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Abstract

Background: Ecological, evolutionary and physiological studies have thus far provided an
incomplete picture of why some plants become invasive; therefore we used genomic resources to
complement and advance this field. In order to gain insight into the invasive mechanism of Centaurea
stoebe we compared plants of three geo-cytotypes, native Eurasian diploids, native Eurasian
tetraploids and introduced North American tetraploids, grown in a common greenhouse
environment. We monitored plant performance characteristics and life cycle habits and
characterized the expression of genes related to constitutive defense and genome stability using
quantitative PCR.

Results: Plant origin and ploidy were found to have a significant effect on both life cycle
characteristics and gene expression, highlighting the importance of comparing appropriate
taxonomic groups in studies of native and introduced plant species. We found that introduced
populations of C. stoebe exhibit reduced expression of transcripts related to constitutive defense
relative to their native tetraploid counterparts, as might be expected based on ideas of enemy
release and rapid evolution. Measurements of several vegetative traits were similar for all geo-
cytotypes; however, fecundity of tetraploids was significantly greater than diploids, due in part to
their polycarpic nature. A simulation of seed production over time predicts that introduced
tetraploids have the highest fecundity of the three geo-cytotypes.

Conclusion: Our results suggest that characterizing gene expression in an invasive species using
populations from both its native and introduced range can provide insight into the biology of plant
invasion that can complement traditional measurements of plant performance. In addition, these
results highlight the importance of using appropriate taxonomic units in ecological genomics
investigations.
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Background

Plant invasion into new environments is an extremely
costly problem, not only monetarily but also ecologically.
Invasive plant infestations reduce biodiversity by displac-
ing native species and can literally destroy some native
ecosystems by altering important ecosystem characteris-
tics [1]. However, the reasons why some plants remain at
low abundance in their home range but become domi-
nant in their new range is not well understood and
remains one of the most perplexing questions in ecology.
Multiple non-exclusive hypotheses have been proposed to
explain plant invasion into new environments [2].

Along standing idea in the field of invasion biology is that
of enemy release [3]. This hypothesis posits that intro-
duced plants escape their native co-evolved specialist ene-
mies, which allows them to rapidly increase their
numbers [3]. Blossey and Notzold (1995) proposed the
evolution of increased competitive ability (EICA) hypoth-
esis, which builds on the idea of enemy release and has
generated much interest in recent years [4]. The EICA
hypothesis suggests that costly defense against specialists
no longer enhances fitness of plants in the introduced
range; therefore introduced plants will evolve to put fewer
resources into defense allowing them to increase alloca-
tion of resources towards growth and reproduction [4].
This hypothesis has been supported by experimental evi-
dence, but only in part [5]. Multiple refinements to the
EICA hypothesis have been proposed to account for
altered selective pressures in the new environment includ-
ing the presence of generalist enemies [6-9] and changes
in resource availability [10,11].

The majority of studies examining EICA and other
hypotheses of plant invasion have focused on ecological,
physiological and to some extent chemical plant charac-
teristics [2,5,12,13]. However, with the current revolution
in genomics technologies, the question arises as to
whether ecological phenomena such as plant invasion can
be better understood by studies of genetics or gene expres-
sion profiling. The development of genomics resources for
non-model species of invasive weeds is increasingly
becoming possible as new technologies become more
available and affordable, as demonstrated by Broz et al.
2007 (spotted knapweed) and Anderson et al. 2007 (leafy
spurge), aiding in the ability of researchers to investigate
the biology of invasive weeds [14,15]. In regards to eco-
logical hypotheses, it may be particularly useful to charac-
terize expression of genes related to plant defense and
competitive ability.

Recently, an EST (expressed sequence tag) library resource
was developed for the problematic invasive plant, Centau-
rea stoebe L. (Gugler) Hayek (also known as C. maculosa
Lam, C. biebersteinii, spotted knapweed) [15]. C. stoebe, a
native to Eurasia, is able to invade not only ruderal habi-
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tats, but also rangelands, pastures and prairies in North
America, where it often establishes dense monocultures
and excludes native plant species. C. stoebe first appeared
on both coasts of North America around the late 1800s
[16,17], and has since greatly expanded its range to all but
three states in the continental US [18].

Molecular marker studies revealed relatively large
amounts of genetic diversity within and among popula-
tions in both the native and introduced ranges [19,20],
and suggest that this species has been introduced to North
America multiple times. Thus, genetic drift resulting from
bottle-necks or founder effects does not seem to have
played an important role in the invasive success of this
weed. Extensive field collections thus far conclude that the
native range consists of morphologically indistinguisha-
ble diploid (2n = 2x = 18; C. stoebe ssp stoebe) and tetra-
ploid (2n = 4x = 36; C. stoebe ssp micranthos) forms of the
weed [21] that occasionally occur in mixed stands [22]. In
the introduced range, populations had been found to con-
tain the tetraploid form exclusively [21] until a recent
extensive survey identified a single mixed stand of diploid
and tetraploid plants in western Canada [22]. This sug-
gests that both forms of the weed were introduced, but
only the tetraploid has become an invasive problem [22].

C. stoebe is able to tolerate a wide variety of soil types and
precipitation amounts in both Eurasia and North America
[21,23]. Robust cross-continental comparisons have pro-
vided empirical evidence for a niche shift between native
and introduced populations [24], and more recently
between native and introduced tetraploid C. stoebe, with
the invasive tetraploids occurring in drier and warmer cli-
mates [22]. Moreover, the range of the native tetraploid in
Eurasia has expanded over the range of the native diploid
within the past 100-150 years [21], and introduced tetra-
ploids appear to have a higher ecological tolerance, or
niche breadth, than either of the native forms [22,24].
Thus, the invasive success of C. stoebe appears to be par-
tially due to pre-adaptation of the native tetraploid cyto-
type to drier climates, a trait which has been further
selected for in the introduced range [22]. However, more
studies are needed to rule out other alternatives related to
the weeds invasive success.

