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In this paper we consider the two species competitive delay plankton allelopathy
stimulatory model system. We show the existence and uniqueness of the solution of the
deterministic model. Moreover, we study the persistence of the model and the stability
properties of its equilibrium points. We illustrate the theoretical results by some numerical
simulations.

1. Introduction

The term plankton refers to the freely floating and weakly swimming organisms within aquatic environment. The plant
species commonly known as phytoplankton are unicellular and microscopic in size. Phytoplankton have a significant utility
in marine life and they play a vital role at the base of the marine food chain. They also control the global carbon cycle which
has a significant impact on the climate regulation. The regular change and abrupt fluctuation of phytoplankton density
within aquatic environment are controlled by several factors, e.g., variation of available nutrients, environmental forcing
due to seasonal change in environment and many others (for details, see [1]). A remarkable feature associated with many
phytoplankton populations is the occurrence of bloom formation. A drastic increase in phytoplankton population, up by
several orders of magnitude which is shortly followed by a sudden collapse whereby phytoplankton population returns
to its original low-level. This kind of rapid growth followed by sudden decay in phytoplankton population is known as
‘phytoplankton bloom’. There has been a global increase in harmful plankton blooms in the last two decades and considerable
scientific attention has been paid towards harmful algal blooms in recent years [2–5].

An important observation made by several researchers is that the change in population density of one phytoplankton
species has the ability to affect the growth of several other species by producing toxic substances, and this is a responsible
factor for bloom formation of various phytoplankton species. The term “allelopathy” was first introduced by Molisch (1937),
and then defined extensively for plankton communities by Rice [6]. According to Rice [6], allelopathy is the effect of one
plant species on the growth of another by releasing a chemical compound into the surrounding environment. These types of
chemical compounds released by various plants are known as “allelochemicals” [7]. Allelochemicals released by one species
of phytoplankton may have both positive and negative effects on the growth of another species. For example, the green alga,
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Enteromorpha linza, produces allelochemicals which are auto-stimulatory and stimulatory to the growth of another phyto-
plankton species named as Enteromorpha species [8]. On the other hand, unicellular green alga, Chlorella vulgaris produces
autotoxin which has the ability to regulate the growth of its own population and inhibits the growth of Asterionella formosa
and Nitzschia frustulum [9,10].

The first mathematical model for allelopathic interaction between two competing species is introduced by Maynard-
Smith [11]. The model is based upon a two-species Lotka–Volterra competition model with an additional term to take into
account the effect of toxic substances released by one species to another. Detailed mathematical analysis is carried out by
Chattopadhyay [12] to study the interaction between two competing allelopathic–phytoplankton species where each species
is capable to produce toxic substances. The allelopathic term is proportional to the product of the square of the concen-
tration of the non-toxic species with the concentration of the toxic species. In terms of mathematical notations, if N1(t)
denotes the density of the affected species and N2(t) that of the toxic one at any instant of time t , then the allelopathic
interaction term takes the form γ N2

1(t)N2(t) where γ is the allelopathic interaction parameter. Mukhopadhyay et al. [13]
studied the interaction between two competing phytoplankton species for the situations, where either species inhibits the
growth of other species or for the case where either species stimulates the growth of the second phytoplankton species.
They have incorporated discrete time delay to take account of the fact that the production of allelopathic substance is not
instantaneous but rather delayed by some time required for maturation of the species. The dynamics of competitive models
of phytoplankton in presence of toxic substances have received significant attention now a days. Various dynamical aspects,
like, persistence, extinction of either species for ordinary differential equation models as well as delay differential equation
models explore the effect of toxic substances on the evolution of phytoplankton populations. For detailed discussion in this
direction, interested readers may concern the recent works [14–18].

The purpose of the present paper is to consider the dynamic behavior of two competing phytoplankton species where
one species releases auxin and has a positive feedback on the growth of the other phytoplankton species. A discrete time
delay parameter is introduced to model the time required for the maturation of one phytoplankton species such that it is
capable to produce allelopathic substance.

