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A combinatorial high-throughput approach is used to investigate a solution cast gradient consisting of colloidal gold
nanoparticles on top of a silicon substrate by means of a X-ray nanobeam. Classification algorithms are used to reveal
and visualize structural transitions from a frozen colloidal solution to a well-defined nanostructure. Prominent length
scales on the order of 100 nm are observed. A periodic change in the nanostructure along the gradient is explained by a
simplified stick-slip model.

The fundamental understanding of wetting and flow behavior of
nanoparticle and (bio)polymeric solutions and blends on solid
substrates is crucial for their application in many technological
fields, for example, proteomics, optical coatings, or data storage
applications.1-6 Typical deposition methods are spin-coating,7

Langmuir-Blodgett/Langmuir-Schaefer8 techniques, or solution
casting.9,10 The latter is widely applied in producing designed
colloidal, polymeric, and biopolymeric thin films.4,11,12 It allows
for realizing dedicated morphologies and morphological gradients
in order to perform combinatorial investigations of thin films4,9 for
different applications, for example, to produce two- and three-
dimensional photonic crystals.13,14 Combinatorial methods15,16 are
routinely used for material testing and optimization. By testing a
large physical parameter space in short time, one is able to
determine the structure-function relationship desired from the

application. Solution casting of individual droplets allows one to
study structures andmorphologies present after deposition on solid
wetting substrates. This offers a deeper understanding of the
structures induced by the solvent evaporation and its implications
for coating, which is of great interest for inkjet printing.17 In an
individual droplet, a multitude of structures is formed, depending
on the wetting behavior of the substrate, for example, the rim and a
wetting region. The wetting region might extend far from the
droplet rim and could be used for installing large scale arrays of
ordered colloidal andnanoparticleswith respect tohigh-throughput
applications such as surface enhanced Raman scattering (SERS),18

colorimetric detection of biopolymers,19 or sensing.20,21

Nanostructuring during colloidal solution casting is a complex,
nonequilibriumprocess. The self-assembly involves the interplay of
several flow and time-dependentmechanisms. It involves rheology,
phase changes, andnonequilibrium thermodynamics.22,23 In detail,
the nanostructuring takes places at the triple phase contact line
air-colloidal solution-substrate.11 The process can be described
as follows: During solvent evaporation, the droplet cools at the
interface and the concentration of the colloidal particles increases.
The evaporation rate is nonuniform and increased near the contact
line. This leads to a convective flow andmaterial transport toward
the contact line24 or in the inverse direction, depending on the ratio
of the surface tensions of solute and solvent.25 Compositional22

and temperature26 driven Maragoni flows pull fluid toward the
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cooler rim and thus reinforce the instability. Furthermore, trans-
versal contact line instabilities27 and capillary forces28 have to be
taken into account. Since multiple length scales,29 from the
individual nanoparticle size to micrometer or millimeter sized
domains in the rim and wetting region, are involved, investigation
methods featuring high spatial resolution11 in combination with
high-throughput screening have to be applied. The resulting large
amount of data strongly favors a new conceptional approach,
namely, the use of adequate screening and classification
algorithms.30-32

A dried droplet is a two-dimensional gradient and shows
regions of different structures.17 Determining these structures is
essential for future technological applications, as different struc-
tures are realized simultaneously.9 For structural investigations in
thin films, atomic forcemicroscopy and grazing incidence scatter-
ing methods have been applied.23 In order to investigate the
different regions, we employed a new combinatorial method,
namely, nanobeamgrazing incidence small-angleX-ray scattering
(nGISAXS).11 The experiment was performed at the beamline
ID13/ESRF (distance sample-to-detectorDSD = 0.802 m, wave-
length λ = 0.0976 nm, and incidence angle Ri = 0.543�). The
beamwas focused to a size of 300 nm, leading to a footprint on the
sample of 0.3 � 32 μm2. The scattering geometry is sketched in
Figure 1a. The sample was prepared as follows: A droplet

(volume of 25 μL, diameter of 3.6 mm, 5 nm spherical gold
nanoparticles in aqueous solution with a concentration of 5 �
1013 particles/mL) was deposited on acid cleaned silicon and
dried under ambient conditions (T = 22 �C, ∼30% humidity).
Immediately after deposition, the droplet wetted the Si surface.
The dried dropletwas subsequently scannedusing nGISAXSwith
a step size of Δy = 2 μm, thereby allowing one to distinguish
different structural regions present in the dried droplet caused by
the nonlinear processes during drying. Figure 1b shows an optical
micrograph of the dried droplet and selected scattering patterns,
one with a corresponding enlargement for better displaying of the
nanostructure peaks. The nGISAXS pattern obtained at y =
408 μm corresponds to the optically visible outer rim of the
droplet. The selected patterns show significant changes from a
close-packed colloidal film to a large-scale nanostructure (seen at
y = 1054 μm), occurring beyond the rim. We note that in
principle the origin of y can be chosen arbitrarily. However, as
we focus on the region around the rim and outward of the rim
(visible directly after deposition), we arbitrarily chose as origin for
y a point at a distance of 400 μm away from the rim inside the
droplet. We scanned 1000 μm outside from the rim to investigate
the wetting region. At further distance, the signal-to-noise ratio
becomes too weak.