Both diploid and tetraploid forms of C. stoebe are out-
crossing, insect-pollinated asters, but the diploid tends to
have a biennial monocarpic life cycle, whereas the tetra-
ploid tends to be a polycarpic perennial, continuing to
flower over multiple growing seasons [21,22,25]. Com-
pared to native populations, introduced tetraploids
exhibit the highest proportion of polycarpic plants and
have the greatest number of stems per plant [22], which
may increase their reproductive capacity. It is hypothe-
sized that this perennial polycarpic life cycle is selected
for, particularly in environments lacking natural enemies
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[9], which may help explain why the tetraploid form
became predominate in the introduced range.

Although there are a small number of studies that exam-
ine ploidy differences between native and introduced
populations of plants, this factor is most often unac-
counted for in ecological studies of invasive weeds [5],
including C. stoebe. Many of the worst weeds are poly-
ploids, and changes in plant ploidy may lead to changes
in life history traits, genetic diversity, gene expression or
capacity for adaptation and evolution [26]. Therefore, in a
comparison of plants from both the native and intro-
duced range, it is important to compare the same taxo-
nomic unit [5], and understand differences between
taxonomic units.

As it appears that both ploidy pre-adaptation (European
diploid vs. tetraploid) and selection (European vs. North
American tetraploid) may be important factors in C. stoebe
invasion, we were interested in characterizing the three dis-
tinct geo-cytotypes of C. stoebe: native diploids, native tetra-
ploids and introduced tetraploids. We grew plants from
multiple populations, representing each of the three geo-
cytotypes in a common environment and monitored plant
performance characteristics and life cycle habits. In addi-
tion, we identified gene sequences in the C. stoebe EST
library that may be involved in constitutive basal plant
defense or rapid evolution, as these traits may be important
in the plants invasive success. Expression of these genes was
characterized in each geo-cytotype using quantitative PCR.

Based on ideas of enemy release and rapid evolution of
plants in the introduced range, and on trends in poly-
ploidy, we developed hypotheses concerning plant per-
formance and gene expression of the geo-cytotypes. First,
we hypothesized that introduced tetraploids would
exhibit reduced expression of constitutive defense and
secondary metabolite related genes, but an increase in
plant performance when compared to native tetraploids,
due to a partial release from enemies. Second, we also
expected that genes involved in genome stability would be
expressed to a greater extent in introduced versus native
tetraploids due to possible novel environmental stresses
experienced in the introduced range. Although evolution
is predominately thought to be due to random mutations,
there is some evidence that expression of transposable ele-
ments and DNA repair enzymes influence genetic stability
and stress-induced evolutionary strategies in organisms
[27-29]. Therefore, we also assessed transcript accumula-
tion of two active transposable elements and a DNA repair
enzyme, which might facilitate rapid evolution in a new
environment. Finally, we hypothesized that native tetra-
ploids would exhibit increased expression of genes
involved in secondary metabolite production compared
to diploids, due to potential increases in the metabolic
activities of polyploids [30].
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Results

Plant performance and life cycle analysis

No significant differences in vegetative plant performance
characteristics were found between C. stoebe geo-cytotypes
(Figure 1, Additional File 1: Table 1). Before bolting, the
plant biomass index tended to be higher in diploid popu-
lations than in tetraploids, but the results were not signif-
icant (Figure 1A). Similarly, stem height was not different
between the three geo-cytotypes (Figure 1B). However,
differences in life cycle were noted between ploidy groups;
a higher percentage of both native and invasive tetraploid
plants flowered in the first year compared to the diploid
plants (Figure 1E). Fewer than half of the diploid plants
flowered in their first year of growth, and over 60% died
after flowering (Figure 1F, Additional File 1: Table 1). In
comparison, over 75% of both native and introduced
tetraploids flowered their first year and only 24% and 7%
died after flowering, respectively (Figure 1E, F, Additional
File 1: Table 1). In addition, tetraploids produced more
new rosettes after senescence of the parent plant than dip-
loids (Figure 1D). Interestingly, the number of capitula
per plant (Figure 1C) was not different between the three
geo-cytotypes. The observed differences in life cycle char-
acteristics reflect the moncarpic life cycle of the diploid
and the polycarpic life cycle of the tetraploid [21], and are
likely important in plant population fecundity over time,
as illustrated by a simulation of seed production (Figure
2). Over a fifteen-year period, this simluation estimates
production of 0.6, 8.8, and 16.4 million seeds for popula-
tions of the native diploid, native tetraploid, and intro-
duced tetraploid, respectively (Figure 2).

Gene expression analysis

Tetraploid plants from the introduced range had signifi-
cantly lower rates of gene expression for all three PAL tran-
scripts compared to tetraploid plants from the native range,
providing evidence in favor of our hypothesis (Figure 3A).
PAL1 transcript accumulation in introduced tetraploids
was 2.4 times lower than the amount in native tetraploids,
whereas PAL2a and PAL2b were 2.6 and 16.7 times lower,
respectively (Table 1). PAL 1 expression was lower than
expression for either form of PAL 2 in all geo-cytotypes (Fig-
ure 3A). Similarly, glucanase transcripts showed over a two-
fold reduction in expression in introduced tetraploids than
their native counterparts (Figure 3B, Table 1). Chitinase
expression was 1.7 fold lower in introduced tetraploids
than native tetraploids (Table 1). In general, expression of
all tested secondary metabolism- and defense-related tran-
scripts was lower in tetraploids from the introduced range
compared to their native counterparts.

