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Abstract: We study the noise of the intensity variance and of the intensity
correlation and structure functions measured in light scattering from a
random medium in the case when these quantities are obtained by averaging
over a finite number N of pixels of a digital camera. We show that the noise
scales as 1/N in all cases and that it is sensitive to correlations of signals
corresponding to adjacent pixels as well as to the effective time averaging
(due to the finite integration time) and spatial averaging (due to the finite
pixel size). Our results provide a guide to estimation of noise levels in
such applications as multi-speckle dynamic light scattering, time-resolved
correlation spectroscopy, speckle visibility spectroscopy, laser speckle
imaging etc.
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1. Introduction

The statistical properties of optical speckle patterns resulting from scattering of light from a ran-
dommedium are largely independent of the nature of the latter [1]. Rearrangements of scatterers
due to Brownian motion or flow lead to characteristic fluctuations of the speckle intensity with
time. Probing these intensity fluctuations is a very common and highly sensitive non-invasive
method to study the dynamics of complex fluids and biological systems. One of the earliest
applications is dynamic light scattering (DLS), also known as photon correlation spectroscopy
(PCS), where the fluctuations of the far-field speckle are analyzed [2]. The method is widely
used to study polymers in solution or for the sizing of sub-micron particles. The same method
applied to turbid media is known as diffusing-wave spectroscopy (DWS). In both DLS and
DWS, one usually makes use of the ergodicity of intensity fluctuations and replace ensemble
averaging by time averaging. Both are typically applied to study fluctuations in the (sub-) mil-
lisecond range. Thus, for a total measurement time of a few minutes, millions of fluctuations
are sampled which provides an excellent signal to noise ratio. Using a single photon counter
and a digital correlator, nanosecond time resolution is commonly achieved. Even though at the
shortest times the signal to noise ratio is limited by photon shot noise [3, 4], in most practical
cases this fundamental limitation is not the main concern and other sources of noise (such as
sample purity, stability of the experimental setup, etc.) play the main role. Over the last decade,
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a wealth of new laser-speckle based experimental techniques have been introduced [5]. Most
of them are made possible by recent advances in optical sensor technology. A modern digital
CCD (charge-coupled device) or CMOS (complementary metal oxide semi-conductor) sensor
contains millions of detectors which allow massive parallel processing of a large number of sig-
nals corresponding to intensities of distinct speckle spots. The availability of an area detector
has led to numerous new applications in traditional far-field speckle detection such as multi-
speckle dynamic light scattering [6–10], time-resolved correlation spectroscopy (TRC) [11],
speckle visibility spectroscopy (SVS) [12, 13] and has also enabled new speckle imaging tech-
niques such as the near-field scattering (NFS) [14], laser speckle imaging (LSI) [15–18] or echo
speckle imaging (ESI) [14, 19, 20].
The obvious advantages of massive parallel detection provided by an image sensor come

at a price of specific and often critical limitations. The temporal resolution of digital cameras
(typically, in the millisecond range) is inferior to the resolution of a traditional single photon
counter such as a photo-multiplier (nanoseconds). In addition, to maximize the signal to noise
ratio the experimental setup is usually designed in such a way that the size of an individual
speckle spot is comparable to the size of the individual active area (pixel) of the camera. Hence,
in contrast to the traditional PCS experiment, a camera pixel is not an ideal point-like detector
and, furthermore, fluctuations detected by neighboring pixels are correlated. It would be, of
course, desirable to increase the speckle size with respect to the size of the camera pixel (to
mimic a point-like detector) and to reduce correlation of signals detected by neighboring pixels.
However, these two objectives are mutually exclusive, at least if one wishes to exploit signals
from all available pixels of the image sensor.
The limitations of digital cameras as image sensors appear most pronounced in such appli-

cations as, for example, LSI. In LSI an image of a sample acquired by the camera is divided in
a set of “meta-pixels”, typically 25–100 pixels each. The spatially resolved information about
statistical properties of the sample (an “image” in the statistical sense) is obtained by analyzing
statistical properties of speckle (mean, variance, etc.) within each meta-pixel separately. Typ-
ically, the measurements are made in backscattering from, for example, biological tissue, and
allow a full-field monitoring of dynamic properties, such as blood flow. The method is widely
used for biomedical studies [21–25] since it provides access to physiological processes in vivo
with excellent temporal and spatial resolution. LSI is also becoming increasingly popular in soft
material sciences as a probe of heterogenous dynamic properties [20, 28]. Obviously, speckle
imaging techniques require a tradeoff between spatial resolution and statistical accuracy [18].
Due to the rather low number of pixels forming a single meta-pixel (25–100 as already men-
tioned) the statistical accuracy and noise are of major concern for the data analysis.
The goal of this article is to provide guidelines for a better understanding of the measured

quantities and their fluctuations in speckle-based optical techniques for essentially all cases
of practical interest. Whenever possible we provide analytical expressions that can be directly
applied to the analysis of experimental data. In particular, we analyze the influence of a limited
time resolution and provide an approximate treatment of spatial correlations between signals
corresponding to neighboring pixels. We start by considering the variance of intensities in a
stationary speckle patterns and then extend our analysis to the time correlation function and the
intensity structure function of dynamic speckle patterns.

