, and XOM.
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4 Entropy, information and portfolio optimization

Numerical results for mef could be refined using high frequency financial data
which would allow for a shorter time window and lesser averaging artifacts.

Although illustrated only on the Mean-Variance and the Kelly portfolio, the
effective size is a general concept which can be used also in other methods for
portfolio optimization. Its eventual direct application to portfolio management
remains a future challenge.

4.5 Appendices

Here we discuss technical parts of this chapter.

4.5.1 Approximations for the lognormally distributed returns

Our aim is to approximate expressions of the type 〈g(η)〉, where η follows a
normal distribution %(η) with the mean m and the variance D. For small values
of D, this distribution is sharply peaked and an approximate solution can be
found expanding g(η) around thism. This expansion has the following effective
form

g(η)
ef.
= g(m) +

1

2
(η −m)2g(2)(m) +

1

24
(η −m)4g(4)(x), (4.62)

where x ∈ [m, η]. Here we dropped the terms proportional to (η −m)k with an
odd exponent k, for they vanish after the averaging. If we take only the first
two terms into account, we obtain〈

g(η)
〉

=

∫ ∞
−∞

g(η)%(η) dη ≈ g(m) +
D

2
g(2)(m). (4.63)

This approximation is valid when the following term of the Taylor series brings
a negligible contribution ∆. We can estimate it in the following way (x ∈ [m, η])

∆ =

∫ ∞
−∞

(η −m)4

24
g(4)(x)%(η) dη .

∫ ∞
−∞

(η −m)4

24
M%(η) dη =

MD2

8
.

Here by M we label the maximum of |g(4)(η)| in the region X where %(η) differs
from zero considerably, e.g.X = [m − 2D,m + D]. Since g(x) has no singular
points in a wide neighbourhood of m, its fourth derivative is a bounded and
well-behaved function. Thus M is finite and ∆ vanish when D is small.

In particular, in this work we deal with functions of the form g(ηi) = (eη −
1)/[1 + f(eη − 1)]. If we use Eq. (4.63) with this g(η), approximate 1 + f(em − 1)
in the resulting denominators by 1, em by 1, and em − 1 by m, we are left with〈

g(η)
〉
≈ m+D

(
1− 2f

)
/2. (4.64)

We widely use this kind of approximations to obtain the leading terms for the
optimal portfolio fractions in section 4.3.
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4.5 Appendices

4.5.2 Lognormally distributed returns and correlated asset
prices

In section 4.3 we considered only uncorrelated asset prices undergoing the geo-
metric Brownian motion of Eq. (4.22). Obviously, this is an idealised model and
real asset prices exhibit various kinds of correlations. In order to treat correlated
prices we employ the covariance matrix S to characterise the second moment of
the stochastic terms 〈(ηi − mi)(ηj − mj)〉 = Sij . The uncorrelated case can be
recovered with the substitution Sij = δijDi.

Again, we would like to approximate the term
〈
g(η)

〉
≡
∫
g(η)%(η) dη. Here

%(η) is the probability distribution of η and g(η) is the function of interest. No-
tice that the correlations impose the use of vector forms for all the quantities of
interest. The Taylor expansion of g(η) around m, Eq. (4.62) in the uncorrelated
case, takes the form

g(η) = g(m) +∇g(m) · (η −m) +
1

2
(η −m)TV(m)(η −m) + . . . .

Here V(m) is the matrix of second derivatives of the function g(η), calculated
at the point η = m. Now we can proceed in the same way as before

〈
g(η)

〉
≈ g(m)

∫
%(η) dη +

N∑
i=1

∂ig(m)

∫
(ηi −mi)%(η) dη +

+
1

2

N∑
i,j=1

Vij

∫
(ηi −mi)(ηj −mj)%(η) dη =

= g(m) +
1

2

N∑
i,j=1

SijVij = g(m) +
1

2
Tr(SV). (4.65)

In the last line we used the symmetry of S. With given g(η), m and S, we can
now solve the equation 〈g(η)〉 = 0. In particular, these approximations can be
cast into Eq. (4.27) which can then be treated as in the uncorrelated case.
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5 Conclusions

Despite decades of research, the science of complexity is still emerging. Various
models provided us with good intuition about complex behavior (better to say,
about a variety of complex behaviors) but apart from computer simulations we
still lack a general tool for complexity.

This thesis is not different. It presents models of complex systems from vari-
ous areas of human activity and answers several questions. From the obtained
results, the simple model of product differentiation based on quality and the
concept of the effective portfolio size stand out for their simplicity and general-
ity. Truth be known, although the presented models are highly simplified, some
complicated problems remain open. Is it possible to improve the performance
of opinion diffusion by a proper generalization? Is it possible to seamlessly
combine selection by quality with selection by preferences? How to formalize
learning of game properties for real stocks?

Fortunately, open problems not only indicate a lack of past success but also
hold out hopes for interesting results in future. Importantly, fruits of efforts in
complexity research can be tangible—with a good understanding of complex
systems we can make more social experiments with computers and less with
real people. This should be the grand vision of the field for the coming years.
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