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Predictions of missing links of incomplete networks, such as protein-protein interaction networks or very
likely but not yet existent links in evolutionary networks like friendship networks in web society, can be
considered as a guideline for further experiments or valuable information for web users. In this paper, we
present a local path index to estimate the likelihood of the existence of a link between two nodes. We propose
a network model with controllable density and noise strength in generating links, as well as collect data of six
real networks. Extensive numerical simulations on both modeled networks and real networks demonstrated the
high effectiveness and efficiency of the local path index compared with two well-known and widely used
indices: the common neighbors and the Katz index. Indeed, the local path index provides competitively accu-
rate predictions as the Katz index while requires much less CPU time and memory space than the Katz index,
which is therefore a strong candidate for potential practical applications in data mining of huge-size networks.

I. INTRODUCTION

Many complex systems can be well described by net-
works, where nodes represent individuals or agents, and
links denote the relations or interactions between nodes.
Complex network is therefore becoming a useful tool in ana-
lyzing a wide range of complex systems. Recently, the un-
derstanding of structure, evolution, and function of networks
has attracted much attention from physics community �1–5�.
Another important scientific issue relevant to network analy-
sis, namely, the information retrieval �6,7�, however, re-
ceived less attention. Originally, information retrieval aims at
finding material of an unstructured nature that satisfies an
information need from large collections �8�. It can also be
viewed as dealing with prediction of links between words
and documents and is now further extended to standing for a
number of problems on link mining �9�. Actually, link pre-
diction problem is a long-standing challenge in modern in-
formation science, and a lot of algorithms have been pro-
posed based on Markov chains and machine learning
processes by computer science community �10–14�. How-
ever, their works have not caught up the current progress of
the study of complex networks, especially, they lack serious
consideration of the structural characteristics of networks,
which may indeed provide useful information and insights
for link prediction.

The problem of link prediction aims at estimating the
likelihood of the existence of a link between two nodes
based on observed links and the attributes of nodes. It can be
categorized into two classes: one is the prediction of missing
links in sampling networks such as the food webs and the
world wide webs; the other is the prediction of links that may
exist in the future of evolving networks such as the on-line
social networks. In addition, the link prediction algorithms
�or other algorithms based on similar techniques� can also be
applied to solve the link classification problem in partially

labeled networks �15,16�, such as the prediction of protein
functions �15�, and to distinguish the research areas of scien-
tific publications �16�.

Up to now, most of the algorithms are designed according
to the definition of node similarity. Node similarity can be
defined just by using the essential attributes of nodes,
namely, two nodes are considered to be similar if they have
many common features �17�. Another group of similarity in-
dices is based solely on the network structure, which is
called structural similarity and can be further classified as
node-dependent, path-dependent, and mixed methods. An in-
troduction and comparison of some similarity indices is pre-
sented in Ref. �18�, in which the common neighbors �CN�
�19�, Jaccard coefficient �20�, Adamic-Adar Index �21�, and
Preferential Attachment �22� are classified to be the node-
dependent indices, while Katz Index �23�, Hitting Time �24�,
Commute Time �25�, Rooted PageRank �26�, SimRank �27�,
and Blondel Index �28� are classified to be the path-
dependent indices. Besides, Leicht et al. proposed a measure
to quantify the node similarity based on the assumption that
two nodes are similar if their immediate neighbors in the
network are themselves similar �29�. This leads to a self-
consistent matrix formulation of similarity that can be evalu-
ated iteratively using the adjacency matrix. This similarity
index can also be considered as a candidate for an accurate
link prediction.

Besides the similarity-based prediction algorithms, some
more complicated methods are proposed recently. Clauset et
al. proposed an algorithm based on the hierarchical network
structure �30,31�. First, they use a hierarchical random graph
to statistically fit the real network data. Then the dependence
of the lateral-connection probability on the depth of the
nodes in the hierarchy can be inferred. Finally, one can pre-
dict the missing links of the network according to the lateral-
connection probability by ranking them in the descending
order. Furthermore, many efforts have been done for design-
ing the recommender systems �32�. Actually, the process of
recommending items to a user can be considered as the pre-
diction of missing links in the user-item bipartite network
�33�. Especially, physicists have recently proposed some in-*zhutou@ustc.edu
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formation recommendation algorithms based on physical
processes such as energy diffusion �34–36� and heat conduc-
tion �37�. Although the relevant issue has not been fully ex-
plored, it highlights a possibility to improve the accuracy and
efficiency of link prediction algorithms by applying classical
physics dynamics.

