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The modelling of prey–predator interactions is of major importance for the understanding of population

dynamics. Classically, these interactions are modelled using ordinary differential equations, but this

approach has the drawbacks of assuming continuous population variables and of being deterministic.

We propose a general approach to stochastic modelling based on the concept of functional response for

a prey depletion process with a constant number of predators. Our model could involve any kind of

functional response, and permits a likelihood-based approach to statistical modelling and stable

computation using matrix exponentials. To illustrate the method we use the Holling–Juliano functional

response and compare the outcomes of our model with a deterministic counterpart considered by

Schenk and Bacher [2002. Functional response of a generalist insect predator to one of its prey species in

the field. Journal of Animal Ecology 71 (3), 524–531], who observed the depletion of Cassida rubiginosa

due to its exclusive predator, Polistes dominulus. The predationwas found to be Holling type III, reflecting

the ability of the predator to regulate its prey. Our approach corroborates this result, but suggests that

the prey depletion census should have been performed more often, and that predation features were

significantly different between the two years for which data are available.

1. Introduction

The number of prey a predator kills per unit of time, termed
the functional response (Solomon, 1949), is a central parameter
for population dynamics, as its form governs the global stability of
systems. In the biocontrol context, its shape can determine
whether a predator is able to regulate its prey (Murdoch and
Oaten, 1975).

A classical terminology for functional response types was
proposed by Holling (1959). Apart from a few ecologists (see, e.g.
Turchin, 2003, p. 82), most authors use Holling’s classification of
functional responses into three types, which can in principle be
distinguished by plotting the functional response against the
number of available prey. A type I functional response increases
linearly up to a maximum and then remains constant. This form of
predation seems to occur very rarely in nature and is thus almost
always ignored for modelling. A type II functional response has a
concave shape: it increases smoothly and tends asymptotically to
a constant with a negative second derivative. In type III functional
responses, the second derivative is first positive and then
negative, but the curve is also asymptotically constant. Such a
functional response is often called sigmoid or S-shaped (Fig. 1).

Generally, a type III functional response is said to reflect the ability
of a predator to ‘‘learn’’ or to ‘‘switch’’ prey. Such predators focus on

alternative prey species when the density of the focal species is low,
but switch to hunting it when this density becomes high (Murdoch,
1969). These generalist predators, unlike specialist ones, are desirable
for biocontrol, so it is of high interest to determine whether a given
predator has a type II or type III functional response.

Not only did Holling (1959) classify functional response types,
but he also proposed models for the functional response, under
which the predator is either searching for or is ‘‘handling’’ a prey.
The two parameters involved in Holling’s model are the searching
rate, sometimes also called the attack rate, and interpreted as the
area covered by a predator per unit of time, and the handling time,
understood as the time needed for chasing, killing and eating a
single prey. The general model is

gðN; PÞ ¼ aðNÞN
1þ aðNÞtN , (1)

where N and P represent the prey and the predator density,
respectively, and aðNÞ and t denote the searching rate and the
handling time.

When aðNÞ is constant, the Holling type II functional response
arises, whereas for type III the situation is less clear. Although
Hassell (1978, p. 40) and more recently Juliano (2001) claim that
type III functional responses can arise whenever aðNÞ increases
with the prey density N, this assertion is misleading. Even for the
very general searching function of Juliano (2001),

aðNÞ ¼ dþ bN

1þ cN
, (2)
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the monotone increase condition is not sufficient. As explained in
Appendix A, the supplementary condition a0ð0Þ=½að0Þ�24t assures
type III functional response in the general model (Eq. (1)).

Many standard functional response models can be derived
from the general model (Eq. (1)) with a Juliano searching rate
function (Eq. (2)). The model proposed by Hassell (1978, p. 45)
arises when d ¼ 0. When c ¼ 0 and b ¼ 0, the functional response
becomes a standard form of Holling type II functional response,
whereas when c ¼ 0 and d ¼ 0, it reduces to a simple form of
Holling type III functional response (Gotelli, 2001, p. 137). In the
extreme case where every parameter is zero except d, the
functional response is said to be linear.

Functional response modelling is itself exploited in the broader
field of prey–predator system modelling. The classical models are
represented using systems of ordinary differential equations
(ODEs) such as

@NðtÞ
@t

¼ f 1ðNðtÞÞ þ g1ðNðtÞ; PðtÞÞ,
@PðtÞ
@t

¼ f 2ðPðtÞÞ þ g2ðNðtÞ; PðtÞÞ, (3)

where the functions f 1ðNðtÞÞ and f 2ðPðtÞÞ stand for the intrinsic
dynamics of each respective population, and the functions
g1ðNðtÞ; PðtÞÞ and g2ðNðtÞ; PðtÞÞ represent the functional response
and the numerical response (Gotelli, 2001, pp. 127–128). As the
numerical response is usually considered to be simply a fraction of
the functional response and the intrinsic functions are easy to
model, research has mainly focused on the functional response.

Almost all the (bitrophic) models developed so far in popula-
tion dynamics share this common structure.

