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RÉSUMÉ

Les modèles stochastiques jouent un rôle déterminant dans la compréhension
des mécanismes génétiques conduisant à la production de protéines. De part la
complexité de ces systèmes, très peu de méthodes exactes sont connues et l’on
se voit contraint d’approcher les valeurs d’équilibre par simulation stochastique.

Dans cette thèse, après avoir brièvement introduit les méthodes stochastiques
usuelles pour modéliser les réactions biochimiques, on étudie en profondeur un
module génétique composé d’un promoteur et d’un gène reponsable pour la
synthèse d’une protéine. L’intérêt principal de ce modèle réside dans le fait que
le promoteur est autorégulé, soit positivement, soit négativement. Ce module
génétique a été largement étudié dans la littérature, voir par exemple Kepler
& Elston (2001). La première approche par un modèle Markovien remonte à
Peccoud & Ycart (1995), qui donnent un résultat exact dans le cas le plus sim-
ple où le promoteur n’est pas régulé, alors que Hornos et al. (2005) calcule la
mesure invariante dans le cas d’une rétroaction négative linéaire.

On développe ici une méthode générale pour calculer la mesure invariante du
processus, applicable à toute sorte de rétroactions positives ou négatives, avec
comme seule restriction l’hypothèse d’un espace d’états fini. Cette méthode
n’étant pas directement adaptée au calcul concret, on donne un algorithme de
renormalisation qui le rend possible, et on explore plus particulièrement le cas où
le module est autocatalytique, c’est-à-dire positivement autorégulé. On montre
qu’il existe des régimes de paramètres dans lesquels la distribution invariante est
bimodale. Cette propriété est en accord avec certains résultats expérimentaux,
mais ne peut pas être prédite par des approches plus simples connues dans la
littérature.

On adapte finalement cette approche pour un réseau génétique plus compliqué
étudié expérimentalement par Imhof et al. (2000). Ce réseau est composé de
trois gènes, un répresseur et deux modules similaires à celui décrit précédemment,
avec un mécanisme d’autorégulation contrôlé par un élément extérieur. On
montre qu’avec notre modèle, on peut reproduire le comportement qualitatif du
système, et que la régulation autocatalytique peut produire un commutateur
génétique puissant.
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ABSTRACT

Stochastic models play a crucial role in the understanding of genetic mecha-
nisms leading to protein synthesis. Due to the complexity of such systems, very
few exact methods are known and one has to rely on stochastic simulation to
estimate the equilibrium values.

In this thesis, after briefly describing the usual stochastic methods for biochemi-
cal reactions, we study in-depth a simple genetic module comprising a promoter
and a gene responsible for protein synthesis. The main interest of this model
is the possibility for the promoter to be self-regulated, either positively or neg-
atively. This genetic module has been widely studied in the literature, see for
example Kepler & Elston (2001). The first Markovian approach to the model
goes back to Peccoud & Ycart (1995), where the authors provide an exact result
in the simplest case where the promoter is not regulated, while Hornos et al.
(2005) compute the invariant measure in the case of a negative linear feedback.

We develop here a general method to compute the invariant measure of the
process, applicable to all kind of regulation, whether positive or negative, with
the sole restriction that the state space has to be finite. This method is not
directly adapted to concrete computation, hence we give a renormalization al-
gorithm allowing it, and explore in more details the case of an autocatalytic
module, i. e. positively self-regulated. We show that in some parameter regime,
the invariant distribution is bimodal. This feature is in agreement with some
experimental results, but can not be predicted using simpler approaches known
in the literature.

We finally adapt this approach for a more complicated gene network studied
experimentally by Imhof et al. (2000). This network comprises three genes, a
repressor and two modules similar to the one described above, with an autoreg-
ulation mechanism controled by an external element. We show that our model
can reproduce qualitatively the behaviour of the system, and that autocatalytic
regulation can produce a potent genetic toggle switch.
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Part I

INTRODUCTION





1
HISTORICAL BACKGROUND

In the description of chemical reactions, the theory of Markov processes was
first introduced by Delbruck (1940) to model the irreversible first order chem-
ical reaction A → B. For this reaction, the stochastic mean value agree with
the solution of the deterministic system based on the law of mass action. This
is not the case for higher order chemical reactions, the deterministic solution
does not account for variations. Informally, one can explain this difference by
the fact that for similar modelization, the stochastic equation involves moments
of order k where the deterministic one has the mean to the power k. A broad
discussion is given in Darvey et al. (1966) for second order reactions, including
the dimerization process 2A ⇋ B we will discuss later on. One of the goals of
these approaches was to point out the fact that in the limit where the number
of each reactant molecules is large, the usual laws of chemistry are valid, with
the usual square root standard error.

With the emergence of genetics, systems with a very low number of each reac-
tant molecules became popular. Several experiments showed that the role of
stochasticity in these systems is crucial, see for example Kærn et al. (2005) for
an interesting review on the subject. Due to the complexity of such systems,
very few among them could be solved exactly. In the seventies, Gillespie took ad-
vantage of the growing computing capacity and proposed in Gillespie (1976) an
easy to implement stochastic simulation algorithm that allows to tackle harder
problems where closed formulas are unattainable. This algorithm, today known
as the Gillespie algorithm, is simply the simulation of the regular jump Markov
process that solves the Kolmogorov forward equation given by the transition
rates of the chemical reaction, also called chemical master equation.

In recent years, advances in biotechnology has allowed the construction of syn-
thetic gene network, enabling to experiment in vivo simple gene networks and
compare them with qualitative and quantitative models. The basic gene network
modeling transcriptional regulation consists of an upstream regulatory DNA site,
called operator, a nucleotide sequence to which RNA polymerase bind to begin
transcription, called promoter, and an activator. A more detailed description of
the biology of this gene network is given in Appendix A. The Markov process
describing the system is the bivariate process (N(t), Y (t))t≥0, where N(t) is an
integer representing the number of gene product monomer and Y (t) is a binary
variable corresponding to the two possible state of the operator, 1 for ON or 0
for OFF, depending on whether the activator is bound to the promoter or not.
The stochastic model was presented in Peccoud & Ycart (1995) and compared
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16 historical background

to in vivo experiments in Guido et al. (2006). A particularly interesting special
case of this gene network occurs when the transitions between ON and OFF
states are governed by positive or negative feedback, that is the gene product is
itself an activating or repressing regulatory protein for its gene.

Most real networks are much more complicated and often a large number of
chemical species are involved in the reaction. Nevertheless, Gillespie’s algo-
rithm can still be easily implemented but it is difficult to decide how long the
algorithm should be run to reach equilibrium, and thus simulation can be ex-
tremely time consuming. Some acceleration techniques has been investigated
in different settings, as for example the τ−leaping method introduced in Gille-
spie (2001), the multiscale algorithm presented in Cao et al. (2005b) or the
coarse-grained equation-free approach to multiscale computation proposed in
Erban et al. (2006). Since chemical reactions rates are not known precisely, a
screening of the possible parameter values can be helpful, and would imply to
begin the whole simulation anew for each set of rates.

In his book, p. 168, Wilkinson (2006) claims the following:

“It is important to bear in mind that although analytic analysis of simple
processes is intellectually attractive and can sometimes give insight into
more complex problems, the class of models where analytic approaches
are possible is very restricted and does not cover any models of serious
interest in the context of systems biology (where we are typically inter-
ested in the complex interactions between several intricate mechanisms).
Therefore, computationally intensive study based on stochastic simula-
tion and analysis is the only realistic way to gain insight into system
dynamics in general.”

One of the aim of this thesis is to invalidate this sentence, at least partially,
by providing an exact method for analytical computation in the case of the
simple genetic module described above and adapting the technique to a more
complicated gene network. The method allows for fast computation instead
of simulation, parameter screening and possibly simple statistical estimation
through parameter fitting. Despite its simplicity, this genetic module is of wide
use in bioengineering and has been studied extensively, see for example Kepler
& Elston (2001), and has proven to be a model of serious interest in the context
of systems biology. In some very particular cases, an exact formula was already
known in the literature, as for the case without feedback in Peccoud & Ycart
(1995) or the case of negative linear feedback in Hornos et al. (2005). We
provide a closed formula for arbitrary negative or positive feedbacks.



2
ORGANISATION

In Part ii of this work, we briefly present the stochastic modeling of chemical
reactions, from the usual derivation of the chemical master equation and the
implementation of the Gillespie algorithm to more sophisticated equations for
the moments and generating functions.

In Part iii, we focus on the basic gene network described above. To empha-
size the method of generating functions and its limitations, we describe two
simple cases in depth, one whithout feedback and one with linear positive feed-
back. With the restriction that the state space has to be finite, we give a closed
and exact formula for the invariant measure for arbitrary feedbacks based on
a mathematical technique adapted from Bolthausen & Goldsheid (2000) and
similar to the method presented in Fournier et al. (2007). Self-regulation is
usually modelled through feedbacks that are polynomial functions of the num-
ber of monomers, dimers, trimers, quadrimers or higher order polymers for a
given gene product. We give a detailed discussion of the case of positive feed-
back through dimers in the limit when the time scale of the dimerization is
much more rapid than the other reactions. We further introduce time delay in a
semi-stochastic setting and discuss some condition ensuring convergence of the
process.

In Part iv, we adapt this modelization to a more complicated self regulated
gene network that was engineered and experimented in Imhof et al. (2000)
and investigate various situations. This gene network consists of a repressor,
an activator and a transgene and is designed to act as a potent genetic switch.
Regulated by an external factor, the doxycycline, known as a safe drug with a
long history of use in humans, the network is designed to act as a potent genetic
switch, completely silent in the absence of doxycycline and able to reach rapidly
its maximal production with the adjunction of the harmless antibiotic.

Part v deals with the dimerization process. We present an alternative way to
compute the moments of the number of dimers based on recurrences leading to
a continuous fraction. The method is especially suited for the fast dimerization
discussed in Part iii and iv.
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Part II

MATHEMATICAL MODELS OF CHEMICAL
REACTIONS





3
CHEMICAL REACTIONS AND DETERMINISTIC MODEL

3.1 chemical reactions

Mathematical models in biology divide roughly in two categories, the determinis-
tic and the stochastic models. In this section we briefly outline the deterministic
and stochastic models describing chemical reactions as well as the notations we
will use throughout the thesis and emphasize it by mean of a simple example.
The reference mathematical book for exact stochastic methods in natural sci-
ences stays Gardiner (1983), although new topics emerged in genetics since then
and can be found in some more recent books as Wilkinson (2006), which focus
mainly on stochastic simulation. In their review article, El Samad et al. (2005)
also provide a good introduction to the topic and a concise description of the
usual modern notation. Another book of interest is Bromberg & Dill (2002)
who describe the mathematical models commonly used in biochemistry.

A simple reversible reaction between the chemical species S1 and S2 where a
molecule of S1 binds to two molecules of species S2 to form a species S3 is
written as

S1 + 2S2

c1−⇀↽−
c2
S3,

where c1 and c2 are the chemical rate constants corresponding to the binding of
S1 and 2S2 respectively the splitting of S3. Both deterministic and stochastic
approaches rely on the law of mass action.

3.2 deterministic model

In the deterministic setting, if φP denotes the concentration of species P in the
solution, the evolution of the three species is given by

dφS1 (t)
dt

=c2 φS3(t)− c1 φS1(t) (φS2 (t))
2

dφS2 (t)
dt

=2 c2 φS3(t)− 2 c1 φS1(t) (φS2 (t))
2

dφS3 (t)
dt

=c1 φS1(t) (φS2(t))
2 − c2 φS3(t).

Summing these equations, one can notice the conservation condition

φS1(t) + φS2(t) + 3 φS3(t) = constant.

21



22 chemical reactions and deterministic model

The equilibrium constant is K =
c1

c2
=

φ
(eq)
S3

φ
(eq)
S1

(φ(eq)
S2

)2
, where φ

(eq)
P denotes the

concentration of species P at equilibrium.



4
STOCHASTIC MODEL

In the stochastic case, one models the evolution in time of the three species
as a continuous-time Markov Process with values in a finite or countable set.
The main asumption or mathematical simplification here is that the evolution
of the process only depends on the past through its present state, or equiva-
lently that the times between two reactions are exponentially distributed. An
interesting discussion about the asumption of exponential holding times can be
found in Feller (1968), Chapter XVII.6. In the finite state space case, an al-
ternative equivalent condition is that the probability for a change to occur in
a small time interval is roughly the length of the interval over the mean time
the process stays in the current state. Chapter 2.8 of Norris (1997) provides
a detailed discussion of the equivalent characterizations of a continuous-time
Markov Process on a finite state space. In the infinite state space case, we need
the stronger asumption that the probability for two reactions in the system to
occur in a time interval ∆t is o(∆t), unconditioned on the current space, see
Gillespie (1992) for a rigorous analysis.

4.1 short-time evolution

In our simple example, if X(t) = (X1(t), X2(t), X3(t)) where X1(t), X2(t) and
X3(t) denotes the number of molecules of species S1, S2 and S3 at time t, the
short-time evolution of the process is modeled by

P (X(t + ∆t) = (x1 − 1, x2 − 2, x3 + 1) | X(t) = x) = c1x1x2(x2 − 1)∆t + o(∆t),
P (X(t + ∆t) = (x1 + 1, x2 + 2, x3 − 1) | X(t) = x) = c2x3∆t + o(∆t),
P (X(t + ∆t) = (x1, x2, x3) | X(t) = x) = 1− (c1x1x2(x2 − 1) + c2x3)∆t + o(∆t),
P (X(t + ∆t) = anything else | X(t) = x) = o(∆t),

where x = (x1, x2, x3), ∆t is small and o(∆t) means that lim
∆t↓0

o(∆t)
∆t

= 0.

Let us introduce the general setting emphasized on the preceding example,
mainly paraphrasing El Samad et al. (2005) Section 4 and other articles on
the subject.

We consider a well-stired system consisting of molecules of N chemical species
{S1, . . . ,SN} interacting through M chemical reaction channels {R1, . . . , RM},
and denote by X(t) = {X1(t), . . . , XN (t)} the vector with Xi(t) the number of
molecules of species Si at time t.

Each reaction channel Rj can be characterized by two mathematical quantities,

23



24 stochastic model

the state-change vector vj = (v1j , v2j , . . . , vNj) and the propensity function aj .
If the system is in state x = (x1, . . . , xN ) and reaction j occurs, the system
instantaneously jump in state x + vj .

In our simple example N = 3, M = 2, x = (x1, x2, x3), and the other quantities
are

Reaction Rj Propensity function aj State-change vector vj

R1 :S1 + 2S2
c1→ S3 a1(x) = c1x1x2(x2 − 1) v1 = (−1,−2, 1)

R2 :S3
c2→ S1 + 2S2 a2(x) = c2x3 v2 = (1, 2,−1)

To model the process in the general setting, we will make the following asump-
tions:

A0: With ∆t and o(∆t) as above, the short-time evolution of the process is
governed by the M + 2 equations

P (X(t + ∆t) = x + vj | X(t) = x) = aj(x)∆t + o(∆t), for 1 ≤ j ≤ M,

P (X(t + ∆t) = x | X(t) = x) = 1−
M∑

j=1

aj(x)∆t + o(∆t),

P (X(t + ∆t) = y | X(t) = x) = o(∆t), for y 6= x + vj , 1 ≤ j ≤ M.
(4.1)

A1: The probability that more than one reaction occur in the time interval
between t and t + ∆t is o(∆t).

When the state space E is finite, asumption A1 follows from A0. If the state
space is finite and we asume A0 or the state space is infinite and we asume
A0 and A1, the process {X(t)}t≥0 is a time-continuous Markov process on E,
see Chapter 2.8 of Norris (1997) for the finite case and Gillespie (1992) in the
infinite case.

In the thesis, we will always asume A0 when the state space is finite and A0
and A1 when the state space is infinite.

4.2 chemical master equation (cme)

One of the key concepts in this model is the so-called Chemical Master Equation
or CME, which denotes in fact Kolmogorov’s forward equation in this special
setting. We recall that the state space E can either be finite or infinite. A finite
state space allows to avoid some technical difficulties and can be motivated by
biological considerations like for example the finite size of a cell, and an infinite
state space is sometimes more convenient to avoid boundary conditions.

The idea of the CME is simply to look at the possible evolution of the pro-
cess from time t to time t + ∆t using the Chapman-Kolmogorov identity, more
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precisely for an x ∈ E,

P (X(t + ∆t) = x) =
∑
y∈E

P (X(t + ∆t) = x | X(t) = y)P (X(t) = y)

To avoid notational difficulties on the boundary, let us enlarge the set E by
defining the set Ẽ to be

Ẽ = E ∪ E− with E− =
M⋃

j=1

{x− vj ; x ∈ E},

and extend P on Ẽ setting P (X(t) = y) ≡ 0 and aj(y) = 0 for y ∈ Ẽ\E,
1 ≤ j ≤ M . In the finite case, Ẽ is also finite.
Since all terms in Ẽ\E have probability 0, the above partition can also be
written as

P (X(t + ∆t) = x) =
∑
y∈Ẽ

P (X(t + ∆t) = x | X(t) = y)P (X(t) = y).

Theorem 1 The temporal evolution of the probability P (X(t) = x) is given by
the Chemical Master Equation (CME)

d

dt
P (X(t) = x) =

M∑
j=1

aj(x−vj)P (X(t) = x−vj)−
M∑

j=1

aj(x)P (X(t) = x), (4.2)

where d
dt denotes the right derivative with respect to t.

Proof: Using the evolution dynamics described in equations (4.1) and noting
that Ẽ can be written as the disjoint union Ẽ = E1 ∪ E2 ∪ E3, with E1 =
{x − v1, . . . , x − vM}, E2 = {x} and E3 = Ẽ\{x, x − v1, . . . , x − vM}, the sum
can be separated in three parts and the right hand side is simply

P (X(t + ∆t) = x) =
∑

y∈E1

P (X(t + ∆t) = x | X(t) = y)P (X(t) = y)

+
∑

y∈E2

P (X(t + ∆t) = x | X(t) = y)P (X(t) = y)

+
∑

y∈E3

P (X(t + ∆t) = x | X(t) = y)P (X(t) = y)

=
M∑

j=1

P (X(t + ∆t) = x | X(t) = x− vj)P (X(t) = x− vj)

+ P (X(t + ∆t) = x | X(t) = x)P (X(t) = x)

+
∑

y∈E3

P (X(t + ∆t) = x | X(t) = y)P (X(t) = y)
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=
M∑

j=1

(aj(x − vj)∆t + o(∆t))P (X(t) = x− vj)

+

1−
M∑

j=1

(aj(x)∆t + o(∆t))

P (X(t) = x)

+
∑

y∈E3

o(∆t)P (X(t) = y)

If E is finite,
∑
y∈Ẽ

o(∆t)P (X(t) = y) ≤
∑
y∈Ẽ

o(∆t) is again o(∆t). If E is not

finite,
∑
y∈Ẽ

o(∆t)P (X(t) = y) is roughly the probability that more than one

reaction occur in the time interval between t and t + ∆t, hence it is o(∆t)
according to asumption A1. After deducting P (X(t) = x) on both sides, we can
rewrite the above equation as

P (X(t + ∆t) = x)− P (X(t) = x) =
M∑

j=1

aj(x− vj)∆t P (X(t) = x− vj)

−
M∑

j=1

aj(x)∆t P (X(t) = x) + o(∆t).

The CME is obtained from the above equation after dividing by ∆t and letting
∆t go to 0. �
Notice that the term P (X(t) = x) on the right side does not depend on j and
could be taken before the summation sign, however we prefer to write it that
way to emphasize the following interpretation of the CME:

the change in the probability to be in state x at time t is the difference
between the weighted averages of the incoming rates in x and the
outgoing rates from x.

In the simple example we consider, the CME is hence

d

dt
P (X(t) = x) =c1(x1 + 1)(x2 + 2)(x2 + 1)P (X(t) = (x1 + 1, x2 + 2, x3 − 1))

+ c2(x3 + 1)P (X(t) = (x1 − 1, x2 − 2, x3 + 1))
− (c1x1x2(x2 − 1) + c2x3)P (X(t) = x).

4.3 the gillespie algorithm

The Gillespie stochastic simulation algorithm, often abbreviated SSA, is simply
the simulation of the time-continuous Markov process whose short-time evolu-
tion correspond to asumption A0 in Section 4.1. According to the usual theory
of Markov processes, the process can be separated in two simpler processes, the
embedded jump chain and the time process.
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The embedded jump chain is a simple discrete time Markov chain {J(k)}k∈N
with values in E, initial condition J(0) = X(0) and transition matrix P satisfying

P(x, x + vj) = P (J(k + 1) = x + vj | J(k) = x) =
aj(x)

M∑
i=1

ai(x)
.

It can be viewed as the skeleton of the process, only recording the successive
states of the process whitout accounting for the time spend in each state. The
transition matrix gives the probability to go from state x to a state x+ vj when
the next reaction occur, in other words the probability that the next reaction to
occur is the j-th reaction, and this probability is proportional to the propensity
function aj(x).

The time process {T (k)}k∈N is a partial sum of independent exponential vari-
ables Tl, l = 1, 2, 3, . . . , such that the parameter of the distribution of Tl is
M∑
i=1

ai(J(l)). More precisely, T (0) = 0 and T (k + 1) = T (k) + Tk, where Tk is

exponential with parameter
M∑
i=1

ai(J(k)) and independent of T (k). The time

process records the time the process spend in the successive states of the jump
process. If the jump process is in state x, the time continuous process stays in
x until one reaction occur. The time for reaction i to occur is an exponentially
distributed random variable Yi with parameter ai(x), independent of the other
reactions. Hence the time that the process stays in x is the minimum of M
independent exponential random variables with parameter ai(x), 1 ≤ i ≤ M ,

whose distribution is again exponential with parameter
M∑
i=1

ai(J(k)) since

P (min(Y1, . . . , YM ) > t) =
M∏
i=1

P (Yi > t) = e
−

MP
i=1

ai(x)
.

The time-continuous process {X(t)}t≥0 is equal in distribution to the process
{J(τ(t))}t≥0, where τ(t) is the renewal time

τ(t) = inf
k∈N

{t ≥ T (k)}.