There are many difficulties for the studies of link predic-
tion. One is the sparsity of the target networks �38–40�,
which leads to a serious problem that the prior probability of
a link is typically quite small, resulting in large difficulties in
building statistical models. The other problem is the huge
size of real systems that requires highly efficient algorithms.
However, the complexity of computational time and
memory, being a crucial factor in real applications, has not
been systematically investigated. Generally speaking, the ac-
curacy of an algorithm and its computational complexity
have positive correlation, namely, higher accuracy usually
implies higher complexity. Note that any highly accurate al-
gorithm will become meaningless if the consuming time or
memory is unacceptable. Therefore, designing an accurate
and fast algorithm is a big challenge, especially for sparse
and huge networks.

In this paper, we present a so-called local path �LP� index
to characterize the node similarity. Extensive numerical
simulations on both modeled networks and real networks
demonstrate that this similarity index is simultaneously
highly effective �its prediction accuracy is much higher than
the common neighbors and competitive with the Katz index�
and highly efficient �the time and space required to compute
it are much less than those for the Katz index�. Especially,
when the network is huge, the local path index shows great
advantage compared with the Katz index since computing
the latter asks for a CPU time scaling as cube of the network
size, while computing the former requires a linear CPU time
as the network size. We therefore think this local path index
is a strong candidate for potential practical applications in
data mining of huge-size complex networks.

II. METHOD

Considering an unweighted undirected simple network
G�V ,E�, where V is the set of nodes and E is the set of links.
The multiple links and self-connections are not allowed. For
each pair of nodes x ,y�V, we assign a score sxy. Since G is
undirected, the score is supposed to be symmetry, say, sxy
=syx. All the nonexistent links are sorted in decreasing order
according to their scores, and the links in the top are most
likely to exist. In this paper, we adopt the simplest frame-
work, that is, to directly set the similarity as the score, so the
higher score means the higher similarity, and vice versa. In
some link prediction algorithms, the scores may be not di-
rectly related to a certain similarity measurement but de-
scribe the existence likelihood of links �10–14,30�, and in
some other algorithms, scores may be generated by an inte-
gration of some similarities of node pairs in the neighbor-
hood of the target links such as the collaborative filtering
method �41�.

In this paper, we compare the prediction accuracies and
computational complexity of three similarity indices: CN,

Katz index, and a proposed similarity index, namely, local
path index �LP index or LP for short�. Their definitions and
relevant motivations are introduced as follows:

�i� Common neighbors, which is also called structural
equivalence in Ref. �19�. In common sense, two nodes x and
y are more likely to form a link in the future if they have
many common neighbors. For a node x, let ��x� denote the
set of neighbors of x. The simplest measure of the neighbor-
hood overlap is the directed count

sxy = ���x� � ��y�� , �1�

where �Q� is the cardinality of the set Q. It is obvious that
sxy = �A2�xy, where A is the adjacency matrix, in which Axy
=1 if x and y are directly connected and Axy =0 otherwise.
Note that �A2�xy is also the number of different paths with
length 2 connecting x and y. Newman �42� used this quantity
in the study of collaboration networks, showing the correla-
tion between the number of common neighbors and the prob-
ability that two scientists will collaborate in the future. Some
more complicated measures, such as Salton index �6�, Jac-
card index �20�, Sørensen index �43�, and Adamic-Adar in-
dex �21�, can also be categorized into CN-based measures.
However, recently, extensive empirical analysis has demon-
strated that the simplest CN �i.e., Eq. �1�� performs even
better than those complicated variants �18,44�. Therefore, we
here select CN as the representative of all CN-based mea-
sures. Although CN consumes little time and performs rela-
tively good among many local indices, due to the insufficient
information, its accuracy cannot catch up with the measures
based on global information. One typical example is the Katz
index �23�.

�ii� Katz index. This measure is based on the ensemble of
all paths, which directly sums over the collection of paths
and exponentially damped by length to give the short paths
more weights. The mathematical expression reads as

sxy = �
l=1

�

�l�pathsxy
�l	� , �2�

where pathsxy
�l	 is the set of all paths with length l connecting

x and y, and � is a free parameter controlling the weights of
the paths. Obviously, a very small � yields a measure close
to CN because the long paths contribute very little. The S
matrix can be written as �I−�A�−1− I. Note that � must be
lower than the reciprocal of the maximum of the eigenvalues
of matrix A to ensure the convergence of Eq. �2�.