Although ODE systems have given valuable insight into
population dynamics, they have many drawbacks. The variables
NðtÞ and PðtÞ are taken to be continuous but represent discrete
numbers of predators and prey. When the abundances are low,
however, the distinction may be important. Moreover, the
trajectories of populations under ODE models are deterministic:
if the initial conditions are given, the dynamics are entirely
known. Nature is not like this, so stochastic models may better
account for the random nature of secretive processes like
predation. In their book, Curry and Feldman (1987, p. 5) wrote:
‘‘In general, a stochastic model is more realistic and facilitates a
proper validation analysis, but [. . .] is at present a greatly needed
but much underdeveloped research area’’. More than 20 years
later, the situation has changed overall, but although many
biologists use stochastic models, most areas of ecological model-
ling remain deterministic. In the modelling of functional response,
Fenlon and Faddy (2006) reported only two early contributions

resting on stochastic theory (Curry and DeMichele, 1977; Curry
and Feldman, 1979).

The present paper integrates the classical Holling models for
functional responses into a stochastic prey depletion model, thus
enabling a stochastic reappraisal of data first analysed through an
ODE model. We will show it provides other interesting and useful
results, all likelihood-based and thus inaccessible through ODE
models.

2. Data

Many classical analyses of the functional response have used
the data produced by Hassell et al. (1977) in laboratory conditions.
The data from the experiment conducted by Schenk and Bacher
(2002) that we shall use are of another kind. They studied the
depletion of the shield beetle Cassida rubiginosa due to its
exclusive predator, the paper wasp Polistes dominulus, in natural
conditions. For the field biologist, this prey–predator system has
two advantages: nearly 100% of the predation events were
committed by P. dominulus, meaning that every removal can be
imputed to this predator, a situation rare in nature; the beetles,
which feed on creeping thistle Cirsium arvense, always remain on
the same plant, which simplifies counting them. As the type III
functional response occurs when the predator is able to switch
prey, experiments intended to discriminate between types II and
III functional responses must be performed in natural conditions.

Between July and August 2000, and again between July and
August 2001, Schenk and Bacher (2002) observed prey depletion
under constant predation for around 6h each day. They added
prey when abundances became too low. These observations were
performed on two different sites: a natural patch of C. arvense in a
larger uncultivated meadow in 2000 and an ecological compensa-
tion area within arable farmland in 2001. The estimated numbers
of predators present on the sites were 3.05 and 2.46 for the years
2000 and 2001, respectively. Fig. 2 shows the prey dynamics for
these experiments, more details of which may be found in the
original paper.

3. Modelling and methods

3.1. Classical approach based on ODE

Schenk and Bacher (2002) used the functional response model
proposed by Juliano (2001), which improves Holling’s (1959)
original model by taking into account the continuous depletion of

Fig. 1. The three types of functional responses in Holling’s model: (a) type I or linear, (b) type II or hyperbolic and (c) type III or sigmoid.
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prey throughout the experiment (suggested by Rogers, 1972) and
by using a very general function for modelling the searching rate
(see Eq. (2)). The number of prey eaten per predator Ne is

Ne ¼ N0 1� exp
ðdþ bN0ÞðtNe � TÞ

1þ cN0

� �� �
, (4)

where N0 stands for the initial number of prey and T stands for the
duration of the experiment. Discrimination between types II and
III relies on logistic regression and maximum likelihood estima-
tion (Juliano, 2001). Statistical analysis revealed that the attack
rates were significantly correlated with the prey density for both
2000 and 2001. The logistic regression proposed by Juliano (2001)
did not deliver clear-cut results, predicting a type II functional
response for the year 2000 and a type III functional response for
the year 2001. Schenk and Bacher (2002) overcame this using a
standard nonlinear regression, which predicted a significantly
positive b and negligible c and d in both cases (see Eq. (2)),
indicating type III functional response for both years. However,
this is a poor approach for the study of prey depletion because
it assumes that correlated discrete responses with unequal
variances are independent continuous homoscedastic random
variables.

3.2. Markov model

The prey depletion process studied by Schenk and Bacher
(2002) is treated as a discretely observed continuous time Markov
chain. In the theory of stochastic processes, the continuous
decrease of a population is commonly called a pure death process.

Let NðtÞ be a random variable representing the number of prey
alive at time t; thus Nð0Þ ¼ n0 is the known prey population at the
beginning of the experiment. The number of predators PðtÞ ¼ p is
supposed to be constant. As the process is assumed stationary (or
time-homogeneous), the transition probability function for t40,

Prm;nðtÞ ¼ PrðNðt þ uÞ ¼ njNðuÞ ¼ mÞ,
is independent of u � 0. The expression Prm;nðtÞ should be read as
‘‘the probability that the prey population decreases from m to n

individuals in a time t’’.
In the case of prey depletion due to predation, we make the

following assumption about the infinitesimal probability transi-
tions: for a small unit of time h,

Prn;n�1ðhÞ ¼ gðn;pÞphþ oðhÞ;
Prn;nðhÞ ¼ 1� gðn; pÞphþ oðhÞ;

8><>: (5)

where gðn; pÞ is the functional response (see Eq. (1)) and
h�1oðhÞ ! 0 as h ! 0, so the error term oðhÞ is negligible. The
rationale behind these assumptions is outlined in Appendix B.
Using the Chapman–Kolmogorov equations, one is able to derive
the forward Kolmogorov differential equations (see, e.g. Taylor
and Karlin, 1998, pp. 359–362):

@

@t
Prn0 ;n0

ðtÞ ¼ �gðn0; pÞpPrn0 ;n0 ðtÞ;
@

@t
Prn0 ;nðtÞ ¼ gðnþ 1; pÞpPrn0 ;nþ1ðtÞ � gðn; pÞpPrn0 ;nðtÞ:

8>>><>>>: (6)

Eq. (6) expresses the transition probability changes with respect
to time (derivatives) in terms of functional responses and
transition probabilities.