The Gillespie stochastic simulation algorithm can be implemented as follows:

step 0: Specify the initial condition J(0) and the time tend to end the simu-
lation. Set k = 0, J(k) = J(0) and T (k) = 0.

step 1: Update k → k + 1.
Draw two pseudo random numbers U1 and U2 uniform on [0, 1].
Choose the next reaction to occur to be the j−th one for j satisfying

j−1∑
i=1

ai(J(k − 1)) ≤ U1 ·
M∑
i=1

ai(J(k − 1)) <

j+1∑
i=1

ai(J(k − 1)),
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with the convention that an empty sum is 0.

Set J(k) = J(k − 1) + vj and T (k) = T (k − 1)− ln(U2)
M∑
i=1

ai(J(k − 1))
.

step 2: If T (k) < tend, go to step 1, else stop.

In the last part of step 1, we use the fact that an exponential random variable

with parameter λ is equal in distribution to − ln(U)
λ

for U uniform on [0, 1].
The form of the algorithm given here returns a single trajectory of the process
{X(t)}t≥0 from the time 0 to T (k). With slight modifications it can be per-
formed in parallel for several trajectories at small computational time cost.

One is usually interested in the asymptotic behaviour of the system and the SSA
is in this case a Monte Carlo method for approximating the invariant measure
π(x), x ∈ E. Two approaches are possible, the first one is simply based on the
fact that for t large enough, X(t) is approximately in the invariant measure,
while the second one rely on the ergodic theorem for time-continuous Markov
processes.

The first method is the most simple one but requires far more trajectories to
simulate. The idea is to look at the value X(tend) for a large number of trajec-
tories and approximate π(x) as the empirical frequence of state x. It is worth
noticing the X(tend) is not the last state in the skeleton trajectory but the next
to last. The empirical distribution of the last value in the skeleton of the tra-
jectory does not approach π but π · P, where P is the transition matrix of the
jump chain, and the two quantities can be very different.

The second approach rely on the ergodic theorem for time-continuous Markov
processes, see for example Norris (1997), Chapter 3.8. The ergodic theorem
states that for large t, π(x) is approximately the fraction of time the process
{X(s)}0≤s≤t stays in state x, more precisely

π(x) = lim
t→∞

∫ t

0
1{X(s)=x}ds

t
.

Hence for a trajectory {J(m)}0≤m≤k and {T (m)}0≤m≤k,

π(x) ≈

k−1∑
m=0

(T (m + 1)− T (m)) · 1{J(m)=x}

T (k)
.

In practice, we deal with a big number Ntraj of trajectories
{
J (i)(m)

}
0≤m≤ki

and
{
T (i)(m)

}
0≤m≤ki

, 1 ≤ i ≤ Ntraj, and the above formula is replaced by

π(x) ≈

Ntraj∑
i=1

ki−1∑
m=0

(T (i)(m + 1)− T (i)(m)) · 1{J(i)(m)=x}

Ntraj∑
i=1

T (i)(ki)

.

To minimize the effects of the transient phase in the system, one can also pro-
ceed in a similar way over a part of the trajectories.
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In large systems, the algorithm can be extremely slow, especially when there
are several time scales and the most interesting reactions are the slower ones.
Most of the reactions simulated are those of the most rapid time scale and one
needs much more steps in the algorithm to reach the end of the simulation.
Accelerated methods have been developed to handle such problems, as the slow-
scale stochastic simulation algorithm (ssSSA) or the τ -leaping method, for a
review of these methods see El Samad et al. (2005).

4.4 evolution of the moments

We will need the following lemma, stating that the weighted propensity functions

are the same in E and in E− =
M⋃

j=1

{x− vj ; x ∈ E}.

Lemma 1 For any function f defined on Ẽ,∑
y∈E−

f(y)aj(y)P (X(t) = y) =
∑
x∈E

f(x)aj(x)P (X(t) = x).

Proof: We recall that Ẽ = E ∪ E−. Taking the difference eliminates the
common terms and yields∑

y∈Ẽ\E
f(y)aj(y)P (X(t) = y)−

∑
x∈Ẽ\E−

f(x)aj(x)P (X(t) = x).

The first sum is zero since for y ∈ Ẽ\E, P (X(t) = y) ≡ 0. For the second sum,
suppose that aj(x) 6= 0, it means that x + vj is a possible state, i. e. x + vj ∈ E

and x = (x + vj)− vj ∈ E−. Hence, for each element of Ẽ\E−, the propensity
function aj vanishes and the second sum is also 0. �

Using this Lemma and simple manipulations of the CME (4.2), one can easily
derive equations for a handful of quantities of interest, but these equations are
usually unwieldy or impossible to solve except in very special simple cases.

For example, the evolution in time of the kth-moment of the number of molecules
of the chemical species Si can be obtained as follows:

Theorem 2 The kth-moment of the number of molecules of the chemical species
Si follows the differential equation

d

dt
E
(
Xi(t)k

)
=

M∑
j=1

E
(
(Xi(t) + vij)kaj(X(t))

)− M∑
j=1

E
(
Xi(t)kaj(X(t))

)
. (4.3)

Developing the right hand side, this equation can be reformulated as

d

dt
E
(
Xi(t)k

)
=

M∑
j=1

k−1∑
l=0

(
k

l

)
vk−l

ij E
(
Xi(t)laj(X(t))

)
.
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Proof: Since all terms are non negative,

d

dt
E
(
Xi(t)k

)
=

d

dt

∑
x∈E

xk
i P (X(t) = x) =

∑
x∈E

xk
i

d

dt
P (X(t) = x),

or with the CME (4.2)

d

dt
E
(
Xi(t)k

)
=
∑
x∈E

xk
i

M∑
j=1

aj(x− vj)P (X(t) = x− vj)

−
∑
x∈E

xk
i

M∑
j=1

aj(x)P (X(t) = x)

=
M∑

j=1

∑
y∈E−

(yi + vij)kaj(y)P (X(t) = y)

−
M∑

j=1

∑
x∈E

xk
i aj(x)P (X(t) = x).

Using Lemma 1,∑
y∈E−

(yi + vij)kaj(y)P (X(t) = y) =
∑
x∈E

(xi + vij)kaj(x)P (X(t) = x)

and hence

d

dt
E
(
Xi(t)k

)
=

M∑
j=1

∑
x∈E

(xi + vij)kaj(x)P (X(t) = x)

−
M∑

j=1

∑
x∈E

xk
i aj(x)P (X(t) = x)

=
M∑

j=1

E
(
(Xi(t) + vij)kaj(X(t))

)− M∑
j=1

E
(
Xi(t)kaj(X(t))

)
.

A simple binomial expansion of (Xi(t) + vij)k allows to eliminate the term
M∑

j=1

E
(
Xi(t)kaj(X(t))

)
and yields the second equation. �

As a simple case of Theorem 2, the evolution of the number of molecules of the
chemical species i reads

d

dt
E (Xi(t)) =

M∑
j=1

vijE (aj(X(t))) . (4.4)

Since the propensity functions aj(x), x = (x1, . . . , xn) are usually polynomials,
the term E

(
Xi(t)laj(X(t))

)
is very likely to contain moments of Xi(t) of order

higher than k and mixed terms E (Xi(t)mX(t)n) for some m, n ∈ N. Hence to
solve the equation for the moment of order k, one usually has to solve an infinite
system of equations for the moments of Xi(t) and mixed terms E (Xi(t)mX(t)n).
To derive equations for the mixed moments, the formalism of moment generating
functions discussed below is very useful.
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4.5 evolution of the generating function

Concerning the moment generating function, things become more involved. With
the convention

sk = sk1
1 sk2

2 · · · skN

N for s = (s1, . . . , sN) and k = (k1, . . . , kN ),

let us consider the function G : (0, 1]N × R+ → [0, 1], defined as

G(s, t) = E(sX(t)) =
∑
x∈E

P (X(t) = x)sx

and G evolves according to

∂

∂t
G(s, t) =

∑
x∈E

sx
M∑

j=1

aj(x− vj)P (X(t) = x− vj)

−
∑
x∈E

sx
M∑

j=1

aj(x)P (X(t) = x)

=
M∑

j=1

∑
x∈E

sx+vj aj(x)P (X(t) = x)

−
M∑

j=1

∑
x∈E

sxaj(x)P (X(t) = x)

=
M∑

j=1

(svj − 1)E(sX(t)aj(X(t))). (4.5)

Some terms in the vj may be negative and the last equation only make sense for
s having nonzero components, this is why we excluded this case in the definition
of G.

Since aj is usually a polynomial, equation (4.5) is a partial differential equation
for G.

In the following, we suppose that aj is a polynomial in x and define some useful
notations. Let k = (k1, k2, . . . , kN ) denote a multi-index and we write the
polynomial aj as

aj(x) =
∑
k∈Ij

αkjx
k,

where xk stands as before for xk = xk1
1 xk2

2 · · ·xkN

N and Ij is the finite set of
multi-indices corresponding to aj . Since for any i, 1 ≤ i ≤ N ,

E(Xi(t)sX(t)) = si
∂

∂si
G(s, t),

it is very convenient to define the differential operator Θi as

Θi := si
∂

∂si
,
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and, with the same multi-index k as above and Θ = (Θ1, Θ2, . . . , ΘN),

Θk := Θk1
1 Θk2

2 · · ·ΘkN

N .

With this simple notation and the relation

E
(
X(t)ksX(t)

)
= ΘkG(s, t), (4.6)

we can rewrite equation (4.5) and the evolution of the generating function G is
the partial differential equation

∂

∂t
G(s, t) =

M∑
j=1

(svj − 1)
∑
k∈Ij

αkjΘkG(s, t). (4.7)

From this last equation, one can derive partial differential equations for all kind
of mixed moments, since for any multi-index l = (l1, l2, . . . , lN), if E(X l(t))
exists, then

E(X l(t)) = ΘlG(s, t)
∣∣
s=(1,1,...,1)

.

Hence we have

∂

∂t
E(X l(t)) =

M∑
j=1

∑
k∈Ij

αkjΘl(svj − 1)ΘkG(s, t)
∣∣
s=(1,1,...,1)

.

The result given in Theorem 2 is a particular case of this equation with the
multi-index k having all components but one equal to zero.

4.6 asymptotic behaviour of the system

Even for simple systems, equations (4.3) and (4.7) are very unlikely to be solved
analytically. To avoid the difficulty of time dependence, one could only focus
on the process at equilibrium. This approach is mathematically much simpler
but captures the long term behaviour one is usually interested in.

Suppose the process has an invariant distribution π, i. e. there exists a proba-
bility distribution π on E such that

π(x) = lim
t→∞P (X(t) = x) for all x ∈ E, and

∑
x∈E

π(x) = 1,

and let X(∞) = (X(∞)
1 , . . . , X

(∞)
N ) be distributed according to π. With the

convention G(∞)(s) := E(sX(∞)
), E

(
(X(∞)

i )k
)

and G(∞)(s) have to satisfy
equations (4.3), (4.5) respectively (4.7) with the left hand side set to zero, i. e.

0 =
M∑

j=1

k−1∑
l=0

(
k

l

)
vk−l

ij E
(
(X(∞)

i )laj(X(∞))
)

,

0 =
M∑

j=1

(svj − 1)E(sX(∞)
aj(X(∞))),

0 =
M∑

j=1

(svj − 1)
∑
k∈Ij

αkjΘkG(∞)(s).
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The formalism developed here seems at first sight very heavy, but with some
training its use can indeed avoid pages of tedious calculus.





5
STOCHASTIC VERSUS DETERMINISTIC MODELS OF
GENE NETWORKS

The two approaches can yield surprisingly different results, especially when ap-
plied to gene expression. Kærn et al. (2005) provide a wide review of the
biological meaning of stochasticity and the mathematical differences are dis-
cussed extensively in El Samad et al. (2005) or Goutsias (2007). We give here
a short summary of the principal differences between the two approaches.

5.1 conditions for equivalence

In Darvey et al. (1966), the authors state that for second order chemical re-
action, provided the reactions are not irreversible, the difference between the
deterministic equilibrium and the stochastic equilibrium mean of one of the
chemical species is of order 1

N , where N is the order of the number of molecules
in the system, and the stochastic variance is also of order 1

N , thus the coefficient
of variation, standard deviation over mean, of the usual 1√

N
order. Further-

more, they argue that “For chemical systems of practical interest N is generally
very large and the term (... difference between stochastic mean and determinis-
tic equilibrium ...) is negligible by comparison with (... the equilibrium mean).
Thus it follows that for such systems the mean value of the stochastic solu-
tion agrees with the deterministic solution.” This also explain why the topic of
stochastic modeling is not essential for classical chemistry where the number of
molecules of each species is huge.

In biochemistry however, the total number of molecules is not always large. In
the setting of gene expression, one has to take into account the particular role
of the promoter. The promoter is usually modeled binary as repressed or active,
or equivalently OFF or ON, and its state largely influence the behaviour of the
system. According to Kærn et al. (2005) or Kepler & Elston (2001), the two
conditions that need to be satisfied for the two approaches to be similar are

- large system size, i. e. high numbers of expressed mRNA and protein and
large cell volumes,

- fast promoter kinetics, i. e. fast switches between active and inactive state.

These two conditions are often not fulfilled and in this case the effects of
molecular-level noise can be very large, as emphasized in the following examples.

35
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5.2 mathematical expression of molecular noise

In this section, we briefly describe the various levels at wich molecular noise
can act and generate different behaviour as the deterministic equilibrium. The
exemples are mostly taken from El Samad et al. (2005) where a detailed dis-
cussion can be found.

When comparing the evolution equations for the deterministic concentration φSi

and the stochastic mean E(Xi), the terms involving products between species
can be very different. Typically terms of the form φSi ·

(
φSj

)m in the determin-
istic setting do not correspond in the stochastic setting to E(Xi) · (E(Xj))

m but
to the much more complicated term E (Xi · (Xj)m), taking into account noise
and correlations between species. Moreover additional terms appears in the
stochastic setting when reactions involve several reactants of the same species.

i) Monostable systems

Even for simple monostable systems, noise can play a crucial role, as shown
in the example 3.3.1 in El Samad et al. (2005). A system with a unique
stable equilibrium point in the positive quadrant is presented. The authors
provide two sets of parameters yielding the same deterministic equilibrium
but showing very different behaviour when simulated stochastically. The
first set of parameters behaves almost like the deterministic trajectory, while
the second set shows stochastic excursions reaching up to four-fold the
deterministic value.

ii) Genetic switches

Multistable systems possess several stable equilibrium points. In a deter-
ministic setting, if the initial conditions of a trajectory lie in the basin of
attraction of an equilibrium point, the trajectory will tend asymptotically
to this point. Different initial conditions yields a different asymptotic be-
haviour. When the dynamics is stochastic, the trajectory can jump between
the basins of attraction of several stable points, hence a trajectory can stay
a very long time near an equilibrium point and suddenly escape from its
basin of attraction and stay for a while near another equilibrium point. For
obvious reasons, this feature is often called genetic switch. In Figure 5.1,
one can clearly see the trajectory oscillating between the neighbourhoods
of two almost stable states. The example is taken from a simulation of the
genetic module described in Part iii when the promoter state is governed
by positive feedback and the steady state distribution is bimodal.

iii) Genetic oscillators

The circadian rythm is the molecular mechanism that generate oscillations
with a period close to 24 hours. This clock permits living organisms to adapt
to natural periodicity such as the alternance of night and day, and regulate
their behaviour accordingly. In Vilar et al. (2002), the author shows that
circadian clock is not only noise resistant, but paradoxally even enhanced
by noise. In some parameter regime, both deterministic and stochastic
model show oscillation, whereas in other the deterministic system has a
unique stable equilibrium point while stochasticity permits to maintain
oscillations.
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Figure 5.1: Example of a genetic switch between two equilibrium points. The trajec-
tory oscillates between the neighbourhoods of two almost stable states, one at about
2 proteins and the other at about 20. The example is taken from a simulation of the
genetic module described in Part iii when the promoter state is governed by positive
feedback and the steady state distribution is bimodal.

iv) Molecular fluctuation and the role of the promoter

In molecular biology, single events have sometimes a huge effect on the
global behaviour of the system. This is the case in the heat shock model
presented in El-Samad et al. (2005), where a species is almost always
absent in the system, but at rare periods it can be present at very low level
corresponding to an important event for gene expression that can not be
captured when considering only an averaged behaviour.

Similarily, the promoter plays a crucial role in gene expression, yielding a
completely different behaviour of the system depending on its state, ON or
OFF, as discussed in and Zhou & Davies (2004). Again, some specificities
of the system can not be catched considering only an averaged behaviour
of the promoter level. For example, Ozbudak et al. (2002) propose a mean-
field approximation of the promoter state, yielding a poissonian type steady
state. When varying the parameters, this poissonian model fails to catch
the experimentally observed bimodal distribution and peak of variance that
can be reproduced using our method presented in Chapter 10.

5.3 biological benefits of stochasticity

In opposition to the popular wisdom that noise is a nuisance, leading to errors
and negatively affecting cell regulation, randomness can also be of biological
benefit. Fedoroff & Fontana (2002) and more recently Kærn et al. (2005) dis-



38 stochastic versus deterministic models of gene networks

cuss the potentially beneficial roles of stochasticity. The first article deals with
stochasticity in general biological processes while the second one focuses on gene
expression.

In microorganisms, stochasticity in gene expression can result in phenotypic het-
erogeneity. Let us summarize some of the biological advantages a heterogenous
population can gain.

i) Resistance to environmental stress

As shown in Thattai & van Oudenaarden (2004), a heterogeneous bacterial
population can achieve higher growth rate than an homogenous one in a
fluctuating environment, provided the bacterial response time to changing
conditions is sufficiently slow. The bacteria in the heterogeneous popula-
tion are able to anticipate and take advantage of sudden changes in their
environment.
Recently, Acar et al. (2008) and Bishop et al. (2007) have also investigated
this subject, and come to the conclusion that hetereogeneity increases the
fitness of the population:

“The diversity is introduced naturally through the stochastic
nature of gene expression, allowing isogenic populations to
mitigate the risk by ‘not putting all their eggs in one basket’.”

(Acar et al. (2008))

ii) Resistance to antibiotics

Switching between phenotypic states has been proposed as a likely cause of
persistent bacterial infections after treatment with antibiotics. While most
of the population is rapidly killed by the treatment, the subpopulation
of dormant persistor is less affected and can survive an extended period
of exposure. When the drug treatment is over, the surviving persistors
randomly switch from the dormant to an active phenotype and the infection
can reemerge.

iii) Autoregulation and substable phenotypic states

In self regulated gene networks, it is commonly admitted that

• negative feedback provides a noise-reduction mechanism, see for exam-
ple Becskei & Serrano (2000),

• positive feedback amplifies fluctuations, see for example Isaacs et al.
(2003) or Becskei et al. (2001), often yielding bimodal distributions,
see Fournier et al. (2007).

Tuning the feedbacks can hence decrease or increase the population hetero-
geneity, and as an extreme case of positive feedback one can have multiple
substable states.
We will discuss the effects of self regulation in more details in Chapter 11
for the simple genetic module investigated in this thesis.

Stochasticity also plays a role in the development of higher organisms and in
diseases, for more details see Kærn et al. (2005).
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6
INTRODUCTION

In this part, we describe the model of a simple genetic module consisting of
a promoter and a gene that codes for a protein. When the promoter is acti-
vated or in ON state, proteins are synthesized at a constant rate whereas when
the promoter is OFF, there is no production. Proteins are degradated in both
promoter states according to a propensity function increasing in the number
of protein, corresponding to the fact that the more proteins are present in the
system, the more probable it is for one of them to be degradated. An important
feature of the model is the self-regulation, acting on the promoter. Positive
feedback means that the more proteins there is, the more likely the promoter
is in the ON state, whereas negative feedback increase the probability for the
promoter to be OFF. We give a very general description, to allow copies of such
simple modules in a suited particular form to be integrated in more complicated
networks, as for example the engineered gene network discussed in Part iv.

This simple genetic module has been studied extensively in the literature. In
some very special cases, exact results for the asymptotic behaviour of the system
are provided like in Peccoud & Ycart (1995) for the case whithout feedback or
in Hornos et al. (2005) for the case of linear negative feedback. The method
consists in deriving from the chemical master equation asymptotic equations
for generating functions and solve them. This method is very particular and
the whole derivation has to be done anew for each model, as we emphasize in
Chapter 9. For more complicated cases, one usually rely on simulation using
the Gillespie stochastic simulation algorithm (SSA) or one of its accelerated vari-
ants like τ -leaping or slow-scale SSA (ssSSA), for a detailed review see El Samad
et al. (2005).

In this Part, we develop a very general and flexible method to compute the
invariant distribution of the related time-continuous Markov Process, quite sim-
ilar to the method presented in Fournier et al. (2007). The method is based on
the technique of transfer matrices and can be used for all kinds of feedbacks.

6.1 exact solution and simulation

Compared to simulation, an exact approach entails multiple advantages. In the
literature on the subject the use of the word exact is somehow blurry. In con-
strast to its accelerated approximations, the Gillespie algorithm is often refered
to as exact, which is not the case since a computation using Monte Carlo meth-
ods is not exact. We can summarize things as follows:
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exact methods: exact computation of the invariant distribution
of the exact system

Gillespie SSA: Monte Carlo approximation of the invariant
distribution of the exact system

τ -leaping and ssSSA: Monte Carlo approximation of the invariant
distribution of an approximated system

Another advantage of exact methods is the speed of computation. The knowl-
edge about the model parameters, here the biochemical rates, are usually very
vague, and our approach allows to play with the parameters by screening plau-
sible values, what would be far too long using simulations.



7
DESCRIPTION AND MATHEMATICAL MODEL

7.1 biological description

Our basic simple genetic module is a piece of DNA consisting of a promoter and
a sequence of bases coding for a protein. The promoter has two possible states
that we will call ON and OFF, or equivalently 1 and 0.

