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In the mid- t a time when the concept of Syndrome X was being introduced by Reaven (1) to 
draw attention to the cardiovascular risks associated with insulin resistance and compensatory 
hyperinsulinemia, Tanner (2) was emphasizing a fundamental property of human growth as a target-
seeking function: Children, no less than rockets, have their trajectories, governed by control systems 
of their genetic constitution and powered by the energy absorbed from the environment. Deflect the 
child from its natural growth trajectory (by acute malnutrition or a sudden lack of a hormone), and a 
restoring force develops, so that as soon as the missing food or the absent hormone is supplied again, 
the child hastens to catch-up towards its original growth curve. When it gets there, the child slows 
again, to adjust its path onto the old trajectory once more. How the child does this we do not know.
What was also unknown (and unforeseen) then was that drives catch-up 
growth long viewed as an essential feature of recovery from the deleterious effects of poor growth 
on development and health - could emerge as a major risk factor for disease entities of syndrome X,
now more commonly known as the insulin resistance syndrome or metabolic syndrome.

There are now compelling evidence, from both epidemiological and clinical studies, which 
suggest that people who had low birth weight (often a marker for foetal growth constraints) or who 
showed reduced growth rate during infancy and childhood, but who subsequently showed catch-up
growth, have higher susceptibility for abdominal obesity, glucose intolerance, type 2 diabetes or
cardiovascular diseases later in life (3-7). The risks for later obesity and type 2 diabetes seem 
particularly high when catch-up growth occurs early in postnatal life (4, 6, 7) - a pattern of accelerated 
growth that is common in individuals born small-for-gestational-age. Independently of the timing of 
catch-up growth, however, the dynamic process of catch-up growth is characterized by a
disproportionately faster rate of fat deposition relative to that of lean tissue, with this phenomenon of 
preferential catch-up fat being intimately associated with hyperinsulinemia (8, 9). The development 

of insulin resistance interlinked with catch-up fat could thus be an early feature of the mechanisms by 
which catch-up growth confers increased risk for metabolic syndrome later in life. Of central 
importance to our understanding of the pathophysiology of catch-up fat, therefore, is the issue of 
whether (and how) processes that regulate fat storage during catch-up fat may lead to a state of insulin 
resistance and impaired glucose tolerance.

From a standpoint of systems physiology, three fundamental autoregulatory control systems 
could be implicated in preferential catch-up fat: (i) compensatory hyperphagia, (ii) an increase in fat 
mass at the expense of lean body mass, and (iii) an increase in metabolic efficiency, i.e. energy 
conservation mechanisms operating through suppressed thermogenesis, and which are embodied in the 
concept of a thrifty energy metabolism . The fact that the phenomenon of preferential catch-up fat 
persists in the absence of hyperphagia or altered lean body mass (9, 10) underscores a central role for 
suppressed thermogenesis as a fundamental physiological reaction to growth retardation and 
consequential body fat depletion or delayed adipose tissue development. It has been proposed (8, 9) 
that as skeletal muscle is a major site for both thermogenesis and insulin-mediated glucose disposal, a
reduction in muscle metabolic rate will result in diminished glucose utilization and glucose sparing,
thereby leading to compensatory hyperinsulinaemia. As depicted schematically in Figure 1, this in 
turn, would serve to redirect the spared glucose towards de-novo lipogenesis and fat storage in adipose 

Published in "Diabetes 58(5): 1037-1039 , 2009" 
which should be cited to refer to this work.

ht
tp

://
do

c.
re

ro
.c

h



2

tissue. Various features of this muscle-adipose glucose redistribution hypothesis are supported by
studies conducted in a rat model of post-weaning semistarvation-refeeding exhibiting an enhanced 
metabolic efficiency for catch-up fat during catch-up growth (10-13). Whether such thrifty catch-up 
fat phenotype can be programmed or imprinted in response to catch-up growth, and hence long-lasting 
so as to continue operating beyond the phase of catch-up growth is not known. However, studies in 
men born small-for-gestational-age are consistent with key components of the model presented in 
Figure 1, namely the existence of a state of suppressed thermogenesis as judged from their lower pre-
prandial and postprandial resting energy expenditure, even after adjustments for weight, height, lean 
tissue mass or organ size (14), and diminished muscle PI3 kinase signalling (15) a pathway that 
crosslinks insulin signaling and thermogenesis in skeletal muscle (16).