�iii� Local path index. To provide a good tradeoff of ac-
curacy and complexity, we here introduce an index that takes
consideration of local paths, with wider horizon than CN. It
is defined as

S = A2 + �A3, �3�

where S denotes the similarity matrix and � is a free param-
eter. Clearly, this measure degenerates to CN when �=0 and
if x and y are not directly connected �this is the case we are
interested in�, �A3�xy is equal to the number of different paths
with length 3 connecting x and y. Although it needs more
information than CN, it is still a local measure of relatively
lower complexity than global ones.
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Choosing these three indices for comparison is because
they all can be classified to path-dependent similarities with
unified form as sxy =��l�pathsxy

�l	�, where for CN, l=2; for LP,
l=2,3; and for Katz, l=1,2 ,3 , . . . ,�. Since we are only in-
terested in the indirectly connected node pairs, Katz index
can be treated as a measure considering l=2,3 , . . . ,�. Note
that all these three indices are used to quantify the structural
equivalence, with a latent assumption that the link itself in-
dicated a similarity between two endpoints �see, for example,
the Leicht-Holme-Newman index �29� and transferring simi-
larity �45��. An issue worth future exploration is whether a
certain similarity measure on regular equivalence �see Ref.
�46� for the mathematical definition of regular equivalence
and Ref. �15� for a recent application on the prediction of
protein functions� can provide better predictions.

To test the algorithmic accuracy, the observed links E is
randomly divided into two parts: the training set ET is treated
as known information, while the probe set EP is used for
testing and no information in the probe set is allowed to be
used for prediction. Clearly, E=ET�EP and ET�EP=�. In
this paper, the training set always contains 90% of links, and
the remaining 10% of links constitute the probe set. We use a
standard metric, area under the receiver operating charac-
teristic �ROC� curve �47�, to quantify the accuracy of predic-
tion algorithms. In the present case, this metric can be inter-
preted as the probability that a randomly chosen missing link
�a link in EP� is given a higher score than a randomly chosen
nonexistent link �a link in U \E, where U denotes the univer-
sal set�. In the implementation, among n times of indepen-
dent comparisons, if there are n� times the missing link hav-
ing higher score and n� times the missing link and
nonexistent link having the same score, we define the accu-
racy as n�+0.5n�

n . If all the scores are generated from an inde-
pendent and identical distribution, the accuracy should be
about 0.5. Therefore, the degree to which the accuracy ex-
ceeds 0.5 indicates how much better the algorithm performs
than pure chance. Readers are encouraged to see the Refs.
�48,49� for more information about how to evaluate the ac-
curacy of prediction algorithms.

III. MODEL

In this section, we compare the three similarity indices in
modeled networks with controllable density and randomness.
Although the real networks have complex structural proper-
ties �5�, such as the community structure, the mixing pattern,
and the rich-club phenomenon, as a start point, we only con-
sider a very simple model, and to eliminate the effect of
degree heterogeneity, we assume that every node has an
identical degree k. In this model, each node is characterized
by a ten-dimensional vector with each element a randomly
selected real number in the interval �−1,1�. This vector rep-
resents the node’s intrinsic features such as the attributes of
an object and the profiles of a person. Two nodes are consid-
ered to be similar and thus of high probability to connect to
each other if they share many close attributes. Therefore, we
define the intrinsic similarity between two nodes as the sca-
lar product of the corresponding vectors, namely,

sxy
I = f�x · f�y = syx

I , �4�

where f�x is the vector of node x, and the superscript empha-
sizes that this similarity is intrinsic and cannot be observed
in the real systems.

Given the network size N and the degree of each node k,
this model starts with an empty network but N nodes, that is,
each node is of degree zero. At each time step, a node with
the smallest degree is randomly selected �generally, there is
more than one node having the smallest degree�. Among all
other nodes whose degrees are smaller than k, this selected
node will connect to the most similar node with probability
1− p, while a randomly chosen one with probability p. This
process will terminate when all nodes are of degree k. The
parameter p� �0,1� represents the strength of randomness in
generating links, which can be understood as noise or irra-
tionality that exists in almost every real system.

