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In the classical risk model, we prove the weak convergence of a sequence of empirical finite-time ruin
probabilities. In an earlier paper (see Loisel et al., (2008)), we proved an equivalent result in the special
case where the initial reserve is zero, and checked that numerically the general case seems to be true.
In this paper, we prove the general case (with a nonnegative initial reserve), which is important for
applications to estimation risk. So-called partly shifted risk processes are introduced, and used to derive
an explicit expression of the asymptotic variance of the considered estimator. This provides a clear
representation of the influence function associated with finite time ruin probabilities and gives a useful
tool to quantify estimation risk according to new regulations.

1. Introduction

In ruin theory, the surplus of an insurance company is classically
represented by the risk process (Rt)t�0 defined as follows: for t � 0,

Rt = u + ct − St ,

where u is the nonnegative amount of initial reserves and c > 0 is
the premium income rate. The cumulated claim amount up to time
t is described by the compound Poisson process

St =
Nt∑
i=1

Wi,

where the amounts of claims Wi, i � 1, are nonnegative
independent, identically-distributed randomvariables, distributed
as W , with the convention that St = 0 if Nt = 0. The number of
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claimsNt until t � 0 ismodeled by a homogeneous Poisson process
(Nt)t�0 of intensityλ. Claimamounts and arrival times are assumed
to be independent.

We are interested in the robust estimation of finite-time
ruin probabilities. Solvency regulations for insurance companies,
called Solvency II, impose the control of a certain number of
insolvency probabilities. The chosen riskmeasure to determine the
Solvency Capital Requirements (SCR) is more likely to be a 99.5%,
one-year Value at Risk than a continuous-time ruin probability.
Nevertheless, reserving is expected to quantified by a best estimate
of liabilities, plus a so-calledMarket-ValueMargin (MVM),which is
determined by a cost-of-capital approach: thismargin corresponds
to the cost of maintaining the surplus above the SCR level
during the whole period [0, t], where t is typically 10 years.
This corresponds to a continuous-time ruin problem in a finite
horizon. Let us denote byψ(u, t) the probability of ruin before time
t with initial reserve u:

ψ(u, t) = P [∃s ∈ [0, t], Rs < 0 | R0 = u] , u � 0, t > 0,

and let

ϕ(u, t) = 1 − ψ(u, t)

be the probability of non-ruin within time t with initial reserve u.
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Algorithms to compute or approximate ψ(u, t) have been
proposed, among others, by Asmussen et al. (2002) by themeans of
Erlangization, by Picard and Lefèvre (1997) by the means of Appell
polynomials, and by Rullière and Loisel (2004) and by themeans of
a Seal-type argument based on the ballot Lemma (see also Lefèvre
and Loisel (2008)). Thismodel has been investigated by Lefèvre and
Loisel (2009) and Biard et al. (2008) among others in the case of
dependent claim amounts. Sensitivity analysis of finite-time ruin
probabilities has been studied in Loisel et al. (2008) and Loisel and
Privault (2009). Some estimation problems have been studied in
Frees (1986), Hipp (1989), Croux and Veraverbeke (1990), Bening
and Korolev (2000). An important feature of Solvency II is that
estimation risk should be controlled, particularly if internalmodels
are used. However, most models use a calibrated model and
an a posteriori proportional loading factor to take into account
estimation risk. It would be of course much better to carry out a
robustness analysis at the same time. This led us to define in an
earlier paper (see Loisel et al. (2008)) reliable ruin probabilities
as quantiles of empirical finite-time ruin probabilities, and the
Estimation Risk Solvency Margin (ERSM) as the additional capital
required to cover estimation risk.

Let ψN(u, t) and ϕN(u, t) respectively be the finite-time ruin
and non-ruin probability with claim amounts drawn from the
empirical distribution FN associated with an i.i.d. sample of
distribution F , where F is the c.d.f. of W and N � 1 is the size of
the sample. Define the reliable finite-time ruin probability ψ

N,reliable
1−ε

(u, t) as the (1 − ε)-quantile of the (random) bootstrapped finite-
time ruin probability ψN(u, t):

ψ
N,reliable
1−ε (u, t) = inf

s�0

{
P
[
ψN(u, t) � s

]
� ε

}
.