The organization of this paper is as follows: In Section 2 we describe the basic model system for two competitive
phytoplankton species and study the related dynamical behavior. In Section 3 we discuss the existence, uniqueness and
persistence and stability of the delay model system. We also perform some numerical simulation to validate the analytical
results.

2. Basic mathematical model

The classical Lotka–Volterra model for two competing phytoplankton species is governed by the following system of
coupled nonlinear ordinary differential equations

du(t)

dt
= u(t)

(
k1 − α1u(t) − β12v(t)

)
,

dv(t)

dt
= v(t)

(
k2 − α2v(t) − β21u(t)

)
, (2.1)

where u(t) and v(t) denote the densities of two phytoplankton species at any instant of time ‘t ’. k1,k2 > 0 are the cell
proliferation rates per time unit, α1,α2 > 0 are the rates of intra-specific competition for the first and the second species
respectively, and β12, β21 > 0 stand for the rates of interspecific competition between the first and the second and between

the second and the first species respectively. The quantities k1
α1

and k2
α2

are the environmental carrying capacities for the

two species, e.g., (u, v) = (0, k2
α2

) and (u, v) = ( k1
α1

,0) are stationary solutions of (2.1). Next we assume that the first species

is capable to release allelopathic substances which stimulate the growth of the second species. As we have discussed in the
Introduction, we incorporate an additional term into the growth equation of the second species to model the allelopathic
interaction as follows

du(t)

dt
= u(t)

(
k1 − α1u(t) − β12v(t)

)
,

dv(t)

dt
= v(t)

(
k2 − α2v(t) − β21u(t) + γ u(t)v(t)

)
, (2.2)

where γ denotes the rate of allelopathic substance released by the first phytoplankton species. System (2.2) can be written
as d

dt U (t) = f (U (t)) for U (t) := (u(t), v(t)) and the locally Lipschitz continuous function

f : R
2 → R

2, (u, v) �→ (
u(k1 − α1u − β12v), v(k2 − α2v − β21u + γ uv)

)
.

Hence, by the Picard–Lindelöf theorem, the solution of (2.2) with initial condition (u(0), v(0)) = (u0, v0) exists locally and
is unique.

From now on, we restrict our attention to the biologically relevant initial conditions u0 � 0, v0 � 0. In Section 3, we will
prove for a delay system which contains (2.2) as a special case, that for sufficiently small u(0) the solution exists globally
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Fig. 1. u-isocline and v-isocline intersect at E∗ .

and remains bounded, provided

α1α2 > k1γ (2.3)

(see Theorem 3.6). We will also see that the solutions are persistent (see Theorem 3.9).
We are also interested in the equilibrium points of the model system (2.2) in R

2
�0 := {(u, v) ∈ R

2: u � 0, v � 0}. These
equilibria are the corresponding zeros of the function f , namely

E1 = (0,0) trivial equilibrium point,

E2 =
(
k1

α1
,0

)
first axial equilibrium point,

E3 =
(
0,

k2

α2

)
second axial equilibrium point,

E∗ = (u∗, v∗) co-existing equilibrium points.

The components of the co-existing equilibrium points E∗ are given by

v∗ = k1 − α1u∗
β12

, (2.4)

where u∗ is a positive real root of the quadratic equation

α1γ x2 + (β12β21 − k1γ − α1α2)x+ k1α2 − β12k2 = 0.

Depending upon the parameters there are, even under condition (2.3), two, one or no co-existing equilibrium points E∗ ∈
R

2
�0.

Observe, that equilibrium points are the intersections of the zero growth isoclines for the two phytoplankton species. In
particular, the co-existing equilibrium points E∗ are the intersections of the curves

k1 − α1u − β12v = 0, (2.5)

k2 − α2v − β21u + γ uv = 0 (2.6)

in the first quadrant. The second equation represents a rectangular hyperbola. One branch of it meets the v-axis at the
boundary equilibrium (0, k2

α2
) and has the vertical asymptote u = α2

γ . First equation represents a straight line passing through

the points ( k1
α1

,0) and (0, k1
β12

). A sufficient condition for the existence of an interior equilibrium point is k2
α2

