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The scattering intensity of polydisperse systems of core—shell and layered hard spheres is considered. The
Percus—Yevick solution for the partial structure factors is cast in a form suitable for numerical and analytical
treatment. Closed-form, analytical expressions are given for an effective hard-sphere model of the scattering
intensity of particles with an internal layered structure and a size polydispersity governed by a Schulz
distribution. A similar model for polydisperse hard spheres of core—shell structure but with a monodisperse
shell thickness is also presented. The models are tested against small-angle X-ray scattering experiments on

a hard-sphere-like microemulsion system.

Introduction

Small-angle scattering provides a means of microscopic
characterization of a wide range of systems, and it is a powerful
probe of structure and interactions in colloidal systems.! Analysis
of scattering results from disordered systems of colloidal
particles often proceeds by making quantitative comparisons
with a well-defined model, though in many cases model-
independent analyses can also be used very effectively.>™* In
the former case, however, models are defined at the outset in
terms of a set of assumptions about, e.g., particle size, shape,
and size distribution. This is a commonly used route to obtaining
single-particle structural data on colloidal particles.” However,
for interacting systems analysis along these lines is more
difficult. Even for spherical particles, polydispersity in particle
size makes the disentangling of internal particle structure, size
distribution, and interactions a complicated task.

Focusing on spherical particles with central, isotropic interac-
tions, there are established routes within liquid-state theory for
obtaining model results for the average scattering intensity.%’
One common approach is to approximate the system by a few-
component, effective mixture®® (for a different approach, see
Lado'?). The coupled Ornstein—Zernike integral equations can
then be solved numerically, yielding the partial structure factors
of the mixture for an approximate closure relation, interaction
potential, and mixture composition. This prescription is very
flexible in that it can be applied for essentially any interaction
potential, size distribution, distribution of scattering contrast,
and closure relation.”*!'~13 In practice, however, full numerical
solutions of this sort are usually too time-consuming, especially
given that a rather large number of components is often required
for modeling scattering data extending to wave vectors beyond
the first correlation peak. Consequently one may want to turn
to simpler approaches for analysis.

For a few closure/interaction potential combinations analytical
solutions exist to the multicomponent integral equations. The
most well-known is the analytical solution afforded by the
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Percus—Yevick closure for mixtures of hard-sphere particles.'*!

Vrij!¢ and Blum and Stell'’ in effect analytically inverted the
matrix of direct correlation functions to obtain the partial
structure factors needed to compute the scattering intensity.
Their results, or those from other analytical expressions for
partial structure factors,'® 2! can be used with a given single-
particle form amplitude and a histogram representation of the
size distribution.”? Again, many components may be required
in the histogram representation to model polydisperse systems
properly, and calculations, particularly if they are carried out
within a least-squares minimization procedure,> may become
too time-consuming for routine use. As an alternative, one can
make further simplifying assumptions.?>~> A different tack was
taken by Griffith et al.,>® who considered a continuous, Schulz
size distribution and, on the basis of the Percus—Yevick
theory,'*"17 completed the required integrations to obtain an
analytical expression for the scattering intensity. This analytical
model makes for rapid evaluations of scattering intensities, but
it is quite restricted in that it applies only to homogeneous hard
spheres.

In what follows, we stay with the Percus—Yevick theory,
which predicts accurate structure factors up to quite large volume
fractions and polydispersities,”” and extend the hard-sphere
model of Griffith et al.?® in a number of ways. We consider
two different layered distributions of scattering contrast, which
requires altering the single-particle form amplitude. In both
cases, a Schulz distribution is employed to handle size poly-
dispersity and closed-form, analytical expressions are presented
for the scattering intensity. Furthermore, in these models we
introduce an effective interaction diameter that can be different
from the diameter that contributes directly to the scattering
intensity through the form amplitude. With these extensions a
wider range of colloidal sphere systems can be modeled,
including vesicles, composite particles of core—shell and layered
internal structures, and spherical particles exhibiting more
complex distributions of scattering contrast. We test the
developed models on a well-characterized microemulsion
system.
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Experimental Section