When the promoter is in the ON state,
proteins can be synthesized at a con-
stant rate µ whereas there is no pro-
duction when the promoter is OFF.
In reality, the gene do not directly
produce proteins but in a first step
called transcription it produces mRNA
whose translation synthesize proteins,
see Appendix A.2 and A.3 for more
details. Here we ignore for simplicity
the mRNA level and combine transcrip-
tion and translation into a single step.
In both ON and OFF states, proteins
are degradated at rate ν, usually an in-
creasing function of the number of pro-
teins present at that time in the system
like for example a constant times the
number of proteins. The promoter ran-
domly switches from state ON to OFF
at rate κ and from state OFF to ON at
rate g. The rates κ and g can be either
constants or increasing functions of the
number of proteins, corresponding to
systems without feedback when both κ
and g are constants, negative feedback
loop when κ is increasing and g con-
stant, positive feedback loop when κ is
constant and g increasing, or both neg-
ative and positive feedback loops when
κ and g are both increasing.

Promoter is OFF

Promoter is ON

OFF

ON Expressed gene

Silenced gene

Intermediate reaction

Intermediate reaction

Protein
production

Protein degradation

Protein degradation

Figure 7.1: Schematical description
of the module in the OFF and ON
state, for the case of a positive feed-
back given by the intermediate prod-
uct, here dimers.
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7.2 mathematical model

We adapt the general description given in Chapter 3 in this simple particular
case. We suppose the infinitesimal transition probabilities to follow asump-
tion A0 from 4.1 and asume moreover A1 if the state space is infinite. Hence
X(t) = (N(t), Y (t))t>0, where N(t) denotes the number of proteins present in
the system at time t and Y (t) the state of the promoter, 1 for ON and 0 for OFF,
is a time-continuous regular jump Markov Process. We suppose throughout that
g(0) > 0, i. e. there is a basal activity and the state (0, 0) is not absorbing. Here
the biochemical reactions given the current state (N(t), Y (t)) = (n, y) are

∅ y·µ−−−⇀↽−−−
ν(n)

P protein production / degradation

O0

g(n)−−−⇀↽−−−
κ

O1 state of the promoter

with ∅, P , O0 andO1 standing for nothing, protein, promoter OFF and promoter
ON respectively. In the usual formalism, one can summarize the system for
n ∈ N, y ∈ {0, 1}, as

Reaction Rj Propensity function aj State-change vector vj

R1 :∅ y·µ−−→ P a1(n, y) = yµ · 1{(n+1,y)∈E} v1 = (1, 0)

R2 :P ν(n)−−−→ ∅ a2(n, y) = ν(n) v2 = (−1, 0)

R3 :O0
g(n)−−−→ O1 a3(n, y) = g(n)(1 − y) v3 = (0, 1)

R4 :O1
κ(n)−−−→ O0 a4(n, y) = κ(n)y v4 = (0,−1)

The propensity function a1(n, y) = yµ · 1{(n+1,y)∈E} is written in this way to
allow for finite or infinite state space. The indicator function 1{x∈A} is defined as
1 for x ∈ A and 0 otherwise. If the state space E is N×{0, 1}, a1(n, y) = yµ while
if the number of proteins is bounded by a maximal number Λ, a1(n, y) = yµ if
n < Λ and 0 otherwise.

The infinitesimal evolution of the system can be written here in compact form
since a switch of the promoter state can be written as a transition from y to
1− y,

P (X(t + ∆t) =(n + 1, y) | X(t) = (n, y)) = yµ∆t + o(∆t),
P (X(t + ∆t) =(n− 1, y) | X(t) = (n, y)) = ν(n)∆t + o(∆t),
P (X(t + ∆t) =(n, 1− y) | X(t) = (n, y)) = (yκ(n) + (1− y)g(n))∆t + o(∆t),
P (X(t + ∆t) =(n, y) | X(t) = (n, y)) =

1− (ν(n) + yµ + yκ(n) + (1− y)g(n))∆t + o(∆t),
P (X(t + ∆t) = anything else | X(t) = (n, y)) = o(∆t). (7.1)
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µ

ν(n)

ν(n)

κ(n)g(n)

(n− 1, 1) (n, 1) (n + 1, 1)

(n− 1, 0) (n, 0) (n + 1, 0)

Figure 7.2: Visualization of the state space as a strip. The possibles transitions are
represented by the arrows with corresponding rates.

To simplify the notations, let us write

p(n,y)(t) := P (X(t) = (n, y)).

The corresponding chemical master equation is hence (see (4.2))

d

dt
p(n,0)(t) =ν(n + 1) p(n+1,0)(t) + κ(n) p(n,1)(t)

− (ν(n) + g(n)) p(n,0)(t),
d

dt
p(n,1)(t) =µ p(n−1,1)(t) + ν(n + 1) p(n+1,1)(t) + g(n) p(n,1)(t)

− (µ + ν(n) + κ(n)) p(n,1)(t)

or in compact form

d

dt
p(n,y)(t) =yµ p(n−1,y)(t) + ν(n + 1) p(n+1,y)(t)

+ (1− y)κ(n) p(n,1−y)(t) + yg(n) p(n,1−y)(t)
− (yµ + ν(n) + yκ(n) + (1− y)g(n)) p(n,y)(t) (7.2)

If the state space is bounded, the boundary condition reads

d

dt
p(Λ,1)(t) =yµ p(Λ−1,y)(t) + g(n) p(Λ,0)(t)

− (ν(Λ) + κ(Λ)) p(Λ,1)(t),

and p(n,y)(t) ≡ 0 for n > Λ.

A convenient visualization of the system is given in the following Figure 7.2.
This representation will be very useful for the method of transfer matrices to
compute the invariant measure presented in Chapter 10.





8
TRANSIENT BEHAVIOUR OF THE SYSTEM

In this section, we give equations for the moments of N(t) and the probability
to be ON P (Y (t) = 1). Since Y (t) is a binary random variable, P (Y (t) = 1)
is also the moments of every order ≥ 1 of Y (t), and hence we use the general
theory discussed in Chapter 4.

8.1 bounded and unbounded strips

Let us recall the difference between the bounded and unbounded strips in terms
of propensity functions. In the bounded case {0, 1, . . . , Λ} × {0, 1}, we prevent
the protein production at the upper boundary by setting the propensity function
a1(n, 1) to zero if n ≥ Λ, or in compact form a1(n, y) = yµ 1{n<Λ}, where the
indicator function 1{n<Λ} is 1 if n < Λ and 0 otherwise. The resulting equations
for the bounded case are quite similar to those of the unbounded case but with
additional boundary terms.

8.2 evolution of the mean and probability to be on

The equation (4.4) yields in our case for the mean number of proteins

d

dt
E(N(t)) = E(a1(N(t), Y (t))) − E(a2(N(t), Y (t))),

hence in the unbounded case
d

dt
E(N(t)) = µ E(Y (t)) − E(ν(N(t))), (8.1)

and in the bounded case, since E(a1(N(t), Y (t))) = µE(Y (t) 1{N(t)<Λ}),

d

dt
E(N(t)) = µ

(
E(Y (t))− P ((N(t), Y (t)) = (Λ, 1))

)− E(ν(N(t))).

For the state of the promoter, equation (4.4) become

d

dt
E(Y (t)) = E

(
a3(N(t), Y (t))

)− E
(
a4(N(t), Y (t))

)
.

It can be written in both cases as
d

dt
P (Y (t) = 1) = E(g(N(t)) − E

((
κ(N(t)) + g(N(t))

)
Y (t)

)
, (8.2)

the difference between bounded and unbounded strip being contained in the
right side of the equation.

Higher moments can be computed similarily using Theorem 2 of Part ii.
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9
ASYMPTOTIC BEHAVIOUR OF THE SYSTEM IN SOME
SIMPLE CASES

9.1 the method of generating functions

In some special cases, it is possible to give an exact solution using the method of
generating functions. The method is explicited in Hornos et al. (2005), where
the authors provide the invariant distribution in the case where ν(n) = ν · n,
κ(n) = κ · n and g(n) = g, i. e. the degradation is proportional to the number
of proteins, there is a linear negative feedback and no positive feedback, and a
formula for the case whithout feedback is given in Peccoud & Ycart (1995).

In the following, we always consider the unbounded strip N×{0, 1} as the state
space. We introduce the marginal generating functions defined on [0, 1]× R+

α(z, t) :=
∞∑

n=0

pn,1(t)zn and β(z, t) :=
∞∑

n=0

pn,0(t)zn,

in other terms α(z, t) = E(zN(t)Y (t)) and β(z, t) = E(zN(t)(1 − Y (t))). Since
Y (t) can only take the values 0 or 1, this formalism is here more appropriate
than the usual generating function G(s, t) discussed in Section 4.5, and

G((s1, s2), t) = α(s1, t) + s2β(s1, t).

The analogous of equation (4.5) are given by

∂α(z, t)
∂t

=µ (z − 1) α(z, t) + (z−1 − 1) E
(
zN(t)ν(N(t))Y (t)

)
+ E

(
zN(t)g(N(t))(1 − Y (t))

)− E
(
zN(t)κ(N(t))Y (t)

)
, (9.1)

∂β(z, t)
∂t

=(z−1 − 1) E
(
zN(t)ν(N(t))Y (t)

)
+ E

(
zN(t)κ(N(t))Y (t)

)− E
(
zN(t)g(N(t))(1 − Y (t))

)
. (9.2)

In the case where the propensity functions are polynomials, we use the relation

E
(
zN(t)N(t)kY (t)

)
=
(

z
∂

∂z

)k

α(z, t),

E
(
zN(t)N(t)k(1− Y (t))

)
=
(

z
∂

∂z

)k

β(z, t). (9.3)

This relation is a reformulation of (4.6).
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In most cases, the transient behaviour of the system can not be computed and
we focus on the equilibrium. We write

α(z) = lim
t→∞α(z, t) and β(z) = lim

t→∞ β(z, t).

The equilibrium equations are given by (9.1) and (9.2) with the left hand side
set to zero.

9.2 the case whithout feedback

The most simple case is the case whithout feedback. It has been analyzed in
depth in Peccoud & Ycart (1995) and used recently for example in Raj et al.
(2006) or in Iyer-Biswas et al. (2007).

Let us consider the case without feedback and with linear degradation, i. e. the
propensity functions are given by

Reaction Rj Propensity function aj State-change vector vj

R1 :∅ y·µ−−→ P a1(n, y) = yµ v1 = (1, 0)

R2 :P ν(n)−−−→ ∅ a2(n, y) = νn v2 = (−1, 0)

R3 :O0
g(n)−−−→ O1 a3(n, y) = g · (1− y) v3 = (0, 1)

R4 :O1
κ(n)−−−→ O0 a4(n, y) = κ · y v1 = (0,−1)

At equilibrium and using the relations (9.3) and the equations (9.1) and (9.2),
α(z) and β(z) have to satisfy

0 =µ (z − 1) α(z) + ν (1− z)
d

dz
α(z) + g β(z)− κ α(z), (9.4)

0 =ν (1 − z)
d

dz
β(z) + κ α(z)− g β(z). (9.5)

We sum these equations and isolate α in equation (9.5) to become

0 =µ (z − 1) α(z) + ν (1− z)
d

dz
(α(z) + β(z)),

α(z) =
g

κ
β(z)− ν

κ
(1 − z)

d

dz
β(z). (9.6)

Plugging α in the first equation yields after some algebra

0 =− ν2

κ
(1− z)2

d2

dz2
β(z) + (z − 1)

(
µ ν

κ
(z − 1)− ν (κ + g + ν)

κ

)
d

dz
β(z)

+ (z − 1)
µg

κ
β(z).
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For 0 < z < 1, we divide this equation by − ν2

κ (z − 1),

0 = (z − 1)
d2

dz2
β(z) +

(
κ + g + ν

ν
− µ

ν
(z − 1)

)
d

dz
β(z)− µg

ν2
β(z).

With the change of variable w = µ
ν (z−1) and γ(w) := β

(
ν
µw + 1

)
, the equation

simplify to

0 =
µ

ν
w

d2

dw2
γ(w) +

µ

ν

(
κ + g + ν

ν
− w

)
d

dw
γ(w)− µg

ν2
γ(w)

or equivalently

0 = w
d2

dw2
γ(w) +

(
κ + g + ν

ν
− w

)
d

dw
γ(w)− g

ν
γ(w),

which is the canonical form of Kummer’s equation, see for example Abramowitz
& Stegun (1964) p. 504. The two independent solutions of this equation are

1F1

(
g

ν
,
κ + g + ν

ν
, w

)
and U

(
g

ν
,
κ + g + ν

ν
, w

)
.

1F1 is the confluent hypergeometric function

1F1(a, b, w) =
∞∑

n=0

(a)n

(b)n

wn

n!
,

where (a)n denotes the Pochammer symbol or rising factorial

(a)n = a(a + 1) · · · (a + n− 1) =
Γ(a + n)

Γ(a)
,

and U is given by

U(a, b, w) =
π

sin(πb)

(
1F1(a, b, w)

Γ(1 + a− b)Γ(b)
− w1−b 1F1(1 + a− b, 2− b, w)

Γ(a)Γ(2 − b)

)
.

Hence,

γ(w) = c1 · 1F1

(
g

ν
,
κ + g + ν

ν
, w

)
+ c2 · U

(
g

ν
,
κ + g + ν

ν
, w

)
,

and since β(z) = γ
(

µ
ν (z − 1)

)
β(z) = c1 · 1F1

(
g

ν
,
κ + g + ν

ν
,
µ

ν
(z − 1)

)
+ c2 · U

(
g

ν
,
κ + g + ν

ν
,
µ

ν
(z − 1)

)
.

The function U
(

g
ν , κ+g+ν

ν , µ
ν (z − 1)

)
is unbounded near z = 1 since κ+g+ν

ν > 1,
but β has to satisfy the relation

lim
z→1

β(z) = lim
t→∞P (Y (t) = 0) ≤ 1,
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thus c2 has to be 0 and

β(z) = c1 · 1F1

(
g

ν
,
κ + g + ν

ν
,
µ

ν
(z − 1)

)
. (9.7)

Plugging β(z) in the equation (9.6) yields

α(z) =c1
g

κ

(
1F1

(
g

ν
,
g + κ

ν
+ 1,

µ(z − 1)
ν

)

+
µ(z − 1)
g + κ + ν

1F1

(
g

ν
+ 1,

g + κ

ν
+ 2,

µ(z − 1)
ν

))
(9.8)

Since α(1) + β(1) = 1, the normalization factor c1 is given by c1 =
κ

g + κ
.

Theorem 3 The generating function of the number of proteins at equilibrium

GN (z) := lim
t→∞E(zN(t))

is the hypergeometric function

GN (z) = 1F1

(
g

ν
,
g + κ

ν
,
µ

ν
(z − 1)

)
.

Proof: From (9.7) and (9.8) with c1 =
κ

g + κ
, we get

GN (z) =α(z) + β(z) = 1F1

(
g

ν
,
g + κ

ν
+ 1,

µ(z − 1)
ν

)
+

µ g

κ (g + κ + ν)
(z − 1) 1F1

(
g

ν
+ 1,

g + κ

ν
+ 2,

µ(z − 1)
ν

)
.

To simplify the notations, let us write

a =
g

ν
, b =

g + κ

ν
and w =

µ

ν
(z − 1),

and the last equation above become

1F1(a, b + 1, w) +
a

b(b + 1)
w 1F1(a, b + 2, w).

The following relations between hypergeometric functions, see Abramowitz &
Stegun (1964) p. 507–508,

a

b(b + 1)
w 1F1(a + 1, b + 2, w) =(

w

b
− 1)1F1(a, b + 1, w) + 1F1(a− 1, b, w),

w

b
1F1(a, b + 1, w) =1F1(a, b, w)− 1F1(a− 1, b, w),

allow to compute

GN (z) =1F1(a, b + 1, w) +
a

b(b + 1)
w 1F1(a, b + 2, w)

=
w

b
1F1(a, b + 1, w) + 1F1(a− 1, b, w)

=1F1(a, b, w) = 1F1

(
g

ν
,
g + κ

ν
,
µ

ν
(z − 1)

)
. �
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From the generating functions β(z) and GN (z), we can easily derive the equi-
librium distribution of the process.

Theorem 4 The equilibrium distributions

π(n, · ) = lim
t→∞P (N(t) = n) and π(n,y) = lim

t→∞P ((N(t), Y (t)) = (n, y))

are given by

π(n, · ) =

(
g
ν

)
n(

g+κ
ν

)
n
· n!

(µ

ν

)n

1F1

(
g

ν
+ n,

κ + g

ν
+ n,−µ

ν

)
,

π(n,0) =
κ

κ+g ·
(

g
ν

)
n(

g+κ
ν + 1

)
n
· n!

(µ

ν

)n

1F1

(
g

ν
+ n,

κ + g

ν
+ 1 + n,−µ

ν

)
,

π(n,1) =
g + νn

κ
π(n,0) − ν (n + 1)

κ
π(n+1,0)

=π(n, · ) − π(n,0).

The factorial moments

en := lim
t→∞E (N(t) (N(t)− 1) · · · (N(t)− n + 1)) ,

en,1 := lim
t→∞E (N(t) (N(t)− 1) · · · (N(t)− n + 1) · Y (t)) ,

en,0 := lim
t→∞E (N(t) (N(t)− 1) · · · (N(t)− n + 1) · (1− Y (t)))

can be derived from the generating functions.

Theorem 5 The factorial moments are given by

en =

(
g
ν

)
n(

g+κ
ν

)
n

(µ

ν

)n

en,1 =

(
g
ν

)
n+1(

g+κ
ν

)
n+1

(µ

ν

)n

en,0 =
κ

κ + g
·

(
g
ν

)
n(

g+κ
ν + 1

)
n

(µ

ν

)n

Proof: The factorial moments en and en,0 are easily computed from the rela-
tions

en =
dn

dzn
GN (z)

∣∣∣
z=1

and en,0 =
dn

dzn
β(z)

∣∣∣
z=1

.

Furthermore,

en,1 = en − en,0 =

(
g+κ

ν + n− g+κ
ν · κ

κ+g

)
(

g+κ
ν

)
n+1

(g

ν

)
n

(µ

ν

)n

=

(
g
ν

)
n+1(

g+κ
ν

)
n+1

(µ

ν

)n

.

�
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Let us write explicitely some quantities of interest that result from these rela-
tions. First the probability to be ON is asymptotically

lim
t→∞P (Y (t) = 1) = lim

t→∞E(Y (t)) = e0,1 =
g

g + κ
,

and the mean number of proteins is

lim
t→∞E(N(t)) = e1 =

µ

ν

g

g + κ
.

The first quantity can also be deduced from equations (9.4) or (9.5) and its
interpretation is the asymptotic probability to be ON on the simple two-state
Markov process of switching from ON to OFF with rate κ and from OFF to ON
with rate g.

When the promoter is ON, the system behaves like a simple birth and death
process with birth rate µ and death rate ν n. The asymptotical mean of such
a process is given by µ

ν , see for example Feller (1968) p. 461. The quantity
lim

t→∞E(N(t)) can thus be interpreted as the mean number of proteins if the
system were always in state ON times the fraction of time the system is in state
ON.
The covariance between the number of proteins and the state of the promoter
is

lim
t→∞Cov(N(t), Y (t)) =e11 − e1 · e01 =

µ

ν

(
g(g + ν)

(g + κ)(g + κ + ν)
−
(

g

g + κ

)2
)

=
µ

ν

g(g + ν)(g + κ)− g2(g + κ + ν)
(g + κ)2(g + κ + ν)

=
µgκ

(g + κ)2(g + κ + ν)
.

Similarily for the variance of the number of proteins

lim
t→∞Var(N(t)) =e2 − e2

1 + e1

=
(µ

ν

)2 g
ν(

g+κ
ν

) ( (
g
ν + 1

)(
g+κ

ν + 1
) − (

g
ν

)(
g+κ

ν

))+
µ

ν

g
ν(

g+κ
ν

)
=

κg

(g + κ)2
µ2

ν(g + κ + ν)
+

µg

ν (g + κ)
.

The variance to mean ratio of the number of proteins is bigger than 1, hence
the process is over-dispersed, more precisely

lim
t→∞

Var(N(t))
E(N(t))

= 1 +
κ

g + κ

µ

g + κ + µ
.

Notice that the above quantity happens to be

lim
t→∞

Var(N(t))
E(N(t))

= 1 + lim
t→∞P (Y (t) = 1) ·Cov(N(t), Y (t)),

but we do not see any intuitive explanation for this relation.
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The partial variances lim
t→∞Var(N(t)Y (t)) = e2,1−e2

1,1+e1,1 and lim
t→∞Var(N(t)(1−

Y (t))) = e2,0 − e2
1,0 + e1,0 can also be obtained as complicated fractions of the

parameters.

Remark 1 The case without feedback is of particular importance since it can
be used to model a system where the promoter is not self-regulated but regu-
lated by another control substance, present in much higher quantities and thus
approximated deterministically, see Chapter 11.

9.3 linear positive feedback

In a similar way, one can find the generating functions when the positive feed-
back is linear, i. e.

a3(n, y) = (g0 + g1 n) (1 − y).

Here we will see the limitations of this method. The partial generating function
β and the generating function GN can again be written in terms of hypergeo-
metric functions, but here things become more complicated.

At equilibrium, equations (9.1) and (9.2) are

0 =µ (z − 1)α(z) + (ν − ν z)
d

dz
α(z) + g0 β(z) + zg1

d

dz
β(z)− κ α(z),

0 =(ν − ν z − g1 z)
d

dz
β(z) + κα(z)− g0β(z).

Again, summing these equations yields

0 = µ (z − 1)α(z) + ν (1− z)
d

dz
(α(z) + β(z)),

but now the equation for α is

α(z) =
(ν + g1)z − ν

κ

d

dz
β(z) +

g0

κ
β(z), (9.9)

and combining these equations and dividing by − ν(z−1)
κ (g1+ν) yields after some

algebra

0 =
(

z − ν

g1 + ν

)
d2

dz2
β(z) +

(
g0 + κ

g1 + ν
+ 1− µ

ν

(
z − ν

g1 + ν

))
d

dz
β(z)

− µ g0

ν (g1 + ν)
β(z).