2. Properties of stationary speckle patterns

Consider coherent laser light scattered by a random sample in a typical light scattering ex-
periment in reflection (see Fig. 1). Usually the cross polarized channel is analyzed in order
to suppress specular and low order scattering reflection. A digital camera provides us with N
values of integrated (over the area of a pixel) intensity Iα , α = 1, . . .N, corresponding to N
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Fig. 1. Experimental setup. A flat sample is illuminated with a polarized expanded laser
beam. The diffuse reflected light is detected in the cross polarization channel by imaging
the surface of the sample with a digital camera. The size of individual speckle spots in the
image plane can be adjusted by changing the aperture of the camera objective.

distinct pixels. N could be a (typically, large) total number of available pixels, but it could also
be just a small subset of pixels carrying information about only a part of the optical field, scat-
tered by a small part of the sample (see Fig. 2). Our purpose is to characterize the statistical
properties of the optical field based on this information. Note that quite generally the statistical
properties of the fully developed speckle patterns considered here are the same for measure-
ments in the image plane or in the far-field [1]. Therefore our results should find applications
in many research areas where speckle based techniques are employed.

2.1. Negative exponential distribution of integrated intensities
We start by considering a speckle pattern resulting from scattering of light in a solid sam-
ple, where the positions of scattering centers are fixed. It is known that under quite general
conditions, the intensity I of light scattered from such a random medium follows the negative
exponential distribution: P(I) = (1/〈I〉)exp(−I/〈I〉) [1]. In the experiment we only have access
to

Iα =
1
a2

∫
pixel α

d2r I(r), (1)

which is the intensity integrated over an area a2 of a pixel of the camera (d2r denotes two-
dimensional integration from here on). Here α = 1, . . . ,N indexes different pixels of the camera.
We added 1/a2 in front of the integral in Eq. (1) to ensure that Iα and I(r) have the same aver-
age value. As the first and the simplest example, we assume that Iα follows the same negative
exponential distribution as I and, in addition, that integrated intensities corresponding to differ-
ent pixels are uncorrelated. The average value of intensity I and the variance of its fluctuations
can be estimated from the data {Iα} as

i =
1
N

N

∑
α=1

Iα , (2)

c =
1

N−1
N

∑
α=1

(Iα − i)2. (3)

4

ht
tp
://
do
c.
re
ro
.c
h



Fig. 2. Schematic representation of the matrix of pixels of a digital camera. The full matrix
is divided in a set of meta-pixels Nx ×Ny = N pixels each. Spatially-varying statistical
properties of the speckle pattern imaged by the camera (i.e., the variance of intensities c)
are estimated by averaging over all pixels within the same meta-pixel. In our calculation
(Sec. 2.3), we are taking into account correlations between intensities at neighboring pixels
in all directions. A pixel which is not at the boundary of the square matrix (pixel 1 in the
figure) has 8 neighbors: 4 neighbors of type 2 and 4 neighbors of type 3.

These statistical estimators are unbiased, i.e. the mean values of i and c found by averaging
over an ensemble of realizations are equal to the actual values of the average intensity and of
its variance, respectively:

〈i〉 = 〈I〉, (4)
〈c〉 = 〈(I−〈I〉)2〉= 〈I〉2. (5)

Here the angular brackets 〈. . .〉 denote ensemble averaging. The normalized variance 〈c〉/〈I〉2
is equal to one in this case. The speckle contrast K can be defined as

K =
√
〈c〉/〈I〉. (6)

The values of i and c obtained in a series of measurements fluctuate around their means
Eqs. (4) and (5). The variances of these fluctuations are

σ2i
〈i〉2 =

〈i2〉−〈i〉2
〈i〉2 =

1
N

, (7)

σ2c
〈c〉2 =

〈c2〉−〈c〉2
〈c〉2 =

8
N
× N−

3
4

N−1 . (8)

Note that the only assumption we have made is that the integrated intensities Iα are uncor-
related random variables obeying the negative-exponential distribution. In the limit of a very
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large number of pixels N, Eq. (8) simplifies:

