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In this paper, based on a weighted projection of the user-object bipartite network, we
study the effects of user tastes on the mass-diffusion-based personalized recommendation

algorithm, where a user’s tastes or interests are defined by the average degree of the
objects he has collected. We argue that the initial recommendation power located on

the objects should be determined by both of their degree and the user’s tastes. By
introducing a tunable parameter, the user taste effects on the configuration of initial

recommendation power distribution are investigated. The numerical results indicate that
the presented algorithm could improve the accuracy, measured by the average ranking

score. More importantly, we find that when the data is sparse, the algorithm should give
more recommendation power to the objects whose degrees are close to the user’s tastes,

while when the data becomes dense, it should assign more power on the objects whose
degrees are significantly different from user’s tastes.

Keywords: Recommendation systems; bipartite network; network-based recommenda-

tion.

PACS Nos.: 89.75.Hc, 87.23.Ge, 05.70.Ln.

1. Introduction

With the rapid growth of the Internet and the World-Wide-Web, a huge amount
of data and resource confront people with an information overload.1 There are
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thousands of movies, millions of books, and billions of web pages on the web sites,
and the amount of information is increasing more quickly than our personal pro-
cessing abilities. This brings about massive amount of accessible information, which
may result in a dilemma problem. It is hard for us to effectively filter out the pieces
of information that are most appropriate for us. A landmark for information filter-
ing is the use of search engine,2,3 by which user could find the relevant web pages by
putting certain keywords. However, the search engine only returns the same results
regardless of the user’s tastes and interests.

Thus far, the most promising way to efficiently filter out the information over-
load is to provide personalized recommendations, which attempts to find out objects
likely to be interesting to the target users by extracting the hidden information from
the user’s historical selections or collections. Motivated by its significance for econ-
omy and society, the design of efficient recommendation algorithms has become
a common focus for computer science, mathematics, marketing practices, manage-
ment science and physics. Various kinds of algorithms have been proposed, such col-
laborative filtering (CF) approaches,4–8 content-based analyses,9,10 network-based
algorithm,11–14 hybrid algorithms,16,17 and so on. For a review of current progress
see Refs. 18 and 19 and the references therein.

Very recently, some physical dynamics, including mass diffusion (MD)13,14 and
heat conduction (HC),11 have found their applications in personalized recommen-
dations. These algorithms have been demonstrated to be of both high accuracy and
low computational complexity.11–14 Since MD and HC algorithms could be imple-
mented based on the user-object bipartite network, it is also called network-based
algorithm. The network-based algorithm supposes that the objects one user has
collected have the power to recommend new objects to the target user, which is
coincidence with the definition reachability.15 In this paper, we introduce an im-
proved MD algorithm with user-taste-dependent initial configuration. Compared
with the uniform initial configuration, the prediction accuracy can be enhanced by
using the user-taste-dependent configuration. More significantly, besides the pre-
diction accuracy, we find that the data sparsity is an important factor affecting the
algorithm performance. When the sparsity of the user-object bipartite network is
small, in other words, there are few edges between the users and objects, the algo-
rithm should pay more attention on the user’s habits and tastes, while when the
number of edges in the bipartite network is large, the algorithm should give more
recommendation power on the objects whose degrees are significantly different with
user’s habits. Numerical simulations show that the improved algorithm has higher
accuracy and can provide more diverse and less popular recommendations.

2. Mass-Diffusion-Based Personal Recommendation

In a recommender system, each user has voted or collected some objects, the system
could be described by a bipartite network, in which there are two kind of nodes,
users and objects, the user’s historical collection or selection behaviors could be
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well demonstrated by the edges connecting the users and objects. Formally, denote
the object set as O = {o1, o2, . . . , om} and the user set as U = {u1, u2, . . . , un},
the system can be fully described by a bipartite network with m + n nodes, where
there is an edge between a user and object if and only if this object is collected
by the user. The bipartite network could be described by an adjacent matrix A =
{aij} ∈ Rm,n, where aij = 1 if oi is collected by uj, and aij = 0 otherwise. In
MD algorithm, an object-object similarity network W = {wαβ}m,m is constructed
first, where each node represents an object and two objects are connected if they
have been collected simultaneously by at least one user. Then, to a target user, an
amount of recommendation power is set on each object he has collected, and the
proportion of the resource wαβ would like to distribute from oβ to oα. In MD, a
reasonable assumption is that the objects that users have collected are what they
like, and the objects a target user has collected would be regarded as the initial
mass source, then the activated objects redistribute the mass to the users who
have collected them before, with users receiving a level of mass equal to the mean
amount possessed by their neighboring objects, and objects then receiving back the
mean of their neighboring users’s mass levels. Due to the sparsity of real data sets,
these “physical” descriptions of the algorithm turn out to be more computationally
efficient in practice than constructing and using the object similarity matrix W,
and MD algorithm could be implemented in three steps on the user-object bipartite
network, which is shown in Figs. 1(a)–1(c).