With the change of variable w = µ
ν

(
z − ν

g1+ν

)
and γ(w) = β

(
ν
µw + ν

g1+ν

)
,

the above equation can be written after dividing by µ
ν in the canonical form of

Kummer’s equation

0 = w
d2

dw2
γ(w) +

(
g0 + κ

g1 + ν
+ 1− w

)
d

dw
γ(w) − g0

g1 + ν
γ(w),

like in the case without feedback. Hence β(z) is a linear combination of

1F1

(
g0

g1 + ν
,
g0 + κ

g1 + ν
+ 1,

µ

ν

(
z − ν

g1 + ν

))
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and

U

(
g0

g1 + ν
,
g0 + κ

g1 + ν
+ 1,

µ

ν

(
z − ν

g1 + ν

))
.

Since U has a pole at z = ν
g1+ν < 1, the coefficient multiplying U in the

combination has to be 0 and

β(z) = c1 1F1

(
g0

g1 + ν
,
g0 + κ

g1 + ν
+ 1,

µ

ν

(
z − ν

g1 + ν

))
, (9.10)

with c1 a constant to be determined from the condition α(1) + β(1) = 1.
Equation (9.9) gives

α(z) =c1
µ((ν + g1)z − ν)g0

ν κ (g0 + g1 + κ + ν) 1F1

(
g0

g1 + ν
+ 1,

g0 + κ

g1 + ν
+ 2,

µ

ν

(
z − ν

g1 + ν

))
+ c1

g0

κ
1F1

(
g0

g1 + ν
,
g0 + κ

g1 + ν
+ 1,

µ

ν

(
z − ν

g1 + ν

))
. (9.11)

Since the generating functions are now series in
(
z − ν

g1+ν

)
and no more in

(z − 1), the normalizing constant and the expressions for the factorial moments
are more complicated, yielding power series in

(
1− ν

g1+ν

)
. However, we can

give a closed form for the generating function of the number of proteins GN (z) =
α(z) + β(z) quite similar to the case without feedback.

Theorem 6 The generating function of the number of proteins at equilibrium

GN (z) := lim
t→∞E(zN(t))

and the partial generating functions α(z) and β(z) can be written as the hyper-
geometric functions

GN (z) =
1F1

(
g0

g1+ν , g0+κ
g1+ν , µ

ν

(
z − ν

g1+ν

))
1F1

(
g0

g1+ν , g0+κ
g1+ν , µ

ν

(
1− ν

g1+ν

)) ,

α(z) =
1F1

“
g0

g1+ν ,
g0+κ
g1+ν , µ

ν

“
z− ν

g1+ν

””
− κ

g0+κ 1F1

“
g0

g1+ν ,
g0+κ
g1+ν +1, µ

ν

“
z− ν

g1+ν

””
1F1

“
g0

g1+ν ,
g0+κ
g1+ν , µ

ν

“
1− ν

g1+ν

”” ,

β(z) =
κ

g0 + κ

1F1

(
g0

g1+ν , g0+κ
g1+ν + 1, µ

ν

(
z − ν

g1+ν

))
1F1

(
g0

g1+ν , g0+κ
g1+ν , µ

ν

(
1− ν

g1+ν

)) .

Proof: From equations (9.10) and (9.11), we get

GN (z)
c1

=
g0 + κ

κ
1F1

(
g0

g1 + ν
,
g0 + κ

g1 + ν
+ 1,

µ

ν

(
z − ν

g1 + ν

))
+µ ((ν+g1)z−ν) g0

ν κ (g0+κ+g1+ν) 1F1

(
g0

g1+ν + 1, g0+κ
g1+ν + 2, µ

ν

(
z − ν

g1+ν

))
.

To simplify the notations, let us write

a =
g0

g1 + ν
, b =

g0 + κ

g1 + ν
and w =

µ

ν

(
z − ν

g1 + ν

)
,
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and the last equation above become

GN (z)
c1

=
b

b − a
1F1(a, b + 1, w) +

w a

(b− a) (b + 1) 1F1(a, b + 2, w).

The following relations between hypergeometric functions hold, see Abramowitz
& Stegun (1964) p. 507–508,

a w

b + 1 1F1(a + 1, b + 2, w) =(w − b) 1F1(a, b + 1, w) + b 1F1(a− 1, b, w),

w 1F1(a, b + 1, w) =b 1F1(a, b, w)− b 1F1(a− 1, b, w),

and thus

GN (z)
c1

(b− a) = b 1F1(a, b + 1, w) +
w a

b + 1 1F1(a, b + 2, w)

=b 1F1(a, b + 1, w) + (w − b) 1F1(a, b + 1, w) + b 1F1(a− 1, b, w)
=w 1F1(a, b + 1, w) + b 1F1(a− 1, b, w)
=b 1F1(a, b, w).

With GN (1) = 1,

c1 =
b− a

b 1F1

(
a, b, µ

ν

(
1− ν

g1+ν

)) ,

and from equation (9.10) we get

β(z) =
(b − a)

b
1F1 (a, b, w)

1F1

(
a, b, µ

ν

(
1− ν

g1+ν

)) .

Concerning α, we simply use the fact that α(z) = GN (z)− β(z). �

The asymptotic distributions of the quantities of interest

π(n, · ) = lim
t→∞P (N(t) = n) and π(n,y) = lim

t→∞P ((N(t), Y (t)) = (n, y))

can easily be computed by taking the derivatives at z = 0 of the corresponding
generating functions and we have

π(n, · ) =

(
g0

g1+ν

)
n(

g0+κ
g1+ν

)
n

(µ

ν

)n 1F1

(
g0

g1+ν + n, g0+κ
g1+ν + n,− µ

g1+ν

)
1F1

(
g0

g1+ν , g0+κ
g1+ν , µ

ν

(
1− ν

g1+ν

)) ,

π(n,0) =
κ

κ + g0

(
g0

g1+ν

)
n(

g0+κ
g1+ν + 1

)
n

(µ

ν

)n 1F1

(
g0

g1+ν + n, g0+κ
g1+ν + n + 1,− µ

g1+ν

)
1F1

(
g0

g1+ν , g0+κ
g1+ν , µ

ν

(
1− ν

g1+ν

)) ,

π(n,1) =π(n, · ) − π(n,0).
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In a similar way, but now taking derivatives at z = 1, the factorial moments en,
en,0 and en,1 defined in the preceding section 9.2 are given by

en =

(
g0

g1+ν

)
n(

g0+κ
g1+ν

)
n

(µ

ν

)n 1F1

(
g0

g1+ν + n, g0+κ
g1+ν + n, µ

ν

(
1− ν

g1+ν

))
1F1

(
g0

g1+ν , g0+κ
g1+ν , µ

ν

(
1− ν

g1+ν

)) ,

en,0 =
κ

κ + g0

(
g0

g1+ν

)
n(

g0+κ
g1+ν + 1

)
n

(µ

ν

)n 1F1

(
g0

g1+ν + n, g0+κ
g1+ν + n + 1, µ

ν

(
1− ν

g1+ν

))
1F1

(
g0

g1+ν , g0+κ
g1+ν , µ

ν

(
1− ν

g1+ν

)) ,

en,1 =en − en,0.

Now the probability to be OFF is

π( ·, 0) = lim
t→∞P (Y (t) = 0) =

κ

κ + g0

1F1

(
g0

g1+ν , g0+κ
g1+ν + 1, µ

ν

(
1− ν

g1+ν

))
1F1

(
g0

g1+ν , g0+κ
g1+ν , µ

ν

(
1− ν

g1+ν

)) ,

and expressions for the variances and covariances can also be obtained in the
same manner but they are tedious and we do not write them explicitely.

9.4 limitations of the method of generating functions

Although it provides a powerful tool for analytic description, the method of
generating functions is very particular in the sense that a little change in the
form of one of the feedback propensity function can induce major changes in
the generating function, and for each particular propensity function one has to
derive the whole set of equations anew.

Furthermore, an explicit form for the generating function can only be found
when the feedback propensity functions are simple, either constant or linear in
the protein numbers. In practice, the feedback propensity functions are related
to the number of sites in the promoter on which the proteins bind, either directly
in monomer form or in more complicated bound forms like dimers or higher or-
der polymers.

In the case of monomers, the propensity functions are polynomial in the number
of proteins with order equal to the number of sites of the promoter. The equa-
tions for the generating functions contain derivatives of the same order, hence in
the case of order two and higher, the generating functions, given the equations
can be solved, are no longer simple hypergeometric functions.

When the feedback is given by bound forms of the protein, the intermediate
reaction has to be taken into account. Usually the typical time scale of such
reactions are much more rapid than the other reactions in the system and we
can apply the technique also used in the slow-scale stochastic simulation, see
Cao et al. (2005b) and Cao et al. (2005a). The detailed validation of this accel-
erated technique is discussed in Zhang & Yin (1997), Yin & Zhang (2002) and
Yin & Zhang (2005). The feedback propensity functions are in this case given
by mean-field approximations of a polynom of the bound form of the protein
for a given protein number, usually a function of the protein number present in
the system that can not be written in a closed form, and hence the equations



9.4 limitations of the method of generating functions 59

for the generating functions can not be solved. We will discuss in details the
case of dimers in Chapter 17.

In Chapter 10 we provide a flexible method to compute the invariant measure
for arbitrary feedback propensity functions.





10
INVARIANT MEASURE AND THE METHOD OF
TRANSFER MATRICES

10.1 introduction

As discussed in Section 9.4, the method of generating functions is only adapted
for very particular academic examples. In practice, the feedback propensity
functions are usually much more complicated. In this section we develop a flex-
ible method that allows the use of biologically more revelant feedback loops.
For this method, we will use the limitation that the state space is finite, i. e. there
is a maximal number of proteins Λ that can not be surpassed. This restriction
leads to significant mathematical simplifications, and is biologically meaningful
taking into account the finite volume of a cell. Moreover, this simplication can
not be avoided for practical computation since we will have to find a left eigen-
vector at the boundary, and it can be showed that the solutions of the system
restricted to the finite space on {0, 1, . . . , Λ} × {0, 1} converges to the invariant
distribution of the system on the space N × {0, 1} under suitable asumptions,
see Pasquier (2008) for details.

We recall that in this case the propensity function a1 at the boundary is a1(Λ, y) =
0 and the CME (7.2) for p(Λ,1) reads

d

dt
p(Λ,1)(t) =yµ p(Λ−1,y)(t) + g(n) p(Λ,0)(t)

− (ν(Λ) + κ(Λ)) p(Λ,1)(t),

and p(n,y)(t) ≡ 0 for n > Λ.
Since every state is recurrent, the finiteness of the state space ensures that every
state is positive recurrent and we know from the usual theory of continuous-time
Markov chains that the Kolmogorv forward and backward systems are equivalent
and that there exist an invariant distribution, see for example Brémaud (1999),
p. 338, and Norris (1997), p. 123.

Let us write the row vector with 2(Λ + 1) components

p(t) := (p(0,0)(t), p(0,1)(t), p(1,0)(t)p(1,1)(t), p(2,0)(t), . . . , p(Λ,0)(t), p(Λ,1)(t)).

The CME (7.2) can be written in compact form as

d

dt
p(t) = p(t)Q, (10.1)
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where Q is the generator matrix

Q =



R0 U 0 · · · · · · · · · · · · · · · · · · · · · 0
Q1 R1 U 0 · · · · · · · · · · · · · · · · · · 0
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
0 · · · · · · 0 Qn Rn U 0 · · · · · · 0
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
0 · · · · · · · · · · · · · · · · · · 0 QΛ−1 RΛ−1 U
0 · · · · · · · · · · · · · · · · · · · · · 0 QΛ RΛ

 ,

with the 2× 2-matrices U =
[

0 0
0 µ

]
, Dn =

[
ν(n) 0

0 ν(n)

]
and

Rn =
[ −(g(n) + ν(n)) g(n)

κ(n) −(κ(n) + ν(n) + µ)

]

for 1 ≤ n ≤ Λ− 1, and the boundaries R0 =
[ −g(0) g(0)

κ(0) −(κ(0) + µ)

]
,

DΛ =
[

ν(Λ) 0
0 ν(Λ)

]
and RΛ =

[ −(g(Λ) + ν(Λ)) g(Λ)
κ(Λ) −(κ(Λ) + ν(Λ))

]
.

The transient behaviour of the system can be found to be

p(t) = p(0)eQt,

by integrating equation (10.1), with p(0) the initial distribution that we do not
specify here. Due to the size and shape of the matrix Q, this representation
does not help much for practical computation.

Both for theoretical and computational purposes, it would be very helpful to
find an invariant distribution of the time-comtinuous Markov process. The above
exponential representation is not satisfactory, since the eigenvalues of Q are not
obvious. In the following, we present a method based on transfer matrices, quite
similar to the method presented in Fournier et al. (2007) and based on an idea
developed in Bolthausen & Goldsheid (2000).

Let us rethink our state space as a succession of layers of the form {(n, 0), (n, 1)},
0 ≤ n ≤ Λ, define pn(t) = (p(n,0)(t), p(n,1)(t)) the probability vector of a layer
and rewrite equation (10.1) layerwise as

d

dt
p0(t) =p0(t)R0 + p1(t)D1,

d

dt
pn(t) =pn−1(t)U + pn(t)Rn + pn+1(t)Dn+1, 0 < n < Λ,

d

dt
pΛ(t) =pΛ−1(t)U + pΛ(t)RΛ.

To solve this equation seems impossible, or at least the form of the solution
should not be simpler than the exponential form given above. However, an
explicit solution can be found for the invariant distribution.
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Strip as a collection of layers

(n− 1, 1) (n, 1) (n + 1, 1)

(n− 1, 0) (n, 0) (n + 1, 0)

layer n− 1 layer n layer n + 1

Dn Rn U

Figure 10.1: The layerwise vizualisation of the strip. The matrices Dn, Rn and U are
defined in the main text.

10.2 transfer matrices and invariant measure

As said before, the invariant distribution exists and is unique since every state
is recurrent and the state space is finite.

Let π = (π(0,0), π(0,1), π(1,0), π(1,1), π(2,0), . . . , π(Λ,0), π(Λ,0)) be this invariant dis-
tribution, and let us write it layerwise as πn = (π(n,0), π(n,1)), as in Figure 10.1.
The distribution π solves the above equation with the left hand side set to 0,
i. e.

0 =π0R0 + π1D1, (10.2)
0 =πn−1U + πnRn + πn+1Dn+1, 0 < n < Λ, (10.3)
0 =πΛ−1U + πΛRΛ. (10.4)

The idea is to look for transfer matrices αn such that πn = πn+1αn, and to
find a suitable first vector πΛ at the boundary to compute the πn recursively.
Plugging the relation πn = πn+1αn into equations (10.2) and (10.3),

0 =π0R0 + π1D1,

0 =πn−1U + πnRn + πn+1Dn+1 = πn(αn−1U + Rn) + πn+1Dn+1, 0 < n < Λ,

the transfer matrices matrices αn have to satisfy

α0 =−D1R
−1
0 ,

αn =−Dn+1(αn−1U + Rn)−1, 0 < n < Λ, (10.5)
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provided that the matrices R0 and αn−1U +Rn are invertible, 0 < n < Λ. In the
following theorem, we show that this is the case, solve the matrix valued con-
tinuous fraction of equations (10.5) and provide a closed form for the invariant
distribution π of the time-continuous Markov process.

Theorem 7 The invariant distribution of the time-continuous Markov process
{X(t) = (N(t), Y (t))}t>0 restricted on the strip {0, 1, . . . , Λ} × {0, 1} is

πn =
wΛαΛ−1αΛ−2 · · ·αn

ZΛ
for 0 ≤ n < Λ, and πΛ =

wΛ

ZΛ
, (10.6)

with wΛ = (κ(Λ), g(Λ) + ν(Λ)), the transfer matrices αn given by

αn =
ν(n + 1)

µ

[
κ(n)+µ

g(n)+ν(n) 1
κ(n)

g(n)+ν(n) 1

]
, 0 < n < Λ, α0 =

ν(1)
µ

[
κ(0)+µ

g(0) 1
κ(0)
g(0) 1

]
,

and the normalization constant

ZΛ = wΛ · (1, 1)T +
Λ−1∑
j=0

wΛαΛ−1αΛ−2 · · ·αj · (1, 1)T .

Proof: Let us define recursively wn = wn+1αn, starting from n = Λ − 1, and
show that the equations (10.2), (10.3) and (10.4) are satisfied for the vectors
wn, 0 ≤ n ≤ Λ. For 0 < n < Λ, the matrices αn−1U + Rn are invertible since

αn−1U + Rn =
[

0 ν(n)
0 ν(n)

]
+
[ −(g(n) + ν(n)) g(n)

κ(n) −(κ(n) + ν(n) + µ)

]
=
[ −(g(n) + ν(n)) g(n) + ν(n)

κ(n) −(κ(n) + µ)

]
with determinant µ (g(n) + ν(n)) > 0, and

(αn−1U + Rn)−1 =
−1

µ (g(n) + ν(n))

[
κ(n) + µ g(n) + ν(n)

κ(n) g(n) + ν(n)

]
,

thus they satisfy
αn = −Dn+1 (αn−1U + Rn)−1

.

At the boundary n = 0, α0 is simply −D1R
−1
0 . Hence the transfer matrices αn,

0 ≤ n < Λ, solve the matrix valued continuous fraction (10.5).

Plugging wΛ and wΛ−1 = wΛαΛ−1 in the right hand side of (10.4), wΛ has to
be a left eigenvector of the matrix αΛ−1U +RΛ for the eigenvalue 0. This is the
case since wΛ = (κ(Λ), g(Λ) + ν(Λ)) and

αΛ−1U + RΛ =
[ −(g(Λ) + ν(Λ)) g(Λ) + ν(Λ)

κ(Λ) −κ(Λ)

]
.

The vectors

wΛ, wΛ−1 = wΛ · αΛ−1, . . . , wn = wΛ · αΛ−1 · · ·αn, . . . , w0 = wΛ · αΛ−1 · · ·α0

thus solve the system (10.2), (10.3) and (10.4). Moreover, each vector has only
strictly positive components and the vector

w = (w(0,0), w(0,1), w(1,0), w(1,1), w(2,0), . . . , w(Λ,0), w(Λ,0))
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where (w(n,0), w(n,1)) = wn is an invariant measure of the process, and thus
proportional to the unique invariant distribution π, i. e. π = w

ZΛ
with the nor-

malization factor ZΛ =
Λ∑

n=0

wn · (1, 1)T . �

Formula (10.6) provides a closed form of the invariant measure that is not
adapted to numerical computation since for large Λ both the numerator and
denominator rapidly diverge.

10.3 normalization algorithm

To allow numerical computation we will use the following normalization algo-
rithm. Let S = {(0, 1) + t(1,−1), t ∈ [0, 1]} denote the line segment between
(0, 1) and (1, 0) and ‖ · ‖ the 1-norm ‖w‖ := w · (1, 1)T . The idea is to intro-
duce without computational costs the vectors ṽn on S that will permit to easily
recover the invariant measure. The algorithm consists in three simple steps:

step 1: Define ṽn for n = Λ− 1 to 0 as

ṽΛ :=
wΛ

‖wΛ‖ , and ṽn :=
ṽn+1αn

‖ṽn+1αn‖ .

step 2: Given the ṽn, define v0 = ṽ0 and, for n = 1 to Λ, set

vn :=
ṽn

‖ṽnαn−1‖ · ‖ṽn−1αn−2‖ · · · ‖ṽ1α0‖ .

step 3: Compute the steady state distribution as

πn =
vn

VΛ
, where VΛ :=

Λ∑
i=0

vi · (1, 1)T .

It immediately results from their definition that the vectors ṽn and vn have the
properties:

• For all 0 ≤ n ≤ Λ, ‖ṽn‖ = 1, i. e. each ṽn lies on the line segment S ⊂ R2

between the points (0, 1) and (1, 0).

• ṽn+2αn+1αn = ṽn+1αn · ‖ṽn+2αn+1‖ yields

vn =
ṽΛαΛ−1αΛ−2 · · ·αn

‖ṽΛαΛ−1‖ · ‖ṽΛ−1αΛ−2‖ · · · ‖ṽn+1αn‖ · ‖ṽnαn−1‖ · · · ‖ṽ1α0‖ .

The denominator of the above expression is independent of n and ṽΛ is
proportional to wΛ. Hence vn is proportional to the invariant measure πn,

πn =
vn

VΛ
, where VΛ :=

Λ∑
i=0

vi · (1, 1)T .

• The 1-norm of vn is ‖vn‖ =
‖ṽn‖

‖ṽnαn−1‖ · · · ‖ṽ1α0‖ =
1

‖ṽnαn−1‖ · · · ‖ṽ1α0‖ .
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Theorem 8 below provides conditions under which the normalization constant
VΛ remains bounded as Λ is large. The function ν(n) gives the monomer degra-
dation rates for n proteins, and is assumed to be increasing with ν(0) = 0, and
strictly positive for n ≥ 1. Usually, ν(n) is taken to be a constant times n,
here we assume the less restrictive condition that inf

n≥1
ν(n)/n is stricly positive

to allow situations where for example proteins that are present in bound forms
(dimer, trimer,...) can not be degradated, or situations where ν(n)/n → ∞ as
n →∞.

To prove this Theorem, we use the following Lemma:

Lemma 2 If inf
n≥1

ν(n)/n is stricly positive, there exists k > 0 depending only

on µ, ν, κ, g (and not on Λ) such that for all n ≥ 1, ‖ṽnαn−1‖ ≥ nk.

Proof: Each ṽj lies in S and depends on Λ. To break this dependence, we prove
the results for an arbitrary vector v = (t, 1− t) ∈ S, t ∈ [0, 1].

vαn =
ν(n)

µ
(⋆, t + (1− t)) =

ν(n)
µ

(⋆, 1),

with ⋆ > 0 for all n. Hence, uniformly in S,

‖vαn‖
n

≥ ν(n)
nµ

≥ inf
n≥1

ν(n)
nµ

=: k > 0.

