
Task analysis for the investigation of human error in safety-

critical software design: a convergent methods approach

N. M. SHRYANE*, S. J. W ESTERMAN, C. M. CRAWSHAW, G. R. J. HOCKEY and J. SAUER

Human Factors Group, Department of Psychology, University of Hull, Hull

HU6 7RX, UK

Keywords: Safety critical systems; Task analysis; Error analysis; Human error.

An investigation was conducted into sources of error within a safety-critical

software design task. A number of convergent methods of task- and error-analysis

were systematically applied: hierarchical task analysis (HTA), error log audit,

error observation, work sample and laboratory experiment. HTA, which

provided the framework for the deployment of subsequent methods, revealed

possible weaknesses in the areas of task automation and job organization.

Application of other methods within this more circumscribed context focused on

the impact of task and job design issues. The use of a convergent methods

approach draws attention to the bene®ts and shortcomings of individual analysis

methods, and illustrates the advantages of combining techniques to analyse

complex problems. The features that these techniques should possess are

highlighted.

1. Introduction

1.1. Task analysis for the investigation of human error

The term `task analysis’ describes a plethora of techniques intended to describe and

examine the tasks carried out by human beings within a system (for a comprehensive

review see Kirwan and Ainsworth 1992). The range of human factors domains to

which task analysis techniques can be applied is broad, including training, task and

job design, allocation of function and performance assurance. Although they have

the same general goal, diŒerent techniques may be suitable for answering diŒerent

kinds of questions, in diŒerent kinds of work systems. This paper is concerned with

an investigation into the human factors underlying the commission and detection of

human error in railway signalling software design.

Within the context of performance assurance (i.e. the consideration of factors

necessary to ensure system performance within acceptable tolerances), human error

is of paramount importance, especially in safety-critical systems. Many analysis

methods can be used to investigate the role of human fallibility in systems (e.g.

SHERPA, human HAZOP; see Kirwan 1992a) . Used as Human Error Identi®cation

(HEI) techniques, they are often applied within the framework of Probabilistic Risk

Assessment (PRA), where the set of undesirable events that could occur within a

system is de®ned, along with the paths that lead to them and the probability of their

occurrence. The assessment and use of Human Error Probabilities (HEPs) has been

criticized when applying absolute error probabilities (Hollnagel 1993). The authors

SebastiaoR
Texte tapé à la machine
Published in: Ergonomics, vol. 41(1998), no 11, p. 1719-1736 which should be cited to refer to this work



would argue that HEPs are more reliable when comparing relative error probabilities

associated with diŒerent parts of a task than when used to give absolute error

probabilities.

1.2. Human reliability analysis and the nature of the system

For process control system operation and similar environments, where many of these

techniques were developed, HEI methods have undoubtedly proved to be useful.

Such systems are `physical’ in nature and the hazards they present tend to be

delimited, or `bound’, by the physical properties of system elements and the actual or

potential physical linkages between system components. In this context an operator

actionÐsay, closing a valveÐwill only be able to aŒect aspects of the system that the

valve has the physical potential to aŒect. Even if this potential includes causing an

explosion, the sphere of in¯uence of this is in principle determinable.

These constraints do not apply when considering the design of software systems.

Errors made in the task of programming computer-based systems are not subject to

the `bounding’ of error by physical principles in the way described above. Instead,

the sphere of in¯uence of an error is only limited by the power and ¯exibility of the

programming language used. The development of complex systems requires the use

of powerful languages that can express that complexity. This means that even the

most simple of errors (e.g. misnaming one variable) could result in unpredictable and

potentially disastrous consequences for the logic embodied by the system. These

consequences will not necessarily be con®ned to the speci®c aspect of the system to

which the error relates. By unintentionally overwriting a section of memory, for

instance, otherÐlogically and functionally unrelatedÐparts of the system can be

aŒected. This means that virtually all aspects of the programming task could lead to

hazardous outcomes, rather than particular, easily identi®able sections. As stated by

Broom®eld and Chung (1995: 223) `no established technique is available for relating

software faults to system hazards’.

1.3. Human error identi®cation methods

The eŒectiveness of most HEI techniques depends upon the expertise and experience

of the analyst, and this holds true for more general examples of task analysis

methods as well. This is because, almost without exception, these methods are based

solely or primarily upon the judgements of expert practitioners, who are themselves

open to biases and errors of cognition. Whether through interviews or through task

documentation, the information gathered regarding tasks and possible errors will

usually be subjective in nature. Some HEI methods attempt to reduce the eŒects of

practitioner bias by using expert-system-like computerized question and answer

routines (e.g. SHERPA), but the potential problem of a task expert’s faulty or

incomplete mental model of the system is not addressed. This is of particular

importance in the context of computer programming, where there is unlikely to be a

complete mental model of how errors will aŒect system performance for the reasons

outlined in § 1.2.

The development of a programming language, e.g. C+ + ; Ada, is a good

example of a complex programming task. The development is usually accompanied

or followed by a standardization process, which attempts to remove inconsistencies,

unde®ned behaviour, etc. from the language. The standardization is carried out by

committees such as ANSI (American National Standards Institute) and ISO

(International Standards Organisation), made up of experts from around the globe.

1720 N. M. Shryane et al.



However, Hatton (1995: 56) points out `[standardisation] committees simply forget

things or don’t understand the full implications of some features at the time of

standardisation’. These errors come to light during use of the languages, and are

referred back to the committee by the programmers who discover them. For the Ada

language, developed in part for safety-related applications, Hatton (1995) reported

that there were around 2000 of these `interpretation requests’ outstanding.