If uη and uη,ε are respectively defined as the initial capital required
to ensure that

ψ(uη, t) � η

and

ψ
N,reliable
1−ε (uη,ε, t) � η,

the Estimation Risk Solvency Capital ERSMη,1−ε can be defined as
the additional capital needed to take estimation risk into account:

ERSMη,1−ε = uη,1−ε − uη.

In Loisel et al. (2008), we have shown the convergence of
√
N

(
ϕ(u, t) − ϕN(u, t)

)
as N tends to +∞ in distribution to a centered, Gaussian random
variable only for u = 0. The proof was based on the symmetrical
in (W1, . . . ,Wn) expression

ϕ(0, t) =
∑
n�1

P (Nt = n) E
[
(u + ct − (W1 + · · · + Wn))+

]
,

where x+ denotes the positive part of a real number x. We also
computed the asymptotic variance Vu of the limit of
√
N

(
ϕ(u, t) − ϕN(u, t)

)
,

and expressed this variance in terms of the variance of a random
variable defined from the influence function of finite-time non-
ruin probability. Influence functions were introduced in the field
of robust statistics to study the impact of data contamination on
the estimated quantity (see Huber (1981) and Hampel (1974)). For
a functional T of a distribution F , the influence function at point
x ∈ R is defined as the limit (when it exists)

IFx[T] = lim
s↓0

T(F (s,x)) − T(F)

s
,

Fig. 1. A sample path of the classical risk process Rt .

where F (s,x) is defined for x ∈ R and s > 0 by

for u ∈ R, F (s,x)(u) = s1{x�u} + (1 − s)F(u).

In the sequel, for each quantity related to the contaminated
distribution F (s,x), we use the exponent (s,x). In a recent paper,
Marceau and Rioux (2001) provided an algorithm to compute the
influence function of the eventual probability of ruin. We obtained
in Loisel et al. (2008) that for all u � 0,

Vu = VY [IFY [ϕ(u, t)]] . (1)

Nevertheless, it remains to be shown that the limit distribution of√
N

(
ϕ(u, t) − ϕN(u, t)

)
is Gaussian, and besides formula (1) involves computation of
influence functions described in Loisel et al. (2008), which
corresponds to heavy computation times and new convergence
issues. In this paper, we prove the convergence in the distribution
of√
N

(
ϕ(u, t) − ϕN(u, t)

)
toward a Gaussian random variable for all u � 0 by the means
of U-statistics and so-called partly shifted risk processes. These
processes are defined in Section 2, in which finite-time ruin
probabilities for partly shifted risk processes are computed aswell.
The expression of Vu in terms of ruin probabilities for modified risk
processes derived in Section 3.5 is of fundamental importance from
a theoretical and operational point of view: it gives a probabilistic
representation of Vu, which is used to prove the convergence
of the empirical ruin probability for arbitrary u � 0. We also
give elegant mathematical expressions for influence functions
associated to finite time ruin probabilities. Finally, we provide
efficient numerical methods to obtain numerical values of Vu.

2. Finite-time ruin probabilities for partly shifted risk pro-
cesses

2.1. Partly shifted risk processes

Given x � 0, we define the x-partly shifted risk process as the
stochastic process given by

Rx
t = u + ct − Sxt ,

where

Sxt = St + x1{U�t},

and U is a certain positive random variable. After this random
delay U , the sample path of Rx

t is shifted x units downwards. It
corresponds to add a jump of size x at a random instant U (see
Figs. 1 and 2).
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Fig. 2. A corresponding sample path of the x-partly shifted risk process.

The process (Rx
t )t�0 has no longer stationary and independent

increments. Nevertheless, we will show how to adapt results of
risk theory to these partly shifted risk processes. This is important
since, aswewill see, finite-time ruin probabilities for partly shifted
processes are directly involved in computations of sensitivities,
influence functions and asymptotic variance of finite-time ruin
probabilities for classical risk processes.

2.2. Finite-time ruin probability for partly shifted risk processes
starting from zero

Let us consider the case where claim amounts are integer-
valued.

Proposition 1. For c > 0, x > 0 and n ∈ N \ {0}, we have

P
[
Sxt < ct, ∀t <

n

c

]
= P

[
Sxi/c < i, i = 1..n

]
.

This is a direct adaptation of results of Rullière and Loisel (2004).
It thus suffices to study the cumulated claim amount process at a
finite set of inventory dates.