�

Hence we can give bounds uniformly in Λ:

Theorem 8 If inf
n≥1

ν(n)/n is stricly positive, there exists M > 0, depending

only on µ, ν, κ, g (and not on Λ), such that

1 ≤ VΛ =
Λ∑

n=0

‖vn‖ ≤ M.

Proof: Notice that ‖v0‖ = ‖ṽ0‖ = 1. Moreover Lemma 2 yields

VΛ = 1 +
Λ∑

n=1

‖vn‖ ≤ 1 +
∞∑

n=1

k−n

n!
= e1/k =: M.

�
This Theorem shows that our algorithm is well suited for computational pur-
poses, and permits to show with a tightness argument that the unbounded chain
defined on N×{0, 1} is ergodic with the invariant distribution given by the limit
as Λ →∞ of the above distribution, for details see Pasquier (2008).

A computer implementation of the algorithm in Matlab is provided in Section
C.1 of Appendix C.
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THE PROPENSITY FUNCTIONS

11.1 production and degradation rates

The protein production propensity function, a1(n, y) = µ · y in the unbounded
case or a1(n, y) = µ · y · 1{n<Λ} in the bounded case, is here in the ON state a
constant combining the transcription and translation phases, see Appendix A
Sections A.2 and A.3 for more details.

In the bounded case, it is interesting to note that the method of transfer matrices
also works, with a slight modification, when the production propensity function
depends on n. Suppose that a1(n, y) = µ(n) · y, equation (10.5) has to be
changed in

α0 =−D1R
−1
0 ,

αn =−Dn+1(αn−1Un−1 + Rn)−1, 0 < n < Λ, (11.1)

with the matrice U being changed to

Un−1 =
[

0 0
0 µ(n− 1)

]
.

It is easy to see, mimicking the proof of Theorem 7, that the sequence of matrices

αn =
ν(n + 1)

µ(n)

[
κ(n)+µ(n)
g(n)+ν(n) 1

κ(n)
g(n)+ν(n) 1

]
, 0 < n < Λ, α0 =

ν(1)
µ(0)

[
κ(0)+µ(0)

g(0) 1
κ(0)
g(0) 1

]
,

solves the recurrence equation (11.1), and the invariant measure can be com-
puted in the same way as in Chapter 10, with the condition of Theorem 8

adapted to inf
n≥1

ν(n)
n · µ(n)

to be strictly positive.

The case of a production propensity being a function of n could be used in
the case where the transcription or translation phase is affected by the protein
number, for example by a saturation effect.

The protein degradation propensity function ν(n) is usually modeled as pro-
portional to the protein number, ν(n) = ν · n for a degradation rate ν. The
algorithm presented in Chapter 10 can however be used for a large variety of

functions, the only requirement being that inf
n≥1

ν(n)
n

is strictly positive.

Usually the degradation propensity function is supposed to be linear, ν(n) = ν n,
but when the produced proteins bound in a further reaction to multimers, the
degradation can also be modeled as a degradation rate times the number of
monomers instead of the number of proteins, as in Chapter 12.
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11.2 feedback regulated by external factors

When the protein that binds to the promoter is not the protein synthetized by
the genetic module but an external factor considered at a constant concentration,
the promoter dynamics can be modeled as governed by a constant feedback.
The computational and analytic methods presented in Section 9.2 can be used,
but it is often more convenient for practical computation to use the algorithm
developed in Chapter 10 even in this simple case.

11.3 self regulated gene

The negative feedback case has been studied extensively in the literature with
simple propensity functions, see for example Hornos et al. (2005). Here we
suppose it to be constant in all the examples studied.

We are mainly interested in the autocatalytic case and try to show what can pos-
sibly happen in the presence of positive feedback, for example bimodal invariant
distributions.



12
POSITIVE FEEDBACK THROUGH DIMERS

12.1 description

In this Chapter, we discuss the special case where positive feedback is provided
through the intermediate reaction of dimerization. Biologically, dimers bind
highly cooperatively to activate the promoter. Here the protein is a GAL4 type
protein and the promoter has 5 binding sites, similar to the engineered module
studied experimentally in Imhof et al. (2000).

Positive feedback through dimers

Promoter mRNA transcription and translation

Switch ON to OFF

Fast Dimerization

Protein production

Protein degradation

Figure 12.1: Schematical description of the case where the module is auto-regulated by
dimers. Dimers bind and unbind cooperatively to the promoter to launch transcription,
the produced protein can form dimers or can be degradated. The reactions involved
in the dimerization process are supposed to be much faster than the other.

Mathematically, the whole system does not correspond yet to the genetic mod-
ule presented in this Part. The state space is much bigger since it has not only
to take into account the number of proteins and state of the promoter, but also
the number of dimers. The dimerization is often thought to be a much faster re-
action than the other reactions in the system, thus we will call the corresponding
time-continuous Markov chain {Xε(t)}t≥0 where Xε(t) = (Nε(t), Y ε(t), Dε(t))
and ε emphasizes the fact that the propensity function governing the changes
in Dε(t) are of order 1/ε where ε is near 0.

69
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More precisely, the evolution of Nε(t) and Y ε(t) is the same as before, except
that the positive feedback propensity function is now governed by the number
of dimers Dε(t). The feedback function contains two distinct parts. The first
one is the basal activity g0 > 0, reflecting the fact that even in the absence of
protein, the promoter can possibly become active and start a transcriptional
burst. The second one accounts for the likelihood that dimers are bound to
the promoter. Since dimers are thought to bind and unbind highly coopera-
tively, we use a stochastic Hill type model and the contribution to the feedback
propensity function is then proportional to the number of dimers to the power 5.

We restrict to the bounded state space

(Nε(t), Y ε(t), Dε(t)) ∈ {0, 1, . . . , Λ} × {0, 1} × {0, 1, . . . , ⌊Λ/2⌋},

where ⌊Λ/2⌋ is the integer part of Λ/2. The reactions and propensity functions
can be summarized as follows, with M denoting a protein in monomer form and
D in dimer form:

Summary of the process {Xε(t)}t≥0

Reaction Rj Propensity function aj Change vector vj

R1 :∅ −→ P a1(n, y, d) = yµ · 1{n<Λ} v1 = (1, 0, 0)

R2 :P −→ ∅ a2(n, y, d) = ν(n− 2d) v2 = (−1, 0, 0)

R3 :O0 −→ O1 a3(n, y, d) = (g1 d5 + g0)(1 − y) v3 = (0, 1, 0)

R4 :O1 −→ O0 a4(n, y, d) = κ y v4 = (0,−1, 0)

R5 :2M −→ D aε
5(n, y, d) = c+

ε (n− 2d)(n− 2d− 1) v5 = (0, 0, 1)

R6 :D −→ 2M aε
6(n, y, d) = c−

ε d v6 = (0, 0,−1)

Some authors use a factor 1
2 in aε

5 for combinatorial reasons, here we include it
in c+ for notational simplicity. For more details on the dimerization process we
refer to Part v.

12.2 elimination of the fast variable

When some propensity functions are much bigger than the other, the correspond-
ing reactions occur much more frequently than the reactions corresponding to
slower propensity functions. It is often the case that the slow variables are re-
sponsible for the most important features of the system, while the faster one are
secondary. In stochastic simulation, consequences can be very unpleasant, since
the trajectory almost always jump between states of the fast variables, while
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time does not move forward and the simulation is stuck and do not reach the
prescripted ending time in a reasonable computational time. Cao et al. (2005b)
developed a theory for the slow-scale stochastic simulation, mainly based on
heuristic arguments, while Zhang & Yin (1997) provides the rigorous probabilis-
tic framework to handle the issue.

We first translate the heuristic argument of Cao et al. (2005b) in our case.
The propensity functions in the original system involving the fast variable are
a2(n, y, d) = ν(n − 2d) and a3(n, y, d) = (g1 d5 + g0)(1 − y). Let ∆t be a time
small compared to the typical reaction time of a slow variable but huge com-
pared to the reaction time of the fast variable. If the slow variables are in state
Nε(t) = n and Y ε(t) = y, the reactions to occur between t and t + ∆t are
very likely to be all reactions of the fast variable, and a sensible choice for an
aggregated propensity function for the slow process taking into account the fluc-
tuations of the fast variable would be to take the average value of a2(n, y, Dε(s))
and a3(n, y, Dε(s)) between t and t + ∆t. If we consider ∆t to be large enough
compared to the typical reaction time of the fast variable, it can be well approx-
imated by En(a2(n, y, Dε(∞))) and En(a3(n, y, Dε(∞))), where Dε(∞) is a ran-
dom variable distributed with the equilibrium distribution of the dimer number
with n proteins and En denotes the mean under this distribution. In our case
En(a2(n, y, Dε(∞))) = ν(n−2En) and En(a3(n, y, Dε(∞))) = (g1 E5

n+g0)(1−y),
where E5

n is the fifth moment of the dimer number at equilibrium for a fixed
amount n of proteins.

Let us now write things formally to show that for small ε, the above approx-
imation can be used. Since we are only interested in the variables Nε(t) and
Y ε(t), let us define {X̄ε(t)}t≥0 the marginal process X̄ε(t) = (Nε(t), Y ε(t)) only
keeping track of the slow variables and {X̄(t)}t≥0 the time continuous Markov
process X̄(t) = (N̄(t), Ȳ (t)) governed by the propensity functions summarized
in the table below. Notice that {X̄ε(t)}t≥0 is not Markovian.

Summary of the process {X̄(t)}t≥0

Reaction Rj Propensity function āj Change vector vj

R1 :∅ −→ P ā1(n̄, ȳ) = ȳµ · 1{n̄<Λ} v1 = (1, 0)

R2 :P −→ ∅ ā2(n̄, ȳ) = ν(n̄− 2En̄) v2 = (−1, 0)

R3 :O0 −→ O1 ā3(n̄, ȳ) = (g1 E5
n̄ + g0)(1 − ȳ) v3 = (0, 1)

R4 :O1 −→ O0 ā4(n̄, ȳ) = κ ȳ v4 = (0,−1)

In the above table, En̄ and E5
n̄ denote respectivelly the mean and the fifth mo-

ment of the dimer number for a fixed amount of n̄ proteins at equilibrium. The
propensity functions ā2 and ā3 can be computed using the methods of Sections
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18.3 and 18.4.

Theorem 2. 3 in Zhang & Yin (1997) states that the process {X̄ε(t)}t≥0 con-
verges in distribution to the Markov process {X̄(t)}t≥0 as ε → 0. The process
{X̄(t)}t≥0 is a special case of the genetic module studied throughout this Part
and hence its exact invariant distribution can easily be computed using the
methods of Chapter 10. Moreover, since the dimerization is supposed to be
much faster than the other reactions, it provides a good approximation to the
quantity of interest, namely the equilibrium distribution of the non Markovian
process {X̄ε(t)}t≥0.

12.3 computational results

In Figure 12.2, we show a special parameter regime where the invariant distribu-
tion exhibits bimodality, both for the probability to be ON and for the marginal
probability of the protein number.

The somehow disturbing behaviour for low protein number is due to the
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Figure 12.2: Invariant measure of the process {X̄(t)}t≥0 with the following parameters:
µ = 550, ν = 170, g1 = 0.01, g0 = 150, κ = 200, c+/c− = 5/3. The green curve
represents the invariant measure in the OFF state πn(0), the blue curve in the ON
state πn(1) and the black curve is the sum of the two other curves or in other words
the marginal probability of the number of proteins.

fact that in this model we only take into account the degradation of protein
monomers and suppose that the dimers can not be degradated, hence for n̄ ≤ 20
the function ν(n̄− 2En̄) is not increasing as would be expected from a degrada-
tion propensity function. The positive feedback propensity function

ā3(n̄, ȳ) = g1E5
n̄ + g0
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increases very rapidly and we plot it in semilogarithmic scale.
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Positive feedback propensity function ā3(n̄, ȳ) = g1E5
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Figure 12.3: The propensity functions ā2(n̄, ȳ) and ā3(n̄, ȳ), parameters are those of
Figure 12.2.

Figure 12.4 shows the simulated asymptotic empirical distribution of the non
Markovian process {X̄ε(t)}t≥0, in other words the distribution of

lim
t→∞(Nε(t), Y ε(t)),

for various values of ε, the parameter that controls the speed of the fast dimer-
ization. As explained above, the simulation of the process is computationally
very intensive since most of the simulated reactions only affect the fast variable
Dε(t) and we are mainly interested in the slow variables Nε(t) and Y ε(t). The
values of ε are 10−2 and 10−4. For each value, simulation was performed over
100 trajectories and about 106 stochastic events, from wich we stored the last
104 with a change in Nε or Y ε in at least one of the trajectories to compute the
empirical marginal distribution of {X̄ε(t)}t≥0. Simulation for ε = 10−2 took a
few minutes while for ε = 10−4 it took about ten hours, and with a result that
is not quite satisfactory. The respective empirical distributions are compared
with the exact distribution of the fast approximation, whose computation took
less than one second. Parameters are the same as in Figure 12.2.
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Distribution for various values of ε
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Figure 12.4: Comparison of the distribution of (N(t), Y (t)), with parameters other
as ε being those of Figure 12.2. The upper line shows the empirical distribution of
the simulation of the full process for ε = 10−2 (left) and ε = 10−4 (right). The
figure at the bottom left represent the computed invariant measure with the quasi-
equilibrium fast approximation. In these three plots, the green curve is the ON regime
and the blue one the OFF regime. When ε = 10−2, the rates of the dimerization are
commensurate with the other rates and there is no reason to do a fast dimerization
approximation. However, the simulation shows a quite similar behaviour as in the
fast approximation. When ε = 10−2, simulation took about ten hours and the result
seems very poor, indeed even the simulation with ε = 10−2 shows better agreement
with the fast approximation. The computation of the steady-state distribution for
the fast approximation required less than a second. The last figure on the bottom
right displays the marginal probability of the protein number, for ε = 10−2 in green,
ε = 10−4 in blue and in the fast approximation in black.



13
SEMI - STOCHASTIC COUPLING AND TIME DELAY

Throughout this Chapter, we consider the unbounded state space E = N×{0, 1}.

13.1 semi-stochasticity

In their works on the epidemic of schistosomiasis, Nasell & Hirsch (1972) and
Nasell & Hirsch (1973) propose a mathematical model with semi-stochastic cou-
pling. The authors consider a Markov chain quite similar to the one of our
model except that they replace in the infinitesimal evolution equations every
external random variables by their mean value.

If we adapt it to our genetic module, the variable N(t) is replaced by its mean
value in the equations concerning the change in the promoter state while the
variable Y (t) in the equations concernig a change in the protein number. The
evolution equations (7.1) become

P (X(t + ∆t) =(n + 1, y) | X(t) = (n, y)) = E(Y (t))µ∆t + o(∆t),
P (X(t + ∆t) =(n− 1, y) | X(t) = (n, y)) = ν(n)∆t + o(∆t),
P (X(t + ∆t) =(n, 1− y) | X(t) = (n, y)) =

(yκ (E(N(t))) + (1− y)g (E(N(t))))∆t + o(∆t),
P (X(t + ∆t) =(n, y) | X(t) = (n, y)) =

1− (ν(n) + yµ + yκ(E(N(t)) + (1− y)g(E(N(t)))∆t + o(∆t),
P (X(t + ∆t) = anything else | X(t) = (n, y)) = o(∆t).

The resulting process is now a time-nonhomogeneous Markov process. It can
be shown that the pair (E(N(t)), E(Y (t))) converges to a limit

(E(N(∞)), E(Y (∞))) ∈ R+ × (0, 1),

and that in the case where the degradation function is linear in n, ν(n) = ν n,

the stationary distribution is Poisson with parameter
E(Y (∞)) µ

ν
, hence the

mean and variance are asymptotically
E(Y (∞)) µ

ν
. It has been shown experi-

mentally and theoretically that when the mean gene expression is increasing as
a function of some inducer, the variance can exhibit a peak, see for example Pe-
draza & van Oudenaarden (2005). This kind of behaviour can not be predicted
qualitatively when the process is Poisson since in this case mean and variance
are the same.

As discussed in Section 5.1, a condition for the system with Y (t) replaced by
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E(Y (t)) to be similar to the original system is fast promoter kinetics. The role
of the promoter is very particular since a single stochastic event like a transition
from OFF to ON can fire a very important global event, here a transcriptional
burst. For these reasons a semi-stochastic approach in the sense of Nasell &
Hirsch (1972) is not appropriate for our model and we will hence conserve the
external variable Y (t) as stochastic and replace only N(t) by its average when
involved as an external variable. With a slight misuse of notation, the word
semi-stochastic will refer in the following to this second approach.

13.2 time delay

In a recent paper, Goutsias & Kim (2006) considered a semi-stochastic model
in the gene regulation setting, but did not involve the promoter in their analy-
sis, and introduced biologically meaningful delays in feedback interactions. In
other words, they replaced κ(N(t)) and g(N(t)) by expressions involving their
expected values with some delay θ, namely κ(E(N(t− θ))) and g(E(N(t− θ))).
The biological significance of the time delay can be thought as follows: proteins
move around at random and need some time to reach the neighborhood of the
promoter, and θ might represent the average time needed. In our setting, when
the promoter dynamics is not taken into account, the limiting behaviour of N(t)
is again Poisson and the model do not predict accurately the propagation of
noise in gene expression levels.

We will therefore modify the evolution equations (7.1) in the semi-stochastic set-
ting with time delay for interactions with N(t) as an external variable. Our new
Markov process {X sstd(t)}t≥0, with X sstd(t) = (N(t), Y (t)), evolves according
to

P (X sstd(t + ∆t) =(n + 1, y) | X sstd(t) = (n, y)) = Y (t)µ∆t + o(∆t),
P (X sstd(t + ∆t) =(n− 1, y) | X sstd(t) = (n, y)) = ν(n)∆t + o(∆t),
P (X sstd(t + ∆t) =(n, 1− y) | X sstd(t) = (n, y)) =

(yκ (E(N(t− θ))) + (1 − y)g (E(N(t− θ)))) ∆t + o(∆t),
P (X sstd(t + ∆t) =(n, y) | X sstd(t) = (n, y)) =

1− (ν(n) + yµ + yκ (E(N(t− θ))) + (1− y)g (E(N(t− θ))))∆t + o(∆t),
P (X sstd(t + ∆t) = anything else | X sstd(t) = (n, y)) = o(∆t).

The propensity functions are now time nonhomogeneous, and additional diffi-
culties arise concerning the asymptotical behaviour of the process.

13.3 time-nonhomogeneous markov processes

In the semi stochastic approach with time delay, the propensity functions con-
cerning the promoter a3(n, y) and a4(n, y) are replaced by functions depend-
ing on the time and the state of the promoter, for simplicity we will call them
a3(t, y) = g(E(N(t−θ))) (1−y) and a4(t, y) = κ(E(N(t−θ))) y. If g(E(N(t−θ)))
and κ(E(N(t − θ))) converge to a limit g∞ respectivelly κ∞, we define the pro-
cess {X0(t)}t≥0 to be the time homogeneous Markov process generated by the
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same propensity functions as {X sstd(t)}t≥0 except that a3(t, y) and a4(t, y) are
replaced by their limit a3(∞, y) = g∞ (1 − y) and a4(∞, y) = κ∞ y. Suppose
that {X0(t)}t≥0 possesses the invariant distribution π. One can naively think
that in this case the invariant distribution of {X sstd(t)}t≥0 is automatically π.
Indeed, the behaviour of a time-nonhomogeneous Markov process can be more
surprising. If the convergence to g∞ or κ∞ is not fast enough, it is still possible
that π is not the invariant distribution of {X sstd(t)}t≥0.

In Theorem 15 of Appendix B, we cite a criterion from Abramov & Liptser
(2004) ensuring convergence. This criterion entails a condition that holds au-
tomatically in our case and a further condition on the speed of convergence of
g(E(N(t− θ))) and κ(E(N(t− θ))), namely that the integrals∫ ∞

0

(
√

g(E(N(t− θ))) −√g∞)2dt and
∫ ∞

0

(
√

κ(E(N(t− θ))) −√κ∞)2dt

are finite. In the following, we will discuss a particuliar case of interest where the
criterion holds, allowing to compute the steady state distribution of {X sstd(t)}t≥0

by only considering the much simpler time homogeneous process {X0(t)}t≥0.

13.4 the case of linear positive feedback

In this section, we focus on the case where the autocatalytic propensity function
a3(t, y) = g(E(N(t−θ))) (1−y) is given by an affine function g and the negative
feedback function is constant. We will prove the result with the slightly less
restrictive condition that the function g is continuously differentiable, increasing
over R+ and such that g(0) > 0 and g(x)/x is decreasing, allowing possibly for
other type of positive feedback. We suppose the degradation propensity function
to be linear in n, a2(n, y) = ν n. The time-nonhomogeneous Markov process
{X sstd(t)}t≥0 describing the process is summarized in the following table.

Summary of the process {X sstd(t)}t≥0

Reaction Rj Propensity function aj Change vector vj

R1 :∅ −→ P a1(n, y) = yµ v1 = (1, 0)

R2 :P −→ ∅ a2(n, y) = νn v2 = (−1, 0)

R3 :O0 −→ O1 a3(t, y) = g(E(N(t− θ))) (1 − y) v3 = (0, 1)

R4 :O1 −→ O0 a4(t, y) = κ y v4 = (0,−1)

As discussed in Section 13.3, g(E(t − θ)) has to converge to g∞ fast enough to
ensure that the equilibrium distribution of the process equals π, the equilibrium
distribution of the simpler process {X0(t)}t≥0, more precisely that the condition∫ ∞

0

(
√

g(E(N(t− θ))) −√g∞)2dt < ∞ (13.1)
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is satisfied. To show that this is the case, we first discuss step by step the
behaviour of E(N(t− θ)), t ≥ 0. To simplify the notation, we will write

E(t) := E(N(t)) and G(t) := E(Y (t)),

whose evolution equations (8.1) for the mean and (8.2) for the probability to be
ON become

dE(t)
dt

= µG(t)− νE(t),

dG(t)
dt

= g(E(t− θ))(1 −G(t)) − κG(t). (13.2)

In Lemma 3, we prove that the evolution equations defining the system are well
defined, providing a unique solution, then we show in Lemma 4 that the system
converges to the unique biologically meaningful critical point of the system and
in Lemma 5 that the speed of convergence is exponential. The methods used
are adapted from Gabriel et al. (1981). Finally, using our hypothesis on the
function g, it is easy to conclude that the condition (13.1) holds, and the main
result is stated in Theorem 9.