1.4. Convergent methods approach

It can be seen that features of the computer software design task pose problems for

the investigation of human error. In the main, HEI techniques are powerful and

¯exible methods that can be used eŒectively in a range of task environments. It is

contended, however, that in the study of error in computer programming, and

certainly in the context of safety-critical systems, they should not be used alone. `It is

recommended that reliance is not placed on a single technique of HEI’ (Kirwan

1992b: 378). A broader-based approach is needed, using more than one method in

order to provide convergent validation, and to allow diŒerent parts of system

performance to be adequately investigated. This calls for the use of a set of diŒering

analysis methods and data sources, including actual task performance, rather than

traditional `expert-opinion’ focused task analysis alone. Using this combination a

`matrix’ of evidence regarding overall system integrity can be built up.

This paper considers such an approach to the analysis of human error.

Speci®cally, the design of software for a safety-critical railway signalling control

system, called `Solid State Interlocking’ (SSI), is described in § 2. Section 3 details the

initial task analysis of this design process. Section 4 describes an empirical error

analysis used to provide convergent evidence for the investigation. It should be noted

that this study is an investigation into the factors aŒecting production and detection

of error, not a PRA of the system.

2. Solid State Interlocking

As a case study of a complex safety-critical system, the design of data for a railway

signalling safety system was investigated. `Solid State Interlocking’ (SSI) auto-

matically controls the signals, points, etc. in a section of railway, ensuring that only

safe movements of trains are allowed to take place. Each SSI is triply hardware

redundant (three identical central processors), but the `geographic data’ that speci®es

the logic for the movement of trains is unique to each SSI, and the same version is

loaded into all three processors. This means that the `data’ must be correct, as any

faults could allow collisions or de-railments.

Figure 1 shows a small section of a highly simpli®ed signalling diagram. It

represents a plan view of the railway layout. Track sections are shown labelled T1,

T2, etc. Signals are represented by three schematic lights and are labelled S1, S2, etc.

Where tracks converge or diverge there are gaps, representing sets of points, labelled

P1 and P2.

Below the diagram is a simpli®ed section of data, showing the conditions that

must be ful®lled before Route 2 (R2; from S1 to S7) can be set. This entails checking

that the route is available (R2 a), e.g. not barred because of maintenance; that the

points are in the correct position, or free to be moved to the correct position (P1 crf,

P2 cnf); and that other, opposing routes are not already set, which is done by

checking two opposing sub-routes to ensure that they are free (U10-AB f, U3-BC f).

If these checks are passed, then the route is set (R2 s); the individual sub-routes in

1721Task analysis for safety-critical software design



Route 2 are locked (e.g. U3-CB l); the points are moved to the correct position (P1

cr, P2 cn); and the route entrance signal is checked to see if it is available to be

changed to green (S2 clear bpull). It is the programming, veri®cation and validation

process for this data that is the focus of the present study.

3. Task analysis

The technique of Hierarchical Task Analysis (HTA: Annett and Duncan 1967) was

chosen for the initial investigation of the SSI design process. HTA has existed for so

long, and it has been so widely used, that it could be described as `traditional’.

Associated with it is a range of `traditional’ sources of data, including the technicalÐ

and the critical incidentÐinterview, system documentation and operator observa-

tion. This technique was chosen because of its ¯exible and systematic task

decomposition process. Used with the data sources listed above, it would provide

the framework for the later error analysis, which could then be used to provide a

retrospective validation of the technique.

3.1. Hierarchical task analysis method

A `process analysis’, as suggested by Piso (1981), was conducted concurrently with

the initial stages of the HTA. The process analysis sets out to describe the production

process, functioning of equipment, jargon, and general task environment, so that a

framework for the HTA itself is provided. HTA is used to describe the goals that the

operator must ful®l and the plans to schedule them. First, the overall, or

superordinate, goal of the SSI design system is broken down into a number of

sub-goals, along with the plan required for structuring, ordering and performing

them. This procedure is then iterated, each sub-goal being assessed to see if it

warrants further redescription. Consideration of performance shaping factors (e.g.

expertise, task design, performance demands, o�ce environment) informed the

assessment of error-proneness of the operation or plan, and hence the level of

redescription required.

1

Figure 1. Example SSI signalling layout and data.

1722 N. M. Shryane et al.



The strengths and limitations of each of the sources of data listed earlier, i.e.

interviews with task experts, task-related documentation and video recorded task

observation, are discussed below.

3.2. Sources of data for HTA

3.2.1. Interviews: Interviews with task experts are an accessible and ¯exible method

of data collection. Interviewing is, however, a purely subjective method, liable to

error, omission and bias. To reduce these eŒects a number of steps were taken.

Various personnel were interviewed, from managers to trainees, to avoid gaining a

view of the data design task coloured from one organizational perspective. As well as

formal interviews, informal chats with staŒ were entered into wherever possible. It

was felt that, especially in a safety-critical industry, the less the participants were

made to feel scrutinized the more likely they were to be honest about the way in

which tasks were conducted and about the errors that could occur.

3.2.2. Documentation: Guides, manuals and training materials give detailed

information on how a task should be done, although they are unlikely to reveal

how a task is actually done. In the domain of programming tasks, it will tend to be

more a description of the `tools of the trade’, rather than a `recipe’ to achieve correct

task performance.

3.2.3. Observation: Task observation allows features and problems of task

performance to be revealed that otherwise may not come to light using the above

methods (e.g. assumed knowledge). The `observer eŒect’ is, however, likely to have

an in¯uence on task performance that is especially unwelcome when investigating

error.

3.3. Task analysis results

The data gathered from all sources were amalgamated into a hierarchical diagram of

the SSI data design process. For a fuller description of the HTA, see Westerman et

al. (1994). The full diagram consisted of seven levels of the hierarchy, around 150

individual operations structured by 40 plans of various complexity. A brief overview

of the process of SSI data design is shown in the hierarchical diagram (®gure 2),

showing the ®rst three levels of the hierarchy.