< k1
β12

. A suitable

choice of parameters is k1 = 2, k2 = 1, α1 = 0.07, α2 = 0.08, β12 = 0.05, β21 = 0.015, γ = 0.003. For dimensions and ecolog-
ical justification of the chosen values readers can consult the papers by Bandyopadhyay [5] and Mukhopadhyay et al. [13].
For this chosen set of parameter values the model system has unique interior equilibrium point E∗ = (13.85,20.61). The
isoclines are plotted in Fig. 1.
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3. Existence, stability and persistence results for the delay system

It has been observed that some algae produce auxins which stimulate the growth of the other algae, for more details we
refer to [8,13]. The production of the allelopathic substance will not be instantaneous, but delayed by some discrete time
lag required for maturity of the species. Hence we consider the following model with delay of the allelopathic stimulatory
system in which the first species produces a substance stimulatory to the growth of the second species,

du(t)

dt
= u(t)

(
k1 − α1u(t) − β12v(t)

)
,

dv(t)

dt
= v(t)

(
k2 − α2v(t) − β21u(t) + γ u(t − τ )v(t)

)
(3.1)

for t > 0. This system is well posed if we prescribe the following initial conditions:

u(t) = φ(t) > 0 for t ∈ [−τ ,0],
v(0) = v0 > 0. (3.2)

Here, τ � 0 is the time required for the maturity of the first species and φ ∈ C0([−τ ,0];R>0) a given function.
In this section we first show the existence and uniqueness of the solutions of the allelopathic stimulatory phytoplankton

model (3.1)–(3.2) and then analyze the persistence and boundedness of the solutions. We use the following definition:

Definition 3.1. System (3.1)–(3.2) is said to be persistent if every solution (u, v) satisfies the two conditions

(1) u(t) > 0 and v(t) > 0 for all t > 0,
(2) lim inft→∞ u(t) > 0 and lim inft→∞ v(t) > 0.

Remark 3.2. The two conditions in Definition 3.1 can be expressed equivalently by the single condition

(3) inft>0 u(t) > 0 and inft>0 v(t) > 0.

The following elementary lemma will be useful later (see [19]):

Lemma 3.3. If a,b > 0 and u′(t) � (�) u(t)(b − au(t)), u(t0) > 0, then we have

limsup
t→∞

u(t) � b

a

(
lim inf
t→∞ u(t) � b

a

)
.

In fact, we have the following quantitative statement:

Lemma 3.4. If a,b > 0 and u′(t) � u(t)(b − au(t)), u(0) > 0, then, for all t � 0,

u(t) � b

a − ce−bt

with c = a − b
u(0) . In particular, u(t) � max{u(0), b

a } for all t � 0.

Proof. Let μ(t) := b̄

a−ce−b̄t
with c := a − b̄

u(0) and b̄ > b. Then, u(0) = μ(0) and μ′ = μ(b̄ − aμ). Suppose, u(δ) > μ(δ) for

some δ > 0. Then, there is a maximal interval [0, t] on which u � μ. In t , we have u′(t) � u(t)(b−au(t)) = μ(t)(b−aμ(t)) <

μ(t)(b̄ − aμ(t)) = μ′(t). Hence u � μ on some interval [0, t + ε] for a positive ε , contradicting the maximality of t . Hence,
we have u � μ for all t � 0. As b̄ > b was arbitrary, the claim follows. �

Now we want to prove global existence and uniqueness of solutions of (3.1)–(3.2) by continuous induction. We consider

I := {
t � 0: ∀s < t ∃ a unique solution of ( 3.1)–(3.2) on [0, s)}

and we will show that

(1) I is non-empty,
(2) I is open,
(3) I is closed.
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Indeed, this implies I = R�0, and hence a global unique solution of (3.1)–(3.2) exists. As the system is not globally Lipschitz,
and therefore a suitable a priori estimate will be necessary to show that solutions stay bounded.