The theory of delayed differential equations is very different from the usual
theory of differential equations, here the initial condition is no more a point in
the finite dimensional space R+ × [0, 1] but a continuous nonegative function
E(t) over the interval [−θ, 0] and a value G(0) ∈ [0, 1]. To solve the system
(13.2), we have to first integrate the second equation over the interval [0, θ],
then plug the solution in the first equation and integrate using the variation of
constant over the interval [0, θ] and begin the whole procedure anew over the
interval [θ, 2θ] with initial condition given by E(t) over the interval [0, θ], and
so on.

Lemma 3 Existence and unicity
For any initial condition E(t) non-negative and continuous over [−θ, 0] and
0 ≤ G(0) ≤ 1, there exists a unique solution of the system (13.2) defined over
[0, +∞). Furthermore,

0 < E(t) ≤ max{E(0), µ/ν}, t ≥ 0,

and
0 < G(t) < 1, t > 0.

Proof: For any initial condition 0 ≤ G(0) ≤ 1 and E(t) non-negative and
continuous over [−θ, 0], (13.2) admits obviously a unique solution over [0, θ].
If G(0) > 0, then by continuity G remains strictly positive over some open
intervall to the right of 0. If G(0) = 0, then according to the second equation
of (13.2), Ġ(0) > 0 and the same conclusion holds. The same reasoning shows
that G < 1 over some open intervall to the right of 0. Clearly, if they exist,
t0 = inf{t ∈ (0, θ], G(t) = 0} and t1 = inf{t ∈ (0, θ], G(t) = 1} are both strictly
positive. By definition, Ġ(t0) ≤ 0 and by continuity, G(t0) = 0. The second
equation of (13.2) entails Ġ(t0) > 0. We have a similar contradiction for t1,
thus 0 < G(t) < 1 over (0, θ]. The variation of constant formula entails

0 < E(t) ≤ max{E(0), µ/ν} over (0, θ].
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Iterating the procedure provides existence and unicity of a solution defined over
[0, +∞) and the preceding inequalities are preserved. �
We are interested in the possible equilibria of (13.2) in R+ × [0, 1], i.e. the
solutions (E0, G0) in R+ × [0, 1] of

0 = µG0 − νE0, 0 = g(E0)(1 −G0)− κG0.

Clearly G0 = 0 and G0 = 1 lead to contradictions. We thus have 0 < G0 < 1
and consequently E0 > 0. Plugging G0 = ν

µE0 in the second equation yields

g(E0)
E0

(
µ

ν
− E0) = κ.

If g(0) > 0 and g(E)
E is decreasing over (0, +∞), then g(E)

E (µ
ν − E) is strictly

decreasing. Since it starts at +∞ and becomes ultimately negative, we conclude
to the existence of a unique solution (E0, G0) ∈ R2 × [0, 1].

We will use the fluctuation Lemma 9 given in Appendix B to prove the conver-
gence to the critical point (E0, G0).

Lemma 4 Convergence
For any initial condition E(t) non-negative and continuous over [−θ, 0] and
0 ≤ G(0) ≤ 1, the unique solution (E(t), G(t)) converges to (E0, G0) as t →∞.

Proof: The fluctuation Lemma 9 and the monotonicity of g imply that

0 ≥ µG− νE, 0 ≥ g(E)(1−G)− κG

0 ≤ µG− νE, 0 ≤ g(E)(1−G)− κG. (13.3)

We prove the last inequality to exemplify the method. We choose tn ↑ +∞ so
that G(tn) → G and Ġ(tn) → 0 as n → +∞. Since the sequence {E(tn)}n≥1

is bounded, there exists a subsequence (tnk
)k≥1 so that E(tnk

) converges as
k →∞ to a certain value that we call E∞. Evaluating the equation for G over
the subsequence (tnk

)k≥1 and letting k → +∞, we get

0 = g(E∞)(1 −G)− κG ≤ g(E)(1−G)− κG

since g is increasing and G ≤ 1. The proof of the other inequalities in (13.3) is
similar.
We already know that 0 < G, E > 0 and G < 1, and (13.3) entails G ≤ ν

µE and
G ≥ ν

µE, and in particular E ≤ µ
ν G < µ

ν . Consequently

κν

µ
E ≤ κG ≤ g(E)(1−G) ≤ g(E)(1 − ν

µ
E),

hence

κ ≤ g(E)
E

(
µ

ν
− E).

Repeating the same argument for E, one gets

κ ≥ g(E)
E

(
µ

ν
− E).
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By assumption, g(E)
E (µ

ν − E) is decreasing, so that the two last equations then
give that E ≤ E0 and E ≥ E0. Clearly we have E = E = E0, so that E(t)
converges as t → +∞. According to Lemma 3.1 in Coppel (1965), E(t) and its
first two derivatives being bounded on [θ, +∞), we have lim

t→+∞ Ė(t) = 0 and the

relation Ė = µG− νE entail the convergence of G(t) as t → +∞. �
From this Lemma, we deduce that the propensity function

a3(t, y) = g(E(N(t− θ))) y

converges to g∞ y = g(E0) y as t →∞. To show that the convergence speed is
exponential, we use Theorem 16 cited in Appendix B.

Lemma 5 Exponential convergence
The convergence of (E(t), G(t)) to (E0, G0) is exponential.

Proof: Near a critical point, the asymptotic behaviour of the system is deter-
mined by the asymptotic behaviour of the linearized system[

Ė(t)
Ġ(t)

]
= A ·

[
E(t)
G(t)

]
+ B ·

[
E(t− θ)
G(t− θ)

]
,

where A and B are the matrices

A =
[ −ν µ

0 −(g(E0) + κ)

]
, B =

[
0 0

g′(E0)(1−G0) 0

]
.

We show that all roots λ of the characteristic equation det(A+e−λθB−λI) = 0
have negative real parts. The characteristic equation is here

λ2 + λ(ν + g(E0) + κ) + ν(g(E0) + κ)− µg′(E0)(1−G0)e−λθ = 0,

and all roots λ of this equation have negative real part if and only if all roots z
of

H(z) := (z2 + pz + q)ez + r = 0

have negative real parts, with

p := (ν + g(E0) + κ)θ, q := ν(g(E0) + κ)θ2, r := −µg′(E0)(1−G0)θ2,

and the change of variable z := λθ. According to Theorem 16 given in the
Appendix B, since r < 0 and

p2 = 2q + ν2θ2 + (g(E0) + κ)2θ2 ≥ 2q,

we have to check that −q < r < 0 and r sin(a2)/(pa2) ≤ 1, where a2 is the unique
root of the equation cot(a) = (a2− p)/q which lies in the interval (2π, 3π). The
second inequality is clear since r/p < 0 and sin(x)/x ≥ 0 on (2π, 3π). For the
inequality −r < q, notice that g′(x) ≤ g(x)/x since g(x)/x is decreasing, and
using the equilibrium equation g(E0)(1 −G0) = κG0 = νκ

µ E0, we have

−r = µg′(E0)(1−G0)θ2 ≤ µ
g(E0)
E0

(1−G0)θ2 = νκθ2 < ν(κ + g(E0))θ2 = q.
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Hence all roots of the characteristic equation have negative real parts and the
system is asymptotically stable. Since our system is autonomous, asymptotic
stability implies uniform asymptotic stability. According to theorem 4.6 in
Halanay (1966), the convergence is exponential. �
Using the exponential convergence of E(N(t− θ)) and the hypothesis on g, it is
now easy to show that condition (13.1) is satisfied.

Theorem 9 The time-nonhomogeneous process {X sstd(t)}t≥0 has the same in-
variant distribution π as the simple time homogeneous process {X0(t)}t≥0.

Proof: According to Theorem 15 in Appendix B, we only have to show that
condition (13.1) holds. Using the positiveness and boundedness of g(E(t − θ)),
0 < g(0) ≤ g(E(t− θ)) ≤ g(µ/ν), and the expansion

√
g(E(t− θ))−

√
g(E0) =

g(E(t− θ))− g(E0)√
g(E(t− θ)) +

√
g(E0)

,

we have

| g(E(t− θ))− g(E0) |
2
√

g(µ/ν)
≤|
√

g(E(t− θ)) −
√

g(E0) |≤ | g(E(t− θ))− g(E0) |
2
√

g(0)

and condition (13.1) is in our case equivalent to∫ ∞

0

(
g(E(t− θ))− g(E0)

)2
dt < ∞.

Let ε be positive, ε < E0 and Tε be such that | E(t− θ)−E0 |< ε for all t ≥ Tε.
Using the mean value theorem, for all t ≥ Tε, there exists a ξt in the interval
delimited by E(t− θ) and E0 such that

| g(E(t− θ)) − g(E0) |= g′(ξt) | E(t− θ)− E0 | .

Since for all t ≥ Tε, E0 − ε < min(E(t − θ), E0), and furthermore 0 ≤ g′(x) ≤
g(x)/x and g(x)/x is decreasing,

| g(E(t− θ))− g(E0) | = g′(ξt) | E(t− θ)− E0 |≤ g(ξt)
ξt

| E(t− θ)− E0 |

≤ g(E0 − ε)
E0 − ε

| E(t− θ)− E0 |=: Lε | E(t− θ)− E0 |,

and finally with the exponential convergence of E(t− θ) to E0, condition (13.1)
holds ∫ ∞

0

(
g(E(t− θ))− g(E0)

)2
dt ≤

∫ Tε

0

(
g(E(t− θ)) − g(E0)

)2
dt

+ Lε

∫ ∞

Tε

(
E(t− θ)− E0

)2
dt < ∞.

�
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Remark 2 When the positive feedback rate g(E(N(t − θ))) is such that g(x)
x

is increasing, for example when g is a polynomial of degree ≥ 2, there can
possibly exist several biologically meaningful equilibrium points and it can not be
excluded that for some initial conditions the solutions of equation (13.2) oscillate
endlessly.

When g is constant but the negative feedback κ(E(N(t − θ))) is an increasing
function of E(N(t− θ)), the biologically meaningful equilibrium point is unique
but similar application of the fluctuation lemma as in the proof of Lemma 4
yields the trivial observation that E ≤ E0 ≤ E, and oscillating solutions can
not be excluded in this case either.



Part IV

A SELF REGULATED GENE NETWORK





14
INTRODUCTION

In this Part, we describe a more elaborated self-regulated gene network con-
sisting of three genes. Designed to efficiently control transgene expression, the
network has been engineered and experimented in Imhof et al. (2000).

14.1 need for regulatory networks in gene therapy

One of the first gene therapy treatment with humans was carried out in 2000 on
children suffering on the fatal X-SCID (Severe Combined Immunodeficiency),
also known as “bubble boy” disease, caused by a fault copy of a gene responsi-
ble for the production of an immune protein. A transgene was introduced in a
patient’s cell to produce the missing protein. The first results were so encour-
aging that the therapy received large mediatic echo and was often refered to as
the “miracle of gene therapy”, but after two years the trial had to be stopped
since some of the patients developed leukemia. To ensure high production, the
transgene’s unregulated promoter was engineered to be very likely in the ON
state. The insertion of the transgene in DNA occuring at random, the promoter
was in some cases so near to another gene that it acted as a promoter for this
gene too, boosting its protein production and leading to an overproduction that
caused leukemia. More details can be found in Kaiser (2003).

This tragic example emphasizes the need for regulatory networks, and the net-
work described here might give a tight control of the promoter through an
external inducer, doxycycline, a safe drug with a long history of use in humans.

14.2 description of the network

The network consists of three genes, the repressor, the activator and the trans-
gene. The first one encodes for a bacterial tetracycline repressor (TetR) that
binds to and inhibits the promoter of the two other genes, see Figure 14.1. The
activity of the repressor is inhibited by doxycycline, a safe drug that can be
used without problem on a daily basis. This small antibiotic molecule binds
to the repressor, preventing it to bind to the promoters of the two other genes.
The number of repressor protein is supposed to be stable since produced by an
unregulated promoter, and large enough to almost completely inhibit transgene
production in the absence of doxycycline.
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The regulatory network
A

B

Figure 14.1: Schematic representation of the regulation system. A. In the absence
of doxycycline, TetR repressors are bound to the promoters of the activator and
the transgene. Hence both genes are almost silent due to strong repression. B.
The adjunction of doxycycline prevent the TetR repressor to bind to the Tet
operator site, allowing for production of the Gal4 activator protein. Boosted by
the positive feedback loop, Gal4 production increases and leads to a maximal
activation of the transgene and hence of the GFP production. Withdrawal of
doxycyline re-establishes quickly the state A by resuming the TetR repression.

The activator and the transgene are two genetic modules similar to the one
studied in Part iii. The activator produces a Gal4 protein, responsible for the
regulation of both its own promoter and the transgene’s one. More precisely the
two promoters are engineered to be alike, with each 5 Gal4 binding sites, the
activator being autocatalytic while the transgene is regulated by the activator’s
product. The transgene produce a therapeutic protein, GFP.

In the absence of doxycycline, the network is almost completely silenced, a
feature of obvious interest to overcome the problems discussed in Section 14.1.



15
MATHEMATICAL MODEL OF THE NETWORK

We are mostly interested in the behaviour of the transactivator and the trans-
gene, hence we will model the network as a time-continuous Markov process
{X(t)}t≥0,

X(t) = (N(t), Y (t), M(t), Z(t)),

where N(t) is the number of activator protein (Gal4) at time t, Y (t) the state
of the activator’s promoter, M(t) the number of transgene protein (GFP) at
time t and Z(t) the state of the transgene’s promoter. The repressor is modeled
deterministically using Hill kinetics and act on the transition rates of {X(t)}t≥0.
Let us describe the three components one by one.

15.1 repressor

As said before, we model the repressor effect as deterministic, which is equivalent
to suppose the extrinsic noise, here the random fluctuation of the number of
repressor and doxycycline molecules, attains a chemical equilibrium. Since the
repressor product is supposed to be at a stable level, we are mainly interested
in the effects of the adjunction of doxycycline to the probability that a repressor
binds to the Tet operator of the two other genes.

Cooperative ligand binding

We first consider the reaction of a ligand L binding to multiple binding sites on
a polymer P , following Bromberg & Dill (2002), Chapter 28, where cooperative
ligand binding is discussed. If the polymer has k binding sites, for 1 ≤ i ≤ k,
the reaction

P + iL −⇀↽− PLi,

represent a bound of i ligand molecule to i sites on the polymer P , and PLi

means that the i sites are occupied. This reaction has equilibrium constant

Ki =
[PLi]
[P ][L]i

,

where [ · ] stands for the concentration. To simplify notations, we call X = [L].

Since the total concentration of polymer, either bound or not, is
k∑

j=0

[PLj ], the

fraction of P molecules that are i-liganded is hence

[PLi]
k∑

j=0

[PLj ]
=

[PLi]
[P ](1 + K1 X + K2 X2 + · · ·+ Kk Xk)

=:
[PLi]

[P ] Q(X)
.

87



88 mathematical model of the network

The polynomial Q(X) = 1 +
k∑

i=1

Ki X i appearing in the denominator is called

binding polynomial. The mean number of occupied sites M(X) can be written
as the logarithmic derivative of Q with respect to the logarithm of X , since

M(X) =

k∑
i=0

i [PLi]

k∑
i=0

[PLi]
=

X Q′(X)
Q(X)

=
d ln(Q(X))

d ln(X)
.

The two extreme cases of ligand binging are independent binding and fully
cooperative binding. In the first case, every site behaves independently and
hence the concentration of i-liganded site is given by

[PLi] =
(

k

i

)
[PL1]i,

and the binding polynomial is Q(X) = (1 + K X)k, with K = K1, and the

average number of ligands bound per P molecule is M(X) =
kKX

1 + KX
.

In the full cooperative case or Hill model, either none or all of the sites are
occupied, the only possible reaction is

P + kL −⇀↽− PLk

with equilibrium constant K and the binding polynomial is given by Q(X) =
1 + KXk, while the average number of ligands bound per P is

M(X) =
kKXk

1 + KXk
. (15.1)

All kind of intermediate models are possible, but since binding to an operator is
believed to be very cooperative, we will use the simple Hill model. It remains to
determine the concentration of ligand that is here the concentration of repressor
that are not bound to a doxycycline molecule.

Reaction of TetR repressor and doxycycline

The reaction between doxycyline Dox and the TetR repressor R is

R+Dox −⇀↽− RD,

where the RD complex consits of a doxycycline molecule bound to a repressor.
The equilibrium constant is

KRD =
[RD]

[R][Dox]
.

We are here interested in the proportion of free R molecules that can bind to
the kop binding sites of the operators of the two other genes and play the role
of the ligand in equation (15.1). The average number of bound sites is therefore

Mr([R]) =
kopKop[R]kop

1 + Kop[R]kop
,
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with Kop the equilibrium constant of the reaction between TetR and the oper-
ator, and the fraction of operator sites free of repressor is

kr −Mr([R])
kr

=
1

1 + Kop[R]kop
.

To write this fraction as a function of the doxycycline concentration, we call
[Rtot] the concentration of repressor present in the system in any form, either
free, bound to doxycycline or bound to an operator, so that

[Rtot] = [R] + KRD[R] [Dox] + kopKop[R] [Op],

where [Op] denotes the concentration of operators and is negligible compared
to the other quantities, and hence

[Rtot] ≈ [R] (1 + KRD[Dox]).

The average fraction of sites free of repressor can be written as a function of the
doxycycline concentration,

FRtot([Dox]) =
kr −Mr([R])

kr
=

(1 + KRD[Dox])kop

(1 + KRD[Dox])kop + Kop[Rtot]kop
. (15.2)

As an illustration of the shape of a Hill function, Figure 15.1 shows the plot
FRtot([Dox]) as a function of the doxycycline concentration.
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Figure 15.1: Plot of the average fraction of operator sites free of repressor as a function
of doxycycline. The function is given by equation (15.2), with the parameters kop = 7,
KRD = 0.1, Kop = 1 and [Rtot] = 5.

15.2 activator and transgene

The transactivator is a genetic module similar to the one studied in Part iii,
with the propensity functions described in the table below. The strength of the
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positive feedback propensity function depends on the doxycycline level through
the average fraction of sites free of repressor FRtot([Dox]) of equation (15.1),
more precisely

gDox(n) = FRtot([Dox]) · g(n), (15.3)

and there is no negative feedback, κ is constant.

The transgene behaves in a similar way as the activator except that it is not au-
tocatalytic, but its propensity function to switch from OFF to ON is a function
similar of the activator’s product. Its propensity function to go from OFF to
ON is

gT
Dox(n) = FRtot([Dox]) · gT (n), (15.4)

where n is the product of the activator.

15.3 process describing the network

As discussed at the begining of this Chapter, we model the network as a time-
continuous Markov process {X(t)}t≥0,

X(t) = (N(t), Y (t), M(t), Z(t)).

We recall that N(t) is the number of activator protein (Gal4) at time t, Y (t)
the state of the activator’s promoter, M(t) the number of transactivator protein
(GFP) at time t and Z(t) the state of the transgene’s promoter. The state space
of this process is hence N × {0, 1} × N × {0, 1} in the unbounded case, and in
the bounded case we replace N by the corresponding finite spaces. Let P denote
protein and O promoter for the activator, and PT respectivelly OT the same
for the transgene. The reactions and propensity functions defining the Markov
process {X(t)}t≥0 are summarized in the table below.

Reaction Rj Propensity function aj Change vector vj

R1: ∅ −→ P a1(n, y, m, z) = yµ · 1{(n+1,y,m,z)∈E} v1 = (1, 0, 0, 0)

R2: P −→ ∅ a2(n, y, m, z) = ν(n) v2 = (−1, 0, 0, 0)

R3: O0 −→ O1 a3(n, y, m, z) = gDox(n)(1 − y) v3 = (0, 1, 0, 0)

R4: O1 −→ O0 a4(n, y, m, z) = κ y v4 = (0,−1, 0, 0)

R5: ∅ −→ PT a5(n, y, m, z) = zµT · 1{(n,y,m+1,z)∈E} v5 = (0, 0, 1, 0)

R6: PT −→ ∅ a6(n, y, m, z) = νT (m) v6 = (0, 0,−1, 0)

R7: OT
0 −→ OT

1 a7(n, y, m, z) = gT
Dox(n)(1− z) v7 = (0, 0, 0, 1)

R8: OT
1 −→ OT

0 a8(n, y, m, z) = κT z v8 = (0, 0, 0,−1)

The functions gDox(n) and gT
Dox(n) are given in equations (15.3) and (15.4).



16
A MEAN FIELD EXAMPLE

16.1 description

In this chapter, we consider in more details a mean field model based on two
examples discussed in Part iii. At the activator level, we consider the autocat-
alytic model where positive feedback occurs through the intermediate reaction
of fast dimerization, as in Chapter 12. Since experimentally the transgene and
the transactivator are inserted at random at different loci, we choose to model
the effect of the transactivator on the transgene as semi-stochastic with a time
delay θ accounting for the average time the activator’s Gal4 proteins take to
reach the neighborhood of the transgene. The difference between this model
and the example discussed in Chapter 13 is that here we do not replace the
external variable by its mean value but we take a mean field approximation of
the feedback propensity function, see the description below for more details.

We are mainly interested in the marginal bivariate distributions of the protein
number and state of the promoter, once for the activator and once the transgene,
and not on the full distribution of the process {X(t)}t>0. More precisely, we
split the time-continuous Markov process {X(t)}t≥0,

X(t) = (N(t), Y (t), M(t), Z(t)),

into the two marginal processes

{XA(t)}t≥0, XA(t) = (N(t), Y (t))

and

{XT (t)}t≥0, XT (t) = (M(t), Z(t)),

and look for the invariant distributions of {XA(t)}t≥0 and {XT (t)}t≥0.