Materials. The nonionic surfactant pentaethylene glycol
dodecyl ether (C,Es) and n-decane were obtained from Nikko
Chemicals and Sigma and were used as received. A micro-
emulsion stock solution was prepared by weighing in C,Es,
Milli-Q water, and n-decane, giving a surfactant-to-oil mass ratio
of 1.08, in agreement with Olsson and Schurtenberger,?® and a
volume fraction ¢,+s = 0.396. Here, ¢po+s = ¢, + ¢, refers to
the volume fraction of oil plus surfactant, which was determined
from the mass-based composition and bulk component densi-
ties.”” Dilution of the stock solution with water yielded a
concentration series comprising six samples in total. The
emulsification-failure boundary, i.e., the temperature below
which homogeneous microemulsions expel an excess oil phase,
occurs around 25 °C.*° As in the small-angle neutron scattering
(SANS) study by Bagger-Jorgensen et al.,>!' the experiments
were carried out a few degrees below this temperature, where
samples are metastable; no phase separation was observed during
the time of the measurements.

Small-Angle X-ray Scattering. Small-angle X-ray scattering
(SAXS) measurements were conducted on beam line 1711 at
the MAX 1I storage ring in Lund, Sweden.*> Microemulsion
samples were enclosed in high-quality quartz capillaries with a
diameter of 1.7 mm, glued in steel housings. A water sample,
the solvent background, was measured in the same capillary
and later subracted in the data treatment. Good statistics were
accumulated within 600 s for the dilute samples and 300 s for
the more concentrated ones. In the data reduction the beam
decay and transmission of the samples were taken into account
by measuring the beam intensity with a semiconducting diode
moved into the beam immediately before and after sample
exposure. The sample-to-detector distance was 1.5 m, and
the wavelength was 1.025 A. The isotropic scattering data were
azimuthally averaged, yielding one-dimensional data in terms
of the modulus of the scattering vector k = 4 sin(6/2)/1, where
0 is the scattering angle and 4 is the wavelength. The excess
scattering was determined by subtracting the background and
correcting for transmissions and electronic noise. The experi-
ments have not been converted to an absolute intensity scale,
allowing for an arbitrary multiplicative shift. However, the
spectra recorded for the different concentrations are internally
consistent, and they are for this reason not shifted relative to
one another.

Theory. For a continuous size distribution f{g,) the scattering
intensity is given by!726

1ty = L,(o) + Lk) = n [ do, flo,) F, (k) +
n [ do, [ doyflo,) fog) Fo(k) Fyk) Hyg(k) (1)

where 7 is the total number density of particles, & is the modulus
of the wave vector, F,(k) is the single-particle form amplitude,
and Hag(k) = (ngng)'?hes(k) are essentially the Fourier-
transformed total correlation functions, related to the partial
structure factors as Sqp(k) = Oup + Hop(k), with n, being the
number density of particles of size fraction a. The Hg(k)
functions have a simple mathematical structure in the Percus—
Yevick solution for hard spheres.!®!” In particular, the depen-
dence on the particle diameters of the size distribution is such
that the double integral in eq 1 can be factored into products of
integrals. The integral I,(k) can be expressed compactly as

ok

X+ 7
where the .%(k) functions are double integrals, each of which
factors as

k) = Q) + k) — k) ()

Gy = MLOSy (k) Gyk) + MEVLS (k) Gyk) +
Jik) Gl + MEVS ) G (3)
k) = MOV Gyky? + 2ME2 G(k) G(k) + MED 6 (k)?