3.3. Functional response

One can replace the function gðn; pÞ by any functional response,
though the analytical solution of Eq. (6) might become quite
complicated. As this paper is intended to reappraise the Schenk
and Bacher (2002) results, we have considered the general Holling
model for the functional response gðn; pÞ (Eq. (1)), with Juliano’s
(2001) function (Eq. (2)) for the searching rate.

3.4. Analytical solutions

In the framework of pure death processes, it is often possible to
find an analytical solution to the differential system represented
by Eq. (6). The rationale leading to this solution and a sketch of the
proof are given in Appendix C.

Theorem C.1 makes it sometimes possible to obtain a simple
formula for the transition probability, provided the functional
response is not too complicated. Unfortunately, even with the
simple form aðnÞ ¼ bn, i.e. gðn; pÞ ¼ bn2=ð1þ btn2Þ, the transition
probability,

Prn0 ;kðtÞ ¼ ð1þ btk2Þ
Xn0
j¼k

ð�1Þj�k

n0

j

 !2
j

k

 !2

2j� 1

j� k

 !
n0 þ j

n0 � j

 !

�ð1þ btj2Þn0�1�k exp
�bj2p

1þ btj2
t

 !
, (7)

is quite complex.

3.5. Matrix exponential method

Even with simple functional responses, analytical expressions
for the transition probabilities do not yield stable numerical
results. Indeed, in the above case (Eq. (7)), the binomial
coefficients are such an enormous source of numerical errors that
any computation relying on the analytical formula for the
transition probabilities is very imprecise. As parameter estimation
requires this kind of computation, an alternative method is
needed. In any case, in Markov chains, analytical expressions for
the transition probabilities are often unavailable, or not useful, as
just mentioned. Thus, much effort has been devoted to numerical
methods. Faddy and Fenlon (1999) gave a general method to
compute the transition probabilities for a class of pure birth
processes (extended Poisson processes); we briefly outline it, with
some adaptations for pure death processes (see also Ross et al.,
2006 for a more general example).

Fig. 2. Depletion of C. rubiginosa due to P. dominulus in the experiment conducted

by Schenk and Bacher (2002) (a) in 2000 and (b) in 2001. The dates when the

experimenters added further prey are shown on the horizontal axis.
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Let Prn0
ðtÞ ¼ ðPrn0 ;0ðtÞ;Prn0 ;1ðtÞ; . . . ;Prn0 ;n0

ðtÞÞ denote the transi-
tion probability vector of the pure death process. We define

@

@t
Prn0

ðtÞ ¼ @

@t
Prn0 ;0ðtÞ; . . . ;

@

@t
Prn0 ;n0

ðtÞ
� �

.

We also define the matrix of transition rates

Q :¼

�l0 0 � � � � � � 0

l1 �l1 0 � � � 0

0 l2 �l2 . .
. ..

.

..

. . .
. . .

. . .
.

0

0 � � � 0 ln0 �ln0

0BBBBBBBB@

1CCCCCCCCA
,

where lj ¼ gðj; pÞp. We can now rewrite the Kolmogorov forward
equations (Eq. (6)) as matrices:

@

@t
Prn0

ðtÞ ¼ Prn0 ðtÞQ , (8)

whose solution is (Allen, 2003, p. 189)

Prn0
ðtÞ ¼ Prn0 ð0Þ expðQtÞ.

In our case, Prn0
ð0Þ ¼ ðPrn0 ;0ð0Þ; . . . ;Prn0 ;n0

ð0ÞÞ ¼ ð0; . . . ;0;1Þ, since
Pri;jð0Þ ¼ di;j (Kronecker’s delta). Thus

Prn0
ðtÞ ¼ ð0; . . . ;0;1Þ expðQtÞ, (9)

so the transition probabilities are in the last row of expðQtÞ.
The computation of matrix exponentials is not an easy task

(Moler and Loan, 2003). Fortunately, a software package designed
for Markov chain models, expokit (Sidje, 1998), has been
implemented in MatLab. Many authors advocate its use in this
context (Podlich et al., 1999; Ross et al., 2006). In most cases,
computing the transition probabilities via the exponential matrix
method is far more accurate and faster than computing them
directly from expressions such as Eq. (7). The computational
precision of these probabilities is crucial, because errors in small
probabilities may result in negative numerical values.

3.6. Inference

Let y ¼ ðy1; . . . ; ykÞ represent the parameters of a model. If this
is a Markov chain then the log-likelihood function is

‘ðyÞ ¼
Xm
k¼1

log Prnk�1 ;nk ðtk � tk�1; yÞ (10)

for a given set of m observations NðtkÞ ¼ nk ðk ¼ 1; . . . ;mÞ, and we
can use the expokit package to compute these transition
probabilities. We treat the initial value n0 for each downward
trajectory in Fig. 2 as a constant, so the overall log-likelihood is a
sum of expressions of the form (Eq. (10)); this is justified because
the experimenters chose the numbers of prey to be added. We can
then calculate the maximum likelihood estimator (MLE) by of the
model parameters using the fmincon routine, a basic constrained
optimization routine implemented in MatLab. Under mild condi-
tions and in large samples, the MLE follows a k-dimensional
normal distribution (see, e.g. Davison, 2003, p. 119),

by�� Nkðy0;VÞ,
where V ¼ IðbyÞ�1 and IðyÞ stands for the Fisher information matrix

IðyÞ ¼ E � @2‘ðyÞ
@y @yT

 !
. (11)