Box 0 contains the overall goal of the system, boxes 1 and 2 below being the sub-

goals required to accomplish it. The relationship between boxes 1 and 2 is shown in

Plan 0. These sub-goals are then further redescribed in boxes 1.1 to 2.2. Each

horizontal level of the hierarchy is a complete description of the task, at higher detail

the lower the level.

The task is roughly divided into two areas (boxes 1 and 2 on the diagram): o�ce-

based production and site-based installation. The actual programming process

consists of four stages: preparation (writing; 1.2), set to work (simple testing; 1.3),

bench checking (code inspection; 1.4) and testing (1.5). These stages will be the focus

of this study. In terms of the system life-cycle, these stages correspond to the

detailed-design and build of the system (1.2, 1.3), and the veri®cation and validation

process (1.4, 1.5). Plan 1 speci®es how these tasks are linked. The equipment

available for the task is a dedicated UNIX system called the Design Work Station

(DWS). The data are written at the terminals of the DWS. Printouts can then be

produced for static code inspection, or data checking as it is called. The data can also

1723Task analysis for safety-critical software design



be downloaded to an SSI processor module, which acts as a simulator for the

functional testing of the data. The tester performs functional tests of the SSI data by

using a trackball to scroll across a graphical representation of the signalling layout

(similar to ®gure 1), and setting elements to their various states.

Essentially, the SSI data are written, and then brie¯y tested using a computer-

based simulation of the railway network. This ®rst testing session is carried out

by the author of the data, to ensure that it meets certain minimum standards. A

printout of the data is then checked by another engineer who has had no part in

the writing process. Finally, the data are again loaded onto a simulator, where

they are subjected to more rigorous and formal testing by a specially quali®ed

engineer who must have had no part in either of the preceding stages. If any

errors are found during either the check or formal test, they are logged and the

data returned to their author for amendments, and the whole cycle gone through

once more.

Regarding the sta�ng for the various stages, expertise tends to increase from

left to right. The most expert and quali®ed signalling engineers are employed at

the testing stage, the `last line of defence’ to remove faults in the data. The least

experienced are employed in writing the data, although they can seek help from

more senior engineers who are not involved on the project. Expertise is gained in

the ®rst instance by a number of 2-week training courses that instruct the newly

recruited trainee-engineer in basic railway signalling and SSI data. Most training

is done `on-the-job’, however, with novices tackling progressively more

complicated aspects of the data preparation task, and then going on to qualify

for checking, etc. There is not the space here to review all of the potential

problems highlighted by the HTA, but some of the more interesting ones are

described below.

Figure 2. Overview of the HTA for designing and installing an SSI.

1724 N. M. Shryane et al.



If the HTA is carried out systematically, structural features of the HTA

hierarchical diagram can be used to highlight elements of the task being studied. For

instance, the pattern of the overall diagram (not shown) and the speci®c goals within

this pattern revealed the similarity of the writing and checking tasks compared to the

testing task.

Consideration of an organizational change revealed a potentially serious problem

relating to the introduction of automation in the data writing task. To increase

productivity, all of the signalling ®rms taking part in this study were in the process of

developing computer-based tools to automatically write much of the simpler, rule-

based data straight from a signalling plan. This will have the eŒect of removing much

of the training that novice data writers gain by tackling these tasks, and leave them

less equipped to handle the more complex, knowledge-based data that was identi®ed

in interviews as the most problematic.

Time pressure occasionally forces some checking and testing to be carried out in

parallel, leading to a revised Plan 1 (®gure 3). This means that the version control for

the data must be very tight, or unchecked data could be signed-oŒ as safe by the

tester. Normally, each new version of the data is given a unique version number by

the data writer. This number records how many cycles of checking and testing the

data has gone through, but not whether the latest version was generated because

errors were found in a check or a test. If it was a test, has that version of data been

checked as being error-free before? The danger point is shown by the dashed

diamond in ®gure 3. If this decision is made incorrectly, unchecked data could be

released into service. This problem is exacerbated by the contracting-out of the

checking or testing of these `rush’ jobs to other signalling ®rms, with an attendant

increase in the di�culty of version control.

Figure 3. Revised plan 1, for when checking (1.4) and testing (1.5) are carried out in parallel.

1725Task analysis for safety-critical software design



3.4. The need for error analysis

The ®rst phases of the analysis showed that HTA provides a useful framework for

the breakdown of potential problem areas in a task. As discussed above, structural

elements of the hierarchical diagram can be used to show similarities and diŒerences

between tasks. However, these similarities do not necessarily equate to similarities in

actual task performance. For example, although identi®ed as similar by the HTA,

performance in writing and checking may not be identical even given identical data,

i.e. data that are di�cult to write may be easy to check and vice versa. W hat HTA

does not reveal is how all of the variables that may aŒect task performance will

actually combine to produce error.

4. Error analysis

The HTA was used to identify the key stages of SSI data production: writing,

checking and testing. These were then analysed using a variety of empirical

techniques. Crucially, not only the individual tasks in isolation, but also the

combination of tasks that together make up the overall system needed to be assessed.

Several complementary techniques were chosen to provide data for the error

analysis. These were chosen partly on the basis of availability, but also to give a

broad range in terms of the type of data that they would provide. Existing error logs

would be supplemented by observation to provide work-based data. A work sample

and laboratory experimentation would be used to investigate in detail issues brought

to light from the workplace. These methods are now addressed in sequence. (For

further details see W esterman et al. (1995a).)