Contrary to our second hypothesis, introduced tetraploids
showed over two-fold less expression of a transposable
element (CACTA En/Spm subclass) transcript than native
tetraploids (Figure 3C). The other transposable element
(mutator subclass) showed extremely low levels of tran-
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Plant performance and life-cycle traits of C. stoebe geo-cytotypes. C. stoebe plants were grown from seed in a com-
mon greenhouse environment. Plants were measured for leaf length and leaf number while in rosette form, and these values
were multiplied to obtain an early indicator of biomass (A). After bolting, stem height (B) of each bolting plant was measured
the day the first flower opened and the number of capitula per flowering plant (C) were counted after the stems had senesced.
The number of newly formed rosettes after flowering (D), the percent of flowering individuals (E), and the percent mortality
after flowering (F) were monitored. Legend; 2x EU, native Eurasian diploid populations; 4% EU, native Eurasian tetraploid pop-
ulations; 4x US, invasive North American tetraploids. Significant differences in plant traits were determined for geo-cytotypes
of interest (EU 2x versus EU 4x and EU 4x versus US 4x) using pair-wise comparisons of LSmeans. Bars represent LSmeans
and standard errors. Fisher's LSD was used for pair-wise mean comparisons. Different letters above the columns indicate sig-

nificant differences (P < 0.05) between pairs of geo-cytotypes.

script accumulation in most samples, nearly all of which
fell below the standard curve for that gene (data not
shown). Of the usable values, the data suggested that
introduced populations expressed this transposable ele-
ment to a lower extent than native populations, but the
sample size was very low and thus overall values may not
accurately reflect expression in these populations. Expres-
sion of RAD was low in all plant types, but also showed
the highest relative mean expression in native tetraploids,
although this result was not significant (Figure 3D, Table

1).

Diploid and tetraploid plants from the native range
showed similar relative expression levels for seven out of
ten genes tested; PAL1, glucanase, chitinase, RAD, and the
three housekeeping genes (Figure 3A, B, D, see Additional
File 2: Figure 1 for housekeeping gene profiles, Table 1).
Expression of PAL2a and PAL2b was higher in native tetra-
ploids compared to diploids (Figure 3A, Table 1) as
hypothesized. Expression of CACTA transposable element
was also higher in native tetraploids compared to diploids

(Figure 3C, Table 1). Introduced tetraploids showed simi-
lar expression profiles when compared to diploids for
nine of the ten genes tested (Figure 3). The expression of
PAL2b was over three fold lower in introduced tetraploids
compared to diploids (Table 1).

Discussion

Plant performance and life cycle analysis

Ridenour et al. (2008) recently reported thatin a common
garden in Montana, C. stoebe plants from North America
exhibit greater biomass, tougher leaves and increased tri-
chome density when compared to their Eurasian counter-
parts [31]. Based on this finding and hypotheses such as
EICA that suggest invasive plants may evolve to increase
resource allocation to growth [4], we expected that intro-
duced tetraploids would out-perform both native diploids
and tetraploids. However, in our study, neither of the
plant vegetative growth characteristics examined (biomass
index and stem height, Figure 1A, B), showed a significant
difference. Ridenour et al. (2008) performed the bulk of
their experiments on populations with unknown ploidy;
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Figure 2

Simulation of total seed production over time. The
simulation followed a cohort of 1000 plants over time assum-
ing that the number of flowering plants for each generation
was 75.2, 82.1, and 44.3% (4% US, 4x EU, and 2x EU, respec-
tively) of the total population (Figure |E); and each genera-
tion the number of flowering plants declined according to a
mortality rate of 7.3, 23.6, and 62.3% (4x US, 4x EU, and 2%
EU, respectively) as shown in Figure IF. For each flowering
plant, the total number of seeds was estimated as the prod-
uct of the number of new rosettes per plant (5.88, 5.75, and
2.8 for the 4x US, 4x EU, and 2x EU, respectively; Figure
ID), number of capitula per rosette (14.6, 18.6, and 15.7 for
the 4x US, 4x EU, and 2x EU, respectively; Figure 1C), and
30 seeds per capitula [17]. Legend; 2x EU, native Eurasian
diploid populations; 4x EU, native Eurasian tetraploid popula-
tions; 4x US, invasive North American tetraploids. Refer to
Additional file I: Table | for the mean values used in this
analysis.

however, one experiment containing plants of known
ploidy revealed greater rosette diameters of introduced
tetraploids compared to native tetraploids [31]. Con-
versely, Miiller et al. (1989) observed that Hungarian and
German diploids had greater dry weights and shoot diam-
eters than North American tetraploids when grown in a
European soil, but sample sizes were relatively small [25].
The observed differences may be due to the various popu-
lations chosen, the type and origin of soil used (ie; North
American soil [31] versus European soil [22,25] present
study), or other factors involved in each of the above stud-
ies. These inconsistencies may suggest that vegetative
growth is not the best indicator of invasiveness.