(4)
k) = MOD Sy ky? + 2MEP k) S (k) + MO S (k)
(5)

in terms of the basic integrals
> e n . kaa
S (k) = fo do, 0,'f(0,) Folk) sin| =~ (6)

oo koa
Gk = [ do, 0,"fo,) Fy(k) cos(T) (7)

with n = 0 or 1. In what follows, due to the factoring, we can
dispense with the size indices o and . The prefactors in the
above are given as M & = 9;Y & 0,X, where X, Y, and 6; — Js
are the same as those given by Griffith et al.?®

We follow Griffith et al.?® and choose f(0) as a Schulz

distribution,*3> which is given by
c—1
floy=TZ—e " ®)
bT'(¢c)

where b = 0/c, I'(c) is the I" function of argument ¢ = z + 1,
and o is the mean diameter. As written, the distribution fulfills
the normalization condition f§ dofio) = 1. The parameter z is
related to the polydispersity in terms of the normalized standard
deviation s,, viz., s, = (0%/6> — 1)2 = (z + 1)""2. Griffith and
co-workers integrated eq 1 analytically for homogeneous
(Percus—Yevick) hard spheres with Schulz-distributed dia-
meters.’® We shall extend their solution by adopting for F(k) a
distribution of scattering material comprising a spherical core
surrounded by one or more concentric shells. In addition, we
will introduce a diameter for the hard-sphere interaction that
can be different from the one that enters the form amplitude.
This leads to an effective hard-sphere model that may be used
to model extra excluded-volume interactions.

Model A: Core—Multishell Spheres with Coupled Poly-
dispersity. We assume that the distribution of scattering contrast
in the spherical particles is partitioned in a core of radius a; =
piay, followed by a sequence of N — 1 concentric shells, each
extending to an outer radius of a@; = p,ay with py = 1. We neglect
any effects of fluctuations*®?7 in the excess scattering contrast,
e.g., electron or scattering length density, p(r) — psoly, and give
the contrast in each layer a constant value p; — pyoy. Note that
in this model, which we will refer to as model A, the radii are
proportional to one another through the constant p; factors. For
this model the single-particle form amplitude can be expressed
2524

N
4 kp,o
Flk) = =5 E,p_,,»ﬂy(—zf ) ©9)
k j=1 P

where p;j+1 = pj = Pj+1, Pv+1 = Psolv» and y(x) = sin x — x cos
x. The parameter p is introduced in eq 9 as an additional
proportionality factor, viz., p = o/2ay; it is the ratio between
the effective hard-sphere (interaction) diameter, o, and the
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diameter entering the form amplitude, 2ay. With this model we
obtain the same normalized standard deviation, (z + 1)~'?,
regardless of whether we consider the size distribution as
governing core, shell, or effective hard-sphere radii or diameters.
Substituting eqs 8 and 9 in eqs 6 and 7 leads to

N
T kp; k) _kp; (k kpf)]
Jo(k) = E ;pi,i+l[An( 2’2 Gt 2’ 2p

2p
(10

N
47 kp, &\ kpi o (K kp;
i =35 Yelcl8) - 5alb )
i=1
(11)

where A,(k,q), B,(k,q), and G,(k,q) are given by analytical
expressions in the Appendix. With explicit expressions for the
integrals in eqs 6 and 7 in hand, the calculation of /;(k) in eq 1
follows from evaluating eqs 2—5. The first integral /,(k) remains
to be determined. It is essentially the form factor P(k) = I,(k)/
n. The form factor for a core—shell model with coupled
polydispersity, model A with F(k) as in eq 9 with N = 2, was
first determined by Hayter?* for Schulz-distributed radii, thereby
generalizing Aragén and Pecora’s solutions for homogeneous
and hollow spheres.®® Hayter’s result generalized to a core with
N — 1 shells reads as follows in the present notation:

N
(42 kp; kp_/‘ kp; kPj kp;
10 = (F)n X ol ) - 3l ) -

ij=1 2p
()
1

by ) e (1, 1)
2p \2p°2p) " 2p2pT\2p’2p

Despite appearances, the expression is independent of p, which
appears here only because the Schulz distribution has been
assigned to govern the effective hard-sphere diameter.