Since now the reactions concerning {XA(t)}t≥0 and {XT (t)}t≥0 are decoupled,
the two marginal processes behaves as the simple genetic module described in
Part iii and the method of transfer matrices of Chapter 10 can be used to
compute their respective equilibrium distribution. Indeed, from the chemical
master equation (CME) of the full process, one can derive the CME of one of
the marginal processes by summing over all possible values of the other marginal
process. Since they are decoupled, each term involving the other marginal pro-
cess vanishes, and we can thus handle the two processes separatly, using the
evolution patterns described in the following tables.
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92 a mean field example

Summary of the marginal process {XA(t)}t≥0

Reaction Rj Propensity function aj Change vector vj

R1: ∅ −→ P a1(n, y) = yµ · 1{(n+1,y)∈E} v1 = (1, 0)

R2: P −→ ∅ a2(n, y) = ν · n v2 = (−1, 0)

R3: O0 −→ O1 a3(n, y) = gDox(n)(1 − y) v3 = (0, 1)

R4: O1 −→ O0 a4(n, y) = κ y v4 = (0,−1)

The degradation rate is here a constant ν multiplying the number of proteins,
taking into account for protein degradation in monomer or dimer form. The
positive feedback rate function gDox(n) is given by

gDox(n) = FRtot([Dox]) · (g1 · E5
n + g0),

with FRtot the Hill type function defined in equation (15.2) and E5
n is the fifth

moment at equilibrium of the number of dimers when a total of n proteins are
present in the system, see Chapter 12 and Part v for more details on fast dimer-
ization. The fifth moment correspond to the 5 sites where Gal4 can bind to the
promoter.

Summary of the marginal process {XT (t)}t≥0

Reaction Rj Propensity function aj Change vector vj

R5: ∅ −→ PT a5(m, z) = zµT · 1{(m+1,z)∈E} v5 = (1, 0)

R6: PT −→ ∅ a6(m, z) = νT ·m v6 = (−1, 0)

R7: OT
0 −→ OT

1 a7(t, z) = E(gDox(N(t− θ)))(1 − z) v7 = (0, 1)

R8: OT
1 −→ OT

0 a8(m, z) = κT z v8 = (0,−1)

The degradation rate is here proportional to the number of transgene proteins.
In this artificial network, the promoters of the activator and the transgene are en-
gineered alike, hence the propensity functions describing their behaviour should
be similar. The transactivator and the transgene are located at different loci,
hence we choose a mean field approximation with time delay to describe the
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propensity function to activate the transgene’s promoter and take into account
the fact that the transgene is not regulated by its own product, and we set

gT
Dox(t) = E(gDox(N(t− θ))).

For concrete computation, we restrict to the equilibrium regime in the finite
state space setting E = {0, 1, . . . , Λ} × {0, 1} for both marginal processes. We
treat the doxycycline concentration level as a fixed parameter, and compute the
quantities of interest for various concentration levels.

The process {XT (t)}t>0 is time-nonhomogeneous due to the function gT
Dox(t) =

E(gDox(N(t− θ))), and we have to check that the conditions of Theorem 15 in
Appendix B are fulfilled, in our case that

∞∫
0

(√
gT
Dox(t)−

√
gT
Dox(∞)

)2

dt < ∞.

With the special shape of the function gT
Dox(t), the same analysis as in Chapter

13 can not be carried out. Nevertheless, we can prove convergence using the fact
that an ergodic Markov process on a finite state space converges geometrically
to its invariant distribution. More precisely, let πA(n, y) denote the marginal
invariant distribution of the activator process,

πA(n, y) = lim
t→∞P (XA(t) = (n, y)).

This quantity can be computed using the method of Chapter 10.

Theorem 10 The time-nonhomogeneous process {XT (t)}t>0 has the same in-
variant distribution πT (m, z), 0 ≤ m ≤ Λ, z = 0, 1, as the simple time ho-
mogeneous process having the same propensity functions but gT

Dox(t) replaced
by

gT
Dox(∞) =

∑
y=0,1

Λ∑
n=0

gDox(n)πA(n, y).

Proof: Using Doeblin condition, see for example Rosenthal (1995) Section 6.2,
there exist positive constants C and α ∈ (0, 1) such that

|P (XA(t) = (n, y))− πA(n, y)| < C αt.

Equivalently, if f is a bounded nonnegative function over {0, 1, . . . , Λ},

∣∣ ∑
y=0,1

Λ∑
n=0

f(n)P (XA(t) = (n, y))−
∑

y=0,1

Λ∑
n=0

f(n)πA(n, y)
∣∣ < 2 C αt

Λ∑
n=0

f(n).

Applying this inequality to the function

gT
Dox(t) =

∑
y=0,1

Λ∑
n=0

gDox(n)P (XA(t− θ) = (n, y))

yields
|gT
Dox(t)− gT

Dox(∞)| < K αt, 0 < K < ∞.



94 a mean field example

Since gT
Dox(t) is strictly positive and bounded, using the same arguments as in

Theorem 9 Chapter 13, one can show the equivalence

∞∫
0

(√
gT
Dox(t)−

√
gT
Dox(∞)

)2

dt < ∞ ⇐⇒
∞∫
0

(
gT
Dox(t)− gT

Dox(∞)
)2

dt < ∞,

and the right side holds since

∞∫
0

(
gT
Dox(t)− gT

Dox(∞)
)2

dt < K

∞∫
0

e2 ln(α)tdt < ∞.

The theorem is thus proved since the other conditions in Theorem 15 in Ap-
pendix B are automatically fulfilled in our setting. �
Hence we can also compute the marginal equilibrium distribution πT in a simple
way using the method of Chapter 10.

16.2 computational results

We show here what can typically happen for this network, using the Matlab
script given in Section C.2 of Part C. The function FRtot([Dox]) is plotted in
Figure 15.1 with the same parameters as we use here. The other parameters
are chosen to exhibit some interesting features of the model. Moreover, we take
the same parameter for the activator and the transgene to emphasize the role
of positive feedback for the activator and of the mean field regulation for the
promoter. The parameters are given in the following table.

Activator Transgene

µ = 800 µT = 800
ν = 9 νT = 9

g1 = 10−4 not applicable
g0 = 150 not applicable
κ = 500 κT = 500

Figure 16.1 displays the equilibrium mean and variance of N(t), M(t), Y (t)
and Z(t). The mean protein production is higher for the transgene due to the
mean field propensity function that ensure a high probability to be ON for the
transgene even when there are few activator’s protein. The most interesting
feature is that the response to doxycycline exhibits a peak in the variance of
the number of protein for the activator while for the transgene the response is
graded and quite commensurable with the mean. More details are given in the
discussion below the figure.

For the activator, the coefficient of variation and the variance to mean ratio also
exhibit a peak for the activator, while for the transgene the response decreases
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Figure 16.1: In each plot, the curves related to the transactivator are in blue and
those related to the transgene in green. On the top left, the mean protein production
is plotted against the doxycycline concentration level. It appears that for low levels of
doxycycline, here until about 45, the two curves can not be distinguished. This feature
occurs in every plots of this Figure and of Figure 16.2. For high levels of doxycyline, the
transgene produces more proteins than the activator. On the top right, the variance
is plotted against the doxycycline level. In the autocatalytic case, one can clearly see
a peak in the variance, while in the case of the transgene, variance is commensurable
with the mean for levels higher than 50, see Figure 16.2. The difference of behaviour
is obvious when looking at Figures 16.3 and 16.4. On the bottom left, the probability
to be ON is plotted against the doxycycline level. The transgene reaches maximal
variance before the activator, corresponding to the level where the probability to be
ON and the probability to be OFF are equal. At high doxycycline concentration, the
transgene shows less variance, which can be explained when looking at the Figures
16.3 and 16.4, where we see that the transgene is more likely to be ON at high levels.

with adjunction of doxycycline. For doxycycline concentration levels higher than
50, the variance to mean ratio for the transgene is almost 1, which possibly in-
dicate a poissonian behaviour, and the covariance goes to 0. These two features
are not surprising when compared to the closed formulae of Section 9.2 where
it is showed that the variance to mean ratio goes to 1 and the covariance goes
to 0 as gT

Dox(∞) goes to ∞.

For the activator, the variance to mean ratio is substantially larger than 1, indi-
cating for clusters, which is verified in the bimodal distributions of Figure 16.3
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that shows that the protein number is likely to take either a value between 10
and 30 or a value between 70 and 110.
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Figure 16.2: In each plot, the curves related to the transactivator are in blue and those
related to the transgene in green. The top left plot shows the evolution of the coefficient
of variation of the protein number, defined as standard deviation over mean, and the
top right plot the variance to mean ratio. For the activator, the curves show a peak,
while for the transgene they decrease gradually with the doxycycline concentration
level. For doxycycline concentrations over 50, the variance to mean ratio is very close
to 1, indicating a poissonian type behaviour. The bottom line displays the covariance
of the number of proteins and the state of the promoter, left in the normal scale and
right in semilogarithmic scale. The two variables are positively correlated, strongly
for the transgene and weakly for the transgene.

Figures 16.3 and 16.4 show the qualitative behaviour of the invariant distribu-
tion of XA(t) = (N(t), Y (t)) respectivelly XT (t) = (M(t), Z(t)). The auto-
catalytic activator displays bimodal distribution, and the transgene unimodal
distributions with a mode moving forward as a response to the adjunction of
doxycycline.

The transition from almost no production at a low doxycycline concentration
to full production is very abrupt, indicating that the control of the network
through the safe doxycycline drug is very tight, providing an effective genetic
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Figure 16.3: Invariant distribution of the number of proteins produced by the activator
for some levels of doxycycline. The green curve represent the ON state of the promoter
and the blue one the OFF state, and the doxycycline concentration is indicated above
the plots. Most of the distributions are bimodal, which explains the peaks in Figures
16.1 and 16.2.

toggle switch. The parameters used here were chosen to emphasize the main
features of the system. In a slightly different setting and with other parameters
chosen to fit at best, we showed in Fournier et al. (2007) that experimental
results could be reproduced qualitatively by our model.
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Transgene
Evolution of the probability as a function of the doxycycline level
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Figure 16.4: Invariant distribution of the number of proteins produced by the transgene
for some levels of doxycycline. The green curve represent the ON state of the promoter
and the blue one the OFF state, and the doxycycline concentration is indicated above
the plots. The distributions are unimodal and move gradually to the right, which
explains the graded response to doxycycline in Figures 16.1 and 16.2.



Part V

THE DIMERIZATION PROCESS





17
MATHEMATICAL MODEL OF THE DIMERIZATION

17.1 introduction

Dimerization is the chemical union of two identical molecules. Here we consider
a fixed amount of a protein P present either in form of a monomer or a dimer
and the chemical reactions

M+M c+−−⇀↽−−
c−

D

where M and D stand for monomer and dimer. This process is a simple birth
and death process with reflecting barriers and one can easily give a formula for
its invariant measure.

However, this formula involves special functions and is not very convenient for
computation. In the following we give a recurrence formula for the moments
of the invariant measure. The use of recurrence is particularly meaningful if
one wishes to compute repeatedly the moments for 1 up to N proteins, as in
Chapter 12, where the dimerization process is supposed to be much faster than
the other reactions in the system, validating approximatively the hypothesis of
a fixed amount of proteins.

17.2 invariant measure and generating function

Let N denote the constant amount of protein, N2 := ⌊N/2⌋ the integer part of
N/2, representing the largest possible number of dimers, and D(t) the number
of dimers at time t. The number of monomers at time t is simply N − 2D(t).
The chemical master equation in this particular setting reads (see Theorem 1)

dP (D(t) = i)
dt

=c+(N − 2i + 2)(N − 2i + 1)P (D(t) = i− 1)

+ c−(i + 1)P (D(t) = i + 1)
− (c+(N − 2i)(N − 2i− 1) + c−i)P (D(t) = i).

By the classical theory of Markov processes with finite state space, there exists
a unique invariant measure, let us denote it π, and it has to satisfy

0 =c+(N − 2i + 2)(N − 2i + 1)π(i− 1) + c−(i + 1)π(i + 1)
− (c+(N − 2i)(N − 2i− 1) + c−i)π(i). (17.1)
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Lemma 6 For 0 ≤ i < ⌊N2⌋, π satisfy the difference equation

π(i) = qiπ(i + 1)

with qi =
c−(i + 1)

c+(N − 2i)(N − 2i− 1)
.

Proof: The boundary conditions in (17.1) are for i = 0

0 = c−π(1)− c+N(N − 1)π(0)

and for i = N2 − 1

0 = c+(N − 2N2 + 2)(N − 2N2 + 1)π(N2 − 1) + c−N2π(N2),

hence the difference equation holds at the boundary.
If the relation holds for some i − 1, 1 ≤ i ≤ N2 − 2, then it holds for i since
plugging it into (17.1) yields

0 =c+(N − 2i + 2)(N − 2i + 1)qi−1π(i) + c−(i + 1)π(i + 1)
− (c+(N − 2i)(N − 2i− 1) + c−i)π(i)

=c−(i + 1)π(i + 1)− c+(N − 2i)(N − 2i− 1)π(i),

hence π(i) = qiπ(i + 1). �

Up to a proportionality factor, the invariant measure can therefore be written
as

π(i) ∝ (q0q1 · · · qi−1)−1 ∝
(

c+

c−

)i
N !

(N − 2i)! i!
.

The proportionality factor is the normalization constant

ZN (c+, c−) :=
N2∑
i=0

(
c+

c−

)i
N !

(N − 2i)! i!
.

The generating function

G(s) :=
N2∑
i=0

π(i) si

can be written as a quotient of confluent hypergeometric functions, that are in
fact polynomials.

Theorem 11 The generating function of the dimers number at equilibrium is
given by

G(s) =


sN2

1F1

“
−N2, 1

2 ,− c−
4c+s

”
1F1

“
−N2, 12 ,− c−

4c+

” if N is even,

sN2
1F1

“
−N2, 3

2 ,− c−
4c+s

”
1F1

“
−N2, 32 ,− c−

4c+

” if N is odd.
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Proof: For simplicity, we will write α = c+
c− . From the above relations, summing

the other way round and multiplying by N2!
N2!

,

G(s) ∝
N2∑
i=0

N ! (α s)i

(N − 2i)! i!
=

N ! (α s)N2

N2!

N2∑
j=0

N2!
(N − 2(N2 − j))! (N2 − j)!

(α s)−j .

To transform this formula, we will use the following relations:

(2j)! =(2j)(2j − 2)(2j − 4) · · · 2 · (2j − 1)(2j − 3) · · · 1

=2j j! · 2j 1
2

(
1
2

+ 1
)
· · ·
(

1
2

+ j − 1
)

= 4j j!
(

1
2

)
j

(2j + 1)! =2
(

1
2

+ j

)
(2j)! = 4j+1 j!

(
1
2

)
j+1

= 4j j!
(

3
2

)
j

N2!
(N2 − j)!

=(−1)j (−N2)(−N2 + 1) · · · (−N2 + j − 1)

=(−1)j (−N2)j ,

(·)j denoting the Pochhammer symbol or rising factorial (·)(·+ 1) · · · (·+ j− 1).
In the case N is even, N − 2(N2 − j) = 2j, and the generating function is
proportional to

G(s) ∝ N ! (α s)N2

N2!

N2∑
j=0

(−N2)j(
1
2

)
j

· (−4αs)−j

j!
=

N ! (α s)N2

N2!
1F1

(
−N2,

1
2
,− 1

4αs

)
,

while if N is odd N − 2(N2 − j) = 2j + 1 and

G(s) ∝ N ! (α s)N2

N2!

N2∑
j=0

(−N2)j(
3
2

)
j

· (−4αs)−j

j!
=

N ! (α s)N2

N2!
1F1

(
−N2,

3
2
,− 1

4αs

)
.

The fact that G(1) = 1 completes the proof. �

Remark 3 The generating function formalism is not very appropriated to com-
pute π using the relation

π(i) =
di

dsi

∣∣∣
s=0

G(s)
i!

.

A numerical algorithm to compute efficiently the invariant measure can be found
in Pasquier (2008).





18
RELATIONS BETWEEN PARTITION FUNCTIONS AND
MOMENTS

The usual representation of the invariant measure presented in Section 17.2 is
not adapted for our practical example of Chapter 12 where we need to compute
moments repeatedly for all possible N between 0 and some large integer Λ. In
this Chapter, we develop a recursive method for computing the moments for N
based only on the successive means for n < N . We first discuss the theoretical
relations between the partition function and the subgroup of involutions of N
elements in Section 18.1, translate them in terms of mean and variance in Sec-
tion 18.2, discuss the relations between higher moments and successive means
in Section 18.3, and finally provide a simple numerical algorithm to compute
recursively the means in Section 18.4.

18.1 partition function and involutions

The partition function is closely related to the subgroup of involutions IN of
the permutation group of N elements. Involutions are permutations σ such that
σ ◦ σ = id, or equivalently a permutation that consists only in transpositions
(exchanges of two elements) and fixed points. As illustrated in the example of
Figure 18.1, we adopt the notation

σ = (j1, k1) . . . (ji, ki)

for the involution that exchanges jm and km and keep the other points fix,
1 ≤ m ≤ i ≤ N2, and fix(σ) = N − 2i for its number of fixed points.

Example of an involution

1 2 5 63 4 7

1 5 2 47 6 3

σ

Figure 18.1: Involution exchanging 2 and 5, 3 and 7, 4 and 6, or in the notation
described above σ = (2, 5)(3, 7)(4, 6). This involution has 1 as unique fixed point.

The number of involutions with N − 2i fixed points, or equivalently the number

105
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of ways of choosing i transpositions in a set of N elements, is given by∑
σ∈IN

1{fix(σ)=N−2i}(σ) =
(

N

2

)
·
(

N − 2
2

)
· · ·
(

N − 2(i− 1)
2

)
· 1
i!

=
N !

(N − 2i)! i! · 2i
.

Hence we can rewrite the partition function as

ZN(c+, c−) :=
N2∑
i=0

(
2c+

c−

)i
N !

(N − 2i)! i! 2i

=
∑

σ∈IN

(
2c+

c−

)N−fix(σ)
2

=
(

2c+

c−

)N/2 ∑
σ∈IN

(√ c−
2c+

)fix(σ)

.

According to Randrianarivony (1997), ZN can be identified as the Taylor serie of
a Stieltjes type continuous fraction. Here we consider a different approach and

give simple recurrence relations for QN (x) :=
∑

σ∈IN

xfix(σ), where x :=
√

c−
2c+

.

The partitions function expressed in this way is simply ZN (x) =
QN(x)

xN
.

Lemma 7 QN(x) satisfies the recurrence relation QN+1(x) = xQN (x)+Q′
N (x),

where prime denotes differentiation with respect to x.

Proof: Writing σ = (j1, k1) . . . (ji, ki) for the involution that exchanges im and
jm and keep the other points fixed, one see that each element of IN is an element
of IN+1 and furthermore if n is fixed by σ = (j1, k1) . . . (ji, ki) ∈ IN , then there
is an involution

σ̃ := σ ◦ (n, N + 1) = (j1, k1) . . . (ji, ki)(n, N + 1) ∈ IN+1,

or more precisely there is a natural bijection between the involutions of IN that
fixes the point n and the involutions of IN+1 that exchange n and N + 1, hence
we can partition IN+1 depending on whether the involution fixes N + 1 or not

IN+1 ={σ ∈ IN+1; σ fixes N + 1} ∪ {σ ∈ IN+1; σ does not fix N + 1}
=IN ∪

⋃
σ∈IN

⋃
1≤n≤N,

σ fixes n

{σ ◦ (n, N + 1)}.

An involution in IN seen as elements of IN+1 have one fixed point more than the
same involution seen as an element of IN , and the terms on the right-hand side
of the ∪ have one fixed point less than the involution of IN they are combined
with. Therefore we can write QN+1 as stated above

QN+1(x) =
∑

σ∈IN+1

xfix(σ) =
∑

σ∈IN

xfix(σ)+1 +
∑

σ∈IN ,

fix(σ)≥1

∑
1≤j≤fix(σ)

xfix(σ)−1

=x
∑

σ∈IN

xfix(σ) +
∑

σ∈IN ,

fix(σ)≥1

fix(σ)xfix(σ)−1

=xQN (x) + Q′
N(x).

�
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Remark 4 The partition above also give the following relation between the num-
ber of elements in IN+1 and IN : since

∑
σ∈IN+1

1 =
∑

σ∈IN

(1 + fix(σ)), we have

∑
σ∈IN

fix(σ) =| IN+1 | − | IN |,

where | · | denotes the number of elements in the set.

Theorem 12 The derivative of QN is given by Q′
N(x) = N · QN−1(x), and

hence
QN+1(x) = xQN (x) + N ·QN−1(x). (18.1)

Proof: One can easily compute Q1(x) = x and Q2(x) = x2 + 1. If Q′
N (x) =

NQN−1(x) for some N , using Lemma 7 for the first and last equality and by
the induction hypothesis for the second one, we have

Q′
N+1(x) =QN (x) + xQ′

N (x) + Q′′
N (x) = QN (x) + xNQN−1(x) + NQ′

N−1(x)
=(N + 1)QN(x),

and hence, using Lemma 7 again, (18.1) holds. �

Remark 5 A generating function for the polynomials QN (x).

Since the coefficient of QN rapidly increase, we try to define a kind of moment
generating function for the QN as follow:

hx(t) :=
∞∑

N=0

QN(x)
tN

N !
,

where we treat x as a parameter. Multiplying both sides of (18.1) by
tN

N !
and

summing over all possible N leads to the equation

∞∑
N=1

QN+1(x)
tN

N !︸ ︷︷ ︸
=h′x(t)−Q1(x)

= x
∞∑

N=1

QN (x)
tN

N !︸ ︷︷ ︸
=x(hx(t)−1)

+
∞∑

N=1

N QN−1(x)
tN

N !︸ ︷︷ ︸
=thx(t)

.

With Q1(x) = x, this implies that hx(t) satisfies the differential equation

h′x(t) = (t + x)hx(t)

with initial condition hx(0) = Q0(x) = 1, which has the unique solution

hx(t) = e
t2
2 +xt

This function is exactly the moment generating function of a normal random
variable X ∼ N (x, 1) with mean x and variance 1, and hence QN(x) can also
be computed as

QN (x) =
dN

dtN

∣∣∣
t=0

e
t2
2 +xt
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18.2 mean and variance.