To this end, consider for 1 � i � n the random variables defined
by Yi = Si/c , Y

x
i = Sxi/c , and

Y x
i = Yi + x1{Ū�i},

where Ū is uniformly distributed on the finite set {1, 2, . . . , n}.
The finite-time ruin probability for partly shifted risk processes
starting from 0 is obtained by an adaptation of the well known
ballot theorem.

Lemma 1 (Ballot Theorem (See Takács (1962a,b))). For n � 1, let
Zi, i = 1..n be a process with exchangeable increments. Then, we have

P [Zi < i, i = 1..n, Zn = j] = n − j

n
P [Zn = j] 0 � j � n.

The ballot theorem applies to the family of random variables Yi, i =
1, .., n, which has i.i.d. increments, but also to the Y x

i , i = 1, . . . , n,
which has exchangeable (but not independent) increments.

Proposition 2 (Ballot Theorem for Partly Shifted Risk Processes). Let
W1, . . . ,Wn be i.i.d., integer-valued random variables. Consider the
partial sum process

Yi =
i∑

j=1

Wj,

and define

Y x
i = Yi + x1{Ū�i},

where Ū is uniformly distributed on the finite set {1, 2, . . . , n}. We
have

P
[
Y x
i < i, i = 1..n, Y x

n = j
] = n − j

n
P
[
Y x
n = j

]
0 � j � n.

Proof. Takács’s result is true for exchangeable random variables
(and even for cyclically exchangeable random variables). It can
easily be shown that the process Y x

i , 1 � i � n has exchangeable
increments Wx

i , 1 � i � n, defined by

Wx
i = Wi + x1{Ū=i}.

To this end, consider the distribution function

FWx
σ(1)

,...,Wx
σ(n)

associated with the random vector(
Wx

σ(1), . . . ,W
x
σ(n)

)
,

which is also the distribution function of the random vector(
Wx

1 , . . . ,W
x
n

)
,

which is denoted by

FWx
1 ,...,Wx

n
,

because for any w1, . . . , wn ∈ R, we have

FWx
σ(1)

,...,Wx
σ(n)

(w1, . . . , wn)

= 1

n

n∑
i=1

FWσ(1),...,Wσ(n)
(w1, . . . , wi−1, wi − x, wi+1, . . . , wn) (2)

= 1

n

n∑
i=1

FW1,...,Wn(w1, . . . , wi−1, wi − x, wi+1, . . . , wn) (3)

= FWx
1 ,...,Wx

n
(w1, . . . , wn). (4)

We used the fact that the random variables Wi, 1 � i � n, are
exchangeable to get (3) from (2), and the fact that Ū is uniformly
distributed on {1, . . . , n}, and independent of theWi’s to write (2),
and to get (4) from (3). �

Remark 1. The previous result could also be proved by induction
on n � 1.

It remains valid if Ū is uniformly distributed on {1, .., nmax},
with nmax � n. To prove this, distinguish two cases: given that
Ū � n, Proposition 2 applies, and given that Ū > n, the classical
ballot lemma applies.

Propositions 1 and 2 directly enable us to obtain the finite-time
ruin probability for partly shifted risk processes starting from 0:

Theorem 1. The finite-time ruin probability for partly shifted risk
processes starting from 0 is given by

P
[
Rx
s � 0∀s < t | Rx

0 = 0
] = E

[
(ct − x − St)+

ct

]
,

where Rx
s = Rs − x1{U�s}, and U is uniformly distributed on [0, t].

2.3. Finite-time ruin probability for partly shifted risk processes
starting from u � 0

Conditionally on the last continuous passage of Rt at 0, the
process is located under the barrier u+ct at time t = n/c if there is
no ruin, or if the last visit of the process at 0 occurred at time i/c . Let
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T x
u be the first instant of ruin associated with the modified process,

when R0 = u. Then we have (see Rullière and Loisel (2004))

P
[
Sxn/c < u + n

] = P
[
T x
u >

n

c

]
+ Δ,

where

Δ =
n−1∑
i=1

n−i∑
j=1

P
[
Sxi/c = u + i ∩ Sxi+k/c − Sxi/c < i,

k = 1, . . . , n − i ∩ Sxn/c − Sxi/c = j
]
.

If Ū is uniformly distributed on 1, . . . , n, conditioning on Ū ,
we can consider every element of the second sum and get the
following result.