Model B: Core—Shell Spheres with Uniform Shell Thick-
ness. In model A, large particles are surrounded by shells with
proportionately larger thicknesses than those around smaller
particles. In many situations, however, e.g., vesicle dispersions
and perhaps droplet microemulsions, it may be more physically
motivated to use a model with a uniform shell thickness. Such
a core—shell model was considered by Bartlett and Ottewill,
who derived the form factor for polydisperse particles with a
constant shell thickness,® and Yan and Clarke, who considered
the forward scattering (k — 0) limit.** However, introducing
hard-sphere, structure-factor effects in this model requires care.
To ensure that the distribution does not include core radii, here
labeled a, with negative values, we take the Schulz distribution
to govern the core radius rather than the hard-sphere diameter.
It follows that fla) = a“~'b~%e **/T'(c) with b = @/c and ¢ = z
+ 1. The Schulz parameter z is now set by the normalized
standard deviation of the core radius distribution; i.e., z + 1 =
1/s,> = (a’/a* — 1)~". For simplicity we only consider particles
composed of a core with a single shell. In keeping with the
effective hard-sphere model, we set the interaction diameter as
o = 2p(a + 0), where 0 is the shell thickness and p is the ratio
between the hard-sphere and actual diameters. In this model,
which we refer to henceforth as model B, ¢ and p are kept
constant.

For particles with the contrast partitioned in a core and a
single shell, the form amplitude is given as F(k) =
4k 3(p1ay(kay) + paay(kay)). We set a; = a and a, = a + 9,
and, in anticipation of integrations with respect to a, we
decompose y(ka + kO) leading to

Fk) = 1—731[601 sin(ka) + w, cos(ka) + w,ka sin(ka) +
w,ka cos(ka)] (13)

where

W, = pyy T pys(cos(kd) + kb sin(kd)) (14)

W, = py(sin(kd) — ko cos(kd)) (15)
Wy = Py sin(ko) (16)
Wy = =Py — Pyz COS(kO) (17)

For model A many results could be directly transcribed from
the work of Griffith et al.?® This holds but to a lesser extent for
model B. As summarized in the Appendix, an equivalent set of
equations to eqs 2—7 can be derived for a size distribution
governing the core radius when it is tied to the hard-sphere
diameter as 0 = 2p(a + O). In the Appendix we also provide
expressions for the remaining parameters needed to evaluate
Ii(k) and I(k) for this model.

Results and Discussion

We begin by showing some results of the models, focusing
on the extensions with respect to the scattering function for
polydisperse, homogeneous spheres as worked out by Griffith
et al.20 In the models defined here, the particles need not act as
true hard spheres in the sense that they can be given a larger
hard-sphere diameter than the diameter that contributes directly
to the scattering through the form amplitude. This effect is
controlled by the parameter p, the ratio of the interaction
diameter to the actual diameter, and is best illustrated at low
particle concentrations. For simplicity we use model A with
homogeneous (N = 1) particles and define ¢, = 4nga,’/3 and
¢, = 4nmpa,’/3. In Figure 1 some results for so-called measured
or effective structure factors,*® SM(k) = (nP(k))'I(k), are shown.
The left panel shows results for true (p = 1) hard spheres of
mean radius a; as the number density increases. The right panel
shows effective hard spheres of the same mean radius a; at

Figure 1. Measured structure factors as functions of ka, for homo-
geneous (N = 1) spheres using model A with a polydispersity, s,, equal
to 0.1. The left panel shows the effect of increasing volume fraction;
from top-to-bottom along the left-hand side of the panel, ¢, = 0.05,
0.1, 0.2, 0.3, 0.4, and 0.5 at p = 1. The right panel shows results for
¢, = 0.05 and, from top-to-bottom along the left-hand side of the panel,
p=1,1.26, 1.587, 1.817, 2.00, and 2.154. For this set of p values ¢,
= p’p, ~ 0.05, 0.1, 0.2, 0.3, 0.4, and 0.5.
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Figure 2. Scattered intensity as a function of k for core—shell (N =
2) particles using models A and B with ¢, = 0.5, s, = 0.15,p =1, a,
=50nm, pj3 =2 x 107 nm™2, and p; = 1 x 107 nm™2. Also, in
model A p; = 0.8 and in model B 0 = 10 nm, giving the same average
core and total radius in both cases. Note, however, that the polydis-
persity with respect to the core radius is 15% in model A, whereas it
becomes 18.75% for model B.