In Figs. 1 and 2, we report the comparison of algorithmic
accuracy for those three similarity indices. Data points are
corresponding to the optimal values of � �for Katz index� or
� �for LP index� subject to the highest accuracies. Clearly,
both Katz and LP indices perform remarkably better than the
simple CN index. As shown in Fig. 1, when the strength of
randomness/noise is weak, LP index gives competitive result
as Katz index, while for highly noisy cases, LP index per-
forms even better. Whatever the similarity index, a link pre-
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FIG. 1. �Color online� Prediction accuracy vs the strength of
randomness for three similarity indices: CN �circles�, LP �triangles�,
and Katz index �squares�. The network size N=1000 and the degree
k=10 are fixed. Each data point is obtained by averaging over ten
independent realizations. When approaching the purely random
case p=1, the accuracies of CN and LP go below 0.5, which is an
artifact of the specific constrain on identical degree. That is, in the
purely random case, two unconnected nodes with higher degrees in
the training set are of less probability to be connected in the probe
set since the total degree is identical for every node; however, they
generally have more common neighbors and thus higher similarity.
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diction algorithm is expected to give higher accuracy for a
denser network, which is in accordance with what was ob-
served in Fig. 2. In the area with lacking information �i.e.,
small k� or rich information �i.e., large k�, LP index performs
slightly better than CN index, while in the middle with typi-
cal degree as the real networks, LP index can perform much
better than the CN index.

The reason why the CN index performs remarkably
poorer than LP index is that the probability that two node
pairs are assigned the same similarity by CN is high. That is
to say, CN index is less distinguishable, especially in the
relatively sparse networks. For example, in the case N
=1000, p=0, and k=10, there are about 5�105 node pairs,
94.01% of which are assigned zero score, and for all nonzero

scores, 79.87% are 1. As shown later, the real cases may be
even worse, for instance, in a router-level Internet with 5022
nodes, 99.59% of node pairs are assigned zero score by CN,
while for all those nonzero scores, 91.11% of which are as-
signed score one. The additional information involving the
next-nearest neighbors introduced by LP index can make the
similarities much more distinguishable, thus, remarkably en-
hances the accuracy. Note that if the maximal number of
paths with length three connecting two arbitrary nodes is
Pmax, any � in the interval �0, 1

Pmax
� will give out exactly the

same predictions. Therefore, the prediction accuracy for LP
index is not sensitive to the parameter � when � is not so
large. Indeed, setting � as a small positive number, such as
0.01, one can obtain a near optimal accuracy, usually less
than 1% smaller than the real optimum �see also Table I,
where we compare the optimal AUC values with the values
obtained by setting �=0.01 for the six real networks�. In
finding the optimal value of �, one can first calculate the
maximal eigenvalue of the adjacency matrix, and the optimal
� is always smaller than its reciprocal. It is then easy to
approach the optimal �. For example, the optimal values of
� for relevant data points shown in Figs. 1 and 2 are all no
larger than 0.03.

Next, we discuss the computational complexities of the
three similarity indices. In calculating the CN index, for each
node denoted by x, we first search all x’s neighbors �called
the step 1� and then lay out the neighbors of each of x’s
neighbors, respectively �called the step 2�. If a node y ap-
pears n times in the step 2, sxy =n. Since the time complexity
to traverse the neighborhood of a node is simply k, the time
complexity in calculating CN index is O�Nk2�. Analogously,
for LP index, what we need to do is go one step further
�called the step 3� to check all neighbors of each of x’s
second-order neighbors, respectively. If a node y appears n
times in x’s second-order neighborhood and m times in x’s
third-order neighborhood, sxy =n+�m. Therefore, the time
complexity in calculating the LP index is O�Nk3�. A detailed
illustration, for example, network consisted of four nodes, is
shown in Fig. 3. For the Katz index, the time complexity is
mainly determined by the matrix inversion operator, which is
O�N3� �50�. In Figs. 4 and 5, we report the numerical results
about computational complexity of the three similarity indi-
ces, which are well in accordance with the analysis. Besides
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FIG. 2. �Color online� Prediction accuracy vs network density
for three similarity indices: CN �circles�, LP �triangles�, and Katz
index �squares�. Since in this model, every node has the same de-
gree, we therefore directly use degree to denote the network density.
The network size N=1000 and the strength of randomness p=0.2
are fixed. Each data point is obtained by averaging over ten inde-
pendent realizations.