When y is a vector, the i-th element of the MLE, byi has
approximately the Nðy0i ;ViiÞ distribution, where y0i is the i-th
element of the true parameter vector and Vii is the ði; iÞ element of
IðbyÞ�1, and confidence intervals are readily obtained. In practice it

is convenient and can provide better intervals if IðbyÞ is replaced by
the Hessian matrix of second-order partial derivatives of the
negative log-likelihood, which does not require the expectation
that appears in Eq. (11). However when information about a
parameter is limited it is better to base confidence intervals on the
profile log-likelihood. Let c denote a scalar component of y for
which a confidence interval is required, let l denote the remaining
elements of y, and let ‘pðcÞ ¼ maxl‘ðyÞ denote the profile log-
likelihood for c. Then standard theory (see, e.g. Davison, 2003,
p. 128) shows that a ð1� 2aÞ � 100% confidence interval for c is
the set

fc : ‘pðcÞ � ‘pðbcÞ � 1
2c1ð1� 2aÞg,

where c1ð1� 2aÞ is the ð1� 2aÞ-quantile of the w2
1-distribution.

This interval has the advantage of accommodating asymmetry in
the log-likelihood, and of being invariant to changes in the
parametrization of the model. This approach also allows the
testing of nested hypotheses concerning model parameters, using
the likelihood ratio statistic.

Eq. (11) involves second derivatives of the likelihood function
and thus of the transition probabilities, but these can be
extremely cumbersome. In Section 3.5, we have seen that direct
computation of transition probabilities (Eq. (7)) can be very
imprecise. As the derivatives become more complicated, we can
anticipate more severe numerical problems. Podlich et al. (1999)
point out that these derivatives of the transition probabilities can
also be calculated through matrix exponentials. An adaptation of
their method and some extensions concerning the log-likelihood
function are outlined in Appendix D.

4. Results

4.1. Model comparison and parameter estimates

The full, 4-parameter, Holling–Juliano model results in max-
imum log-likelihoods of �38:15 and of �54:16 when fitted to the
data for the years 2000 and 2001, respectively. The traditional
Holling type II model, where the parameters b and c are zero, gives
a far poorer fit, with maximum log-likelihoods equal to �54:58
and�82:95 (likelihood ratio test, po10�3 and po10�3). Removing
the parameters c and d does not change the fit significantly, since
the maximum log-likelihoods are �38:61 and �54:58 (p ¼ 0:63
and 0.69). The model with c ¼ d ¼ 0 is usually presented as a
minimalist version of the Holling type III model (Gotelli, 2001,
p. 137). Dropping the parameter t from the latter model, which
corresponds to a linear functional response (sometimes termed a
Holling type I functional response), gives fits as poor as in the
Holling type II case, with �54:58 and �82:95 as respective
maximum log-likelihoods (po10�3 and po10�3). Thus the
Holling type III model is retained for the functional response in
this experiment.

Under the deterministic Holling–Juliano model, Schenk and
Bacher (2002) found that both b and t were required, while c and
d were not. Our stochastic model confirms their conclusion. The
simple Holling model obtained when the searching rate function
is aðNÞ ¼ bN turns out to be the best model. This model is readily
checked to be type III; see Appendix A. As mentioned above, the
type III model fits both data sets much better than does the type II.

Table 1 gives the parameter estimates for the deterministic
Holling–Juliano model considered by Schenk and Bacher (2002)
and for the reduced stochastic Holling–Juliano (H–J) model. Using
video recording, Schenk and Bacher (2002) were able to observe
directly a number of predation events, and compute the time
needed to handle the prey and to eat it. Note the high variability in
observation. Interestingly, the estimates for the handling time are
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much higher than those directly observed, a result similar to that
of Schenk and Bacher (2002). This, along with the quite wide
confidence intervals, reflects the difficulty of estimating t. The
stochastic model provides even wider confidence intervals for t
than the deterministic one, but narrower confidence intervals for

b. Both models give estimates of the same overall orders of
magnitude.

Fig. 3 reproduces the profile log-likelihoods for the parameters
of the reduced Holling–Juliano stochastic model. The confidence
intervals for the handling time t are highly asymmetric,
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lo
g
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(b
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Fig. 3. Profile plots under the reduced Holling–Juliano model computed (a) for the parameters b, (b) t with the 2000 data set, (c) for the parameters b and (d) t with the

2001 data set. Dashed lines represent the 95% confidence interval limits.

Table 1

Comparison of parameter estimates, with 95% confidence intervals indicated by square brackets. Units of b are h�1 and units of t are h.

Year 2000 Year 2001

Schenk and Bacher (observed)

b – –

t Between 0:0031 and 0:24 (median 0:015) Between 0:0042 and 0:19 (median 0:02)

Schenk and Bacher (computed)

b 0:0039 ½0:0029; 0:0049� 0:0074 ½0:0052;0:0096�
t 0:17 ½0:13; 0:21� 0:068 ½0:046;0:09�

Stochastic H–J model (reduced)

b 0:0014 ½0:00095; 0:0019� 0:004 ½0:003;0:0052�
t 0:4 ½0:1;0:79� 0:09 ½0;0:18�
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particularly for 2001. For that year, the confidence interval has
lower limit 0, which was set as lower bound in the optimization
routine; of course the handling time cannot be negative. This
means that for the 2001 data set, the handling time might well be
zero. It also seems that the values differ sharply for the two years;
we discuss this further below.