constant number density as p increases; i.e., ¢, remains constant,
while ¢, increases. In the former case, model A reduces to the
result of Griffith et al.,>® whereas the latter could account for
the presence of some extra repulsion among particles. The
concentrations and effective hard-sphere diameters in the
comparison have been chosen so that ¢, = p*@,, which yields
structure factors of similar magnitude. As seen in Figure 1,
whereas increasing concentration leads to a primary structure
factor peak shifting toward higher k for true hard spheres, the
peak shifts to smaller k as the hard-sphere diameter is inflated
at constant number density. Note that comparing the structure
factors as a function of ko instead of k or ka; would have
resulted in agreement at low k but differences at large k. This
can be understood by the polydispersity and the third moment
no® being the same in this particular comparison. Equating the
first few moments typically works well for reproducing low-k
features of static scattering and is often sufficient to capture
the main correlation peak in terms of height and position,” but
differences among higher order moments cause disagreement
at larger k.

In Figure 2 we illustrate the main difference between models
A and B, here in terms of the intensity of a concentrated
core—shell (N = 2) system. In model A the shell thickness is
polydisperse, whereas in model B the shell thickness is uniform.
The average core radius in model A is a; = p,a,, and in model
B it is @ = a, — 0. Clearly, in model B, had a Schulz
distribution been assigned to govern a, one could not have
guaranteed a corresponding distribution of positive-semidefinite
a, values. In the comparison in Figure 2 between models A
and B, the mean core radius has been set to the same value, 40
nm, and the mean core—shell radius a, has also been set to the
same value, 50 nm. As seen, differences between the models
appear primarily at large k, where model B with a monodisperse
shell thickness produces more pronounced oscillations compared
to model A with polydisperse shells. The differences between
the models at low k come about because setting the same
average core and total radii in the two models leads necessarily
to differences in polydispersity. In this case, the polydispersity
with respect to the hard-sphere diameter has been equated
between the two models at 15%, which leads to a larger

10° +
10°
107 |
=~
N .
& 107
X
i~
-
107 0%
10° '
0 05 1
r/a,
10‘6 | ! !
107 10™ 10° 10' 10°

ka,,

Figure 3. Normalized form factor as a function of kay for model A
with a N = 10 discretization approximation of contrast profiles given
by psnen(r) = psorv = Ap(rfa))~*3, with Ap = 0, 0.01, 0.1, and 1, as
shown in the inset, and a,/ay = p; = 0.3. All form factors have been
determined for a polydispersity of 10%. For reference, form factors
corresponding to the nondiscretized contrast profiles are shown using
symbols. The result for homogeneous spheres (Ap = 0) is, proceeding
along the right-hand side of the main panel, the top curve. The results
for Ap = 0.01, 0.1, and 1 follow in descending order along the right-
hand side.

polydispersity for the core radius of model B. As seen in Figure
2, in going from the results of model A to model B, this leads
precisely to what one generally observes in connection with an
increase in size polydispersity:®4*#! enhanced scattering at the
lowest k, a reduction of the main correlation peak (hardly visible
in Figure 2), and a smearing of the first form factor oscillation
at k ~ 0.1 nm™'.