In this section, we give a recursive formula to easily compute the mean and
variance of D under the invariant measure π. Let us call

y =
c+

c−
and x =

√
c−
2c+

so that we allow ourselves to freely switch from x to y = x−2/2, and Z(x) and
Z(y) both mean Z(c+, c−) with c+ and c− expressed by x or y. The partition
function defined in Section 17.2 in the y-notation is a polynomial of degree
N2 = ⌊N/2⌋, given by

ZN(y) =
N2∑
i=0

yi

(N − 2i)!i!

One can write the following two polynomials as combination of partition func-
tions

N2∑
i=1

iyi

(N − 2i)!i!
=y

N2∑
i=1

iyi−1

(N − 2− 2(i− 1))!(i− 1)! · i

=y

N2−1∑
i=0

yi

(N − 2− 2i)!i!
= yZN−2(y)

N2∑
i=1

i2yi

(N − 2i)!i!
=

N2∑
i=2

i(i− 1)yi

(N − 4− 2(i− 2))!(i− 2)! · i · (i− 1)

+
N2∑
i=1

iyi

(N − 2− 2(i− 1))!(i− 1)! · i
=y2ZN−4(y) + yZN−2(y)

so that the mean and the second moment can be expressed in term of y as

EN (y) =
1

ZN(y)

N2∑
i=1

iyi

(N − 2i)!i!
= y

ZN−2(y)
ZN (y)

(18.2)

E2
N (y) =

1
ZN(y)

N2∑
i=1

i2yi

(N − 2i)!i!
= y2 ZN−4(y)

ZN(y)
+ y

ZN−2(y)
ZN(y)

=y
ZN−2(y)
ZN(y)

(
y
ZN−4(y)
ZN−2(y)

+ 1
)

= EN (y)
(
1 + EN−2(y)

)
which becomes in the x-notation with

EN (x) =
x−2

2
xN

xN−2

N !
(N − 2)!

QN−2(x)
QN (x)

=
N(N − 1)

2
QN−2(x)
QN (x)

(18.3)

E2
N (x) =EN (x)

(
1 + EN−2(x)

)
(18.4)

Combining (18.3) and (18.4), the variance is

σ2
N (x) = E2

N (x) − (EN (x)
)2 = EN (x)

(
1 + EN−2(x)− EN (x)

)
(18.5)

Remark 6 This last equation confirms the intuitive fact that

EN (x) − EN−2(x) ≤ 1.
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18.3 higher moments

Generalization of 18.4 for higher moments requires some efforts... Let Pj+1(i)
denote the polynomial

Pj+1(i) := i · (i− 1) · · · (i− 2) · · · (i− j) =: ij+1 −
j∑

l=1

al,ji
l.

With the convention that Ei = 0 for i < 0, the higher moments can be computed
as combinations of the means for lower total number of proteins.

Lemma 8 EN (Pj+1(D)) = EN−2j · EN−2(j−1) · · ·EN−2 · EN .

Proof: We show that both terms are equal to yj+1 ZN−2(j+1)

ZN
.

ZN · EN (Pj+1(D)) =
N2∑
i=1

Pj+1(i)yi

(N − 2i)! i!
=

N2∑
i=1

i · (i− 1) · · · (i− 2) · · · (i− j) yi

(N − 2i)! i!

=
N2∑
i=1

yi

(N − 2i)!(i− j − 1)!
· 1{i>j}

=
N2∑

i=j+1

yi

(N − 2(i− j − 1)− 2(j + 1))! (i− j − 1)!

=
N2−(j+1)∑

i=0

yi+j+1

(N − 2(j + 1)− 2i)! i!

=yj+1ZN−2(j+1),

and with (18.2), we have

EN−2j · EN−2(j−1) · · ·EN−2 · EN =y
ZN−2(j+1)

ZN−2j
· y ZN−2j

ZN−2(j−1)
· · · y ZN−2

ZN

=yj+1 ZN−2(j+1)

ZN
. �

From the preceding Lemma, we can give a formula for arbitrary moments:

Theorem 13 The j + 1-th moment of D is given by

Ej+1
N = EN−2j · EN−2(j−1) · · ·EN−2 · EN +

j∑
l=1

al,jEl
N .

Proof: From the definition of the coefficients al,j ,

EN (Pj+1(D)) = Ej+1
N −

j∑
l=1

al,jEl
N ,

hence with Lemma 8 the statement holds. �
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We are mainly interested in the moments of low order and can write them down
as functions of the means:

E2
N =EN + EN−2EN

E3
N =EN−4EN−2EN + (1 + 2)E2

N − (1 · 2)EN

=EN + 3 · EN EN−2 + EN−4EN−2EN

E4
N =EN−6 · · ·EN−2EN +

3 · 4
2

E3
N − (2 + 3 + 6)E2

N + 3! · EN

=EN + 7 · EN−2EN + 6 · EN−4EN−2EN + EN−6 · · ·EN−2EN

E5
N =EN−8 · · ·EN +

4 · 5
2

E4
N − (2 + 3 + 4 + 6 + 12)E3

N

+ (6 + 12 + 24)E2
N − 4! · EN

=EN−8 · · ·EN−2EN + 10 · E4
N − 27 · E3

N + 42 · E2
N − 24 · ·EN

=EN + 31EN−2EN + 33 · EN−4EN−2EN

+ 10 · EN−6EN−4EN−2EN + EN−8 · · ·EN

We can summarize some relation between the moments, with the notation

ej := EN−2j · · ·EN−4EN−2EN ,

EN E2
N E3

N E4
N

EN = e0

E2
N = e1 +1

E3
N = e2 −2 +3

E4
N = e3 +6 −11 +6

E5
N = e4 −24 +42 −27 +10

Representation of the moments of
low order as in Theorem 13.

e0 e1 e2 e3 e4

EN 1
E2

N 1 1
E3

N 1 3 1
E4

N 1 7 6 1
E5

N 1 31 33 10 1

Representation of the moments of
low order in terms of ej .

18.4 numerical computation and asymptotic of the mean

Due to the fast increase of his coefficients, QN cannot be efficiently computed
for large N . However, the computation of the mean only requires to compute
the quotient QN−2/QN .

Defining cN (x) :=
QN−1(x)
QN (x)

, the recurrence (12) becomes

1
cN+1(x)

= x + NcN (x), (18.6)

and the ratio

QN−2(x)
QN(x)

=cN−1(x) · cN (x) =
1

N − 1

( 1
cN (x)

− x
)
cN (x)

=
1

N − 1
(
1− x cN (x)

)
,
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allowing to write the mean (18.3) and the second moment (18.4) as

EN (x) =
N

2
(
1− x cN (x)

)
E2

N (x) =
N

2
(
1− x cN (x)

)(
1 +

N − 2
2

(
1− x cN−2(x)

))
=

N

2
(
1− x cN (x)

)(N

2
(
1− x cN−2(x)− xcN−2(x)

))
With (18.5), since EN−2(x) − EN (x) = −1 − N − 2

2
xcN−2 +

N

2
xcN , we have

the inequality
NcN(x) ≥ (N − 2)cN−2(x).

Theorem 14 cN (x) → 0 as N →∞.

Proof: Suppose that the lim sup of the sequence of non-negative numbers {cN(x)}N≥1

is strictly positive,
lim sup
N→∞

cN (x) = a > 0.

Using relation (18.6), one gets

a = lim sup
N→∞

cN (x) =
1

x + lim inf
N→∞

NcN (x)
=:

1
x + b

,

where b := lim inf
N→∞

NcN (x) has to be finite. Isolating cN (x) in (18.6) yields

cN (x) =
1

NcN+1(x)
− x

N

and we get

a = lim sup
N→∞

cN (x) = lim sup
N→∞

(
1

NcN+1(x)
− x

N

)
=

1
lim inf
N→∞

NcN+1(x) · N+1
N+1

=
1
b
.

Since x > 0 and b < ∞, this leads to the contradiction
1

x + b
=

1
b
. �

The above Theorem leave to the somehow counterintuitive conclusion that the
fraction of dimers is about 1

2 for N large, more precisely

lim
N→∞

EN

N
=

1
2
,

for every set of positive parameters c+, c−.
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A
SOME NOTIONS OF MOLECULAR BIOLOGY

In this appendix we briefly outline some important biological notions. This
is intended as a practical guide for a mathematician without any background
in biology and thus we do not claim neither completeness nor sharp precision.
Useful supplementary informations can be found in Kimmel & Axelrod (2002),
Waterman (2000) or in Ptashne (2004).

a.1 deoxyribonucleic acid or dna
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Figure A.1: Illustration
of the structure of a part
of the DNA double he-
lix. (copylefted image,
source: Wikipedia)

Deoxyribonucleic acid (DNA) is a polymer of simple
units called nucleotides, consisting of a base, a sugar
and a phosphate group. The backbone of the DNA
strand is formed by alternating phosphate and sugar,
and one of the four basis adenosine (A), cytosine (C),
guanine (G) or thymine (T) is attached at each sugar.
The bases can bind to each other according to the so-
called pairing rule: an A base can only pair with a C
base, while a G base can only pair with a T base. The
pairing is due to weak hydrogen bonds, two bonds for
AT and three bonds for GC, hence the pair AT can
be broken with less energy than the pair GC.
As illustrated in Figure A.1, DNA appears in living
organisms as two complementary strands, a bases se-
quence in one strand is bound to its negative sequence
in the other strand according to the base pairing rule,
for example the sequence ACCATCGA is bound to
TGGTAGCT . Geometrically, the two strands take
the shape of a double helix. Moreover, each strand
has a polarity or directionality, the direction goes
from the end called 5’ and to the end 3’, and the
two complementary strands run in opposite direction
(the names 5’ and 3’ come from the way each sugar
is attached with one phosphate, for more details see
Ptashne (2004)).
One turn of the helix corresponds to 10 bases. The
whole quantity of DNA present in a living cell con-
sists of about 3×109 bases in a human cell and about
5×106 bases in the extensively studied intestinal bac-
terium Escherichia coli.
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The fact that the weak hydrogen bonds can be broken or rejoined easily and
the base pairing rule make perfect duplication possible. During replication the
hydrogen bonds between the two strands are broken and each strand is used as
a template to build two new double strands, as schematized in Figure A.2.
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Figure A.2: Illustration of the DNA replication process.

a.2 genes and rna

A gene is a subsequence of a DNA double strand that codes for a protein, typi-
cally about 1000 pairs of bases. The first step of gene expression is the transcrip-
tion of one strand of gene into ribonucleic acid or RNA, a linear molecule. An
enzyme called RNA polymerase binds near the beginning of a gene and initiate
the transcription process. This process is very similar to the DNA replication
process, except that only one strand of a subsequence of the DNA is copied and
that the thymine base (T) is replaced by its unmethylated form called uracil
(U), see Figure A.3.
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Figure A.3: Illustration of the RNA transcription process.

There are two types of RNA molecules, some function in the cell as end products
while other called messenger RNA or short mRNA are devoted to synthesize
proteins, see Section A.3.

a.3 genetic code, amino acids and proteins

A protein is an organic compound made of amino acids and is synthesized during
mRNA translation. An ordered triplet of the bases A, U, G, C is called a
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codon. Roughly speaking, the genetic code is a mapping from the set of all 64
codons to the set containing 20 amino acids and a stop signal, and the mRNA
translation can be thought of as the translation of the successive codons in the
mRNA (beginning at the end 5’) into amino acids using the genetic code. A
special codon is AUG, that codes both for an amino acid and a start signal.
The genetic code is not one-to-one, in accordance with the central dogma of
molecular biology that states that no information can be transfered back from
protein to either protein or nucleic acid. Some proteins have structural functions,
other (enzymes) encourage chemical reactions.

a.4 gene regulation, operator and promoter

Although the genetic material contained in each cell is the same, the morphology
or function of different cells in an organism may be very distinct, for example a
skin cell and a cardiac muscle cell. One explanation is that different genes are
expressed. The control of the amount and timing of the gene product is referred
to as gene regulation, for simplicity we only consider here gene regulation at
the level of mRNA transcription. A gene can be ON or OFF, depending on
the state of its operator, a gene ON means that the gene is expressed through
successive mRNA transcription and translation and a gene OFF that mRNA
transcription is prevented. We will indistinctly refer to a gene ON or OFF, a
promoter ON or OFF or an operator ON or OFF.
The promoter is a region of DNA situated before the 5’ end of a gene that is
recognized by RNA polymerase to amorce transcription. The operator is a DNA
region situated beside the promoter and that can interact with an activator or
a repressor, both DNA binding proteins. The activator facilitate the interaction
between the promoter and the RNA polymerase and thus enhance mRNA tran-
scription, while the repressor binds to non coding DNA region very close to the
promoter and block or interfere with the RNA polymerase progression on the
strand. An interesting special case is self regulation, occuring when the gene
product is itself his own activator or repressor.





B
SOME MATHEMATICS

In this appendix we cite some theorems that we use in the thesis.

b.1 convergence of time-nonhomogeneous markov chains

We consider a nonhomogeneous Markov chain X(t) taking values in N, of instan-
taneous transition matrix Qt = (qt(i, j))i,j∈N. The following Theorem is proved
in Abramov & Liptser (2004).

Theorem 15 Assume that we can find nonnegative constants q(i, j) such that∑
j 6=i

q(i, j) < +∞ for fixed i,

and for i 6= j, ∫ ∞

0

(
√

qt(i, j)−
√

q(i, j))2dt < +∞,

and ∫
0≤s≤t, q(i,j)>0

qs(i, j)ds =
∫ t

0

qs(i, j)ds.

Let Q0 = (q(i, j))i,j∈N, and let X0(t) be the related N-valued Markov chain.
Suppose that Q0 is ergodic, that is that there is a unique probability measure π
such that πQ0 = 0 and

lim
t→∞P (X0(t) = j|X0(s) = i) = πj , ∀s, i, j.

Then
lim

t→∞P (X(t) = j|X(s) = i) = πj , ∀s, i, j.

b.2 fluctuation lemma

The following result is a slight modification of Lemma 4.2 in Hirsch et al. (1985):

Lemma 9 Let f : R+ → R be bounded and differentiable, ḟ denoting its deriva-
tive. There exist increasing sequences tn ↑ +∞ and sn ↑ +∞ , such that

f(tn) → f, ḟ(tn) → 0, and f(sn) → f, ḟ(sn) → 0

as n → +∞, where for a function f we denote

f := lim sup
t→+∞

f(t), f := lim inf
t→+∞ f(t).
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b.3 zeros of an exponential polynomial

We consider the exponential polynomial H(z) = (z2 + pz + q)ez + r, where p
is real and positive, q is real and nonnegative, and r is real. The following
Theorem is proved in Bellman & Cooke (1963), p. 449.

Theorem 16 Denote by ak (k ≥ 0) the sole root of the equation cot(a) =
(a2 − q)/p which lies on the interval (kπ, kπ + π). We define the number w as
follows:

1. if r ≥ 0 and p2 ≥ 2q, w = 1;

2. if r ≥ 0 and p2 < 2q, w is the odd k for which ak lies closest to
√

q − p2/2;

3. if r < 0 and p2 ≥ 2q, w = 2;

4. if r < 0 and p2 < 2q, w is the even k for which ak lies closest to
√

q − p2/2.

Then, a necessary and sufficient condition that all roots of H(z) = 0 lie to the
left of the imaginary axis is that

1. r ≥ 0 and r sin(aw)/(paw) < 1 or

2. −q < r < 0 and r sin(aw)/(paw) < 1.



C
MATLAB CODES

In this Appendix, we provide the Matlab codes for some of the computational
results presented graphically in the main text. To save some paper, we focus
on the examples that can not be found elsewhere in the literature, skipping the
simulation part that is a classic and some endless boring codes that I had the
pleasure to write during the PhD.

c.1 algorithm for the invariant measure

The following code is a computer implementation of the algorithm described in
Section 10.3.

function [piLambda,pLambda,EY,EN,VY,VN,Cov]=mes_inv(mu,nu,kappa,g,Lambda)

% algorithm to compute the invariant measure using the algorithm of
% Chapter 10
%
% entries: mu = scalar
% nu = scalar or vector of length Lambda+1, if scalar nu(n)=nu*n
% g = scalar or vector of length Lambda+1
% kappa = scalar or vector of length Lambda+1
% Lambda = maximal number of protein (boundary of the strip)
%
%
% outcome: piLambda = invariant measure, piLambda(n,1:2)=[pi_n(0),pi_n(1)] (columnwise)
% pLambda = marginal of the protein number
% =piLambda(:,1)+piLambda(:,2)
% EY = probability to be ON
% EN = mean protein production
% VY = variance on the promoter
% VN = variance of the protein production
% Cov= covariance of N and Y
%
%
% CAUTION: a vector can not be indexed by 0, hence eg g(n+1) as a vector
% means g(n) as a function

% conversion from scalar to vectors
if length(nu)==1

nu=nu*(0:Lambda);
end
if length(g)==1

g(1:Lambda+1)=g;
end
if length(kappa)==1

kappa(1:Lambda+1)=kappa;
end

c=kappa+mu; % c and d are usefull quantities
d=nu+g;

% normalized left eigenvector at the boundary
w(Lambda+1,:)=[kappa(Lambda+1),d(Lambda+1)]/(kappa(Lambda+1)+d(Lambda+1));
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norma=ones(1,Lambda); % initialize normalization to 1
for i=Lambda-1:-1:0

alpha=nu(i+2)/mu*[c(i+1)/d(i+1),1;kappa(i+1)/d(i+1),1];
w2=w(i+2,:)*alpha;
norma(i+1)=sum(w2);
w(i+1,:)=w2/norma(i+1); % tilde v in the algorithm

end
w(2:Lambda+1,:)=w(2:Lambda+1,:)./[cumprod(norma,2);cumprod(norma,2)]’;
% v in the algorithm
piLambda=w/sum(sum(w)); % properly renormalized

pLambda=sum(piLambda,2)’; % other values of interest
EY=sum(piLambda(:,2));
EN=sum((0:Lambda).*pLambda);
VY=EY.*(1-EY);
VN=sum((0:Lambda).^2.*pLambda)-EN.^2;
Cov=sum((0:Lambda)*piLambda(:,2))-EN*EY;

c.2 mean field model for the network

The following script has been used to compute the values appearing in the
graphics of Section 16.2.

% code to compute the steady states for several level of doxycyline,
% model of Chapter 16

clear all

% maximal number of proteins
Lambda=200;

% Hill function of the doxycyline
Dox=1:100;
kop=7;
Krd=0.1;
Kop=1;
Rtot=5;
FDox=(1+Krd*Dox).^kop./((1+Krd*Dox).^kop+Kop*Rtot^kop);

% parameters of the activator
mu=800;
nu=9;
g1=10^(-4);
g0=150;
kappa=500;
% dimerization
cp=5;
cm=3;

% fifth moment of the fast dimerization, see Chapter 18
x=sqrt(cm/(2*cp));
c=zeros(Lambda+1,1);
c(2)=1/x;
E(1:2)=0;
for i=3:Lambda+1

c(i)=1/(x+(i-2)*c(i-1));
E(i)=(i-1)/2 *(1-x*c(i));

end
nufast=nu*((0:Lambda)-2*E);
e2=E.*[0 0 E(1:Lambda-1)];
e3=e2.*[0 0 0 0 E(1:Lambda-3)];
e4=e3.*[0 0 0 0 0 0 E(1:Lambda-5)];
e5=e4.*[0 0 0 0 0 0 0 0 E(1:Lambda-7)];
E5=E+31*e2+33*e3+10*e4+e5;

% propensity function g(n)=g1*E^5_n +g0
gn=g1*E5+g0;

% parameters of the transgene
muT=800;
nuT=9;
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kappaT=500;

% preallocation for the activator
piAct=zeros(Lambda+1,2*length(Dox)); % matrix to store the invariant distribution
pAct=zeros(Lambda+1,length(Dox));% matrix to store the invariant distribution of proteins
EYAct=zeros(size(Dox)); % vector to store the successive values of proba to be on
ENAct=EYAct; % same for the mean protein number
VYAct=EYAct; % same for the variance of the promoter
VNAct=EYAct; % same for the the variance of the protein number
CovAct=EYAct; % same for the covariance N and Y for the promoter

% preallocation for the transgene
piTrans=zeros(Lambda+1,2*length(Dox)); % matrix to store the invariant distribution
pTrans=zeros(Lambda+1,length(Dox));% matrix to store the invariant distribution of proteins
EYTrans=zeros(size(Dox)); % vector to store the successive values of proba to be on
ENTrans=EYTrans; % same for the mean protein number
VYTrans=EYTrans; % same for the variance of the promoter
VNTrans=EYTrans; % same for the the variance of the protein number
CovTrans=EYTrans; % same for the covariance N and Y for the promoter

% computation for the successive levels of Dox

for i=1:length(Dox)
% activator
gDox=FDox(i)*gn;
[piA,pA,EY,EN,VY,VN,Cov]=mes_inv(mu,nu,kappa,gDox,Lambda);
piAct(:,2*i-1:2*i)=piA;
pAct(:,i)=pA;
EYAct(i)=EY;
ENAct(i)=EN;
VYAct(i)=VY;
VNAct(i)=VN;
CovAct(i)=Cov;
% transgene
gDoxT=gDox*pA’;
[piT,pT,EY,EN,VY,VN,Cov]=mes_inv(mu,nu,kappa,gDoxT,Lambda);
piTrans(:,2*i-1:2*i)=piT;
pTrans(:,i)=pT;
EYTrans(i)=EY;
ENTrans(i)=EN;
VYTrans(i)=VY;
VNTrans(i)=VN;
CovTrans(i)=Cov;

end
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lointain souvenir désagréable de leurs années d’études, et les mathématiciens,
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pour leur soutien constant, ainsi que mes amis, plus particulièrement ceux avec
qui j’ai eu la joie de passer tant de moments inoubliables en montagne et qui
m’ont permis de reprendre un grand bol d’oxygène qui souvent manque dans
les locaux glauques de l’université.
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