In this issue of Diabetes, Isganaitis et al (17) point to additional mechanisms, centered on 
perturbations in white adipose tissue plasticity, which could modulate the impact of a programmed 
thrifty catch-up fat phenotype on glucose homeostasis. The studies were conducted in mice which they 
previously showed exhibit rapid postnatal catch-up growth (after malnutrition-induced low birth 
weight) and which subsequently develop progressive glucose intolerance and obesity in the absence of 
hyperphagia and impaired lean tissue growth (18), i.e. a murine model of postnatal catch-up growth 
whose obesity later in life seems to suppression of thermogenesis. By 
applying state-of-the art techniques of gene profiling and histology to white adipose tissue harvested 
during postnatal catch-up fat deposition, Isganaitis et al (17) found that key genes controlling the flux 
of glucose towards lipogenesis were upregulated, whereas the expression of genes implicated in 
adipocyte differentiation/proliferation were unaltered; these data being consistent with unaltered 
adipocyte number and a marked adipocyte hypertrophy at the end of catch-up growth. These findings, 
together with their other observations that adipocyte number still failed to increase several weeks after 
the completion of catch-up growth, argue for the programming of a thrifty catch-up fat 
phenotype that incorporates defective adipogenic mechanisms. However, in the light of apparently 
contradictory results indicating that postnatal catch-up growth after fetal malnutrition programs 
proliferation of  preadipocytes in rats (19), it remains to be demonstrated whether the defect in 
enhancing adipogenesis observed during catch-up fat deposition and beyond in the mice studied by 
Isganaitis et al (17) tnatal catch-up growth or the 
consequence of an inherent, genetically-determined, low capacity of this mouse strain to mount an 
enhanced adipogenic response to excess fat accumulation. In other words, genetic-epigenetic 
interactions could be critical in defining hyperplasic catch-up fat versus hypertrophic catch-up fat.  As 
depicted in Figure 1, an hypertrophic catch-up fat phenotype is more likely to predispose to
diminished adipose tissue insulin sensitivity, enhanced secretion of proinflammatory adipokines that 
induce insulin resistance in all insulin-sensitive tissues, and to spilling-over of lipids to non-adipose 
tissues with consequential risks for ectopic lipotoxicity (20) all of which would confer enhanced 
susceptibility for later development of various components of the metabolic syndrome.
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Legend to Figure 1:

Conceptual model depicting mechanisms by which the thrifty catch-up fat phenotype, driven by 

suppressed thermogenesis, may cross-link with the development of insulin resistance and glucose 

intolerance. The depletion (or delayed growth/development) of the adipose tissue fat stores suppresses

skeletal muscle thermogenesis, which during refeeding leads to concomitant glucose sparing and 

muscle insulin resistance. The resulting compensatory hyperinsulinemia serves to redirect the glucose 

spared from oxidation in skeletal muscle towards de novo lipogenesis and fat storage in white adipose 

tissue. In hyperplasic catch-up fat, the greater number of smaller adipocytes coupled with lipogenesis 

provide an efficient buffering capacity against the spared glucose, and hence help to achieve normal 

glucose tolerance. By contrast, in hypertrophic catch-up fat, the low capacity for adipogenesis coupled 

with lipogenesis generate enlarged adipocytes, which are more prone to release proinflammatory 

cytokines and/or to spill-over of lipids to non-adipocytes (with consequential ectopic lipotoxicity).

This further exacerbates insulin resistance in skeletal muscle and other insulin-sensitive tissues, 

thereby resulting in more pronounced systemic insulin resistance and impaired glucose tolerance. The 

outcome of catch-up growth towards an hyperplasic or an hypertrophic catch-up fat phenotype is 

determined by interactions between genetics, epigenetics and environment.
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