4.1. Error log audit

4.1.1. Method: The logs used to communicate faults found in formal checking and

testing to the data writer were the data source for this method. They revealed errors

made not only by the data writer (boxes 1.2 and 1.3 in ®gure 2), but also by the data

checker (box 1.4 in ®gure 2), as faults found by the tester necessarily have been

missed by the checker. These logs detailed the SSI data faults in terms of their

functional manifestation rather than their underlying psychological cause, but still

provided rich information about the nature of errors. The main strength of this

method was its intrinsic validity: the errors were all committed and detected by

signalling engineers carrying out their normal job of work.

The primary weakness of the method is the uncontrolled nature of the variables

underlying the production and detection of errors. The number of faults in the data

depends mainly upon the skill of the data writer and the complexity of the work.

Usable measures of these factors were not available, however. In an attempt to

reduce bias, logs were included from 12 diŒerent signalling schemes, conducted by

seven diŒerent signalling ®rms at nine sites. Even when faults within a single scheme

were compared, so controlling for expertise and complexity, the detection of a fault

by the checker means that the fault is therefore unavailable for detection by the

tester.

Two classes of error were not recorded in the logs. The ®rst class is that of the

errors committed by the data writer, but also detected by him or her. These would be

corrected when discovered, and not be logged and passed on to the later stages. The

second class is that containing faults that are not caught by either checking or

testingÐ perhaps the most important to study. Information regarding any faults

1726 N. M. Shryane et al.



discovered after the data were installed on-site, or any faults that remained latent

until accidents or incidents, was not available.

4.1.2. Results: Table 1 shows the breakdown of 580 faults detected by checking

and testing, 290 from each. The `T/C ratio’ speci®es the ratio of faults detected by

testing versus checking within each category (i.e. testing divided by checking). The

higher the ®gure, the greater is the frequency of detection by testing compared to

checking. The nature of the information in the logs means that the fault categories

mostly relate to the railway signalling principle that they would violate. The

exceptions are the `None’ category, which relates to false-alarm errors by the checker

or tester (the data were actually correct); and the `Other’ category, which details

miscellaneous SSI data-language speci®c errors, which do not relate to speci®c

signalling principles.

There are a number of reasons why it would be misleading to use these results to

make a formal quantitative comparison of the relative e�cacy of the checking and

testing processes. First, the error logs were gathered from a number of diŒerent

schemes and therefore the checking and testing logs were not fully matched. Second,

any faults detected at the checking phase were not available for detection at the

testing stage, and consequently there is no means of estimating the e�ciency of the

testing process in detecting these faults. Third, there were no measures available of

the total numbers of faults that escaped both checking and testing, again making

estimation of the e�cacy of the testing stage problematic.

Given these reservations, a number of qualitative features are of note, however.

The T/C ratio shows an advantage of checking over testing for the `Other’ category.

The `Opposing locking’ category, which contains errors made in barring the setting

of two con¯icting routes, shows a bias towards testing. Also of note is the

preponderance of faults in the `Identity’, `Other’ and `Route’ categories (62.8 % of

all faults). Much of the SSI data that relates to these categories is similar to that

shown in ®gure 1. Overall, it is simpler and more straightforward than data

controlling other functions, and could be considered as requiring more skill- and

rule-based performance and less knowledge-based performance (Rasmussen 1983)

than data relating to `Aspect sequencing’, `Opposing locking’, etc.

A total of 12.4% of all faults logged turned out to be false alarms, where no

actual fault was present in the data. Several `repeat’ faults were found in the logs.

These refer to faults found at either the check or test that were still present when the

Table 1. Faults detected at the checking and testing stages of SSI data production.

Fault category: signalling principle Checking Testing T/C ratio

Category

(% of total)

None (false alarm)

Identity and labelling errors

Route setting

Signal aspect control

Approach locking

Opposing locking

Aspect sequence

Other

Total

46

26

74

14

11

9

4

106

290

26

30

120

32

24

39

12

7

290

0.57

1.15

1.62

2.29

2.18

4.33

3.00

0.07

1.00

12.4

9.7

33.4

7.9

6.0

8.3

2.8

19.7

100

1727Task analysis for safety-critical software design



SSI data were re-checked or re-tested, and testi®es to di�culties in writing the data

correctly. These faults applied to particularly novel, knowledge-based SSI data.

Where information was available to show the number of faults logged at successive

checking cycles, seemingly simple faults made in the `Identity’ and `Other’ categories

were the only ones to escape detection until the fourth cycle. Similar information was

not available for the testing stage.

4.2. Error observation

4.2.1. Method: Errors committed but subsequently detected by the same writer,

checker or tester were not recorded in the error logs. To compensate for this, a

period of in situ error observation was conducted. In addition to the task areas

accessed by the error logs, this method provided some insight into the fallibility of

testers (box 1.5, ®gure 2). DiŒerent engineers were video recorded performing several

hours of the three main task areas. Interference of the task could aŒect error-rate, so

to disturb the tasks as little as possible the participants were asked to carry on their

work as normal, but to comment if they found that they had, or had nearly, made an

error. They were then prompted as to the reasons they identi®ed as causing the error,

in an attempt to classify it as a skill- or rule-based slip or lapse, or a knowledge-based

mistake (Rasmussen 1983; Reason 1990). The complexity of the task being

undertaken, and the expertise and experience of the engineer were also used to

inform the categorization of errors. While the possibility of `faking’ a lack of errors

existed, the video recording of the sessions and possibility of peer review by other

engineers eŒectively minimized this.

4.2.2. Results: Table 2 shows the number of errors ¯agged by participants during

the periods of task observation shown, and is divided up by task stage. The writing

task is further subdivided by the nature of the speci®c writing task being carried out.