TABLE I. Accuracies of the three similarity indices, measured by the area under the ROC curve �AUC�.
Each number is obtained by averaging over ten independent realizations. The entries corresponding to the
highest accuracies are emphasized by black. For LP and Katz indices, the AUC values are corresponding to
the optimal parameter. LP� denotes the LP index with a fixed parameter �=0.01. The very small difference
between the optimal case and the case with �=0.01 suggests that in the real application, one can directly set
� as a very small number, instead of finding out its optimum that may cost much time.

Nets PPI NS Grid PB INT USAir

CN 0.915 0.983 0.627 0.924 0.653 0.958

LP 0.970 0.988 0.697 0.941 0.943 0.960a

Katz 0.972 0.988 0.952 0.936 0.975 0.956

LP� 0.970 0.988 0.697 0.939 0.941 0.959b

aFor USAir, the optimal value of � is negative. See the explanation in text.
bFor USAir, we set �=−0.01.
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the time complexity, memory space is another limitation for
algorithmic implementation for huge-size networks. In cal-
culating CN and LP indices, the memory required are of the
order O�Nk�, while for the Katz index, it is of the order
O�N2�. In a word, compared with the widely applied CN and
Katz indices, the LP index is not only highly effective �i.e.,
accurate� but also highly efficient �i.e., required relatively
less memory and CPU time�.

IV. EMPIRICAL ANALYSIS

In this paper, we consider six representative networks
drawn from disparate fields: �i� PPI: a protein-protein inter-
action network containing 2617 proteins and 11855 interac-
tions �51�. Although this network is not connected �it con-
tains 92 components�, most of the nodes belong to the giant
component, whose size is 2375. �ii� NS: a network of coau-
thorships between scientists who are themselves publishing
on the topic of networks �52�. This network contains 1589
scientists, and 128 of which are isolated. Here we do not
consider those isolated nodes. The connectivity of NS is not
good. It is consisted of 268 connected components, and the
size of the largest connected component is only 379. �iii�
Grid: an electrical power grid of western US �53�, with nodes
representing generators, transformers and substations, and
links corresponding to the high-voltage transmission lines
between them. This network contains 4941 nodes and is well
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FIG. 3. �Color online� An illustration of time complexity in calculating CN and LP indices. �a� A fully connected network with four nodes
as the example. �b� Lists of the neighborhood of each node. �c� Process of how to determine all the similarities relevant to node 1.
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FIG. 4. �Color online� A log-log plot about how the computa-
tional time �in microsecond� depends on the network size for three
indices CN �circles�, LP �triangles�, and Katz �squares�. The node
degree k=10 and the strength of randomness p=0.2 are fixed. Each
data point is obtained by averaging over ten independent realiza-
tions. All computations were carried out in a desktop computer with
a single Intel �R� Xeon �TM� processor �3.00 GHz� and 2GB EMS
memory.
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connected. �iv� PB: a network of the US political blogs �54�.
The original links are directed; here we treat them as undi-
rected ones. PB has 1224 nodes and the giant component
contains 1222 nodes. �v� INT: the router-level topology of
the Internet, which is collected by the Rocketfuel Project
�55�. INT has 5022 nodes and is well connected, while it is
an extremely sparse network with an average degree being
only 2.49. �vi� USAir: the network of US air transportation
system, which contains 332 airports and 2126 airlines �56�.
Note that all the similarity indices considered here, as well as
those well-known indices �except the preferential attachment
index� reported in Refs. �18,44�, will give zero score to a pair
of nodes located in two disconnected components. Therefore,
here we only consider the giant component, and when pre-

paring the probe set, we also make sure that the training set
remains, representing a connected network. Actually, each
time before removing a link to the probe set, we first check if
this removal will make the training network disconnected.
Table II summarizes the basic topological features of the
giant component of those networks. Brief definitions of the
monitored topological measures can be found in the table
caption �for more details, please see the review articles
�1–5��.