σ2c
〈c〉2

∣∣∣∣
N→∞

=
8
N

. (9)

To which extent are Eqs. (4)–(9) relevant to realistic experiments? For a standard square
matrix of adjacent pixels (see Fig. 2), two situations are possible depending on the relation
between the speckle size (i.e. the correlation range b of the scattered intensity) and the pixel size
a. For small speckles (b� a), different pixels are uncorrelated, but the statistical distribution of
integrated intensity Iα differs from the negative exponential one. In the opposite case of large
speckles (b � a) the statistical distribution of Iα approaches the negative exponential one, but
intensities corresponding to neighboring pixels become correlated. The situation described in
the present section — uncorrelated pixels with negative exponential distribution of Iα — can
be reached by working with large speckles (b � a) but using only a subset of pixels (i.e., only
pixels distanced by 1, 2 or even more pixels) in the analysis. However, using only a subset of
all available pixels means that the total number of pixels is reduced. It is therefore desirable to
extend Eqs. (4)–(9) to a more realistic model for the distribution function of Iα .

2.2. Gamma distribution of integrated intensities
For small speckles (b� a) the integrated intensities Iα corresponding to different pixels can be
considered independent, whereas the distribution of each Iα , according to Goodman [1], can be
modeled with the so-called gamma distribution :

P(Iα) =
1

Γ(μ)

(
μ
〈I〉

)μ
Iμ−1α exp

(
−μIα
〈I〉

)
. (10)

Here the parameter μ ≥ 1 depends on the pixel shape and size, as well as on the spatial
correlation function g2(Δr) of intensity I(r):

1
μ

=
1
a4

∫
pixel

d2r
∫
pixel

d2r′
[
g2

(
r− r′)−1] , (11)

where both integrations run over the area of the same pixel. The parameter μ provides a measure
of how the ratio of speckle size b to the pixel size a influences the statistical properties of the
measured intensity. It is worthwhile to note that in the photon correlation spectroscopy, 1/μ is
equal to the intercept (usually denoted by β ) of the autocorrelation function: g2(0) = 1+1/μ
(see also Section 3.1).
If the sample is illuminated by a Gaussian beam, the intensity correlation function of the

far-field speckle pattern is

g2(Δr) =
〈I(r)I(r+Δr)〉

〈I〉2 = 1+ exp
(
−Δr2

b2

)
, (12)

whereas for a plane wave passed through a circular aperture,

g2(Δr) = 1+
[
2J1(Δr/b)

(Δr/b)

]2
. (13)

In our experiments, the correlation function of intensity in the speckle pattern is controlled
by the (circular) aperture of the camera objective, so that Eq. (13) is used throughout this work.
In both cases b quantifies the extent of spatial correlations of I(r) (i.e., the size of a single
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Fig. 3. Left: False-color image of light intensities in a speckle pattern (60× 60 pixels)
obtained by using the smallest available aperture setting ( f/# = 32). Intensity scale from
0 to 104 in arbitrary units. Right: Intensity correlation function obtained by the inverse
Fourier transform of the speckle power spectrum (full frame 640×480 pixels). The data is
quantitatively described by Eq. (13) with b= 1.24a and μ = 1.09.
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Fig. 4. Speckle parameter μ as a function of the speckle size b divided by the size of the
camera pixel a. Symbols: experimental results for the case of scattering from a solid sample
(Teflon). Solid line: Eq. (11). Dashed line: the approximate result in the small-speckle limit
b� a.

speckle spot). An analytic expression for μ can only be obtained for very small speckles b� a:
μ � (a/b)2/(4π). Figure 3 (left) shows a speckle image of light scattered from solid Teflon
taken for the case of large speckles that can be resolved in space ( f

/
# = 32). Be Ĩ(q) the

Fourier transform of the image I(r). From the inverse Fourier transform of the power spectrum
|I(q)|2 we directly obtain the normalized intensity correlation function g2(Δr) [1] [see Fig. 3
(right)]. In our example, for speckles of finite size b/a = 1.24, the intercept of the correlation
function is given by 1+1/μ = 1.92. In Fig. 4 we compare Eq. (11) with experimental results
and find an excellent agreement.
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The expectations and the variances of i and c defined by Eqs. (2) and (3) can be calculated
for the gamma distribution using the known expression for its statistical moments:

〈Inα〉=
Γ(μ +n)

Γ(μ)

( 〈I〉
μ

)n
. (14)

We obtain

〈i〉= 〈I〉, σ2i
〈i〉2 =

1
μN

, (15)

〈c〉=
〈I〉2
μ

, (16)

σ2c
〈c〉2 =

2
N−1

[
1+

3
μ

(
1− 1

N

)]
. (17)