Data writing does not equate to mere typing (editing), but also includes reviewing,

checking speci®cations and requirements, and planning. It can be seen that data

editing on its own accounts for most of the errors in the writing task as a whole. The

most error-prone signalling principle in the data editing was `Opposing locking’, with

®ve errors. Of these, the most time consuming of all of the errors was observed. Fully

1.5 hours were spent by one engineer attempting to ®nd the relevant help in the

paper-based manual available for the task. In the testing stage, most errors related to

confusion over elements selected for testing on the VDU display. No knowledge-

based errors were observed in any stage. No errors at all were observed in 3 h of

checking.

Table 2. Errors observed at the writing, checking and testing stages of SSI data production.

Error category

Writing

(all-including

editing)

(7.5 h)

Writing

(editing only)

(3 h)

Checking

(3 h)

Testing

(6.25 h)

Skill- and rule-based errors

Knowledge-based errors

Errors per hour

31

0

4.1

25

0

8.3

0

0

0

5

0

0.8

1728 N. M. Shryane et al.



4.3. Work sample test

4.3.1. Method: Since the above two techniques are based on naturalistic analyses

of work, they are susceptible to a lack of control over the initial SSI data. To

compensate for this, a data writing work sample test was devised that would further

inform the analysis of box 1.2 of the HTA (®gure 2). A previously completed data set

(for an SSI currently in service) had sections of data removed, and signalling

engineers were recruited to complete the work under controlled, but work-based,

conditions. This enabled task factors (e.g. complexity) to be studied. Fifteen data

writers took part in the test. Although this is a small number for statistical purposes,

it represents approximately one-third of all of the suitable candidates working for

organizations participating in the research project. The participants in the work

sample test had a wide range of experience, from 6 months to 10 years, and were

drawn from three diŒerent signalling o�ces. To ensure the representativeness of the

work sample a highly experienced engineer was employed to select the SSI data,

which included all of the main aspects of the writing task. The input of the

researchers was used to ensure that both straightforward and novel SSI data

elements were represented, so that rule-based and knowledge-based performance

could be assumed to be utilized by the participants.

4.3.2. Results: Table 3 shows the completion times and faults for the diŒerent task

types used in the test. For the rule-based task performance, faults in the completed

data were scored per signalling function violated, as for the error log audit. This

avoided the biasing of the results possible when one cognitive error resulted in many

faults in the SSI data. For instance, one error made by a number of engineers,

involved the unintentional omission of a whole signalling function. This single

cognitive error resulted in the omission of several lines of data and tens of data

`words’. Assessing errors by the line or data `word’ would have given arbitrary scores

dependent on how many lines or words made up a particular signalling function.

This scoring system would have been inappropriate for the knowledge-based

data, as the small amount of code involved related to only one signalling function,

which nobody got completely correct. Additionally, each data `word’ in the

knowledge-based section contributed a particular aspect to the overall functionality

of the feature, independently of the other `words’ (which was not generally the case

for the rule-based data). The knowledge-based task element was thus scored by the

data word, to give a usable index of `correctness’.

Table 3. Completion times and data faults in the work sample test.

Completion time (s) Faults

Aspect of the task Mean SD Time per line Mean SD

Rule-based performance

(124 lines of data; n= 15)

Knowledge-based

performance

(4 lines of data; n= 13)

Total performance

(128 lines of data; n= 13)

9518

1120

10103

2958

458

3013

76.8

280

78.9

9.5

3.7

10.9

7.6

1.8

4.4

1729Task analysis for safety-critical software design



The diŒerences between the two scoring systems makes formal statistical

comparison between rule- and knowledge-based fault performances misleading.

However, were the rule-based faults to be scored by the data word this would

inevitably increase rather than decrease the scores, and so this points to a

preponderance of rule-based over knowledge-based faults. On the other had, it can

be seen that knowledge-based data is much more time-consuming to complete, per

line of data, than the rule-based section (t (12) = 10.7, p < 0.001), and its di�culty is

also demonstrated by the fact that the two least experienced participants could not

complete it. (Their data are thus not included, giving n = 13 for the knowledge-based

elements.)

Regarding rule-based data, the problem of `common-mode failure’ was

highlighted. A term usually used in system safety, it refers to situations in which

seemingly independent components can fail due to the same underlying cause.

Evidence for common-mode failure was found when it was seen that four speci®c

faults were made identically by seven participants or more; indeed, one of these

faults was made by 13 participants. These faults made up the largest single rule-

based category, encompassing 40 of the 142 errors.There was no pattern relating to

the signalling ®rms or sites of the participants making these errors, or their expertise.

Task-related factors, and their interaction with human cognition, are thus

implicated. It was found that three of the four common-mode errors related to

familiar data that, because of the speci®c instances used, required infrequently

needed parameters. These errors can be characterized as habit intrusions, or `strong

but wrong’ errors (Reason 1990).

4.4. Laboratory experiment

4.4.1. Method: In real work, the detection of a fault by a checker renders this

fault unavailable to a tester. Therefore, to investigate the relative e�cacy of the

two processes, computer-based, simpli®ed task simulations were developed for

completion by novice participants acting as either checkers (n = 13) or testers

(n = 27). Sets of identical, detectable faults were seeded into both task simulations

(16 faults per simulation), and performance of the novice checkers and testers

compared (corresponding to boxes 1.4 and 1.5 in ®gure 2). The fault types were

chosen from actual logs in the error log audit. `Route setting’ was chosen because

it contained frequent faults. `Signal aspect control’ and `Opposing locking’

showed great diŒerences between checking and testing. Two categories of

`Opposing locking’ faults were chosen, re¯ecting the two diŒerent methods by

which this signalling principle is dealt with in the SSI data. It was thought that

these two methods may have diŒerential eŒects on the relative e�cacy of

checking versus testing. Some fault categories (e.g. `Aspect sequence’, `Other’)

could not be used because of the need to make the errors equally `visible’ to

checkers and testers, and the simpli®cation of the simulation compared to the real

task.