First step. I is non-empty: On the interval [0, τ ], we have

du(t)

dt
= u(t)

(
k1 − α1u(t) − β12v(t)

)
,

dv(t)

dt
= v(t)

(
k2 − α2v(t) − β21u(t) + γ φ(t − τ )v(t)

)
, (3.3)

with initial condition (u(0), v(0)) = (φ(0), v0). Notice that this system is non-autonomous and equivalent to d
dt U (t) =

f (t,U (t)) for U (t) := (u(t), v(t)) and the function

f : [0, t] × R
2 → R

2,

(t,u, v) �→ (
u(k1 − α1u − β12v), v

(
k2 − α2v − β21u + γ φ(t − τ )v

))
.

The function f is continuous and locally uniformly Lipschitz continuous in (u, v). Hence, by the Picard–Lindelöf theorem,
there exists a unique solution of (3.1)–(3.2) on an open interval [0, ε) for some ε > 0, hence I is non-empty.

Before we start with the second step, we prove the following lemma:

Lemma 3.5. Let (ū, v̄) be a solution of (3.1)–(3.2) on an interval [0, s). Then ū > 0 and v̄ > 0 on [0, s).

Proof. Suppose that v̄(t̄) = 0 for some t̄ ∈ [0, s) and v̄ > 0 on (0, t̄). Then we would have two different local solutions of
the (non-delayed) system

du(t)

dt
= u(t)

(
k1 − α1u(t) − β12v(t)

)
,

dv(t)

dt
= v(t)

(
k2 − α2v(t) − β21u(t) + γ ū(t − τ )v(t)

)
,

on an interval (t̄ − ε, t̄] with the same initial values in t̄ , contradicting the uniqueness in the Picard–Lindelöf theorem.
Indeed, these two solutions are (ū, v̄) and (ũ,0), where ũ solves ũ′ = ũ(k1 − α1ũ).

A similar argument applies if we assume ū(t̄) = 0 for some t̄ ∈ [0, s). �
Second step. I is open: Let t0 ∈ I . We need to show that there exists an ε > 0 such that t0 +ε ∈ I . Because t0 ∈ I we have

that for all s < t0 there exists a unique solution of (3.1)–(3.2) on [0, s). Consider a strictly increasing sequence si ↗ t0. Then,
in particular, there exists a unique solution (ui, vi) of (3.1)–(3.2) on [0, si). By uniqueness, the restriction of (ui+1, vi+1) to
[0, si) is (ui, vi). In particular, we can extend (ui, vi) to [0, si] by setting (ui(si), vi(si)) = (ui+1(si), vi+1(si)). Then, we have

∣∣ui+1(si+1) − ui(si)
∣∣ = ∣∣ui+1(si+1) − ui+1(si)

∣∣
= ∣∣u′

i+1(ξ)
∣∣|si+1 − si |, (3.4)

for some ξ ∈ (si, si+1). From the first equation of (3.1) and Lemma 3.5 we have

u′
i(t) � ui(t)

(
k1 − α1ui(t)

)
and together with Lemma 3.4, we conclude

0 � ui(t) � max

{
u(0),

k1

α1

}
=: M (3.5)

for all i and all t ∈ [0, si]. In the same way, we have

∣∣vi+1(si+1) − vi(si)
∣∣ = ∣∣vi+1(si+1) − vi+1(si)

∣∣
= ∣∣v ′

i+1(ξ)
∣∣|si+1 − si |, (3.6)

for some ξ ∈ (si, si+1). From the second equation of (3.1) we have

v ′
i(t) � vi(t)

(
k2 − α2vi(t) + γ ui(t − τ )vi(t)

)
.

If we denote M := max{M,‖φ‖∞}, we can further estimate

v ′
i(t) � vi(t)

(
k2 − α2vi(t) + γ Mvi(t)

)
by using (3.2) and (3.5).
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In order to continue, we need to assume that α2 − γ M > 0. In that case, by using Lemma 3.4 once more, we obtain

0 � vi(t) � max

{
v(0),

k2

α2 − γ M

}
. (3.7)