These equations are exact provided that the integrated intensities Iα are independent random
variables obeying the gamma distribution [Eq. (10)]. As expected, they coincide with Eqs. (4),
(5), (7), and (8) for μ = 1, when Eq. (10) becomes identical to the negative exponential dis-
tribution. When μ > 1, the variance of intensities c of the speckle pattern is reduced due to the
effective spatial averaging over the area of a pixel that becomes comparable to the typical size
of the speckle spot b [see Eq. (16)]. At the same time, fluctuations of c from one meta-pixel to
another are suppressed [see Eq. (17)]. In the limit of large N we have

σ2c
〈c〉2

∣∣∣∣
N→∞

=
2
N

(
1+

3
μ

)
. (18)

2.3. Role of correlations between neighboring pixels
The results obtained in the previous subsection can be extended to include correlations be-
tween neighboring pixels. In a matrix of adjacent square pixels (Fig. 2) of side a larger than
the correlation range b of the speckle field, it appears reasonable to take into account only
correlations between integrated intensities Iα corresponding to neighboring pixels and to ne-
glect correlations between intensities of more distant pixels. The impact of correlations on the
average values and variances of i and c is described by two additional parameters

1
μ2

=
1
a4

∫
pixel 1

d2r
∫

pixel 2

d2r′
[
g2

(
r− r′)−1] , (19)

1
μ3

=
1
a4

∫
pixel 1

d2r
∫

pixel 3

d2r′
[
g2

(
r− r′)−1] , (20)

where, in contrast to Eq. (11), the two integrations in each equation run over two different
pixels: the neighboring pixels 1 and 2 situated side by side in Eq. (19) or the pixels 1 and 3
situated next to each other on a diagonal of a square matrix of pixels in Eq. (20), see Fig. 2.
With these definitions in hand, we are ready to compute the average value and the variance of

i. The average 〈i〉= 〈I〉 is the same as in the absence of correlations between pixels. To compute
the variance of i, σ2i = 〈i2〉− 〈i〉2, we need to know 〈i2〉 which is the ensemble average of the
square of Eq. (2):

〈i2〉=
1
N2

N

∑
α=1

N

∑
α ′=1

〈Iα Iα ′ 〉. (21)
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Using the definition [Eq. (1)] of Iα and the parameters μ , μ2 and μ3 that we introduced in
Eqs. (11), (19), and (20), the correlation function 〈Iα Iα ′ 〉 that appears in Eq. (21) is equal to

〈I2〉 =
1
a4

∫
pixel

d2r
∫
pixel

d2r′〈I(r)I(r′)〉

= 〈I〉2
(
1+

1
μ

)
, (22)

when α = α ′,

〈I1I2〉 =
1
a4

∫
pixel 1

d2r
∫

pixel 2

d2r′〈I(r)I(r′)〉

= 〈I〉2
(
1+

1
μ2

)
, (23)

when α and α ′ correspond to two neighboring pixels situated side by side as the pixels 1 and 2
in Fig. 2,

〈I1I3〉 =
1
a4

∫
pixel 1

d2r
∫

pixel 3

d2r′〈I(r)I(r′)〉

= 〈I〉2
(
1+

1
μ3

)
, (24)

when α and α ′ correspond to two neighboring pixels situated next to each other on a diagonal
as the pixels 1 and 3 in Fig. 2, or simply 〈I〉2 for pixels that are not neighbors. The sum in
Eq. (21) contains N terms of type Eq. (22) (one term per pixel), 4(N −√N) terms of type
Eq. (23), 4(

√
N−1)2 terms of type Eq. (24) and N2−(3

√
N−2)2 terms 〈I〉2. These expressions

follow from accurately counting the number of neighbors of types 2 and 3 for all pixels with
account for the fact that the pixels situated at the boundary of a square matrix of pixels have
less neighbors. Combining all these results we have

〈i2〉 =
1
N2

{
N〈I2〉+4(N−

√
N)〈I1I2〉

+ 4(
√
N−1)2〈I1I3〉+[N2− (3

√
N−2)2]〈I〉2

}
. (25)

Using Eqs. (22)–(25) and the definition σ2i = 〈i2〉−〈i〉2 we obtain the final result:
σ2i
〈i〉2 =

1
N

[
1
μ

+
4
μ2

(
1− 1√

N

)
+
4
μ3

(
1− 2√

N
+
1
N

)]
. (26)

The average value of c can be found by noting that the definition of c, Eq. (3), can be rewritten
as

c=
1

N−1
N

∑
α=1

I2α −
i2

1−1/N . (27)