We apply the link prediction algorithm on the six real
networks, and the accuracies are shown in Table I, with those
entries corresponding to the highest accuracies being empha-
sized by black. Clearly, the LP index always performs better
than the CN index, especially, for INT, the AUC is sharply
improved from 0.653 to 0.943. Except grid, the LP index
gives competitively accurate predictions as the Katz index.
Grid is a strongly localized network with most of links being
of short geographical lengths and, thus, the average topologi-
cal distance of grid �d	=15.87 is much larger than the other
five example networks. Although grid is geographically lo-
calized, the clustering coefficient is relatively small and it
lacks short loops since such loops are redundant and of lower
efficiency in the engineering viewpoint. Actually, in grid,
when a link is removed, it is usually hard to find a very short
path �such as of length 2 or 3� connecting the two endpoints.
Therefore, the CN and LP indices, considering only very
short paths, fail to refind the correlation between two directly
connected nodes if the link is removed. In addition, we note
that the optimal value of � for USAir is negative. In USAir,
the large-degree nodes are densely connected and share
many common neighbors. Even without the contribution of
�A3, the links among large-degree nodes are assigned very
high scores; thus, the additional item �A3 changes little of
their relative positions. Considering two small local airports
x and y, which are connected to their local central airports x�
and y�. Of course, many hubs are common neighbors of x�
and y�, and x� and y� may be directly connected. If the link
�x ,x�� is removed, the similarities between x and other nodes
are all zero. Otherwise, the similarities sxy� �by x-x�-hub-y��,
sxy �by x-x�-y�-y�, and sxh, where h represents a hub node �by
x-x�-hub-h or x-x�-y�-h�, are positive due to the contribu-
tions of paths with length 3. There are many links connecting
small local airports and local centers; some of which are
removed, and the others are kept in the testing set. According
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FIG. 5. �Color online� A log-log plot about how the computa-
tional time �in microsecond� depends on the node degree for three
indices CN �circles�, LP �triangles�, and Katz �squares�. The net-
work size N=1000 and the strength of randomness p=0.2 are fixed.
Each data point is obtained by averaging over ten independent re-
alizations. The hardware environment is the same as what we stated
in the caption of Fig. 4.

TABLE II. The basic topological features of the giant components of the six example networks. N and M
are the total numbers of nodes and links, respectively. �k	 is the average degree of the network. �d	 is the
average shortest distance between node pairs. C and r are clustering coefficient �53� and assortative coeffi-
cient �57�, respectively. Nodes with degree 1 are excluded from the calculation of clustering coefficient. H is
the degree heterogeneity defined as H= �k2	

�k	2 .

Networks N M �k	 �d	 C r H

PPI 2375 11693 9.847 4.59 0.388 0.454 3.476

NS 379 914 4.823 4.93 0.798 −0.082 1.663

Grid 4941 6594 2.669 15.87 0.107 0.003 1.450

PB 1222 16717 27.360 2.51 0.360 −0.221 2.970

INT 5022 6258 2.492 5.99 0.033 −0.138 5.503

USAir 332 2126 12.807 2.46 0.749 −0.208 3.464
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to the above discussion, the removed links have lower score
than the nonexistent links due to the additional item �A3. In a
word, the very specific structure of USAir �the hierarchical
organization consisted of hubs, local centers, and small local
airports� makes the LP index with positive � worse than the
simple CN corresponding to �=0, which is also the reason
why negative � performs even better.

Table III presents the computation time of the link predic-
tion algorithm on the three similarity indices. Clearly, CN
costs the least. Note that the computational complexity in
calculating the LP index is very sensitive to the average de-
gree, while the one in calculating the Katz index is very
sensitive to the network size. Therefore, the algorithm using
LP index has great superiority for the huge-size and sparse
networks compared with the one adopting the Katz index.
Take INT as an example, the algorithm using the Katz index
runs about one day, while the one using the LP index takes
less than half minute. Since the real challenge on computa-
tional complexity is always relevant to the huge-size real
networks, which are mostly very sparse �1�, the LP index is
much more practical than the Katz index. As a final remark,
one may concern that whether to employ higher-order paths
is worthwhile in practice, such as to define a similarity index
in the form

S = A2 + �A3 + �2A4. �5�

We give a brief discussion on this issue in the Appendix.

V. CONCLUSION AND DISCUSSION

In this paper, we presented a local path index to estimate
the likelihood of the existence of a link between two nodes.
We propose a network model with controllable density and
noise strength in generating links. The LP index provides
slightly more accurate predictions than the Katz index, espe-
cially in the highly noisy cases. We further use six represen-
tative real networks to test the three similarity indices, show-
ing that the LP index can provide competitively accurate
predictions as the Katz index. Compared with the Katz in-
dex, the LP index requires much less CPU time and memory
space and is therefore more practical. Ignoring the degree-
degree correlation, the time complexities in calculating LP
index and Katz index are O�N�k	3� and O�N3�, respectively.
Hence, for the huge �i.e., very large N� and sparse �i.e., very
small average degree �k	� networks, the advantage of the LP
index is striking.