Theorem 2 (Modified Ruin Probability when R0 = u). The ruin
probability associated to the modified process is given by

P
[
T x
u >

n

c

]
= P

[
x + Sn/c < u + n

] − Δ1 − Δ2,

where

Δ1 =
n−1∑
i=1

i

n
P
[
x + Si/c = u + i

] n−i∑
j=1

P
[
S(n−i)/c = j

] n − i − j

n − i
,

and

Δ2 =
n−1∑
i=1

n − i

n
P
[
Si/c = u + i

] n−i∑
j=1

P
[
x + S(n−i)/c = j

] n − i − j

n − i
.

3. Sensitivity analysis

3.1. The ruin probability as a function of the additional claim

In the sequel, we consider the probability of non-ruin before
t = n/c, when starting with an integer valued initial reserve.
Conditioning on the last passage time i/c of Rt at 0, the probability
that the reserve is some integer j at time n/c, 1 � j � u+n, is given
by (see Loisel et al. (2008))

P
[
Rn/c = j

] = P
[
Tu > n/c and Rn/c = j

] +
n−j∑
i=1

P
[
Si/c = u + i

]
× P

[
S(n−i)/c = j and Sν/c < ν,∀ 1 � ν � n − i

]
,

where we assume that the sum vanishes when j � n. Using the
classical results of Takács (1962a), one obtains that the first term
is given by

P
[
Sn/c = u + n − j

] − 1{j�n}
n−j∑
i=1

P
[
Si/c = u + i

]
× P

[
S(n−i)/c = j

] n − i − j

n − i
.

For j = 0, we have P
[
Tu > n/c and Rn/c = 0

] = P [Sn/c =
u + n] − P

[
Sn/c = u + n

] = 0.
Conditionally on {Nn/c = k}, defining

ϕk,j(u, n) = P
[
Tu > n/c and Rn/c = j | Nn/c = k

]
,

and ϕk(u, n) = P
[
Tu > n/c | Nn/c = k

]
, one obtains that

ϕk,j(u, n) = P
[
W ∗k = u + n − j

]
−

n−j∑
i=1

k∑
n0=0

αi,k(n0)P
[
W ∗n0 = u + i

]
P
[
W ∗(k−n0) = j

] n − i − j

n − i
,

where αi,k(n0) = P
[
Ni/c = n0

]
P
[
N(n−i)/c = k − n0

]
/P

[
Nn/c = k

]
,

id est

αi,k(n0) =
(n0

k

)
in0(n − i)k−n0/nk.

So we have

ϕk(u, n) =
u+n∑
j=0

ϕk,j(u, n)

and

ϕ(u, n) =
u+n∑
k=0

P
[
Nn/c = k

]
ϕk(u, n).

In fact, every claim amount W takes here a positive integer value
(one can assume thatW 
= 0 by modifying λ).

3.2. Inference of ruin probabilities

We will try here to express the plugin estimator of the
probability of ruin as a U-statistic. The basic information we use
is exposed in Hoeffding (1948) and Von Mises (1947).

Assuming that the observed claims belong to the finite set
{w1, . . . , wN}, ϕk,j(u, n) can be estimated by using a statistic
ϕ̂k,j(u, n). We will write [N] = {1, . . . ,N}. We are looking for a
plugin estimator which corresponds to the probability one gets
if the empirical distribution (associated to the observed claim
amounts) is used as the claim amount distribution. We thus work
with following estimator, for which this link can be obtained:

ϕ̂k,j(u, n) = 1

Nk

∑
i1,...,ik∈{1,...,N}

[
Ik1(u + n − j)

−
n−j∑
i=1

k∑
n0=0

αi,k(n0)I
n0
1 (u + i)Ikn0+1(j)

n − i − j

n − i

]
,

where I
y
x (j) = 1{wix+···wiy=j}, x, y ∈ N, x � y. The indicator functions

I
y
x (j) are defined for each multi-index �i = (i1, . . . , ik) (omitted
here). We recall that αi,k(n0) = P

[
Bk,i/n = n0

]
, where Bk,i/n is a

binomial random variable of parameters k and i/n. Given u and n,
set

ϕ̂k,j(u, n) = 1

Nk

∑
i1,...,ik∈{1,...,N}

Φk,j(i1, . . . , ik),

where

Φk,j(i1, . . . , ik) = Φ
(1)
k,j (i1, . . . , ik) − Φ

(2)
k,j (i1, . . . , ik),

and

Φ
(1)
k,j (i1, . . . , ik) = Ik1(u + n − j),

Φ
(2)
k,j (i1, . . . , ik) =

n−j∑
i=1

k∑
n0=0

αi,k(n0)I
n0
1 (u + i)Ikn0+1(j)

n − i − j

n − i
.