The ensemble average of this equation is readily found by using Eq. (22) for 〈I2α〉 ≡ 〈I2〉 and
Eq. (25) for 〈i2〉:

〈c〉= 〈I〉2
[
1
μ
− 4

μ2
√
N(
√
N+1)

− 4(
√
N−1)

μ3N(
√
N+1)

]
. (28)
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For N→ ∞, Eq. (28) reduces to Eq. (16).
An interesting consequence of Eq. (28) is that the expectation value of c becomes N-

dependent. Because we saw in the previous sections that when different pixels are considered
independent, 〈c〉 does not depend on N [cf. Eqs. (5) and (16)], we conclude that the dependence
of 〈c〉 on N is a signature of correlation between signals corresponding to different pixels. The
estimator [Eq. (3)] acquires a bias. Interestingly, the spatial range of correlations b or, more
precisely, the ratio b/a can be estimated by observing the N-dependence of 〈c〉.
The variance of c, σ2c , can be calculated along the same lines as 〈c〉. The calculation, however,

is much more involved and rapidly leads to cumbersome equations. Instead of dealing with
this lengthy and, anyway, approximate analytic calculation, we estimate σ2c by a numerical
simulation. We use a computer to generate a set of 4096×4096 speckle patterns with correlation
lengths b= 2, 4, and 8, respectively. These speckle patterns are then used to generate integrated
speckle patterns with pixel sizes a varying from 2 to 64. The integrated speckle patterns model
outputs of a typical CCD or CMOS camera. Finally, we numerically compute the dependencies
of 〈c〉 and σ2c on the number N of pixels, for fixed ratios b/a. For b/a� 1 the parameter
μ characterizing integrated speckle patterns [Eq. (11)] is a function of b/a only. Hence, by
inverting this function we can express b/a and hence σ2c /〈c〉2 as a function of μ instead of b/a.
We know that Eq. (17) is valid in the limit of μ →∞ (or, equivalently, b/a→ 0) which suggests
that σ2c /〈c〉2 can be expressed as a series in 1/μ of which the terms of order (1/μ)0 and (1/μ)1

are already known from Eq. (17). In the limit of large N, the results of our simulations can be
fit by adding a term quadratic in 1/μ:

σ2c
〈c〉2 � 2

N

[
1+

3
μ

+
12
μ2

]
=
H(μ)
N

, (29)

where we introducedH(μ)� 2(1+3/μ +12/μ2). This equation appears to describe our results
quite well for 0 < 1/μ < 0.8 (see Sec. 2.5). For uncorrelated pixels H(μ) � 2(1+3/μ) from
Eq. (18).

2.4. Properties of time-integrated speckle patterns
If the scattering medium is not stationary like, e.g., a liquid suspension of dielectric particles,
the intensity I of scattered light fluctuates in time. In such an experiment the intensity I of
scattered light changes not only as a function of position r, but also as a function of time t:
I = I(r, t). Fluctuations of I in time can be characterized by its autocorrelation function,

g2(τ) =
〈I(t)I(t+ τ)〉

〈I〉2 , (30)

where we omitted the position r from the arguments of I, for clarity. The analysis presented
in the previous section applies to this situation too, provided that the integration time T (i.e.
the time during which the signal is accumulated to determine Iα ) is much shorter than the
characteristic correlation time τc of variations of I. In the opposite case, i.e. when T � τc,
the definition of Iα should include not only the spatial integration over the pixel area, but the
temporal integration as well.
Under the assumption of small pixel size a� b and statistically independent Iα following

the negative exponential distribution, the effect of finite integration time can be described by a
parameter ν [13, 27]:

1
ν

=
1
T 2

∫ T

0
dt

∫ T

0
dt ′

[
g2(t− t ′)−1

]
. (31)

This definition is analogous to that of μ in Eq. (11), with the integrations over space (i.e. over
a pixel) being replaced by integrations over time. Both integrations represent (partial) averaging
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Fig. 5. Average variance of the intensity fluctuations 〈c〉 and its noise σ2c as functions of
the number of pixels N. Speckle pattern is recorded in the image plane for light reflected
from a solid piece of Teflon. Exposure time is 1 ms, transport mean free path in Teflon
l∗ � 0.25 mm, camera pixel size a= 9.9 μm, magnification one. Left panel: analysis using
a subset of pixels (all neighboring pixels omitted, full symbols) leads to a constant value
of 〈c〉 [Eq. (16), dotted lines]. Analysis using all pixels (open symbols) is compared to
the prediction of Eq. (28) (solid lines). Right panel: thick black and thin blue lines show
predictions of Eqs. (18) and (29), respectively. The inset shows a comparison of the exper-
imental values (symbols) and theoretical predictions for H(μ) = Nσ2c /〈c〉2: Eq. (18) (blue
line) and Eq. (29) (red line).