For the first time, the analysis of GISAXS data was done by
applying classification methods33 combined with manual analy-
sis. To prepare data analysis, for each of the 700 nGISAXS
patterns, the intensity distribution along the scattering vector
component qy parallel to the sample surface was extracted. This
so-called out-of-plane cut (abbreviated as oop7) was performed at
the Yoneda peak of Si; see Figure 1a for illustration. The data
analysis proceeded in two steps. First, all patterns were evaluated
by unsupervised classification (USC). This allowed distinct fea-
tures inside the given data set to be revealed and served as basis for
a detailed manual analysis, which was made on a data subset.

Figure 1. (a) Sketch of the scattering geometry. M denotes an
optical microscope, x/y/z a real space coordinate system, and qy
and qz denote the scattering wavevector components parallel and
vertical to the sample surface. D denotes the dried droplet, and Si
the siliconwafer. (b)Opticalmicrographof the deposited anddried
droplet (D). Exemplary nGISAXS scattering pattern from the rim
(R) and far away in the wetting region (W) are shown (y position
indicated in the picture). All nGISAXS patterns are shown on a
logarithmic scale. The q-ranges are indicated.

Figure 2. Exemplaryout-of-planecut taken in regionDofFigure1b
for y = 140 μm and resulting fit of the model function (eq 2). The
resolution broadened central maximum (M), the structure factor
(SF)with itsmaximumatqmax, andtheparticle formfactor (PFF) are
highlighted.
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Finally, supervised classification33 was applied to determine
the most prominent in-plane distances ξ for the entire data set.
ξ denotes the distance of domains of nanospheres, as sketched in
Figure 3.

In USC, the data set is divided into classes based on a certain
similarity measure. To start with, we have chosen randomly
selected oop-scans I(qy) to initialize the iterative clustering.
Assuming six potential classes j = 1...6, we used as an initial
approach the Euclidean distance as a similarity measure to
discriminate the logarithm of the intensity ln(I(qy)) by

σj
2 ¼

X

qy

lnðIyðqyÞÞ-lnðIjðqyÞÞ
� �2 ð1Þ

with Iy(qy),-0.3 nm-1e qye 2.9 nm-1, denoting the oop-scan at
position y (a so-called k-means clustering). By this iterative
approach, at each iteration step, the oop-scans are assigned to
the class having the largest similarity, that is, smallest σj. Then,
new mean class representations (mean oop-scans) are calculated.
The iteration is repeated until none of themean oop-scans change
significantly. We obtained the grouping shown in Figure 3a. It
suggests multiple regions, separating areas along the scan line
ranging from inside the droplet (left side of image) to the wetting
region (right side of image). The first two regions (0-410 μm,
412-650 μm) appear well separated, whereas the right half
(652-1400 μm) is banded. Assuming six classes shows as a
reasonable approach; testing even more classes leads to the same
oscillating features. This number overestimates our expectation
and allows for later manual reduction of similar classes. Based on
the division into classes obtained from USC, we chose a data
subset consisting of each eighth oop-scan formanual quantitative
analysis to extract the structure and morphology of the domains.
Following the procedure from Beaucage,34 we used a factorized,
analytical model to extract the most-prominent in-plane length
scale ξ as well as the particle radii using

IðqyÞ ¼ MðqyÞþSFðqyÞþPFFðqyÞ ð2Þ
where M(qy) denotes the Gaussian resolution function for the
beam, and SF(qy) is an experimental Lorentzian structure factor