As previously noted by Miller (1989), life cycle differ-
ences between C. stoebe geo-cytotypes may have greater
relevance to fitness than single performance traits [25]. In
the first year of this study, flowering plants of all geo-cyto-
types had a similar number of capitula (Figure 1C): how-
ever, fewer diploid plants flowered in the first year of
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growth than tetraploids, diploids formed fewer new
rosettes, and diploids suffered greater mortalities after
flowering (Figure 1D, E, F). In combination these meas-
ures suggest that the reproductive capacity of tetraploids is
greater than that of diploids. Additionally, we expect
introduced tetraploid populations to have a higher repro-
ductive capacity when compared to the native tetraploids,
as illustrated by a simulation of seed production (Figure
2). Ongoing experiments will provide more complete
information about the life-cycle of these plants and seed
production over their entire life span. Thus, although we
did not detect any significant differences in vegetative
traits between C. stoebe geo-cytotypes, there is some indi-
cation of a long-term difference in plant fecundity, with
the invasive tetraploid showing highest performance of
the three geo-cytotypes studied.

Gene expression analysis

Secondary metabolism and defense

We selected three distinct PAL unigenes for analysis of sec-
ondary metabolite-related transcript, as this enzyme rep-
resents the first enzymatic step in the flavonoid synthesis
pathway which contributes isoflavones, anthocyanins,
condensed tannins and other secondary metabolic com-
pounds in plants [32-34]. Flavonoids are often stored in
plant tissues as 'pre-formed' defense compounds and may
act as pathogen and herbivore deterrents [33]. The expres-
sion of PAL gene transcripts in addition to the secondary
metabolites resulting from the flavonoid pathway are
known to be important in plant defense against patho-
gens, herbivores and environmental stresses [32-34].

A chitinase and a beta-1,3-glucanase were selected to ana-
lyze defense-related transcription, as these transcripts rep-
resent members of the PR family of proteins, which have
been widely implicated in plant resistance to pathogens
[35-37]. Different forms of chitinase are involved in both
active and passive defense responses in plants [37]. Gluca-
nases have also been implicated in plant resistance to
pathogens, and beta-1, 3-glucanases comprise part of the
PR-2 group of pathogenesis-related genes [35].

The fact that PAL, chitinase and glucanase transcripts were
all reduced in introduced tetraploids compared to native
tetraploids (Figure 3A,B) might suggest that populations
of plants from the introduced range will be less defended
against herbivores than natives, as is generally predicted
by the EICA hypothesis. Some studies suggest that consti-
tutive or basal levels of defense-related transcripts in
plants, similar to those analyzed in this study, can be used
to predict pathogen susceptibility and induced defense
responses [38,39]. Very subtle genetic mutations, such as
those in the Arabidopsis cpr (constitutive expressers of
pathogenesis related genes) mutant, have been shown to
increase basal levels of systemic acquired resistance,
which in turn increase levels of pathogen resistance [38].

Page 5 of 13

(page number not for citation purposes)



BMC Plant Biology 2009, 9:33

Table I: Relative gene expression values of C. stoebe geo-cytotypes.
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EU 2x vs EU 4x

Relative Expression EU 4x vs US 4x

Gene t p-value EU 2x
Actin 0.84 0411 0.802
COX 0.96 0.348 1.252
UBQ 0.84 0413 1.242
PAL | 1.20 0.245 0.7120
PAL 2a 491 <0.001 0.372
PAL 2b 8.19 <0.001 0.21b
Chitinase 0.47 0.644 0.8920
Glucanase 0.90 0.373 0.722b
TE 241 0.025 0.50:
RAD 1.55 0.136 0.612

EU 4x US 4x t p-value
1.002 0.692 1.41 0.174
1.002 0.862 0.63 0.538
1.002 1.072 0.26 0.795
1.00b 0.422 3.06 0.006
1.00b 0.392 4.00 <0.001
1.00< 0.062 8.19 <0.001
1.00b 0.592 2.14 0.045
1.00b 0.412 2.42 0.025
1.00b 0.422 3.06 0.006
1.002 0.572 1.78 0.090

For each sample, total RNA (ng/ul) was estimated using the appropriate standard curve for each gene of interest and normalized using the
geometric mean of the three standards: actin, cytochrome c oxidase (COX) and ubiquitin (UBQ), as suggested in Vandersompele et al. 2002 [61].
Genes of interest included three isoforms of PAL (phenylalanine ammonia lyase) 1, 2a, 2b, involved in secondary metabolism; chitinase and
glucanase, involved in defense response; and a transposable element (TE) and DNA repair/recombination gene (RAD), potentially involved in rapid
evolution. Geo-cytotypes are 2x EU, native Eurasian diploid populations; 4% EU, native Eurasian tetraploid populations; 4x US, invasive North
American tetraploids. Significant differences in gene expression (log cDNA) were determined for geo-cytotypes of interest (EU 2% versus EU 4x
and EU 4x versus US 4x) using pair-wise comparisons of LSmeans. LSmeans were back-transformed and expression values are shown relative to
native Eurasian tetraploid populations (4x EU). Fisher's LSD and absolute t values are reported for each pair-wise comparison.

In addition, the over-expression of PR proteins in planta
typically results in a phenotype of enhanced disease resist-
ance [38,40,41]. Plants with high constitutive defenses
may, however, also have a lower degree of defense induc-
tion than those with low constitutive defenses [10,12].

Recent reports indicate that introduced C. stoebe plants are
better defended against both generalist and specialist ene-
mies than natives [31]. This observation, in combination
with the current study, may suggest that introduced pop-
ulations have a higher potential degree of defense induc-
tion. However, the current study only measured levels of
genes that may be involved in constitutive defense. Thus,
our results must be interpreted with caution with regard to
ecological hypotheses of plant defense in biological inva-
sions.