With a multilayer model in hand one can readily generate
scattering predictions for complex contrast profiles that do not
themselves permit for analytical treatment even at the form
factor level. As an illustration, we consider a homogeneous core
surrounded by a single layer with an excess contrast varying
with distance r from the particle center as p(r) — Py =
Ap(rla;))™*3, where a, is the radius of the homogeneous core.
This shell contrast profile can be relevant to dispersions of
spherical particles bearing grafted polymer.*? Power-law contrast
profiles have been studied by Forster and Burger,” who
developed a semianalytical scheme for evaluating the form
factor. As an alternative, in Figure 3, we use model A with N
= 10 and, as shown in the inset to Figure 3, divide the contrast
profile in a core with nine additional layers to approximate the
contrast in the shell. Figure 3 shows form factors corresponding
to varying overall shell contrast, all calculated for a polydis-
persity of 10%. For weakly scattering shells the form factor
exhibits an oscillation with a minimum close to k ~ 4.5/a,,
which corresponds to the usual form factor minimum for
homogeneous spheres. As the contrast of the shell is increased
a new oscillation appears, which develops into a minimum for
Ap = 1, this time at k & 6.5/ay. It follows that the particles
appear “smaller” than homogeneous spheres of radius ay. For
reference, in Figure 3, we compare with form factors for spheres
surrounded by shells with a nondiscretized, Ap(r/a;)™*? contrast
profile, computed essentially using the ascending (in k) part of
the series expansion developed by Forster and Burger.** As seen,
using a sufficient number of layers, we can accurately reproduce
the correct form factor. However, the discrete nature of the
model is revealed by extra oscillations setting in roughly at k
~ 2mt/Ar, where Ar is the increment used for the discretization
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Figure 4. SAXS intensity as a function of wave vector for a
concentration series of Cj,Es-based microemulsions of oil + surfactant
volume fractions, from bottom-to-top along the right-hand side, ¢q+
= 0.0099, 0.0198, 0.0989, 0.198, 0.297, and 0.396. For clarity, only
every other experimental /(k) value is shown. The lines are fits to the
data using model A (with N = 2) as described in the text.

of the contrast profile. Hence, these oscillations are pushed
beyond the k-window of interest, as done in Figure 3, by
selecting a sufficiently fine resolution Ar. Hard-sphere structure
factor effects can be added in Figure 3 as done in previous
examples by including /5(¢) in eq 2.

We test the models on a well-characterized droplet-structured
(Ly) microemulsion, comprising decane droplets stabilized by
the nonionic surfactant C,Es dissolved in water. The properties
of the system have been well-captured by effective hard-sphere
models for a surfactant-to-oil mass ratio of 1.08 at a temperature
of ~25 °C, when the system is close to expelling an excess oil
phase (emulsification failure).283!44746 Given that it is difficult
to distinguish by small-angle scattering between polydisperse
spheres and spheroidal particles,”**” we proceed with modeling
this system as composed of spherically shaped particles using
models A and B. Indeed, along the emulsification-failure phase
boundary, previous SANS experiments have shown that a model
based on spherical particles can be used, at least to describe
the large-k scattering, and that the droplets maintain their size
as a function of droplet concentration.’! Also, for the scattering
of X-rays, the excess electron density of the shell is larger than
that of the core for this system.*3

In the modeling we have used a core with an electron density
p1 = 253 e/nm?, a shell with an electron density p,, to be
determined, while the solvent electron density has been kept
constant at p; = 333 ¢/nm?. Similar to findings from the SANS
study by Bagger-Jorgensen et al.,*! the SAXS spectra in Figure
4 superpose at large kK when scaled by the volume fraction, ¢+
= ¢, T+ ¢, of oil and surfactant. An exception is noted in the
region near the first form factor oscillation at the highest
concentrations, where there is some enhanced intensity relative
to nP(k), suggesting that the data here are affected by structure
factor effects. As a consequence of this observation, we look
for a droplet radius and size polydispersity that do not vary as
a function of concentration and opt for a global “best fit” to the
whole concentration series using the hard-sphere models. The
core radius and the polydispersity are determined by the location
and degree of smearing of the form factor oscillation at low-
to-moderate ¢5. There is essentially no leeway in assigning
values of @ = 7.0 nm and s, = 0.19, independent of
concentration. The former is in good agreement with the value
reported by Bagger-Jorgensen and co-workers, whereas the latter
is somewhat larger than the corresponding value from the same
SANS study.?' Furthermore, dealing with the entire data set,
which must accommodate the known dilution factors used to
prepare the samples from the stock solution, rapidly eliminates
model B, which does not reproduce the structure factor peak
and the low-k scattering of the experiments at the higher
concentrations. Turning to model A, we initially neglect
hydration of the droplets and enforce, ¢o+s = 4nma,’/3, which
leads to quite reasonable fits to the experimental data over the
whole concentration interval using p = 1.065 independent of
droplet concentration. There is some mismatch in the region of
the first form factor oscillation at the two highest concentrations,
where the model underpredicts the experimental intensity.
Nevertheless, this procedure leads to the conclusion that
reproducing the structure factor peak position of the experiment
using model A requires that the core radius be placed according
to ¢, + 0.25¢, ~ 4nzp,>a,’/3, where the 0.25 factor obtained
is independent of the droplet concentration. In contrast, enforcing
at the outset a factor of, e.g., 0.5,3! the experimental peak
position at high concentration cannot be reproduced with model
A. Indeed, similar SAXS spectra and SANS results have been
interpreted on the basis of models of interacting ellipsoidal
particles.*34