A basic result of Hoeffding (1948) holds when Φk,j(i1, . . . , ik) is
symmetric as a function of i1, . . . , ik. We shall study questions of
symmetry in the next section.
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3.3. On the symmetry of ϕ̂k,j(u, n)

First, Φ
(1)
k,j (i1, . . . , ik) = Ik1(u + n − j) is clearly symmetric

as a function of i1, . . . , ik. Next, one studies the symmetry of

Φ
(2)
k,j (i1, . . . , ik). Let σk denote all the possible permutations of the

set {i1, . . . , ik}. Then one obtains that

1

k!
∑
σk

k∑
n0=0

αi,k(n0)I
n0
1 (u + i)Ikn0+1(j) = Eδ1,...,δk

[
Jk(u + i)J̄(j)

]
,

with

Jk(u + i) = 1{δ1wi1
+···+δkwik

=u+i},

and

J̄k(j) = 1{δ̄1wi1
+···+δ̄kwik

=j},

where δ̄ν = 1−δν , andwhere the random sequence δν is i.i.d., with
Bernoulli distribution with parameter i/n, ν � k.

We can show that a transposition of two elements i1 and iν
has the same effect than a transposition of δ1 and δν . The random
variables δν are i.i.d., so that the mean is invariant under any
permutation of the variables δν , that is

Eδ1,...,δk

[
Jk(u + i)J̄(j)

]
is symmetric as a function of i1, . . . , ik.

The point here is that
∑k

n0=0 αi,k(n0)I
n0
1 (u + i)Ikn0+1(j) is not

symmetric. We will use the following lemma:

Lemma 2.

Nkϕ̂k,j(u, n) =
(
N

k

)
U +

∗∑
Φk,j(i1, . . . , ik),

where the sum
∑∗

is taken over all k − uplets for which at least one
pair of indices is such that iν0 = iν1 (ν0 
= ν1), and where U is a
U-statistic.

Proof. Let Θk = {i1, . . . , ik} be a subset of [N] of k distinct
elements i1 < · · · < ik. Then one can write∑
i1,...,ik∈{1,...,N}

Φ
(2)
k,j (i1, . . . , ik) =

∑
Θk⊂[N]

∑
σk

n−j∑
i=1

k∑
n0=0

αi,k(n0)I
n0
1 (u + i)

× Ikn0+1(j)
n − i − j

n − i
+

∗∑
. . .

As stated previously, the expectation Eδ1,...,δk

[
Jk(u + i)J̄(j)

]
is

independent of the choice of the subset Θk ⊂ [N]. One obtains
that∑
i1,...,ik∈{1,...,N}

Φ
(2)
k,j (i1, . . . , ik) =

∑
Θk⊂[N]

n−j∑
i=1

k!Eδ1,...,δk

× [
Jk(u + i)J̄(j)

] n − i − j

n − i
+

∗∑
. . .

where

U = U (1) − U (2)

U (1) = 1(
N
k

) ∑
Θk⊂[N]

Ik1(u + n − j),

and

U (2) = 1(
N
k

) ∑
Θk⊂[N]

n−j∑
i=1

k!Eδ1,...,δk

[
Jk(u + i)J̄(j)

] n − i − j

n − i
,

proving the result. �

3.4. Hoeffding’s results

The variance of ϕ̂k,j(u, n) is bounded and may be expressed as
a function of a U-statistic. We can thus apply a powerful theorem
from Hoeffding (Theorem 7.3 on page 308 of Hoeffding (1948)) to
get the following theorem.

Theorem 3 (Asymptotic Normality of the Empirical Ruin Probabil-
ity). Let

ϕ̂k(u, n) =
u+n∑
j=0

ϕ̂k,j(u, n),

and set

Δk = √
N (̂ϕk(u, n) − ϕk(u, n)) .