4.4.2. Results: Table 4 shows the probability of detection of the four types of faults

seeded into the checking and testing task simulations. Analysis of variance revealed

no main eŒect of task type (checking versus testing), but there was a signi®cant

interaction between task type and fault type (F (3,72) = 10.58, p < 0.001). This is

attributable to the comparatively poor performance of checkers in detecting

`Opposing locking I’ faults, and of testers in detecting `Signal aspect control’ faults.

1730 N. M. Shryane et al.



False alarm rate (i.e. the percentage of logs relating to non-existent faults) was

22.5% in the checking task, 27.6% in the testing task, 25.0% overall.

5. Discussion

The utility of diŒerent task- and error-analysis techniques, as applied to the

identi®cation and analysis of human error in the SSI design process, is apparent

when these methods are considered in concert. This `triangulation’ (Denzin 1988)

confers powerful cross-validation of the techniques by consideration of how the

evidence presented by each combines when applied to the same task area. It may be

that the methods do not address the same factor, in which case the methods are

independent. If they do address the same factor, they can either converge or diverge.

5.1. Error type

An example of divergence between analysis methods is seen when considering the

type of error most problematic for the SSI data production system. HTA critical-

incident interviews consistently identi®ed complex, knowledge-based data design

tasks as the most problematic type. In support of this, no participants in the work

sample were able to complete the knowledge-based data without faults, and the time

taken to complete this small amount of data also testi®es to its di�culty. In the error

logs, novel, complex data were repeatedly passed on to the checking stages while still

incorrect, again suggesting the di�culty in writing these data. The error observation

technique showed that knowledge-based errors also appeared much less likely than

rule-based errors to be self-detected during writing.

On the other hand, the error log audit found that the majority of faults were

being discovered in simpler, rule-based SSI data. From the error observation it was

seen that around eight skill- and rule-based errors per hour were being self-detected

while data editing, and the work sample test showed that around four skill- or rule-

based errors per hour were not being self-detected. This indicated that a large

number of simple errors were being committed in the data writing, with a signi®cant

proportion not being self-detected by their engineer. Although a comparison of

errors per hour between faults in the rule- and knowledge-based data in the work

sample would not be fair (for the reasons outlined in § 4.3.2), it was shown that, as in

the error logs, many more rule-based faults occurred over the whole task.

So knowledge-based data seemed noticeably di�cult and error prone to write,

but in all tasks viewed and the error logs, rule-based errors and faults predominated.

The answer probably lies in the relative opportunities to commit both types of error.

The work sample task contained only a small amount of complex, knowledge-based

data to complete, but it was selected in part because of its similarity to actual work;

indeed, it was part of an actual SSI scheme.

Table 4. Probability of fault detection (checking versus testing) in SSI task simulation.

Fault type

(4 faults per category) Checking Testing

Opposing locking I

Opposing locking II

Signal aspect control

Route setting

0.69

0.83

0.94

0.90

1.0

0.89

0.41

1.0

1731Task analysis for safety-critical software design



A factor not considered in the above argument is fault detection. The error logs

do not provide an accurate ratio of knowledge-based to rule-based faults pre- and

post- checking and testing, which would allow the relative detectability of each to be

known. However, there is some continuous data (i.e. from the same SSI dataset)

relating to faults detected at each stage of checking. This showed that the only faults

to pass through three cycles without detection were ones in simple, rule-based data.

Again, this may not necessarily be because simpler faults are actually any harder to

detect than the knowledge-based ones. Indeed, even if they are easier to detect, the

number of simple faults escaping detection may be higher because of their higher

prior probability in the data.

Another factor in the number of rule-based faults may be the relative lack of

emphasis placed on their importance, as shown by the HTA interviews. This would

lead to more attention being given to parts of the data seen as challenging or

potentially more error prone than the simple and straightforward aspects. However,

virtually any faults in the data could have disastrous consequences.

The HTA suggested that knowledge-based data writing was more complex and

made more demands on the operator than simpler data, and this was supported by

the work sample test. However, HTA has little provision to represent explicitly the

event-rates that would have shown that knowledge-based data, although perhaps

more error-prone, is written far less often than the simpler data, and so has

correspondingly less in¯uence on overall system integrity.

The prevalence of simple errors and their di�culty in detection has unanticipated

consequences for the introduction of automation. Although the original reasons for

the development of automation was economic, its introduction may have greater

than expected bene®ts if it can eradicate a potentially dangerous source of data

faults. However, its implications for training will still need to be addressed.

5.2. Common mode error

Common mode error was another problem area uncovered by the study. Checking,

or static code inspection, is seen as the most e�cient method for revealing error in

computer programming code (Bezier 1990). The principle reason for this is that the

whole of the code can be inspected, as opposed to the limited amount of

functionality that can usually be tested in complex systems. (The error logs and

experiment showed both checking and testing to be similarly e�cient; but this is

probably because a greater proportion of SSI functionality is testable than for

normal programmes.) However, the similarity of checking to the writing stage,

suggested by the HTA, may re¯ect underlying similarities in the tasks and mental

processing required by both stages. If this is the case, then checking may suŒer the

same weaknesses as writing, and so the processes may be liable to common-mode

failure. Indeed, a fault type seen to be problematic in the data writing error

observation (`Opposing locking’), was detected poorly by checkers in the error log

audit and in the laboratory experiment. Further evidence for this similarity is also

provided by the fact that the kind of simple errors observed most frequently in the

observation were those most resistant to detection by checking in the error log audit.