Although the fits of the model to the data are quite reasonable,
further improvement is possible by allowing for some hydration
of the shells surrounding the droplets. This implies that the
condition ¢+ = 4nma,’/3 is relaxed and optimization of the

TABLE 1: Integrals and Their Notation for a Schulz Distribution Governing the Core Radius with b =a/candc =z + 1 =

s, 2 and with a Hard-Sphere Diameter Defined as ¢ = 2p(a + J)°

g(0) n [t da fla)o"g(o) notation
1 1 W(be + 0) ¢
1 2 QpRbic(c + 1) + 2bed + ) &
1 3 QpPBhic(c + 1)(c + 2) + 3b2%c(c + 1) + 3bcd® + 8%) &
sin (ko) 0 v,? sin (2pkd + ¢ tan”'(2pbk)) P
sin (ko) 1 2pbctV? sin (2pkd + (¢ + 1) tan~'(2pbk)) + 2pyo Y
sin (ko) 2 (2pb)’c(c + vt sin (2pkd + (¢ + 2) tan™'(2pbk)) — P
(2pdy*y + 4py’o
cos (ko) 0 v,? cos(2pkd + ¢ tan~'(2pbk)) %
cos (ko) 1 2pbcv,“TV? cos(2pkd + (¢ + 1) tan~'(2pbk)) + 2pyd ¥
cos (ko) 2 (2pb)*c(c + D), ™72 cos(2pkd + (¢ + 2) tan™'(2pbk)) — ¥’

(2poyy + 4py'o

“ Here, s, is the normalized standard deviation of the core radius distribution. Also, the v, parameter in the table is given by v; = (1 +

(2pbk)»)™" and & = nl’, & = ng”, and & = ng"”".

5
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parameters now improves the agreement and leads to a larger
hard-sphere volume fraction than ¢,s, which corresponds to a
hard-sphere radius pa, ~ 8.5 nm in agreement with values
reported in the literature.?®3! This procedure also leads to p ~
1; in other words, from the standpoint of the results of model
A, as shown in Figure 4, the droplets behave essentially as true
hard spheres. However. in keeping with previous definitions of
effective hard-sphere models, we can calculate (¢o/go+s)'> =
1.065, suggesting quite some hydration of the droplets (2.2
water molecules per ethylene oxide segment of the surfactant
headgroup) given that with p = 1 we have o0 = 2a,. This value
is somewhat larger than the ~1.045 often found by comparing
experiment with hard-sphere theory;?®3!46 however, these
comparisons have relied on monodipserse hard-sphere theory.
Using the radii and polydispersity from the fits to the data we
can also estimate a hydrodynamic radius, using*' a,%a,’, as
~9.98 nm, which is in good agreement with results from
dynamic light scattering measurements atlow volume fractions. 2546
Finally, the area per surfactant headgroup at the average location
of the polar/apolar interface, as set by ¢, + 0.5¢,,%! is determined
as 0.45 nm?, which is only slightly smaller than values found
by Olsson and co-workers.3%3!