The random vector (Δ1, . . . , Δu+n) is an asymptotically centered
normal of variance

Γ = {γ δζ
(γ ,δ)

1 }γ ,δ∈{1,...,u+n}.

The variance ζ
(γ ,δ)

1 is not very explicit. We will discuss its
various properties in the next section.

Remark 2. We can assume that the number of claims is smaller
than u + n, since, if not, ruin occurs with probability one: W � 1
and therefore Δk = 0.

The variance of
√

(N) (̂ϕ(u, n) − ϕ(u, n)) is given by

Vu =
u+n∑
γ=0

u+n∑
δ=0

γ δP
[
Nn/c = γ

]
P
[
Nn/c = δ

]
ζ

(γ ,δ)

1 .

If asymptotic normality holds, the limiting variance is given by
formula (7) of Loisel et al. (2008), andwehaveVu = VY [IFYϕ(u, t)],
where IFY is the related influence function (for more details, see
Hampel (1974) and Hampel et al. (1986), or Huber (1981)). Let
VY denote the variance of the random variable Y . We will give
equivalent expressions for these variances using the shifted ruin
process of Section 2.

3.5. Alternative formulas for Vu

Given that among k claims, one of them is given by Y , one
has ϕY

k,j(u, n) = Lk,j(Y ) − Rk,j(Y ). We omit Y when there is no
ambiguity; furthermore, the letters L etR are used for Left andRight.
Note that

Lk,j = P
[
Y + W ∗k = u + n − j

]
.

Sincewe do not know a priori whether the claim Y occurred before
the n0th claim, Rk,j is obtained by conditioning on δ, the Bernouilli
random variable of parameter i/n, which indicates if the claim
occurred.When j = 0, one has Lk,0 = Rk,0 = P

[
Y + W ∗k = u + n

]
.

When j � 1, conditioning on δ, one obtains that Rk,j is given by

n−j∑
i=1

k∑
n0=0

i

n
P
[
Bk−1,i/n = n0 − 1

]
× P

[
Y + W ∗n0 = u + i

]
P
[
W ∗k−n0 = j

] n − i − j

n − i

+ n − i

n
P
[
Bk−1,i/n = n0

]
P
[
W ∗n0 = u + i

]
× P

[
Y + W ∗k−n0−1 = j

] n − i − j

n − i
.
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Set

Lk(Y ) =
u+n∑
j=0

Lk,j(Y ),

Rk(Y ) =
u+n∑
j=0

Rk,j(Y ),

L̄k = EY [Lk(Y )] and R̄k = EY [Rk(Y )]. Then, following Hoeffding

(1948, Section 6), one gets that the covariance term ζ
(k,l)
1 can be

written as

ζ
(k,l)
1 = EY

[(
(Lk − Rk) − (L̄k − R̄k)

) (
(Ll − Rl) − (L̄l − R̄l)

)]
.

Hence, using the fact that both L̄ and R̄ are expectations over Y , we
have

ζ
(k,l)
1 = EY [(Lk − Rk)(Ll − Rl)] − (L̄k − R̄k)(L̄l − R̄l).

In the sequel, if no specific indication is given, we consider that all
probabilities, expectations and variances are taken given Y .

The variance Vu is given by

Vu =
∞∑
k=1

∞∑
l=1

klP
[
Nn/c = k

]
P
[
Nn/c = l

]
ζ

(k,l)
1 ,

and it is easy to show that in fact

Vu = VY

[+∞∑
k=1

kP
[
Nn/c = k

]
(Lk(Y ) − Rk(Y ))

]
.

Using the fact that

kP
[
Nn/c = k

] = λn

c
P
[
Nn/c = k − 1

]
, k � 1,

one gets that Vu is the variance of the random variable

λn

c

+∞∑
k=0

P
[
Nn/c = k − 1

]
(Lk(Y ) − Rk(Y )).

The term on the left is given by

+∞∑
k=0

P
[
Nn/c = k − 1

]
Lk,j(Y ) = P

[
Y + Sn/c = u + n − j

]
+∞∑
k=0

P
[
Nn/c = k − 1

]
Lk(Y ) = P

[
Y + Sn/c � u + n

]
.