over position or time due to either the finite area of the pixel [in Eq. (11)] or non-zero integration
time T [in Eq. (31)]. Because the integrand of Eq. (31) is a function only of the difference t− t′,
we can change the variables of integration to t̄ = 1

2 (t+ t
′) and τ = t− t ′ and perform integration

over t̄. The expression for ν then becomes

1
ν

=
2
T

∫ T

0
[g2(τ)−1] (1− τ/T )dτ. (32)

The integrated intensity Iα follows the gamma distribution [Eq. (10)] with ν substituted for
μ [1]. The average value and the normalized variance of c are given by Eqs. (16) and (17),
respectively.
For pixel size a that becomes comparable to the correlation length b of the speckle pattern, we

can take into account correlations between integrated intensities corresponding to neighboring
pixels following the approach of Sec. 2.3. The outcome of our analysis is quite simple: all
results of Sec. 2.3 — and, in particular, Eqs. (26), (28), and (29)—still apply but with μ , μ2 and
μ3 replaced by μ×ν , μ2×ν and μ3×ν , respectively. Here μ , μ2 and μ3 describe the impact
of spatial correlations, whereas ν accounts for time integration. The effects of spatial and time
correlations thus fully decouple. This is due to the fact that the spatio-temporal correlation
function g2(Δr,τ)− 1 = 〈I(r, t)I(r+ Δr, t+ τ)〉/〈I〉2− 1 decouples, in its turn, into a product
of position- and time-dependent parts.

2.5. Comparison with experiment
In our experiment, linearly polarized light from a solid state laser (Verdi V5 from Coherent,
wavelength λ = 532 nm) is expanded and collimated to a beam of several centimeters in waist
to create an approximately homogeneous illumination spot on the sample surface (see Fig. 1).
Liquid samples are contained in large glass containers whereas solid samples are measured
in air. The diffuse reflected light is monitored in the image plane in the crossed polarization
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channel with a CCD camera PCO Pixelfly (640×480 pixels of 9.9×9.9 μm2 size, 12 bit) at
magnification one. The estimated depth-of-focus of the imaging system is close to 0.1 mm.
The actual size of speckle spots on the CCD chip can be adjusted by varying the aperture
of the camera objective. For the simple configuration of a single lens placed at a distance l
from the screen and a circular aperture with radius q the speckle correlation length is [26]
b= 2l

/
q=

[
4l

/
k f

]× f/#.
Our camera objective has an equivalent focal length of f = 50 mm and is placed at a distance

l ∼ 100 mm from the CCD sensor. The f -number of the objective can be varied from f/#= 2.8
to 32. The accessible values of b are thus comparable or smaller than the pixel size b≤ a. The
camera exposure time is adjustable with the shortest time used of 0.1 ms. The maximum speed
of data acquisition at full resolution is 50 frames per second. The recorded images are corrected
for dark counts and slight spatial variations of the average intensity. Namely, an average over
a large number of statistically independent images it computed. Next the reference image is
smoothed by taking a sliding window average (10× 10 pixel) in order to eliminate residual
signatures of the speckle. Subsequently, each recorded image is divided by this mean and the
statistical properties are calculated. We have carefully checked that the choice of the sliding
window average does not alter the experimental results. Throughout this article we compare
two different types of experiments with theory. In an idealized experiment we analyze only a
subset of pixels where neighboring pixels are omitted. The procedure effectively eliminates the
effect of spatial correlations between the pixels for all situations considered here. The second
set of data is obtained by analyzing all available pixels, a situation typically encountered in
actual applications.
We first analyze the static speckle pattern of light reflected from a solid piece of Teflon

(thickness ≈1 cm) with a typical photon transport mean free path l∗ � 0.25 mm. In Fig. 5,
we compare our experimental results for 〈c〉 (left panel) and its normalized variance σ2c /〈c〉2
(right panel) with the predictions of the theoretical model developed above. The parameter
μ is determined from the best fit to the data via the relation μ = 〈I〉2

/
〈c〉 for N → ∞. The

values obtained for μ are found in excellent agreement with the theoretical predictions as shown
in Fig. 4. Here the parameter b for all settings has been obtained from the relation b ∝ f