SFðqyÞ� 1

1þ 4 ðqy -qmaxÞ=ω
� �2 ð3Þ

with ω being its width. PFF(qy) is the particle form factor for
spheres with a nominal diameter of 5 nm. An exemplary out-of-
plane cut with the resulting fit of the model is shown in Figure 2.
We relate qmax to ξ via ξ= 2π/qmax. Obtained ξ values from this
modeling are shown in Figure 3b by tilted square symbols.
Comparing the clustering result found by unsupervised classifica-
tion in Figure 3a to the result from manual analysis in Figure 3b,
one can see a correspondence. Even though USC uses no under-
lying physical model, one observes a separation into regions R1,
R2,R3with different ξ values and a very good agreement with the
manual analysis. The clustering leads to a unique blue cluster in
Figure 3a, which would correspond to a constant ξ value. This is
in contrast to the change in ξ around the rim, found by manual
analysis. This strong change in ξ around y = 400 μm is not
sufficiently represented. To relate a physical value to each group,
the oop-scans in Figure 3d justify to choose the most-prominent
in-plane length ξ. To determine an adequate representation of the

most prominent in-plane distances, we applied supervised max-
imum likelihood classification.We used the results obtained from
the model based manual analysis to establish three classes
representing three different ξ values. Manually analyzed data
belonging to positions lower than 300 μm were defined as “class
1” representing an average ξ of 60 nm, data belonging to positions
in between 480 and 600 μmwere considered “class 2” having ξ of
350 nm, and data for y g 1000 μm were allocated to “class
3”representing ξ of 240 nm. Selected oop-scans at y = 200, 460,
and 1360 μm are illustrated in Figure 3d. Note that the regions
showing the strong slope (strong increase of ξ around 400 μm) as
well as the region between 600 μm < y < 1000 μm, showing a
moderate decay, have not been considered. The horizontal scale is
presented linearly, as we thereby are able to emphasize the dif-
ferent slopes, which would be hardly visible in a logarithmic scale.

Class representations have been broken down to two dimen-
sions; that is, the slopes for 0.02 nm-1 < qy <0.06 nm-1 and
1.03 nm-1 < qy <1.33 nm-1 were used as input feature. These
slopes 1 and 2 allow for defining training sets in terms of
arithmetic mean slopes and covariances derived from the manu-
ally analyzed data sets. For any remaining oop-scan, that is, any

Figure 3. (a) Results from unsupervised classification for six
classes (indicated by different colors): the transition from the
droplet (R1,R2) to an oscillating regime (R3) can be seen.
(b) Comparison of most prominent in-plane lengths ξ obtained
by manual analysis (symbols) and by linear combination (solid
line) of supervised classification. The optical rim of the droplet is
indicated. (c) Model for the domain structure, dominating in R1,
R2,R3: ξ nanoparticle cluster distance, 2R nanoparticle diameter.
Gray bars denote the regions of reference classes. (d) Selected oop-
scans (y= 200, 460, 1360 μm from top to bottom) and their class
representation CL1,2,3 used for maximum likelihood classifica-
tion. Thick black lines illustrate slopes 1,2.

(34) Beaucage, G. J. Appl. Crystallogr. 1995, 28, 717.
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oop-cut not used for training sets, we determined its likelihood
Pi=1,2,3(y)

33 for belonging to one of the three classes. The a priori
probability was assumed to be 1/3 for each class CL1,2,3.
Training sets were extracted from the positions indicated by the
graybars inFigure 3c, where alsomanual analysiswas performed.
This corresponds to approximately 10% of the total number of
oop-scans. The regions are motivated by the fact that the
nanoparticles aggregate and regions of different ξ are present in
a dried solution cast gradient films29 and inside solution cast
droplets, as found by confocal microscopy.17

In Figure 3d, we show three typical oop-scans with correspond-
ing slopes,whichbelong to the class representationsofCL1,2,3.We
note that CL2 and CL3 are mainly distinguished by slope 1, which
is related to the structure factor maximum in the relevant qy-range.
It can be regarded as a fingerprint due to a tail of the maximum.
Slope 2 originates in the pure form factor of the spherical particles
and their density. This provides the basis for a phenomenological
analysis of the data, relating ξ and the two slopes. The found
oscillating behavior, deduced by relating ξ and slope 1,2, is
corroboratedby a simple physicalmodel,which is explained below.
From supervised classification, for each oop-scan at position
y along the profile, we thus obtain its likelihoods Pi(y) to belong
to a given class reference. Finally, for a single oop-scan at position
y, we determined the likelihood based ξL(y) by linear combination
of its likelihoodPi(y) to each CLi (i=1,2,3) and its corresponding
(user defined reference) scale ξi, i = 1,2,3:

ξLðyÞ ¼ P1ðyÞξ1 þP2ðyÞξ2 þP3ðyÞξ3 ð4Þ
The result is shown as a solid line in Figure 3b. One can interpret
Pi(y) as a relative weight for a certain structure to be present at the
scan position y. Then, eq 4 gives the mean ξ values of these (three)
underlying basic structures.