On the other hand, the term on the right is obtained by using
the identity

P
[
Nn/c = k

]
P
[
Bk,i/n = n0

] = P
[
Ni/c = n0

]
P
[
N(n−i)/c = k − n0

]
,

since we can write

+∞∑
k=0

P
[
Nn/c = k − 1

]
Rk,j(Y ) =

n−j∑
i=1

n − i − j

n − i

(
Sj,1 + Sj,2

)
,

where Sj,1 and Sj,2 are given by∑
k∈N

∑
n0�k

i

n
P
[
Ni/c = n0 − 1

]
× P

[
N(n−i)/c = k − n0

]
P
[
W ∗n0−1 + Y = u + i

]
P
[
W ∗k−n0 = j

]
,

and∑
k∈N

∑
n0�k

n − i

n
P
[
Ni/c = n0

]
P
[
N(n−i)/c = k − 1 − n0

]
× P

[
W ∗n0 = u + i

]
P
[
W ∗k−n0−1 + Y = j

]
.

Hence, we have

Sj,1 = i

n
P
[
Si/c + Y = u + i

]
P
[
S(n−i)/c = j

]
,

Sj,2 = n − i

n
P
[
Si/c = u + i

]
P
[
S(n−i)/c + Y = j

]
.

Finally, one gets the following result.

Theorem 4 (Asymptotic Variance Vu). Let Y be distributed according
to the claim size distribution. Vu is the variance over Y of the following
function of Y

λn

c
P
[
Y + Sn/c < u + n

]
− λn

c

n−1∑
i=1

i

n
P
[
Si/c + Y = u + i

] n−i∑
j=1

P
[
S(n−i)/c = j

] n − i − j

n − i

− λn

c

n−1∑
i=1

n − i

n
P
[
Si/c = u + i

] n−i∑
j=1

P
[
S(n−i)/c + Y = j

] n − i − j

n − i
.

We therefore find a mathematical expression which is similar
to the ruin probability. This can be seen intuitively quite clearly
since, apart from a factor λn/c , the random variable of interest
corresponds to the ruin probability associated to the process
obtained by adding an additional claim Y . Looking at the various
terms of the above expression, Y is added to Si/c with probability
i/n, or to S(n−i)/c with probability n− i/n. In the special case where
Y = 0, we recover the ruin probability obtained by summing
over j:

P
[
Tu > n/c and Rn/c = j

] = P
[
Sn/c = u + n − j

]
− 1{j�n}

n−j∑
i=1

P
[
Si/c = u + i

]
P
[
S(n−i)/c = j

] n − i − j

n − i
.

Notice that for u = 0, this formula corresponds to the formula for
V0 given in Loisel et al. (2008). We can finally give a more compact
version of the formula:

Theorem 5 (Link with the Partly Shifted Process). Set

ϕx(u, t) = P
[
Rx
s � 0∀s < t | Rx

0 = u
]
,

where Rx
s = Rs − 1{U<s}x, s � 0, and U is uniform on [0, t]. Then we

have

Vu = VY

[
λtϕY (u, t)

]
.

Remark 3. Using the notation of Loisel et al. (2008), one can check
that Vu is also the variance of

IFY [ϕ(u, n)] .

This is the variance of

λ
n

c
ϕY (u, n),

where

ϕx(u, n) = P
[
Rx
s � 0∀s < n/c | Rx

0 = u
]
,

and ϕ(u, n) = ϕ0(u, n) are the probabilities of non-ruin before
time n/c for the regular and the modified processes.
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4. Link with influence functions

The kth-order derivative of the ruin probability with respect to
λ involves Rx

t since

∂k

∂λk
ϕ(0, t) = tk

k∑
i=0

(
k

i

)
(−1)k−iEY1,...,Yi

[
ϕY1+···+Yi (0, t)

]
,

as a consequence of Eq. (9) in Loisel et al. (2008). In particular,

∂

∂λ
ϕ(0, t) = tEY

[
ϕY (0, t) − ϕ(0, t)

]
,

as the Yi are i.i.d., and distributed as generic claim amount W .

4.1. IF for the compound Poisson distribution

We use here some basic facts given in Loisel et al. (2008). Let T
be a functional of the distribution function F . By definition of the
influence function, one has

IFx[T] = lim
s↓0

T(F (s,x)) − T(F)

s
,

where F (s,x) is defined for x ∈ R and s > 0 as

for u ∈ R, F (s,x)(u) = s1{x�u} + (1 − s)F(u).