Conclusions

Analytical scattering functions for core—shell and layered
(effective) hard spheres, with core radii and diameters obeying
a unimodal Schulz distribution, have been given. This opens
for the possibility of modeling the intensity of polydisperse,
hard-sphere-like particles of complex internal morphology with
the Griffith et al. solution for homogeneous hard spheres as a
limiting case.?® As an example, the small-angle X-ray scattering
from microemulsion droplets containing nonionic surfactant is
shown to be well-modeled as originating from a hard-sphere
system of core—shell particles not only at low concentrations
but up to rather high concentrations.
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Appendix

We require slight generalizations of the integrals that appear in
Griffith et al.?® These are readily arrived at by adding and
subtracting tabulated integrals.>® Introducing the notation

Ak.q) = [ do ofo) sin(ko) sin(go) (18)
B(k.q) = [, do d"fl0) cos(ko) cos(go)  (19)

C,k.q) = [ do d"f(0) sin(ko) cos(qo) (20)

where f(0) is the normalized Schulz distribution in eq 8, we
obtain

_1bnl“(c +n

T {1+ w1 " cos v, —

Ak, q) =

[1+u 7" cosv_} (21)

_ 1I'(c+tn 2~ ()2
B,(k.q) = 5b o {1+ u,? cos v, +
[1+u 7" cos v} (22)
C,k,q) = %an{[l + Lt+2]7("‘+")/2 sin v, +

[1+u 7" ginv_} (23)

where b and ¢ are parameters of the Schulz distribution, uy =
b(k & @), and v+ = (¢ + n) tan”! u.. Moreover, only terms
with n =0, 1, and 2 are needed, for which the following holds:
I'(c+n)/T(c)=1,c,c(c+1)forn=0, 1, and 2, respectively.

For model B, i.e., for particles with polydisperse cores
surrounded by shells of constant thickness, the form amplitude
is given by eq 13. The polydisperse form factor for this model
has been determined by Bartlett and Ottewill for radii obeying
a Schulz distribution.* In the present notation their result reads

_ [(4m)\? 2
10 = (5 o Ak k) + 20,0,k k) +

20,0kA | (k, k) + 20,0 ,kC,(k, k) + w,"Byk, k) +
20,w5kC,(k, k) + 2w,0,kB,(k, k) + 05" KAk, k) +
20,0,k Cy(k, k) + 0, KB,k k)] (24)

To include structure factor effects in this model requires some
care. In this case eqs 2—5 still hold but now with a slightly
different meaning for the basic integrals

k) = [ da a"fla) F(k) sin(kpa) (25)
= %[wlAn(k, kp) + w,C,(kp, k) +

w3kA, 1 (k, kp) + w,kC, . (kp, k)]

(k) = [ da d"fia) F(k) cos(kpa) (26)
= %[wlCn(k, kp) + B, (k,kp) +

wskC,  (k, kp) + w, kB, (k, kp)]
where the integrations now extend over the core radius distribu-
tion. In addition, the prefactors in eqs 3—5 are given by
expressions analogous to those for model A, MY = 67Y + 9/X,
but where the ¢/ functions are given by
& = (0, + 4pdo, + 4p°6°9,) cos(2kpd) + (¢ +
4pod, + 4p*0°0s) sin(2kpd)  (27)
05 = 2p(d, + 2pdd5) cos(2kpd) + 2p(d, +
2pd0ds) sin(2kpd)  (28)
0y = (217)2((33 cos(2kpd) + 05 sin(2kpd)) (29)
0, = 2p(d,4 + 2pdds) cos(2kpd) — 2p(d, +
2po0d,) sin(2kpd)  (30)
05 = (2[7)2(65 cos(2kpd) — 0, sin(2kpd)) 3D
0y = (04 + 4pdd, + 4p*6°05) cos(2kpd) — (O, +
4pdd, + 4p*6°05) sin(2kpd)  (32)

in terms of the same 9; functions that enter model A, and which
are given explicitly by Griffith et al.?® The functions X and Y
are given by the same expressions as in model A, and they
depend on a number of functions that are given by Griffith et
al.?® These functions, however, are defined somewhat differently
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for model B and consequently assume expressions different from
model A and as quoted by Griffith et al.?® For model B the
required functions are integrals of the general form /¥ da
fla)o"g(0), and they are listed in Table 1 for Schulz-distributed
core radii with 0 = 2p(a + 0).
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