Lind et al. presented a cycle measurement to investigate the clustering property
in bipartite network.20,21 According to the algorithm description and the cycle defi-
nition, the object similarity of the mass-diffusion-based algorithm can be expressed

Fig. 1. Illustration of the network-based algorithm. The network-based algorithm could be ap-
plied in the following way. (a) The objects collected by the target user are activated. (b) The heat
is diffused from the activated objects to the users who have collected them. (c) Then it is diffused
back from the users to the objects.
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as,13

wαβ =
1

k(oβ)

n∑
l=1

aαlaβl

k(ul)
, (1)

where k(oβ) =
∑n

i=1 aβi and k(ul) =
∑m

i=1 ail denote the degrees of object oβ and
user ul, respectively. For a target user, in the simplest case, the initial resource
vector f = {f1, f2, . . . , fm}T can be set as

fj = aji . (2)

In other words, only the objects user ui has collected are set unit resource. After
the mass-diffusion-process demonstrated in Fig. 1, the final resource vector is

f̂ = W f . (3)

Sorting the vector f̂ in descending order according to value of f̂j , the objects ob-
tained the highest values are recommended to the target user.

3. Improved Algorithm by Considering the User’s Taste Effects

In the standard MD algorithm, for any user ui, all of the collected objects are
assigned the same recommendation power. Although it already has a good algo-
rithmic accuracy, this uniform configuration may be oversimplified, and did not
consider the effects of user’s tastes. In this paper, the user’s taste is defined by
the average object degree he has collected. The objects whose degrees are close to
the user’s taste should be assigned more recommendation power. We also notice
that most of the user’s tastes are less than 100, while the degrees of the popular
objects are close to 300. If the recommendation power is assigned according to the
distance between the object degree and the user’s taste, it will give more power on
the popular objects and weaken the unpopular object effects. In order to balance
the objects whose degrees are larger or less than the user’s tastes, we present a
more complicated distribution of initial resource according to the following way.

f i
α = aαiIαi , (4)

where Iαi is defined as follows

Iαi =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
k(oα)
k̄(ui)

)β

k(oα) ≥ k̄(ui)

(
k̄(ui)
k(oα)

)β

k(oα) < k̄(ui)

(5)

where k̄(ui) denote the average degree of user ui’s collected objects, and β is a
tunable parameter. Compared with the uniform case, β = 0, a positive β strengthens
the influence of the objects whose degrees are larger or less than k̄(ui), while a
negative β strengthen the influence of the objects whose degrees are close to k̄(ui).
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4. Numerical Results

A benchmark dataset, namely MovieLens, is used to test the improved algorithm.
The MovieLens data is a randomly-selected subset of the huge data, which consists
of 1682 movies (objects) and 943 users. The users vote movies by discrete ratings
from one to five. We applied a coarse-graining method: A movie is set to be collected
by a user only if the giving rating is larger than 2. The original data contains 105

ratings, 85.25% of which are ≥3, that is, the user-object (user-movie) bipartite
network after the coarse graining contains 85 250 edges. We randomly divide this
data set into two parts: one is the training set, treated as known information, and
the other is the probe, whose information is not allowed to be used for prediction.
We use a parameter p to control the data density, that is, p% of the ratings are put
into the probe set, and the remains compose the training set.