From the bounds (3.5) and (3.7) which are valid for t > 0, and the fact that 0 < ui(t − τ ) � ‖φ‖∞ for t ∈ [−τ ,0], we get
by (3.1) that there exists a uniform bound K such that

|u′
i| � K and |v ′

i| � K

for all i and all t ∈ [0, si]. Hence, it follows from (3.4) and (3.6) that (ui(si), vi(si)) is a Cauchy sequences in R
2
�0 since si

is a Cauchy sequence. Therefore (ui(si), vi(si)) converges to a point (ū, v̄) as i → ∞. But then, analogous to the first step,
there exists a local unique solution of (3.1) with prescribed u(t) ∈ C0 on the interval [t0 − τ , t0] and prescribed v(t0) = v̄ . It
is easy to see that this solution extends the solution on [0, t0) and therefore, there exists ε > 0 such that t0 + ε ∈ I .

Third step. Finally, we show that I is closed. Let ti ↗ t∗ , where ti ∈ I . By the definition of I , (3.1)–(3.2) has a unique
solution on [0, s) for all s < ti . Then, for an arbitrary s < t∗ , there exists an index i with s < ti , and a unique solution of
(3.1)–(3.2) exists on [0, s). Thus, t∗ ∈ I .

Summarizing, we have proven the following theorem:

Theorem 3.6. Suppose τ � 0, ki > 0, αi > 0, βi j � 0 (i, j ∈ {1,2}, i �= j), γ � 0 and

α2 − γ max

{
u(0),

k1

α1
,‖φ‖∞

}
> 0.

Then, the initial value problem (3.1)–(3.2) has a unique global solution (u, v) with

0 < u(t) � max

{
u(0),

k1

α1

}
and

0 < v(t) � max

{
v(0),

k2

α2 − γ max{u(0), k1
α1

,‖φ‖∞}
}
.

Remark 3.7. This theorem includes in particular the case of the non-delayed system with τ = 0.

To conclude, we finally consider the asymptotic bounds of the solutions of (3.1). Let us suppose, that (u, v) is a global
solution of (3.1) with u > 0, v > 0.

From the first equation in (3.1) and the positivity of u we have

du(t)

dt
� u(t)

(
k1 − α1u(t)

)
.

Using Lemma 3.3 one gets

limsup
t→∞

u(t) � k1

α1
=: M1. (3.8)

So, for any arbitrary ε > 0 there exists a number t0(ε) > τ such that

u(t) � M1 + ε

as t � t0(ε).
Using this we get from the second equation in (3.1) and the positivity of v

dv(t)

dt
� v(t)

(
k2 − α2v(t) + γ (M1 + ε)v(t)

)
for all t � t0(ε) + τ . Assume that α2 − γ M1 > 0. (Note that this assumption is automatically satisfied under the hypotheses
of Theorem 3.6.) Then, by choosing ε > 0 sufficiently small, we have α2 − γ (M1 + ε) > 0. Therefore, by Lemma 3.3 again,
we get

limsup
t→∞

v(t) � k2

α2 − γ (M1 + ε)
.

Since ε > 0 is arbitrary, we actually have

limsup
t→∞

v(t) � k2

α2 − γ M1
= α1k2

α1α2 − γ k1
=: M2. (3.9)

Hence, we have proven the following theorem:
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Theorem 3.8. Suppose τ � 0, ki > 0, αi > 0, βi j � 0 (i, j ∈ {1,2}, i �= j), γ � 0 and

α1α2 − γ k1 > 0.

Then any positive global solution (u, v) of system (3.1) satisfies

limsup
t→∞

u(t) � k1

α1
, limsup

t→∞
v(t) � k2

α2 − γ k1
α1

.

On the other hand, from the first equation in (3.1) and by (3.9), we get for an arbitrary ε > 0

du(t)

dt
� u(t)

(
k1 − α1u(t) − β12(M2 + ε)

)
for t sufficiently large. If we assume that k1 − β12M2 > 0, then for ε > 0 sufficiently small, we have k1 − β12(M2 + ε) > 0.
Therefore by Lemma 3.3, we have

lim inf
t→∞ u(t) � k1 − β12(M2 + ε)

α1
.