It is important to note here that the release of C. stoebe
from specialist enemies has been considered an important
factor in the invasive success of the weed, and this has
spurred the introduction of a number of biological con-
trol species to North America over the past thirty years
[9,16,42,43]. Although many of these specialist herbiv-
ores have become established and widespread, C. stoebe
densities have only been reduced in a few specific areas
(e.g[44]), and the weed continues to expand its range at
other sites [9,23]. Interestingly, field observations in
North America suggest that introduced C. stoebe experi-
ences little pressure from generalist herbivores and patho-
gens (RM Callaway and WM Ridenour, personal
communication), indicating that C. stoebe currently expe-
riences a partial release from both specialist and generalist
enemies in the introduced range.

In order to better understand defense responses in C. stoebe,
future studies should monitor gene expression and physio-
logical responses in tetraploid geo-cytotpyes when exposed
to pathogens and herbivores. This would help determine if
expression of genes involved in constitutive defenses are
good predictors of pathogen and herbivore susceptibility in
C. stoebe. In addition, it would be interesting to test the
response of C. stoebe geo-cytotypes to a variety of generalist
and specialist enemies at the level of gene expression.

Evolutionary capacity

The activity of transposable elements could facilitate evolu-
tion by reorganizing the genome, and may be one important
aspect in this process [27,28]. Therefore, we hypothesized
that introduced populations of C. stoebe would have the
highest expression of the transposable elements analyzed,
potentially due to novel stresses encountered in the intro-
duced range. However, this was not the case. In fact, native
tetraploid populations had the highest expression rate of one
CATCA En/Spm subclass transposable element (Figure 3C).
The expression of RAD, which is involved in DNA recombi-
nation/repair [45], was also highest in native tetraploid pop-
ulations, but was not significantly different from that of
introduced populations (Figure 3D).

Although the expression of transposable elements could
facilitate rapid evolution, transposition may not be adap-
tive and could cause deleterious genomic rearrangements
as opposed to beneficial ones. In other studies, certain
transposable elements have been detected in plants at spe-
cific growth stages or under conditions of biotic and abi-
otic stress [46,47]; however, the biological role of active
transposition currently remains unclear. Additionally,
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Figure 3

Gene expression profiles of C. stoebe geo-cytotypes.
For each sample, total RNA (ng/ul) was estimated using the
appropriate standard curve for each gene of interest and nor-
malized using the geometric mean of the standards actin, cyto-
chrome c oxidase, and ubiquitin as suggested in
Vandersompele et al. 2002 [61]. Significant differences in gene
expression (log cDNA) were determined for geo-cytotypes of
interest (EU 2% versus EU 4% and EU 4x versus US 4x) using
pair-wise comparisons of LSmeans. Bars represent back-trans-
formed LSmeans and standard errors. Fisher's LSD was used
for pair-wise mean comparisons, and values are reported in
Table I. Different letters above the columns indicate significant
differences (P < 0.05) between pairs of geo-cytotypes. Legend;
2x EU, native Eurasian diploid populations; 4% EU, native Eura-
sian tetraploid populations; 4x US, invasive North American
tetraploids. Panel A: Genes involved in secondary metabolism;
PAL (Phenylalanine ammonia lyase) |, 2a, 2b. Panel B: Genes
involved in defense response; Chit (chitinase) and Gluc (gluca-
nase); Panel C: Gene involved in transposition; TE (transposa-
ble element); Panel D: Gene involved in DNA repair and
recombination, RAD.

recent evidence suggests that epigenetic mechanisms such
as DNA methylation and chromatin remodeling can play
an important role in the regulation of gene expression in
polyploids which may facilitate adaptive plasticity [48-
50]. Similarly, paramutation (interactions between home-
ologous genetic loci) can also result in differential regula-
tion of genes between polyploids and their diploid
progenitors [48,50]. Thus, although we did not detect the
changes we predicted in expression of transposable ele-
ments, it is entirely possible that factors other than chro-
mosomal rearrangement through transposition are
responsible for the observed changes in gene expression.

Plant ploidy

Although plant ploidy is often unaccounted for in com-
parisons of native and introduced populations, we found
it to be a necessary and essential component for gene
expression analyses. In native populations, we found
lower expression of PAL2a, PAL2b and the transposable
element in diploids compared to tetraploids, and all other
genes examined showed similar relative expression (Fig-
ure 3, Table 1). The literature suggests that gene expres-
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sion rates in polyploids tend to vary depending on plant
species, ploidy, genetic background, and the genes exam-
ined; however, the phenomenon of gene dosage compen-
sation appears to be common [49,51-53]. This dosage
effect results in gene or protein expression patterns in
polyploids which are similar to their diploid progenitors.
We did not necessarily expect to see this phenomenon in
our plant populations because other studies involving
ploidy and gene or protein expression have traditionally
utilized plants with the same genetic background
[49,51,52], whereas evidence suggests that C. stoebe plants
within the native range harbor different genetic back-
grounds [19,20]. However, it appears that gene dosage
compensation may be occurring to some extent in the
native cytotypes of C. stoebe. Additionally, we observed
increased expression of two PAL transcripts in native tetra-
ploids compared to diploids, which may reflect increases
in secondary compounds due to polyploidy as is seen in
other plants [30].

Interestingly, native diploids exhibited similar expression
profiles for nine of the ten total genes analyzed when
compared to introduced tetraploids (Figure 3, Table 1),
also suggesting gene dosage compensation. This result
was rather surprising in that the diploid appears to be
extremely rare (i.e., unsuccessful) in the introduced range,
whereas the introduced tetraploid is a very problematic
weed. Therefore, it is likely that other factors, such as plant
performance characteristics, life cycle traits and the expres-
sion of other genes, are of greater importance in determin-
ing the success of tetraploids over diploids in the
introduced range. Overall, the observed differences in
gene expression between and within ploidies highlights
the importance of using appropriate plant types when
examining a particular species in both the native and
introduced range.