This may seem odd when considering simple slips, as they can be generated by

processes not aŒecting the checkers (e.g. typographic errors), and they are also

easiest to self-detect. However, the most striking examples of common-mode error

were the identical errors committed in the work sample test, with up to 87% of the

engineers making exactly the same error. This highlights the vulnerability of even

1732 N. M. Shryane et al.



highly trained engineers to exactly the same errors of cognition when in the same

task environment. Checkers will be liable to these same errors because of the similar

task factors to writing, and self-detection of these `habit intrusions’ will not be good,

as they are errors of intention, not action. Common-mode errors were also seen in

the laboratory experiment, with task environment (checking or testing) eŒectively

predicting which types of detection errors would be made.

5.3. Task diversity

The converse of task similarity is task diversity. DiŒerences between checking and

testing, suggested by the HTA, were con®rmed by qualitatively diŒerent error

detection performance between checking and testing found in the error log audit.

While encouraging, the error log results may have been due to a number of factors

other than the task environment (e.g. the initial number and type of faults in the

data). However, the result was con®rmed in the laboratory experiment, where the

seeded faults were exactly the same for checkers and testers. The results showed that

while there was no diŒerence in the overall fault detection performance between the

two methods, they did lead to the discovery of diŒerent types of fault. Almost

inevitably, because of the diŒerences between the real tasks and the simulations,

there were some diŒerences of detail between the error-log and laboratory

experiment results, e.g. in Signal aspect control faults. A number of factors may

have contributed to this, e.g. the diŒerence in participant characteristics, the reduced

range of faults in the simulation (16 versus 580 in the error logs). Given these

diŒerences, however, the fact that both studies still showed diŒerent fault detection

characteristics between checking and testing indicates that rather than the two stages

being an example solely of redundancy in the system, they are instead an example of

task diversity.

The use of task diversity can have positive implications for fault detection tasks

(Fagan 1986). DiŒerent task representations are likely to engender diŒerent mental

models in the operators, and lead to diŒerent emphases and task performance

strategies. This can render people less vulnerable to the threat of common mode

error present when tasks are too similar, as shown between SSI data writing and

checking. This diversity of knowledge, strategy and mental model of a task is known

as `Cognitive diversity’ (Westerman et al. 1995b, 1997).

The diversity between checking and testing has implications for the consequences

of the check stage being missed out when carrying out checking and testing in

parallel (®gure 3). This is because some of the faults in the data, such as those that

fall into the `Other’ category, are less likely to be detected by testing alone. To help

to ameliorate this problem a computer-based logging tool is currently under

development by the research team, to assist with fault logging and data version

control. It will also record some of the psychological error mechanisms that lead to

the faults, and help to aid the identi®cation of further error reduction techniques.

5.4. `Opposing locking’ faults

A consistent diŒerence between checking and testing performance was found for

`Opposing locking’ faults. It was apparent that checkers found these faults more

di�cult to detect than testers, so a number of further experiments were performed to

ascertain why this might be the case (Shryane et al. 1996). `Opposing locking’ is dealt

with in SSI data by the use of sub-route labels, which de®ne a section of track and

also the ends of this section that the train will enter and leave by. For example in

1733Task analysis for safety-critical software design



®gure 1, `U3-CB’ speci®es the sub-route `U3’ (corresponding to track section `T3’)

and that a train will enter/exit in the `CB’ direction. Exactly what `CB’ means in

terms of the associated spatial con®guration of the signalling diagram is determined

by the particular layout of the track, and is diŒerent for diŒerent track section

shapes. It was found that this inconsistent mapping between the spatial information

of the diagram and the textual sub-route label was associated with poor performance

in a simulated checking task. Testers do not have to assess the sub-route labels

directly, only the signalling functionality associated with their action.

5.5. Convergent methods

The methods used in this analysis all had a role to play in the investigation of human

error. In the ®rst instance, HTA provided an overview of the task not aŒorded by the

other methods. Additionally, HTA does not have to be a study of the task as is, but

can be used to investigate the implications of variations in the task. Together, these

features allowed the discovery of the organizational issues regarding the introduction

of automation. It is also useful for the consideration of sequencing and scheduling of

tasks, by nature of its plans, leading to the discovery of problems with parallel

checking and testing (®gure 3). These issues were not brought to light by the other

methods. HTA’s weakness was found to be in part due to the subjective nature of its

data sources. However, the inability to show quantitative aspects of tasks, such as

event and error rate, and how this aŒects the system is the biggest drawback of HTA

when considering the study of error.

The error log audit and error observation are both essentially error sampling

procedures of the task. Although the information that they produce can be `noisy’

due to its work environment origin, they do provide quantitative data on event and

error frequencies. The error logs did not provide direct evidence of certain types of

errors, however (e.g. self-detected errors), and so to compensate for this in the

current study, error observation was used. The error observation seemed to be useful

in recording errors in relation to overt actions, rather than to covert cognitive

processes, as shown by the lack of knowledge-based errors while checking. `There is

some evidence . . . that while people are good at catching their own errors of action,

they are much less good at catching their own errors of thinking, decision making,

and perception’ (Senders and Moray 1991: 78).

Error observation was useful for pointing out interface and task support factors.

The errors in the data editing part of the writing task point to the error proneness of

inputting data through a standard keyboard, which may be reduced by the use of

visual programming environments and direct manipulation of code. However, this

would then make the data writing task environment more similar to the testing task,

so reducing overall system diversity. The system-wide eŒects of such factors need

much further investigation. The inadequacy of existing manuals, the primary

reference when needing assistance, was also observed. As a further part of this

project, a computer-based `help’ application is being developed. This will include the

information contained in the existing paper-based manual, but with improved

searching and cross-referencing, and the ability to annotate and personalize the

manual to support individual working styles. Job support tools such as these may

help to reduce the problem of less training, but again research is needed to see to

what extent.