Since ε > 0 was arbitrary, we even have

lim inf
t→∞ u(t) � k1 − β12M2

α1
. (3.10)

The second equation of the system (3.1) together with (3.8) gives

dv(t)

dt
� v(t)

(
k2 − α2v(t) − β21(M1 + ε)

)
for t sufficiently large. By the same reasoning as above, we get

lim inf
t→∞ v(t) � k2 − β21M1

α2

if k2 − β21M1 > 0. We have actually proven the following theorem:

Theorem 3.9. Suppose τ � 0, ki > 0, αi > 0, βi j � 0 (i, j ∈ {1,2}, i �= j), γ � 0 and

α1α2 − γ k1 > 0, k1 − β12M2 > 0 and k2α1 − k1β21 > 0,

where M2 is given in (3.9). Then any positive global solution (u, v) of system (3.1) satisfies

lim inf
t→∞ u(t) � k1 − β12M2

α1
, lim inf

t→∞ v(t) � k2α1 − k1β21

α1α2
.

In particular, the system (3.1) is persistent in this case.

The last question we want to address concerns the stability of equilibrium points of (3.1). The delayed system has the
same equilibrium points as the non-delayed system (see the end of Section 2). In a first step, we center the system (3.1)
around one of the equilibrium points (u∗, v∗) in R

2
�0. We get the system

dx(t)

dt
= (

x(t) + u∗)(k1 − α1

(
x(t) + u∗) − β12

(
y(t) + v∗)),

dy(t)

dt
= (

y(t) + v∗)(k2 − α2

(
y(t) + v∗) − β21

(
x(t) + u∗) + γ

(
x(t − τ ) + u∗)(y(t) + v∗)), (3.11)

where x(t) = u(t) − u∗ , y(t) = v(t) − v∗ . Denote

A = k1 − 2α1u
∗ − β12v

∗, B = −u∗β12, C = −v∗β21,

D = k2 + 2γ u∗v∗ − 2α2v
∗ − β21u

∗, E = γ v∗2, a11 = −β12,

a20 = −α1, b11 = −β21, b02 = −(
α2 − γ u∗), b′

11 = 2γ v∗, b′
12 = γ .

Simplifying and using these notations the system (3.11) can be written as

dx(t)

dt
= Ax(t) + By(t) + a11x(t)y(t) + a20x

2(t),

dy(t)

dt
= Cx(t) + Dy(t) + Ex(t − τ ) + b11x(t)y(t) + b02 y

2(t) + b′
11x(t − τ )y(t) + b′

12x(t − τ )y2(t). (3.12)
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The stability discussion will be based upon the linear part of the system (3.12) which is given by

dx(t)

dt
= Ax(t) + By(t),

dy(t)

dt
= Cx(t) + Dy(t) + Ex(t − τ ). (3.13)

The characteristic equation associated to (3.13) is given by


(λ,τ ) := λ2 − (A + D)λ + (AD − BC) − BEe−λτ = 0. (3.14)

For more details on the characteristic equation, the reader may consult [20]. In order to study the stability properties of the
equilibrium (u∗, v∗) of (3.1) we have to study the nature of the roots of the characteristic equation (3.14).

We start by the discussion for τ = 0. In a second step below, we consider τ > 0.
Stability for τ = 0. The matrix of the linearized system (3.13) is

M :=
(

A B
C + E D

)
.

Recall that if the real part of all eigenvalues of the matrix M of the linearized system (3.13) in the equilibrium E∗ is strictly
negative, then E∗ is asymptotically stable. On the other hand, if an eigenvalue has a strictly positive real part, then E∗ is
unstable. The eigenvalues are the roots of 
(λ,0).

Equilibrium E1 = (0,0). In this case, Eq. (3.14) takes the form

λ2 − (k1 + k2)λ + k1k2 = 0.

The roots k1,k2 are strictly positive, therefore the zero equilibrium E1 is always unstable.
Equilibrium E2 = ( k1

α1
,0). In this case, Eq. (3.14) takes the form

(λ + k1)

(
λ − k2 + β21k1

α1

)
= 0.