Alternative gene roles and regulation

Genes similar to those selected in the current study have
been detected in response to a variety of cues and condi-
tions that do not necessarily reflect their primary annota-
tion. For instance, many genes involved in defense
response [54], flavonoid biosynthesis [34] and active
transposition [46,47] have been detected during particu-
lar points of plant growth and development. In this study
we attempted to minimize any possible developmental
differences in gene expression by sampling expanded,
fully developed rosette leaves of similar age from all
plants. All of the plants were grown in the same green-
house environment and at the time of sampling remained
in rosette form, none showing signs of bolting. If the
genes tested here were expressed predominantly in
response to developmental cues, it could be expected that
expression of transcripts would be extremely similar
across all geo-cytotypes, which is not what was observed.
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Additionally, it is possible that the defense genes analyzed
in this study are important for aspects other than plant
defense against enemies. For instance, the production of
certain flavonoids are thought to play important roles in
photo-protection, frost hardiness and drought resistance
[33], which could influence expression of PAL genes. C.
stoebe occupies areas in both the native and introduced
range that are often subject to these types of abiotic stress
[21,22,24]. Thus, expression of PAL transcripts and result-
ing flavonoid accumulation may be important in both the
biotic and abiotic stress response of the plant.

Conclusion

Although we sampled only a small subset of genes, we
identified differences in gene expression between native
and introduced populations of plants that may have eco-
logical relevance. We found that introduced tetraploids
exhibited lower expression of constitutive defense genes
than native tetraploids, as might be predicted based on
general ideas of enemy release and rapid evolution. Plant
origin and ploidy were found to have a significant effect
on both life-cycle characteristics and gene expression. This
highlights the importance of determining plant ploidy in
ecological and genomics investigations, and suggests that
C. stoebe invasion can be influenced by both plant ploidy
and altered gene expression in the introduced range.

We have demonstrated that the quantitative analyses of
gene expression in native and introduced plant popula-
tions reveal trends that may provide additional insight into
ecological hypotheses. However, the mechanisms underly-
ing the observed changes in gene expression remain
unclear, and further work is needed in this area. A better
understanding of the genetic and molecular basis of inva-
siveness in exotic plants is not only an interesting case study
in evolution, but is important to further our understanding
how these invasions occur, and to choose appropriate man-
agement interventions. The techniques used in our study
can provide an important complement to classical ecologi-
cal measurements of plant fitness and competitive success.

Methods

Centaurea field sampling, greenhouse experiment and
tissue sample collection

Field Sampling

Populations of C. stoebe were sampled in Eurasia and
North America during summer and fall of 2005 using a
transect method ([22] Table 2). One fifty-meter-long
transect was chosen as the basic sampling unit for each
population. Sixteen plants were sampled systematically
every three meters (starting at 2.5 m and ending at 47.5
m) along each transect. At each sampling point, seeds
were taken from the nearest fruiting plant. For each popu-
lation, GPS coordinates were recorded. Seeds from each
maternal plant were labeled and kept separate. Ploidy was
determined for each population by growing four to six-
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teen seedlings from different parents and analyzing the
nuclear DNA content using flow cytometry [22]. Although
other populations were collected as part of this larger
experiment, only populations that were sampled using
the transect method and only those found to have exclu-
sively diploid or tetraploid individuals (not mixed stands)
were used in subsequent gene expression analyses. In
total, plants of seven diploid and eight tetraploid popula-
tions from Eurasia, and of eight tetraploid populations
from North America were utilized; these are referred to as
geo-cytotypes (populations listed in Table 2).

Greenhouse experiment

In May 2006, five seeds from each maternal plant were
placed in multi-pot trays in a mixture of sand (20%) and
compost (80%, made from yard waste at the Botanical Gar-
den in Fribourg, Switzerland). The greenhouse was not
heated but temperatures stayed above 0°C in winter. One
plantlet per mother plant was re-potted at eight weeks in 1
L pots of sandy soils (20% sand, 80% compost) in a natu-
rally lit greenhouse supplemented with artificial light. The
greenhouse was located near the University of Fribourg,
Switzerland. Plants were watered regularly, but were not
given nutrient solution. Number of leaves and longest leaf
length were measured three times (10th-14t July 2006,
7th-11th August 2006, 27t April-31d May 2007) before
plants started bolting. Number of leaves multiplied by the
longest leaf size was used as a non-destructive proxy for
plant biomass, and is referred to subsequently as "biomass
index". When the first flower opened (6t July-23rd August
2007), the date, number of stems, height of stems and
number of buds larger than 5 mm were recorded for each
plant. Survival, number of capitula per flowering plant and
number of newly formed rosettes were estimated once the
stem had senesced at the beginning of October 2007. The
percent of flowering plants and percent plant mortality was
calculated for each population. Previous studies on C.
stoebe have indicated that although environmental mater-
nal effects on offspring are detectable, they are relatively
weak compared to other factors such as plant genotype and
environmental conditions [55], therefore we do not expect
maternal effects to confound the experimental results.

Tissue sampling

In November 2006 all plants remained in rosette form
and had not bolted. One fully developed undamaged leaf
was removed from each chosen plant using a razor blade.
A few plants had minimal herbivore damage on the
leaves, and these plants were avoided during tissue sam-
pling. Four plants were sampled from each chosen popu-
lation. Eight populations of North American tetraploids
were sampled in addition to seven populations of Eura-
sian tetraploids and seven populations of Eurasian dip-
loids (Table 2). Each leaf was immediately cut in half and
the leaf tip was placed in a 5 mL vial containing RNAlater
solution (Ambion, Austin TX). These samples were stored
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at -20°C for approximately four days, after which they
were shipped on dry ice to Colorado State University.
Upon arrival samples were placed at -20°C for storage.