4.2. Sampling time optimum

The profile plots for the handling time t (Figs. 3b and d) show
the difficulty of estimating this parameter. A possible explanation
is that the sampling time, i.e. the time between each census of the

prey population, might be so large compared to the handling
time that the latter becomes essentially impossible to estimate
precisely. More frequent counting would yield a bigger data
set and this supplementary information could provide better
estimates.

To check this, we used the diagonal elements of the inverse of
Eq. (11) to compute the approximate variance of the maximum
likelihood estimator bt as a function of the sampling time t (see
Appendix D for the computational method). Since we only have
data sets whose sampling time is fixed we used simulated data to
calculate the variance of bt for different sampling times. In order to
ensure that the results were relevant to the real data, we used the
same initial numbers of prey and estimated numbers of predators
as in the two experiments, and generated two data sets using the
Holling type III model with the MLEs of b and t, for a fixed
observation period. In order to reduce Monte Carlo error we
generated the pure death process in continuous time; this is easy
because the Markov property (see Section 3.2) implies that the
sojourn time Tk in a certain state k is exponentially distributed
with mean 1=ðgðk; pÞpÞ, where k is the number of prey, p the
number of predators and gðk; pÞ the functional response. For each
simulated data set we then applied a range of sampling times,
thus obtaining data analogous to the original data, and computed
the maximum likelihood estimates of the parameters b and t.
Finally we computed the variance of the estimates of t for each
sampling time of interest. Fig. 4 illustrates this depletion process
and gives example data sets generated using two different
sampling times.

Figs. 5a and b show the variances of bt as functions of the
sampling time t. The variances from the simulated data seem to
reflect those of the real process well, as the true variance of bt, i.e.
the variance computed for the real data (where sampling time
t ¼ 6h), matches the variance computed with the simulated data
for the same sampling time almost perfectly. This suggests that
the simulated data offer a reliable basis for inferences about the
optimal sampling time.

For the data supposed to reflect the predation process of the
year 2000, the optimum sampling time is near the effective
sampling time, namely 6h, cf. Fig. 5a. As the predation activity has

Fig. 4. Example of the construction of data sets for the different sampling times

t ¼ 6 and 9.51. The depletion times are simulated with the following parameters:

number of initial prey n0 ¼ 60, predators p ¼ 3:05, searching rate b ¼ 0:0014,

handling time t ¼ 0:4. To reflect the conditions prevailing during the experiment,

the depletion is observed for 102h of predation (corresponds to 17 days). The table

on the right gives the counts.
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Fig. 5. Variance of the handling time estimate bt with respect to the sampling time t evaluated (a) for a simulated data set close to the year 2000 data set and at the

maximum likelihood estimates b ¼ 0:0014 and t ¼ 0:4 and (b) for a simulated data set close to the year 2001 data set and at the maximum likelihood estimates b ¼ 0:004

and t ¼ 0:09.
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been estimated to last 6h a day, a daily count of the remaining
prey amounts to a count every 6h. On the other hand, Fig. 5b
suggests that the census of the remaining prey should have been
done more frequently in the year 2001, for which the optimal
sampling time is near 2h.

Figs. 5a and b show that the variance initially decreases as t

increases from the minimum value used. This is slightly counter-
intuitive, but we believe that it stems from rounding errors that
enter when the numbers of transitions become very large.
Moreover, since the variation in the variance is quite small for
small t, and because few transitions would be observed at small
intervals, little supplementary information would be extracted by
taking too small a sampling interval.

These comparisons suggest that the prey should be counted at
intervals of between 2 and 6h. The increase in work resulting
from more frequent sampling is not rewarded by much lower
errors on estimates, whereas less frequent sampling may lead to a
large loss of information.

Although the variances look rather small, they are large in
relation to the maximum likelihood estimates for t, which are 0:4
for 2000 and 0:09 for 2001. The lowest variances are around 0:031
and 0:00067 for the two simulated data sets, so the minimal
standard deviations are about 0:18 and 0:026, which represent
roughly 50% and 30% of the corresponding estimates!

One explanation for the poor estimation of t is that if small
enough it has only a small influence on the prey depletion
distribution, so for a given data set there are many plausible
values for t. Fig. 6 shows the probability distribution for the type
III model with 30 initial prey, 2.46 predators (the estimated mean
number of predators for 2001) and b ¼ 0:004. The sampling time t

and t both vary. Clearly t barely influences the distribution of the
depletion of prey (Figs. 6b–d), except when t exceeds the
maximum likelihood estimate bt ¼ 0:09 (Fig. 6a). This illustrates
why t cannot be removed from the model (see Section 4.1) and
why the profile likelihood function (Figs. 3b and d) displays a
dramatic decrease for values exceeding bt.
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Fig. 6. Probability distributions of the prey depletion for b ¼ 0:004, for given values of initial prey (30) and predator population (2:46) and various values of t: (a) t ¼ 0:9,

(b) t ¼ 0:09 (maximum likelihood estimate), (c) t ¼ 0:009, (d) t ¼ 0:0009) and t (t ¼ 0:1;1;10). On the horizontal axis, the variable k represents the number of remaining

prey.
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4.3. Data set comparison

An interesting question is whether the two predation data sets of
Schenk and Bacher (2002) have the same parameters. An
affirmative answer is of course more desirable, since it would mean
we could combine the two data sets. However the corresponding
likelihood ratio test gives a highly significant value (w2

2 ¼ 115:4,
p-value po10�3), so we must strongly reject this hypothesis.