Thus E2 is asymptotically stable if k2
k1

<
β21
α1

and unstable if k2
k1

>
β21
α1

. In the latter case, the eigenvalue −k1 belongs to the

eigenvector (1,0), hence the equilibrium is contracting in the direction of the u-axis and expanding in the direction of the
second eigenvector.

Equilibrium E3 = (0, k2
α2

). In this case, Eq. (3.14) takes the form

(λ + k2)

(
λ − k1 + β12k2

α2

)
.

Thus E3 is asymptotically stable if k1
k2

<
β12
α2

and it is unstable if k1
k2

>
β12
α2

. In the latter case, the eigenvalue −k2 belongs to

the eigenvector (0,1), hence the equilibrium is contracting in the direction of the v-axis and expanding in the direction of
the second eigenvector.

It is clear, that asymptotic stability of E2 or E3 is incompatible with the persistency of the system (3.1). In fact, we have:

Remark 3.10. The hypotheses in Theorem 3.9 imply that

k j

ki
>

β ji

αi
for i, j ∈ {1,2}, i �= j. (3.15)

This is equivalent to the condition that both E2 and E3 are unstable. In fact, for γ = 0, the hypotheses in Theorem 3.9 are
actually equivalent to (3.15).

Equilibrium E∗ = (u∗, v∗). By direct calculation of the eigenvalues or by applying the Routh–Hurwitz criterion, we find
that the inequalities

A + D < 0 and AD − B(C + E) > 0 (3.16)

imply asymptotic stability of E∗ . Using (2.5) and (2.6) to eliminate k1 and k2, it is easy to see that these two conditions can
be expressed in the original parameters of the problems, namely as

γ <
α1

v∗
+ α2

u∗
and α1α2 − β12β21 > (u∗α1 − v∗β12)γ . (3.17)

We illustrate the result numerically. For the parameter values chosen at the end of Section 2, both inequalities are satisfied
and hence E∗ is locally asymptotically stable (see Fig. 2).
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Fig. 2. Stable population distribution for u and v .

Stability for τ > 0. Every point E ∈ {E1, E2, E3, E∗} is also an equilibrium for τ > 0 in the sense that [−τ ,∞) → R
2,

t �→ E , is a solution of (3.1) for t � 0. E is called stable, if for every ε > 0 there exists a δ > 0 such that for every solution
(u, v) of (3.1) on (0,∞) satisfying ‖E − (u, v)‖C0(−τ ,0) < δ we have ‖E − (u, v)‖C0(0,∞) < ε . Moreover, E is asymptotically
stable, if it is stable and if in addition (u, v) converges to E as t → ∞.

We recall the following result for the stability of equilibria of a nonlinear delay equation from [20, Theorem 3.7.1]:

Theorem 3.11. The necessary and sufficient conditions for an equilibrium to be asymptotically stable for all τ � 0 are the following:

(1) The real part of the roots of 
(λ,0) = 0 is negative.
(2) For all real μ and all τ � 0, 
(iμ,τ) �= 0.

Observe, that for E1, E2 and E3, the product BE = 0. Therefore, in these three cases, 
(λ, τ ) ≡ 
(λ,0) for all λ and τ .
Equilibrium E2 = ( k1

α1
,0). We have seen that under the condition k2

k1
<

β21
α1

, E2 is asymptotically stable for τ = 0. In

fact, this is precisely the condition for the roots of 
(λ,0) to have strictly negative real parts, and hence, condition (1) of
Theorem 3.11 is satisfied. But since 
(iμ,τ) = 
(iμ,0), also condition (2) of Theorem 3.11 is satisfied. Hence, if k2

k1
<

β21
α1

,

then E2 is asymptotically stable for all τ � 0.
Equilibrium E3 = (0, k2

α2
). By a similar reasoning as above, we obtain: If k1

k2
<

β12
α2

then E3 is asymptotically stable for all
τ � 0.

Equilibrium E∗ = (u∗, v∗). Using (2.5) and (2.6) to eliminate k1 and k2 in A and D , we obtain the following convenient
expressions for the coefficients:

A = −u∗α1, B = −u∗β12, C = −v∗β21,

D = v∗(γ u∗ − α2

)
, E = γ v∗2.