Highly accurate predictions are significant in practice. For
example, many biological networks, such as protein-protein

interaction networks, metabolic networks, and food webs,
the discovery of links/interactions costs much in the labora-
tory or the field. Instead of blindly checking all possible
interactions to predict in advance based on the interactions
known already and focus on those links most likely to exist
can sharply reduce the experimental costs if the predictions
are accurate enough �30,31�. For some others, such as the
friendship networks in web society, very likely but not yet
existent links can be suggested to the relevant users as rec-
ommendations of promising friendships. These recommenda-
tions can help users finding new friends and thus enhance
their loyalties to the web sites. Besides the practical signifi-
cance, it is worthwhile to emphasize that the study of link
prediction can also provide some theoretical insights about
the structural organization. For example, in this paper, the
unexpected results on grid and USAir give evidence to some
specific structural properties that are not straightforwardly
notable. Another example is that the preferential attachment
index usually gives poor predictions, and when it works rela-
tively good, it implies that the testing network has strong
rich-club phenomenon �41,44�. Although the focus of this
paper is not to investigate the relations between suitable
similarity indices and network structures, we believe it is an
interesting issue worth further studies.

In this paper, we only considered the link prediction prob-
lem in static networks. However, many real networks are
evolving all the time, and the links created in different times
should be assigned different weights in principle. This time-
involved link prediction problem is rarely investigated and,
of course, worth a serious study in the future �58�. Most of
previous studies in relevant direction only test the algorith-
mic accuracy in real networks. Here, we argue that the mod-
eled networks should be used because one can control some
meaningful parameters in a model, which cannot be directly
observed in the real networks �e.g., the strength of noise or
irrationality�. We hope the proposed model could become a
prototype in testing the accuracy of link prediction algo-
rithms; however, it is currently too simple and to make it
closer to the real networks, such as introducing controllable
degree heterogeneity and degree-degree correlation, is very
helpful.

This paper concerns only the simple networks; however,
the local path index can be easily extended to more compli-
cated cases. For example, we can handle the directed net-
works by replacing the original adjacency matrix A by an
asymmetry one, the weighted networks by replacing A by a
weighted matrix, and the networks with self-connections by
assigning nonzero diagonal elements. Actually, Murate and
Moriyasu �59� already investigated the link prediction prob-

TABLE III. Computation time �in microsecond� of the link prediction algorithm on the three similarity
indices of the six example networks. The hardware environment is the same as what we stated in the caption
of Fig. 4.

Nets PPI NS Grid PB INT USAir

CN 10690 253 5161 31112 6711 2208

LP 543589 1638 11344 2873403 27641 93892

Katz 8073316 27479 69961063 1051528 72550935 17603
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lem in weighted networks; however, the credibility of their
work is recently challenged by the empirical evidence that
the weak ties may play a more important role in the link
prediction than the strong ties �60�.
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APPENDIX: SIMILARITY INDEX INVOLVING HIGHER-
ORDER PATHS

A straightforward method to extend the local path index is
to consider the higher-order paths. Such a similarity index is
of the form

S = A2 + �A3 + �2A4 + ¯ + �n−2An, �A1�

where n�2 is the maximal order. As shown in Fig. 3, the
computational complexity in an uncorrelated network is
O�N�k	n�, which grows fast with the increasing of n and will
exceed the complexity for calculating the Katz index for
large n. We therefore concentrate on the case of n=4, equiva-
lent to the one shown in Eq. �5�.

As shown in Table IV, the improvements of accuracy are
not much, except for the power grid. Sometimes, to intro-
duce higher-order relations would even decrease the accu-
racy such as for USAir and PB. The results are very sensitive
to the average shortest distances of networks. If �d	 is very
short, to consider paths with length three seems enough, and
the addition item �2A4 will make little effort �e.g., PPI, NS,
and INT� or even negative effort �e.g., USAir and PB�. Only
when the network is of long average shortest distance, to
consider higher-order relations may be cost effective. Since
most real networks exhibit strongly small-world effect �1–5�,
a local path index taking into account paths with length no
more than three may be practically sufficient.
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