5. Discussion

The stochastic approach is an appealing way to model natural
processes, and can be regarded as a good alternative to classical
modelling based on ODEs. From a conceptual point of view, it
provides a systematic approach to model biological phenomena
such as the dynamics of small populations, which are naturally
represented as random. From a practical point of view, the
possibility of building a likelihood function enables statistical
analyses that would be impossible with an ODE model.

The experiment we have considered represents a prey popula-
tion depleted by predation. The main goal of the study was to
determine if the predation is type II or type III. ODE modelling
required Schenk and Bacher (2002) to use somewhat inappropri-
ate statistical tools that do not account for the heteroscedasticity
and correlatedness of the data. Discrimination between types II
and III predation seems to be difficult, and several studies have
concentrated on this topic (Trexler et al., 1988; Casas and Hulliger,
1994). As we have shown, stochastic modelling provides a simple
general framework in which all the statistical analysis may be
based on the likelihood function, which is in principle easy to
compute for a Markov chain.

The major drawback of the stochastic approach is numerical.
We computed the probability distribution Prn0 ;kðtÞ in the Holling
type III functional response case (Eq. (7)) for different parameter
values. In general, it turned out that for values of n0 above 50, the
probability distribution computation becomes erratic, with
negative probabilities or probabilities bigger than 1. However,
the exponential matrix method and expokit package overcome
this, are in principle applicable for any discrete space Markov
chain, and can be extended to produce further results about the
variances of parameter estimates.

Another drawback of Markov chain is more intrinsic. The Markov
assumption entails that given the number of available prey, the
previous trajectory of the process can be ignored. In particular, this
rules out the possibility of satiation. The number of prey could have
dramatically decreased from 100 to 10, or it could have just slightly
decreased from 11 to 10, this has no influence on the probability
distribution of the future dynamics of the prey population, since
only the present state matters! Yet, it intuitively has an influence,
since the predators are more likely to be satiated in the first case
and are thus less likely to consume many prey in the next time step.
However, in Schenk and Bacher’s (2002) experiment, satiation
seems to play little role, as prey depletion is continuously abrupt.
But the effect of satiation cannot be a priori neglected in all cases.

Concerning the experiment itself, stochastic modelling gave
interesting results. First, it permitted us to assess whether the
predation processes were comparable in 2000 and 2001, which is
not the case. The very different parameter estimates for the two
years might be explained by meteorological changes, though
temperature, wind force, humidity and cloud cover were found to
be non-significant in relation to predation by Schenk and Bacher
(2002). A simpler explanation is the difference between the two
sites: a partly uncultivated meadow surrounded by orchard trees
in 2000, and a ecological compensation area within arable
farmland in 2001. Second, our model clearly indicates a preference

for the type III and the parameter estimates are of the same order
of magnitude as those of Schenk and Bacher (2002).

The estimate of the parameter b is rather hard to interpret.
Even if this parameter refers to a phenomenological variable,
namely the searching rate, it has not been measured, so it is
impossible to appraise if the estimated value makes sense or not.
The second parameter estimate is more readily interpreted. The
estimate of the handling time t for the year 2000, 24min, greatly
exceeds the maximum handling time measured during the
experiment, of 871 s (15min). Schenk and Bacher (2002) faced
the same problem, as their estimates of t systematically exceed
the observed values. Figs. 3b and d reflect this estimation
difficulty. The explanation that the sampling time might be too
big is only partly relevant, as the variance of the estimator
remains large even with the optimal sampling time.

These difficulties may stem from the models themselves. Both
deterministic and stochastic models treat the handling time as
constant, but the figures of Schenk and Bacher (2002) suggest that
this is unrealistic. Bayesian or random effects models in which the
handling time is treated as stochastic might be preferable, if the
data set is sufficiently large. The difficulties might also originate
from the choice of the functional response. We have chosen to use
the Holling functional response in our depletion model in order to
build a stochastic counterpart of the deterministic model
considered by Schenk and Bacher (2002), which allowed a
comparison of the parameter estimates of both approaches, but
other functional responses might also have been used, and could
lead to better estimates.

This work was meant as a stochastic reappraisal of classical
ODE models. It has the advantage of being quite simple and very
general, and it gives a likelihood-based framework that facilitates
parameter estimation and model comparison. Future refinements
of our approach could be undertaken in many directions. Recent
developments, combining stochastic processes and Bayesian
modelling, may be appropriate for reaching higher realism in
predation and related biological phenomena.
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Appendix A

On differentiating the functional response twice, one finds

@2gðN; PÞ
@N2

¼ ð1þ aðNÞtNÞða00ðNÞN þ 2a0ðNÞÞ � 2tða0ðNÞN þ aðNÞÞ2
ð1þ aðNÞtNÞ3

.

Under the customary assumption that the functional response is
asymptotically constant and under the usually accepted assump-
tion that it does not have several plateaux, the sign of the second
derivative of gðN; PÞ at zero discriminates types II and III. The type
III response then arises when the second derivative is positive,
mathematically when 2a0ð0Þ � 2t½að0Þ�240. Provided að0Þa0, this
condition becomes

a0ð0Þ
ðað0ÞÞ2

4t.

This last condition translated in terms of the searching rate
function proposed by Juliano (2001), aðNÞ ¼ ðdþ bNÞ=ð1þ cNÞ, is
b� cd

d2
4t. (12)
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As the first derivative is a0ðNÞ ¼ ðb� cdÞ=ð1þ cNÞ2, the numerator
in Eq. (12) is guaranteed to be positive because of the first
assumption a0ðNÞ40 (a0ð0Þ ¼ b� cd). However, as we see, the
condition b� cd40 is not sufficient to ensure type III, since
Eq. (12) entails b� cd4td2.