As seen in the stability discussion of E∗ in the case τ = 0, a necessary and sufficient condition for condition (1) of Theo-
rem 3.11 to hold is (3.16). In order to discuss condition (2) we rewrite 
(iμ,τ) = 0 as:

−μ2 + (AD − BC) − BE cos(μτ) = 0, (3.18)

−(A + D)μ + BE sin(μτ) = 0. (3.19)

By squaring and adding both equations above we get

μ4 + (
A2 + D2 + 2BC

)
μ2 + (AD − BC + BE)(AD − BC − BE) = 0. (3.20)

A corresponding possible positive root of Eq. (3.20) is given by

μ2 = 1

2

(−(
A2 + D2 + 2BC

) +
√(

A2 + D2 + 2BC
)2 − 4

(
(AD − BC)2 − (BE)2

))
� 0. (3.21)

Now, it is easy to check that the following statements are equivalent:

• Condition (2) of Theorem 3.11 is not satisfied.
• ∃μ ∈ R, ∃τ � 0 such that (3.18) and (3.19) hold.
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Fig. 3. Numerical simulation results for delayed model system for τ = 1.8.

• ∃μ ∈ R, ∃τ � 0 such that (3.20) and (3.19) hold.
• ∃μ ∈ R, ∃τ � 0 such that (3.21) and (3.19) hold.

From this, it follows that

• ∃μ ∈ R such that (3.21) holds,

which in turn implies, that

• (AD − BC)2 � (BE)2 holds.

Hence, (AD − BC)2 > (BE)2 implies condition (2) of Theorem 3.11. We conclude that, by Theorem 3.11, if

A + D < 0 and AD − BC > BE and |AD − BC | > |BE|
it follows that E∗ is asymptotically stable for all τ � 0.

The stability properties of E∗ in the parametric region (AD − BC)2 < (BE)2 have been discussed in [13]. We mention
the corresponding results:

Theorem 3.12. (See Theorem 3.3 in [13].) If A + D < 0, then in the parametric region BE < AD − BC < −BE the interior equilibrium
E∗ of the allelopathic stimulatory system (3.1) is asymptotically stable for 0 < τ < A+D

BE .

It is also shown in [13] that there exists a threshold τ0 such that the following is true:

Lemma 3.13. (See Lemma 4.2 in [13].) For τ < τ0 , E∗ is asymptotically stable. For τ > τ0 , E∗ is unstable. Further as τ increases
through τ0 , E∗ bifurcates into small amplitude periodic solutions.

Now we consider the numerical simulation results of the delayed model system for the same set of parametric values
as we have mentioned at the end of Section 2. For the chosen parametric values we have A+D

BE = 1.997 and hence E∗ is
asymptotically stable for 0 < τ < 1.997. Fig. 3 shows the stable population distribution of both phytoplankton species for
τ = 1.8. If we increase the magnitude of τ without changing any other parameter then the system undergoes a Hopf-
bifurcation and the interior equilibrium point becomes unstable. A small amplitude periodic solution bifurcates from the
interior equilibrium point and we observe numerically a periodic solution around E∗ (see Fig. 4).

4. Discussion

In this paper we have considered mainly the global existence and uniqueness of solutions to a delayed model of two
interacting phytoplankton species where one species has the ability to stimulate the growth of the other species. We have
obtained the parametric restrictions under which both species persist for all future time. The analysis of the linearized
problem provides information about the local behavior of trajectories in the vicinity of various equilibria. Considering the
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Fig. 4. Hopf-bifurcating limit cycle around E∗ for τ = 4.26 > τ0.

discrete time delay as a bifurcation parameter we got a threshold value for the existence of small amplitude periodic solu-
tions. This result gives us the opportunity to conclude that oscillatory co-existence of the species is also possible when the
time delay parameter crosses its threshold magnitude. The analytical findings are substantiated with numerical simulations.
Finally we like to remark that the incorporation of discrete time delay has ability to induce oscillations in plankton popu-
lation but they do not affect the positivity of solution, boundedness and persistence of solution trajectories. These findings
agree well with some other findings [21–23].
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