Candidate gene choice

The C. stoebe EST library was found to contain a variety of
unigenes that share sequence homology with known
genes that are involved in plant secondary metabolism
and defense response. Many of these unigenes are
reported in Broz et al. 2007 [15]. The C. stoebe EST library
was created from root and shoot tissues of greenhouse-
grown plants in rosette form, and represents seven intro-
duced populations [15].

Although multiple candidate unigenes were selected for
amplification in an initial analysis, only a small amount of
primer sets resulted in reproducible amplification of a single
product from C. stoebe cDNA (data not shown). Therefore
only five candidate genes related to secondary metabolism or
defense were quantified in the final analysis (Table 3).

Three distinct C. stoebe unigene homologs encoding phe-
nylalanine ammonia lyase (PAL) were chosen to represent
an important subset of secondary metabolism-related
genes (PAL1, PAL2a and PAL2b). One set of unigenes had
top BLAST hits to PAL1 sequences from Lactuca sativa and
Arabidopsis thaliana (AAL55242 and At2g37040, respec-
tively), and the other two unigenes had top hits to PAL2
sequences from the same organisms (AAO13347 and
At3g53260) [56,57], but were distinct from each other
upon sequence alignment. In addition, unigenes encod-
ing a class II acidic chitinase (top BLAST hit Helianthus
annuus chitinase AAB57694) and a beta-1,3-glucanase
(top BLAST hit A. thaliana endo-glucanase At4g14080)
were chosen to represent a subset of defense-related genes
(Table 3).

The C. stoebe EST library was found to contain six transpos-
able element homologs [15]. Two unigenes encoding trans-
posable elements were initially chosen to analyze the
potential for active transposition, which could potentially
facilitate rapid evolution. These had top BLAST hits to
Oryza sativa japonica sequences ABB46630, a CACTA
Enhancer Suppressor Mutator (En/Spm) subclass transpo-
son and ABA99201, a mutator subclass transposon (Table
3). Both are type II transposons that move directly as DNA
elements through a 'cut and paste’ mechanism [58]. Only
the CACTA transposon gave reliable Q-PCR results, thus it
is the only transposable element listed in the final expres-
sion analysis. Transcript accumulation of RAD, involved in
homologous recombination and double strand break
repair [45], was also analyzed. This sequence was identified
by BLAST search and was not derived from the C. stoebe EST
library. Three housekeeping genes; actin, ubiquitin, and
cytochrome c oxidase were also analyzed as controls to nor-
malize the expression of candidate genes (Table 3).

http://www.biomedcentral.com/1471-2229/9/33

Gene expression analysis

RNA extraction and cDNA synthesis

Approximately 100 mg of each leaf sample (leaf tip) was
removed from the RNAlater solution and quickly blotted
on filter paper to remove excess liquid. Tissue was immedi-
ately frozen in liquid nitrogen and pulverized using a dis-
posable pestle. RNA was isolated using Trizol reagent with
its associated protocol (Invitrogen, Carlsbad CA). RNA pel-
lets were resuspended in 30 puL RNase free water, and total
RNA was quantified using a NanoDrop spectrophotometer
(Wilmington DE). RNA samples were all diluted to the
same concentration using RNase free water. RNA was
treated with DNase to remove any genomic DNA contami-
nation, and concentrations were re-evaluated using a Nan-
oDrop spectrophotometer (Wilmington DE). Equal
amounts of RNA from each sample were then individually
translated into cDNA using reverse transcriptase, following
a protocol from Invitrogen (Carlsbad CA). Samples were
randomized in their preparation, such that RNA from
plants from the same population (four plants tested per
population) would not all be extracted on the same day.

Quantitative PCR

Candidate unigenes were chosen from the C. stoebe EST
library based on a keyword search using the PLAN data-
base (Table 3, [15,59]). Gene specific primers were
designed to amplify a 200-600 basepair region of each
candidate C. stoebe unigene sequence (Table 3). Initially,
specific primer sets were designed for a wide array of genes
potentially involved in constitutive defense or secondary
metabolism. However, many resulted in either poor
amplification or amplification of multiple C. stoebe
cDNAs, so these were not used in the final Q-PCR analy-
sis. Successful primer sets included those for three distinct
transcripts of phenylalanine ammonia lyase (PALI1,
PAL2a and PAL2D), a chitinase, a glucanase, a transposa-
ble element and a DNA repair enzyme (Table 3). Amplifi-
cation of each of these transcripts resulted in a single band
visualized using agarose gel electrophoresis and each reac-
tion produced a single peak in the Q-PCR melting temper-
ature (Tm) curve, suggestive of a single product. An
additional transposable element was successfully ampli-
fied in preliminary experiments, but was expressed to a
very low extent in the experimental plant samples.