The supervised classification in combinationwith eq 4 confirms
a constant ξ for regions 1 and 2. In addition, we furthermore note

three striking features. First, the strong increase between region 1
and 2 for ξ is reproduced by our approach. Second, the crossover
between region 2 and 3 is reproduced as well. Third, we note a
roughly periodic behavior of ξ in region 3. This periodic behavior
corresponds to the banded region in Figure 3a. Such periodic
oscillations could be expected and are well-known from non-
equilibriumkinetics of solvent evaporation in droplets of colloidal
or polymeric solutions.24,27,35 However, this seems to be new for
the wetting region and could open new possibilities for exploiting
such structures for thin film applications. In detail, we interpret
these oscillations as domain formation of colloidal particles with
different domain distance (see Figure 3c). One has to note that
none of these three findings has been used as input in our
approach. We calculated a mean relative deviation in ξ of 33%
between manual analysis and supervised classification. The esti-
mate is based on an independentmanual analyzed subset not used
for the training data.

To elucidate the mechanism leading to the periodicity of the
drying kinetics of the wetted film, we propose a simplified numer-
ical stick-slip model based on Adachi et al. and Govor et al.35,36

Our approach is represented by the flow-diagram-like sketch in
Figure 4. Initially, after deposition of the colloidal solution, the
nanoparticles are homogeneously distributed throughout the vo-
lume of the droplet. After drying, the rim marks the visible
boundary of the droplet with the optically nonvisible wetting area
being outside this rim (see Figure 4a). The droplet volume outside
the rim can be divided into equidistant shells. Each shell is divided
into small volume elements,Vref, filledwithN colloidal particles. In
the given illustration (Figure 4a), we sketch this model with the
three outermost shells S1, S2, S3. Upon drying, the triple-phase
boundary line (TPBL) at S1 retracts and drags the colloids into the
next inner shell S2, increasing the particle number in this shell. If the

Figure 4. (a) Sketch of the model for the drying droplet.Vref represents a volume filled withN colloidal particles. S1, S2, S3 denote the three
outermost shells for illustration. (b) Illustration of the stick-slip behavior and the occurrence of precipitation. C1 shows the case of further
retraction and dragging, and C2 the case of precipitation when a critical particle level is reached. Here, we observe an increase in ξ.
(c)Comparisonbetween thepositions of increasedξdeduced fromthenGISAXSand thepredictionofprecipationoccurrence fromthemodel
(inset).

(35) Adachi, E.; Dimitrov, A. S.; Nagayama, K. Langmuir 1995, 11, 1057.
(36) Govor, L.; Reiter, G.; Bauer, G.; Parisi, J. Appl. Phys. Lett. 2004, 84, 4774.
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particle number exceeds a critical level, the colloidal particles
precipitate. Then, the retraction of the TPBL continues starting
at the next shell S3 (see Figure 4b, case C2). With the TPBL
retracting further, the process of dragging and precipitation upon a
critical particle level is repeated. In the other case, N < Ncrit, all
particles are dragged to the next shell S3 (Figure 4b, case C1). This
model leads to the distance-dependent oscillations observed in the
wetting region (see Figure 4c). The spacing of the maxima, in our
model indicated as singularities of the precipitation, for ξ is in good
agreement with the data. Maxima resulting from the model occur
due to precipitation of particles; their position corresponds to
regions where an increased in-plane length was found. The nano-
particles agglomerate and thus form domains. A larger amount of
nanoparticles present in such a region consequently leads to the
formation of larger domains and larger distances between them.
Finally, we would like to note that the rim cannot be explained by

the model, even though the majority of material is precipitated
here. The rim is out of the reach of our model.

In summary, we have applied a new path for high-throughput
screening and data analysis to identify patterning mechanisms in
the wetting region in the vicinity of the rim of a colloidal solution
droplet. Our approach combines advanced X-ray scattering and
combinatorial methods and exploits analysis via classification
methods used, for example, in remote sensing. Classification
algorithms themselves have their origin in statistics, pattern
recognition, and machine learning.37 The multiscale patterning
covers a large area and changes periodically. A simple numerical
model is used to explain the occurrence of these oscillations.These
features render this patterning useful to create two-dimensional
gradient structures for fluidic or photonic applications, for
example, gratings.

Acknowledgment. This work was financially supported by the
DFG Schwerpunktprogramm SPP 1164 “Nano- and Microflui-
dics” (Mu1487/2).

(37) Duda, R. O.; Hart, P. E.; Stork, D. G.Pattern Classification, 2nd ed.; Wiley:
New York, 2001.

ht
tp
://
do
c.
re
ro
.c
h

5