The work sample test and laboratory experiment are both types of experiment.

These were needed to study the variables identi®ed as important by earlier stages,

1734 N. M. Shryane et al.



e.g. task diversity. Although less controlled than experimentation in the laboratory,

the work-based version is more valid in terms of environment, task and participants.

However, when studying task-related variables for which task knowledge and

experience may matter, the use of naõÈve participants in the laboratory may be

bene®cial.

6. Conclusions

From the evidence presented above, two dimensions of variation can be identi®ed

with respect to techniques used for the investigation of human error in this study.

First, the techniques varied in their capacity to represent eventÐand therefore

errorÐfrequencies; HTA lacks the capacity of the other, more empirical, techniques

in this respect. Second, the empirical techniques diŒer in the familiar trade-oŒ

between validity and control. Error logging and observation represent highly

externally valid techniques. Laboratory experimentation represents the extreme of

control and internal validity, with work sample tests oŒering characteristics between

the two ends of the spectrum. Used here to investigate human error in safety critical

systems, analysis of human error will in any work-based system bene®t from the

application of techniques that vary in these properties.

Acknowledgements

The work described here forms part of the project `Human Factors in the Design of

Safety Critical Systems’ (Grant No. GR/J17319) from the UK Safety Critical

Systems Research Programme supported by the Department of Trade and Industry

and the Engineering and Physical Sciences Research Council. It was completed with

the collaboration of Interlogic Control Engineering, GEC Alsthom Signalling Ltd,

Signalling Control UK Ltd and Westinghouse Signals Ltd.

References
ANNETT, J. and DUNCAN, K. D. 1967, Task analysis and training design, Journal of

Occupational Psychology, 41, 211 ± 221.

BEZIER, B. 1990, Software Testing Techniques (Amsterdam: van Nostrand Reinhold).

BROOM FIELD, E. J. and CHUNG, P. W. H. 1995, Using incident analysis to derive a methodology

for assessing safety in programmable systems, in F. Redmill and A. Anderson (eds),

Achievement of Assurance and Safety. Proceedings of the Safety-Critical Systems

Symposium, Brighton, February, (London: Springer-Verlag).

DEN ZIN, N. K. 1988, The Research Act: A Theoretical Introduction to Sociological Methods, 3rd

edn (Englewood CliŒs, NJ: Prentice-Hall).

FAGAN, M. E. 1986, Advances in software inspections, IEEE Transactions on Software

Engineering, 12, 744 ± 751.

HATTON, L. 1995, Programming languages and safety related systems, in F. Redmill and A.

Anderson (eds), Achievement of Assurance and Safety. Proceedings of the Safety-Critical

Systems Symposium, Brighton, February, (London: Springer-Verlag).

HOLLNA GEL, E. 1993, Human Reliability Analysis: Context and Control (London: Academic

Press).

KIRWAN, B. 1992a, Human error identi®cation in human reliability assessment. Part 1:

Overview of approaches, Applied Ergonomics, 23, 299 ± 318.

KIRWAN, B. 1992b, Human error identi®cation in HRA. Part 2: Detailed comparison of

techniques, Applied Ergonomics, 23, 371 ± 381.

KIRWAN, B. and AINSWORTH, L. K. 1992, A Guide to Task Analysis (London: Taylor & Francis).

PISO, E. 1981, Task analysis for process-control tasks: the method of Annett et al. applied,

Journal of Occupational Psychology, 54, 247 ± 254.

1735Task analysis for safety-critical software design



RASM USSEN, J. 1983, Skills, rules and knowledge; signals, signs and symbols, and other

distinctions in human performance models, IEEE Transactions on Systems, Man and

Cybernetics, SMC 13(3), 257 ± 266.

REASON, J. 1990, Human Error (Cambridge: Cambridge University Press).

SENDERS, J. W. and MORAY, N. P. 1991, Human Error: Cause, Prediction, and Reduction

(Hillsdale, NJ: Lawrence Erlbaum).

SHRYANE, N. M., WESTERM AN, S. J., CRA WSHAW, C. M., HOCKEY, G. R. J. and WYATT-

MILLINGTON, C. W. 1996, The in¯uence of task di�culty on performance in a safety-

critical labelling task, in A.F. OÈzok, and G. Salvendy (eds), Advances in Applied

Ergonomics (West Lafayette, IN: USA Publishing).

WESTERM AN, S. J., SHRYANE, N. M., CRAW SHAW, C. M. and HOCKEY, G. R. J. 1995a, Error

Analysis of the solid-state interlocking design process: Report no. SCS-04, Department

of Psychology, University of Hull.

WESTERM AN, S. J., SHRYANE, N. M., CRAW SHAW, C. M. and HOCKEY, G. R. J. 1997, Engineering

cognitive diversity, in T. Anderson and F. Redmill (eds), Safer Systems. Proceedings of

the Fifth Safety-Critical Systems Symposium, Brighton, February, (London: Springer-

Verlag).

WESTERM AN, S. J., SHRYANE, N. M., CRA WSHAW, C. M., HOCKEY, G. R. J. and WYATT-

MILLINGTON, C. W. 1995b, Cognitive diversity: a structured approach to trapping human

error, in G. Rabe (ed.), Proceedings of the 14th International Conference on Computer

Safety, Reliability and Security, Belgirate, Italy, October (London: Springer-Verlag),

142 ± 155.

WESTERM AN, S. J., SHRYANE, N. M., SAUER, J., CRAW SHAW, C. M. and HOCK EY, G. R. J. 1994,

Task analysis of the solid-state interlocking design process, Report no. SCS-01,

Department of Psychology, University of Hull.

1736 N. M. Shryane et al.