/
#

using the known value of b/a = 1.24 for f
/
# = 32 (Fig. 3). For consistency, in the following

discussion, for dynamic media, we use the fitted values of μ for each setting.
For the static samples, good agreement with theory is found for the N-dependence of the

mean and the variance of 〈c〉. In particular, we clearly see that 〈c〉 is indeed independent ofN for
a subset of uncorrelated pixels, whereas it acquires an N-dependence for correlated pixels. The
expected 1/N dependence of the variance of c is observed for both uncorrelated and correlated
pixels, though with different prefactors. As follows from Eq. (29), the prefactor H(μ) depends
on the degree of correlation between neighboring pixels that we quantify by the parameter μ .
It is shown in the inset of Fig. 5. The values of H following from the experiment are close to
those expected theoretically. Small but visible discrepancies between data and theory in Fig. 5
are most probably due to the approximate nature of our theoretical model: even for uncorrelated
pixels the statistical distribution of intensity does not follow the gamma distribution exactly [1]
and weak correlations certainly exist not only between neighboring but between distant pixels
as well.

3. Noise in photon correlation spectroscopy

3.1. Fluctuations of the intensity correlation function
We now turn our attention to imaging and spectroscopy with speckle correlations. Detailed
information on temporal fluctuations of intensity can be obtained by choosing T � τc and
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correlating speckle images separated by a time lag τ larger than T . When intensities Iα(t) are
measured for N pixels, the degree of intensity correlation can be estimated as

c(τ) =
1

N−1
N

∑
α=1

[Iα(t)− i(t)] [Iα(t+ τ)− i(t+ τ)] , (33)

where

i(t) =
1
N

N

∑
α=1

Iα(t) (34)

is an unbiased estimator of the average intensity 〈I〉; it is equivalent to i of Sec. 2. However, it
will be important for us to keep track of the difference between i(t) and i(t+τ) in the definition
[Eq. (33)] of c(τ).
The average and the variance of c(τ) for independent pixels with Iα(t) distributed according

to the negative exponential distribution are:

〈c(τ)〉 = 〈I〉2 [g2(τ)−1] , (35)
σ2c(τ)

〈c(τ)〉2 =
g2(τ)2

(
3− 2

N
)−2[

g2(τ)− 1
N
]

(N−1) [g2(τ)−1]2 . (36)

In the limit of large N we have

σ2c(τ)

〈c(τ)〉2
∣∣∣∣∣
N→∞

=
1
N
× g2(τ) [3g2(τ)−2]

[g2(τ)−1]2 . (37)

As we saw in the previous sections, it is important to account for deviations of the intensity
distribution from the negative exponential one as well as for correlations between neighboring
pixels in the image, if a comparison with experiment is attempted. Because the intensity cor-
relation function g2(Δr,τ)− 1 = 〈I(r, t)I(r+ Δr, t+ τ)〉/〈I〉2− 1 decouples into a product of
position- and time-dependent parts, we readily obtain

〈c(τ)〉 = 〈I〉2
[
1
μ
− 4

μ2
√
N(
√
N+1)

− 4(
√
N−1)

μ3N(
√
N+1)

]
[g2(τ)−1] (38)

for the average of c(τ). Here μ , μ2 and μ3 account for spatial correlations of the instantaneous
speckle pattern and are given by Eqs. (11), (19) and (20), respectively.
The calculation of the variance of fluctuations of c(τ) with account for correlations between

neighboring pixels appears to be much more involved. However, an approximate result can still
be obtained by an ad hoc combination of Eqs. (29) and (36):

σ2c(τ)

〈c(τ)〉2 � H(μ)
8N

× g2(τ) [3g2(τ)−2]
[g2(τ)−1]2 . (39)

To compare Eqs. (35)–(39) with measurements we have carried out a time correlation ex-
periment on a slowly relaxing sample. We dispersed about 3.3% of polystyrene microspheres
(diameter 710 nm) in an aqueous solution of cetylpyridinium chloride/sodium salicylate (100
mM CPyCl/60 mM NaSal). The resulting surfactant solution strongly scatters light with the
transport mean free path l∗ � 73 μm at 532 nm. A detailed characterization of the system is
given in Ref. [29]. It displays strongly viscoelastic properties with a slow terminal relaxation.
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Fig. 6. Noise of the speckle correlation coefficient as a function of the time lag τ (symbols).
Lines show predictions by Eqs. (39) (left) and (36) (right). Inset of the left panel shows the
intensity correlation function g2(τ).