Theorem 6 (IF of St ). For any Borel set A ⊂ R,

IFx [P [St ∈ A]] = λt (P [x + St ∈ A] − EY [P [Y + St ∈ A]]) ,

where Y is distributed as W.

Proof. Let n be the number of claims before time t , and set pn =
P [Nt = n]. Then

P
[
S

(s,x)
t ∈ A

]
= P

[+∞∑
n=0

pnP
[
W (s,x)∗n ∈ A

]]
.

But note that

P
[
W (s,x)∗n ∈ A

]
=

n∑
k=0

(n

k

)
sk(1 − s)n−kP

[
kx + W ∗n−k ∈ A

]
.

Taking the derivative of the above expression with respect to s
when s = 0, one obtains

IFxP [St ∈ A] =
∞∑
n=0

(
pn

(n

1

)
P
[
x + W ∗n−1 ∈ A

]
− pn

(n

0

)
nP

[
W ∗n ∈ A

])
,

and it follows that, using pn = λtpn−1/nwhen n � 1,

IFxP [St ∈ A] = λt
∞∑
n=0

(
pnP

[
x + W ∗n ∈ A

]
− pnP

[
Y + W ∗n ∈ A

])
,

where Y is distributed as W . �

4.2. IF associated with ruin probabilities

Theorem 7 (IF Associated with ϕ(0, t)). The influence function of the
ruin probability starting from R0 = 0 is given by

IFx [ϕ (0, t)] = λt
(
ϕx(0, t) − EY

[
ϕY (0, t)

])
,

where ϕx(0, t) is the ruin probability of the modified risk process Rx
t

defined previously, where ϕx(0, t) = 1
ct
E [(ct − x − St)+].

Proof. Set IFx,j(n) = IFxP
[
Sn/c = j

]
, and consider

IFx

[
ϕ

(
0,

n

c

)]
=

n∑
j=0

n − j

n
IFx,j(n),

which can be obtained by using Takac’s results (see Loisel et al.
(2008), Proposition 9). The result follows then directly from the
definition of ϕx(0, n/c) and the interpretation of ϕx(0, n/c) in the
first sections. �

Remark 4. Theorem 7 links the derivative with respect to λ of the
ruin probability with the influence function since, as we already
checked,

∂

∂λ
ϕ(0, t) = tEY

[
ϕY (0, t) − ϕ(0, t)

]
.

Theorem 8 (IF Associated with ϕ(u, t)). We now turn to the com-
putation of the influence function associated with the ruin probability
starting from the initial reserve u, which is given by

IFx [ϕ (u, t)] = λt
(
ϕx(u, t) − EY

[
ϕY (u, t)

])
,

where ϕx(u, t) is the probability of ruin associated with the modified
risk process Rx

t , when Rx
0 = u.

Proof. We use Proposition 10 of Loisel et al. (2008):

IFx

[
ϕ

(
u,

n

c

)]
=

u+n∑
i=0

IFx, i(n) −
n∑

k=1

IFx,u+k(k)ϕ

(
0,

n − k

c

)
−

n∑
k=1

hu+k(k)IFx

[
ϕ

(
0,

n − k

c

)]
.

From the two previous theorems, one can transform influence
functions as functions of the distribution of x + St and Y + St . One
then gets the result by using that

P
[
T x
u >

n

c

]
= P

[
x + Sn/c < u + n

]
−

n−1∑
i=1

i

n
P
[
x + Si/c = u + i

] n−i∑
j=1

P
[
S(n−i)/c = j

] n − i − j

n − i

−
n−1∑
i=1

n − i

n
P
[
Si/c = u + i

] n−i∑
j=1

P
[
x + S(n−i)/c = j

] n − i − j

n − i
. �

Remark 5. Note that one gets back logical expressions for the
asymptotic variances:

V0 = VY

[
λtϕY (0, t)

] = VY [IFY [ϕ(0, t)]] ,

Vu = VY

[
λtϕY (u, t)

] = VY [IFY [ϕ(u, t)]] , u > 0,

as well as the following identities:

EY [IFY [ϕ(0, t)]] = 0,

EY [IFY [ϕ(u, t)]] = 0, u > 0.

Remark 6. Expressions involving Y + St or ϕY (u, t) can be linked
with the so-called dual risk process (seeMazza and Rullière, 2004).
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