Appendix B

Let gðn; pÞ be the functional response, i.e. the number of prey
killed per predator and unit of time, where n stands for the total
number of prey and p for the number of predators. Thus, the
number of prey killed by p predators within a time h is gðn; pÞph. If
we assume the prey population to be homogeneous, then the
probability pnh for each individual prey to be killed in such a
situation is just this last expression divided by n, i.e.
pnh ¼ gðn; pÞph=n. Thus, the total number of prey killed KnðhÞ
among n available prey within a time h when p predators are
present is treated as a binomial variable with parameters n and
pnðhÞ. The probability that one death occurs is then

PrðKnðhÞ ¼ 1Þ ¼ npnðhÞð1� pnðhÞÞn�1

¼ npnðhÞ
Xn�1

j¼0

n� 1

j

 !
ð�1ÞjðpnðhÞÞj

0@ 1A
¼ npnðhÞ 1þ

Xn�1

j¼1

n� 1

j

 !
ð�1ÞjðpnðhÞÞj

0@ 1A
¼ npnðhÞ þ

Xn�1

j¼1

ðjþ 1Þ
n

jþ 1

 !
ð�1ÞjðpnðhÞÞjþ1

¼ gðn;pÞphþ
Xn�1

j¼1

ðjþ 1Þ
n

jþ 1

 !
ð�1Þj gðn;pÞp

n

� �jþ1

hjþ1

¼ gðn; pÞphþ oðhÞ.

As the second term is a polynomial without any constant or first
degree term, the limit limh!0 ð

Pn�1
j¼1 ðjþ 1Þð n

jþ1Þð�1Þjðgðn; pÞp=
nÞjþ1hjþ1Þ=h ¼ 0, denoted by the little-o notation oðhÞ. Since this
probability is equal to the probability that the prey population
decreases from n to n� 1 individuals, we have obtained the first
equation of Eq. (5). On assuming that the elapsed time h is so
small that only up to one event, one death in this case, might
occur, the second equation follows.

Appendix C

It can be proved that in a Markovian process with discrete state
space and continuous time parameter, the sojourn time in a
certain state is an exponential random variable (see, e.g. Allen,
2003, p. 198). In the simple case of pure death process this
property is very interesting. A Markov chain can be thought of as
two other chains: the jump chain Wi, which consists in the
stochastic process giving the state of the process before the i-th
jump (or i-th state change), and the inter-event chain Tk, which
gives the sojourn time in state k. Since our process is a pure death
process, Wi takes all values between n0 and 0 in decreasing order.
Thanks to this division into two separate processes, it is possible
to give an analytical formula for the transition probability.

Theorem C.1. Let NðtÞ be a Markovian pure death process, with

initial state Nð0Þ ¼ n0, where the intervent time distribution

Tk� expð1=lkÞ is exponential with mean 1=lk. Then the transition

probability is

Prn0 ;kðtÞ ¼
Yn0

i¼kþ1

li

 !Xn0

j¼k

expð�ljtÞQn0

‘aj
‘¼k

ðl‘ � ljÞ
.

In the modelling of a prey population depletion, the stochastic
process NðtÞ will stand for the population size at time t. The
random variable Tk will be the sojourn time in state k, i.e. the time
the population has k individuals. This variable is exponential with
mean 1=lk. If the pure death process models a prey depletion due
to predation like in Eq. (5), the parameter li is just the functional
response multiplied by the number of predators, i.e. gðn; pÞp.

In order to prove Theorem C.1, we need first to express the
probability transition of NðtÞ in terms of Tk. This can be done as
follows:

Lemma C.2.

Prn0 ;kðtÞ ¼ Pr
Xn0

i¼kþ1

Ti � t

 !
� Pr

Xn0
i¼k

Ti � t

 !
; k ¼ 1; . . . ;n0 � 1.

(13)

The formulae for the cases k ¼ 0 and n0 are easily found.

Proof of C.1. The relation

Prn0 ;kðtÞ ¼ Pr
Xn0

i¼kþ1

Ti � t

( )
\

Xn0
i¼k

Ti4t

( ) !

expresses the fact that at time t the chain has already reached the
state k but not the state k� 1 yet. Basic manipulation of it yields
Eq. (13). &

The distribution of the two convolutions in Eq. (13) can be
calculated via the following lemma:

Lemma C.3. Let ðTiÞi¼1;...;n, where n � 2, be independent exponential

random variables with pairwise distinct parameters li. Then the

density of their sum is

fPn

i¼1
Ti
ðtÞ ¼

Yn
i¼1

li

 !Xn
j¼1

expð�ljtÞQn
‘aj
‘¼1

ðl‘ � ljÞ
. (14)

The proof is given in Ross (2006, p. 299).

Thus

Prn0 ;kðtÞ ¼ Pr
Xn0

i¼kþ1

Ti � t

 !
� Pr

Xn0
i¼k

Ti � t

 !

¼
Z t

0

Yn0

i¼kþ1

li

 ! Xn
j¼kþ1

expð�ljxÞQn
‘aj

‘¼kþ1

ðl‘ � ljÞ
dx

�
Z t

0

Yn0

i¼k

li

 !Xn
j¼k

expð�ljxÞQn
‘aj
‘¼k

ðl‘ � ljÞ
dx

¼%
Yn0

i¼kþ1

li

 !Xn0

j¼k

expð�ljtÞQn0
‘aj
‘¼k

ðl‘ � ljÞ
.