For our measurement we keep the sample at room temperature T � 22◦ C which sets the re-
laxation time to several tens of seconds. We first determine the full autocorrelation function
from a combined photon PCS and CCD-camera based experiment [9]. This yields the tempo-
ral autocorrelation function g2(τ) of scattered light (see the inset of Fig. 6). We then perform
measurements of the noise of the speckle correlation coefficient c(τ) for different sizes of the
camera objective aperture corresponding to the values of μ ranging from 1.29 to 5.15, and as
a function of the number of pixels N. In all cases we observe that the normalized variance of
c(τ) scales with 1/N as expected from the theory. In Fig. 6 we show Nσ2c /〈c〉2 as a function
of the time lag τ . The general rule is that the normalized variance of the correlation coefficient
c(τ) increases with τ . Experiment and theory are in fairly good agreement if the analysis is
performed on a subset of pixels (right panel of Fig. 6), especially at small μ , when the statis-
tics of intensity fluctuations is close to negative exponential. The agreement is worse when all
pixels are analyzed (left panel of Fig. 6), even though the theory describes the general trend of
our data quite well. This suggests that either we were unable to eliminate residual experimental
errors or that additional factors, not taken into account in our theoretical model, enter into play
when important correlations between signals corresponding to different pixels are present.

3.2. Fluctuations of the intensity structure function
Instead of the intensity correlation function g2(τ), fluctuations of intensity can be characterized
by a structure function

D(τ) = 〈[I(t)− I(t+ τ)]2〉= 〈I〉2d(τ), (40)

where for the case of Gaussian statistics

d(τ) =
〈[I(t)− I(t+ τ)]2〉

〈I〉2 = 2 [g2(0)−g2(τ)] . (41)

The intensity structure function (ISF) is a more direct measure of the dynamic activity and
has several advantages as compared to the intensity correlation function (ICF) [3, 20]. While
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Fig. 7. Noise of the speckle structure coefficient as a function of time lag τ (symbols). As
predicted by the theory, the noise is independent of τ . Lines show predictions of Eqs. (46)
(left) and (44) (right). The inset of the right panel shows the intensity structure function
d(τ).

both quantities are directly related in the limit of perfect measurement statistics, the ISF is
known to outperform the ICF in accuracy when the collection time is limited. Furthermore, the
ISF is less sensitive to low frequency noise or drifts [3]. An unbiased estimator of D(t) is

s(τ) =
1
N

N

∑
α=1

[Iα(t)− Iα(t+ τ)]2 . (42)

For the negative exponential distribution of integrated intensities Iα(t), assuming no correla-
tion between intensities at different pixels, we obtain

〈s(τ)〉 = D(τ), (43)
σ2s(τ)

〈s(τ)〉2 =
5
N

. (44)

Accounting for finite pixel size a that can become comparable to the correlations length b of
the speckle pattern, we obtain

〈s(τ)〉 =
D(τ)

μ
. (45)

Once again, the calculation of the variance of fluctuations of s(τ) taking into account correla-
tions between neighboring pixels appears to be much more involved. However, an approximate
result can still be obtained by a (though ad-hoc) combination of Eqs. (29) and (44):

σ2s(τ)

〈s(τ)〉2 �
5
8N
H(μ). (46)

A comparison between Eqs. (44), (46) and experimental data is presented in Fig. 7. The
theory correctly predicts that the noise of s(τ) scales with 1/N and that it is independent of τ .
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However, theory and experiment do not show quantitative agreement: theoretical lines lie either
higher (blue and red lines in the left panel of Fig. 7) or lower (all other lines in Fig. 7) than the
data. The reasons behind this disagreement are the same as in the case of intensity correlation
coefficient c(τ) in Sec. 3.1.

4. Conclusions

In the present paper we presented a study of noise in modern speckle correlation and imaging
techniques. The noise originates from replacing the ensemble averaging (assumed in theoret-
ical models) by averaging over a finite number N of pixels of a digital camera. In particular,
we studied the noise of the speckle intensity variance c, and of the intensity correlation and
structure coefficients c(τ) and s(τ), respectively. The variances of all these quantities decrease
as 1/N when the number of pixels is increased and depend in complex ways on the spatial (due
to the finite pixel size) and temporal (due to the finite integration time) correlations of inten-
sity in the speckle pattern. For stationary speckle patterns, we obtained quantitative agreement
between measurements and the theoretical model that we developed in this paper. For dynamic
speckle patterns, theoretical predictions reproduce general trends of our data but fail to provide
a fully quantitative description. We believe that this is due to the approximate character of our
theoretical model (neglecting correlations between distant pixels, gamma distribution of inten-
sity at a single pixel) as well as to imperfections of our experiment (impossibility to achieve a
perfectly uniform illumination of the sample, necessity to work with weak signals, etc.). De-
spite the absence of quantitative agreement between theory and experiment in the latter case,
the results presented in the paper provide an important starting point for estimation of the noise
level in such applications as the multi-speckle dynamic light scattering, time-resolved correla-
tion spectroscopy, speckle visibility spectroscopy, near-field scattering, laser speckle imaging
and echo speckle imaging.
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