A good recommender method should rank preferable objects to math the user’s
tastes. Therefore, the collected objects in the probe set should be set at the top level
of the recommendation lists. The average ranking score is adopted to measure the
accuracy. It could be defined as follows. For a target user ui, if the entry ui-oj is in
the probe set, we measure the position of oj in the ordered list. For example, if there
are Li = 10 uncollected objects for ui, and oj is the second one from the top, we
say the position of oj is 2/10, denoted by rij = 0.2. A good algorithm is expected
to give high recommendations to them, thus leading to small rij . Therefore, the
mean value of the position 〈r〉 can be used to evaluate the algorithmic accuracy:
the smaller the average ranking score, the higher the algorithmic accuracy, and
vice versa. The average degree of all recommended objects, 〈k〉, and the mean value
of Hamming distance, S, are taken into account to evaluate the popularity and
diversity. The smaller average degree, corresponding to the unpopular objects, are
preferred since those small-degree objects are hard to be found by users themselves.
The diversity can be quantified by the average Hamming distance, S = 〈Hij〉, where
Hij = 1−Qij/L, L is the length of recommendation list and Qij is the overlapped
number of objects in ui and uj’s recommendation lists. The largest S = 1 indicates
the recommendations to all of the users are totally different, while the smallest
S = 0 means all of recommendations are exactly the same.

Implementing the improved algorithm on the MovieLens data, the accuracy,
popularity and diversity are investigated. Figure 2 reports the algorithmic accu-
racy as a function of β to different p, from which one can find that the curves
obtained by the improved algorithm has clear minimums, which strongly support
the above discussion. Compared with the routine case (β = 0), the average ranking
score can be reduced 5.6% at the optimal case when p = 10. Numerical results on
different percentage of probe sets show that the optimal parameter βopt decreases
with the increase of p. Figure 3 reports the relation between the optimal βopt, the
corresponding average ranking scores 〈r〉opt and the sparsity of the training sets.
One can see from Fig. 3 that the optimal 〈r〉opt is negatively correlated with the
data sparsity, where the sparsity is defined as E/(m × n), and E is the number of
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Fig. 2. Average ranking score 〈r〉 vs β when p = 10, 20, 30 and 40. All the data points are
averaged over ten independent runs with different data-set divisions.

Fig. 3. The optimal βopt and the corresponding average ranking score 〈r〉opt vs the sparsity of
the training set. All the data points are averaged over ten independent runs with different data-set
divisions.

edges in the user-object bipartite network, more interestingly, the optimal param-
eter βopt is positively correlated with the sparsity. The reason may lie in the fact
that when the users have not collected too much objects, their tastes are easy to
be distinguished, therefore, the objects whose degrees are close to k̄(ui) should be
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Fig. 4. When the recommendation list L = 10, 〈k〉 and S vs β of p = 10, 20, 30 and 40. All the
data points are averaged over ten independent runs with different data-set divisions.

assigned more recommendation power. As the number of user’s collected objects
increases, user’s tastes become diversity, therefore, it is hard to catch the user’s
interests and habits. Under these circumstances, the users are more interesting to
the objects different from his historical collects which could bring him/her fresh
information. Besides accuracy, the popularity and diversity are also investigated.
Figure 4 reports the average degree and diversity of all recommended movies as a
function of β to different p when the recommendation lists L = 10, from which one
can find that although the average object degrees scarcely change, the diversity is
increased at the optimal βopt.

5. Conclusion and Discussion

In this paper, the effects of user’s tastes on MD recommendation algorithm are in-
vestigated, where the user’s tastes are defined by the average object degree he/she
has collected. By introducing a free parameter β, an improved algorithm by regu-
lating the initial configuration of resource is presented. Numerical results indicate
that when the data set is sparse, it is easy to distinguish the user’s tastes and
the objects whose degrees are close to the user’s tastes should be assigned more
recommendation power, while as the data set becomes dense, the objects whose
degree are far from the user’s tastes should be emphasized. Besides the average
ranking score, the popularity and personalization of recommended objects are also
taken into account. The results show that the improved algorithm outperforms the
standard MD algorithm in both accuracy and personalization.

In the improved algorithm, we only give a kind of user taste definition, however,
there are several other ways to define the user’s tastes, such as time-dependent
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behavior, variance of the user collected object degrees, and so on. We believe MD
algorithm could be further improved by catching the user’s current tastes.

Instead of calculating all the elements in W, one can implement the current al-
gorithm by directly diffusing the resource of each user. Ignoring the degree-degree
correlation in user-object relations, the algorithmic complexity is O(m〈ku〉〈ko〉),
where 〈ku〉 and 〈ko〉 denote the average degrees of users and objects. Theoretical
physics provides us with some beautiful and powerful tools in dealing with this
long-standing challenge in modern information science: how to do a personal rec-
ommendation. The presented algorithm could also be used to find the relevant
reviewers for the scientific papers or funding applications,22,23 and the link predic-
tion in social and biological networks.24 We believe the current work can enlighten
readers in this promising direction.
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