The equality marked with a % involve basic algebraic manip-
ulations. Its proof is left to algebra enthusiasts.

Appendix D

Starting from Eq. (8), Podlich et al. (1999) differentiated the
equation on both sides with respect to a parameter, y say. On
reversing the order of differentiation and combining this new
equation with Eq. (8), they established the elegant matrix
equation:

@

@t
Prn0 ðtÞ;

@Prn0
ðtÞ

@y

� �
¼ Prn0

ðtÞ; @Prn0
ðtÞ

@y

� �
Q

@Q

@y
0 Q

0@ 1A. (15)
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In the context of Markov chains, the matrix Q usually involve
rather simple functions of the parameters and is very sparse. Its
differentiation with respect to one parameter poses therefore no
problems. The authors were able to extend this formula to a
complete formula, with first and second derivatives of all
parameters. For two parameters y1 and y2, this ‘‘all-in’’ formula is

@

@t
Pn0

ðtÞ ¼ Pn0
ðtÞ

Q
@Q

@y1
@Q

@y2
@2Q

@y21

@2Q

@y22

@2Q

@y1y2

0 Q 0 2
@Q

@y1
0

@Q

@y2

0 0 Q 0 2
@Q

@y2
@Q

@y1
0 0 0 Q 0 0

0 0 0 0 Q 0

0 0 0 0 0 Q

0BBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCA
¼ Pn0

ðtÞQ%,

where, say,

Pn0
ðtÞ ¼ Prn0 ðtÞ;

@Prn0 ðtÞ
@y1

;
@Prn0

ðtÞ
@y2

;
@2Prn0 ðtÞ

@y21
;
@2Prn0 ðtÞ

@y22
;
@2Prn0

ðtÞ
@y1@y2

 !
.

Its solution is

Pn0
ðtÞ ¼ Pn0 ð0ÞT expðQ%tÞ, (16)

where the vector Pn0
ð0Þ ¼ ð0; . . . ;0;1;0; . . . ;0Þ; it can be proved

that only the term Prn0 ;n0
ð0Þ ¼ 1 is not equal to zero. When the

number of parameters is greater than two, this matrix becomes
too big and may cause computational issues. Should the case
arise, Podlich et al. (1999) suggest using several smaller matrices
instead. The first and second derivatives of the parameters
y1; . . . ; ym are encompassed in the equations:

@

@t

Pr

Pri

Prii

0B@
1CA

T

¼
Pr

Pri

Prii

0B@
1CA

T Q
@Q

@yi
@2Q

@y2i

0 Q 2
@Q

@yi
0 0 Q

0BBBBBB@

1CCCCCCA (17)

and the mixed second derivatives involving yi and yj can be
wrapped up in the equations:

@

@t

Pr

Pri

Prj

Prij

0BBB@
1CCCA

T

¼

Pr

Pri

Prj

Prij

0BBB@
1CCCA

T
Q

@Q

@yi
@Q

@yj
@2Q

@yi@yj

0 Q 0
@Q

@yj

0 0 Q
@Q

@yi
0 0 0 Q

0BBBBBBBBBB@

1CCCCCCCCCCA
, (18)

where Pr, Pri and Prij are abbreviations for Prn0
ðtÞ, @Prn0

ðtÞ=@yi and
@2Prn0

ðtÞ=@yi @yj, respectively. The solutions of Eqs. (17) and (18)
are analogous to Eq. (16).

Differentiating the likelihood function (Eq. (10)) with respect
to the parameter yi leads to

@‘ðyÞ
@yi

¼
Xm
k¼1

Prink�1 ;nk

Prnk�1 ;nk

and differentiating it twice with respect to yi and yj yields

@2‘ðyÞ
@yi @yj

¼
Xm
k¼1

Prijnk�1 ;nk
Prnk�1 ;nk � Prink�1 ;nk

Prjnk�1 ;nk

ðPrnk�1 ;nk
Þ2

,

where Prnk�1 ;nk ðtk � tk�1jyÞ its first derivative with respect to yi and
its second derivative with respect to yi and yj have been
abbreviated as Prnk�1 ;nk , Pr

i
nk�1 ;nk

and Prijnk�1 ;nk
respectively. Eq. (11)

is finally computed as follows:

IðbyÞ ¼ E � @2‘ðbyÞ
@yi @yj

 !

¼ E
Xm
k¼1

Prink�1 ;nk
Prjnk�1 ;nk

� Prijnk�1 ;nk
Prnk�1 ;nk

ðPrnk�1 ;nk
Þ2

 !

¼
Xm
k¼1

E
Prink�1 ;nk

Prjnk�1 ;nk
� Prijnk�1 ;nk

Prnk�1 ;nk

ðPrnk�1 ;nk
Þ2

 !

¼
Xm
k¼1

Xnk�1

x¼0

Prink�1 ;x
Prjnk�1 ;x

� Prijnk�1 ;x
Prnk�1 ;x

ðPrnk�1 ;xÞ2

 !
Prnk�1 ;x

¼
Xm
k¼1

Xnk�1

x¼0

Prink�1 ;x
Prjnk�1 ;x

� Prijnk�1 ;x
Prnk�1 ;x

Prnk�1 ;x

 !
.

Thus, it turns out that the second derivatives of the log-likelihood
function which arise in Eq. (11) only consist of second derivatives
of the transition probabilities, which are computable through
matrix exponentials.
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