When multiple unigenes had the same annotation, nucle-
otide sequences were aligned using the DNA alignment
program in CLC Free Workbench (Cambridge MA) to
determine similarities. Unigenes with over 90% similarity
(after removing the terminal 100 bases in case of sequenc-
ing error) were grouped together under one annotation,
and primers were designed to the alignments. When the
ESTs were originally clustered to form unigenes, they had
to have an overlap of at least 40 bp and at least 94%
sequence identity to be clustered together. The reason
some unigenes were grouped in this analysis, but not in
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Table 2: Plant origin and ploidy of studied C. stoebe populations
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Continent Ploidy Country or State Pop Locality Longitude Latitude

NA: North America

EU: Eurasia

NA 4x Montana MT | Missoula -114.1008929 46.82048877
NA 4x Montana MT 2 Florence, Bitteroot Reserve -114.1406713 46.58378483
NA 4x Montana MT 3 Ross Hole -113.9748996 45.83464729
NA 4x Montana MT 10 Missoula, Blanchard Flat -113.3832243 46.99937593
NA 4x Montana MT I Dixon, Moeise -114.2997544 47.30836457
NA 4x Oregon OR | Portland, Rivergate -122.7701958 45.61806134
NA 4x Oregon OR 3 Dee Flat -121.6293944 45.589761 |
NA 4x Oregon OR || Cougar Reservoir -122.26225 44.15666

EU 4x Hungary H2 Devecser, Zergeboglaros 17.44339689 47.11656667
EU 4x Hungary H 4 Barcs 17.49997063 45.96521169
EU 4x Ukraine UA 4 Khotyn 26.46580403 48.51591216
EU 4x France FRA 2 St-Clément-de-riviere 3.858896331 43.71806565
EU 4x Germany DE 3 Nirnberg 11.08564915 49.41683985
EU 4x Germany DE 4 Steinbach, Baggersee 10.63143809 49.99367438
EU 4x Switzerland CH I Grontenswill-Zetwill 8.15126773 47.28327703
EU 2% Austria AT 3 Hainburg 16.95549745 48.15341312
EU 2x Switzerland CH4 Ausserberg 7.84454 46.31189

EU 2x Germany DE | Simbach am Inn 13.01505128 48.26064449
EU 2x France FRA D St-Cirq Lapopie 1.679543126 44.46250283
EU 2x Hungary H3 Tapolca 17.33497261 46.91410163
EU 2x Hungary Hé Kiskunfelegyhaza 19.89586137 46.70589072
EU 2% Ukraine UA 2 Olesko 24.83581002 49.93014257

the original clustering analysis, is likely due to sequencing
errors at the terminal (3') ends of the ESTs, which exhib-
ited the largest amount of variability. In this analysis the
terminal 100 bp of sequence was removed, such that only
the most reliable sequence information was included. In
addition, a few single base changes within similar ESTs
were identified and these may represent either sequencing
errors or natural polymorphisms. In addition, three
potential housekeeping genes were analyzed as controls:
actin (C. stoebe unigene 01058, top BLAST hit AAP73454,
Gossypium hirsutum) cytochrome c¢ oxidase (originally
designed for Solanum tuberosum cv Cara, [60]), and ubig-
uitin (originally designed for Nicotiana). All primer sets
amplified a single product from C. stoebe cDNA.

All reactions were run and analyzed using the BioRad iCy-
cler software (Hercules CA). A standard curve was created
for each primer set using serial dilutions (concentrations
of 5-625 ng/uL) of cDNA prepared from leaves of a green-
house-grown C. stoebe plant (fresh tissue was frozen in lig-
uid nitrogen, and RNA extraction and cDNA synthesis
followed the protocol above), and negative controls using
water instead of template were run for all reactions. The
optimal annealing temperature for all primer sets was
determined empirically, with all sets working well at an
annealing temperature of 55°C. All PCR reactions had a
final volume of 20 uL and contained 10 puL of 2x Jump-
start cyber green reaction mix, 0.2 pL. 1 uM flourescein, 2.4
pL 25 mM MgCl,, 0.2 uL 10 uM forward primer, 0.2 pL 10
UM reverse primer, 2 ul template (20 ng/uL) and 5 pL

sterile H,O. Reactions conditions for PCR were as follows:
95°C 30 seconds, 55°C 30 seconds, 72°C 30 seconds, for
40 cycles.

For each sample, total RNA (ng/uL) was estimated using
the appropriate standard curves and normalized using the
geometric mean of actin, cox, and ubiquitin, as suggested
in Vandesompele et al. (2002) [61]. Any expression levels
that fell below the standard curve for either the gene of
interest or the three housekeeping gene standards were
removed from the analysis.

Statistical analyses

In order to account for potential genetic variation within
each geo-cytotype (native diploid, native tetraploids,
and invasive tetraploid), three to four plants from a
number of geographic populations (seven native dip-
loid, seven native tetraploid, and eight invasive tetra-
ploid respectively) were included in this study. We were
interested in two a priori comparisons for all collected
data; native tetraploid versus invasive tetraploid, and
native tetraploid versus native dipoid. Differences
between geo-cytotypes for gene expression (log cDNA)
and for plant characteristics were tested using the MIXED
model procedure in SAS (vers 9.1) with geo-cytotype as
a fixed variable and population as a random variable.
When treating population as a fixed variable, no signifi-
cant differences between populations within any of the
three geo-cytotypes were detected at the p < 0.1 level in
any of the analyses. Fisher's LSD was used for pair-wise
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Table 3: Primer information table.

http://www.biomedcentral.com/1471-2229/9/33

Name (Unigene ID)

Primer sequence (5'-3")

homologs references

Secondary Metabolism

PAL | phenylalanine ammonia lyase

GAAATGGACCCGTTGCAGAAGCC

PAL | Arabidopsis Olsen et al. 2008 [56]

(03772, 01487, 04157, 00435, 00996) GCTTCGGCTGTTTTTCTTGCGGAAAT At2g37040 Rookes et al. 2003 [57]
Lactuca Winkel-
AAL55242
PAL 2a (00151) AGCTCCACCCCTCGAGATTC PAL 2 Shirley 2001 [34]
GTCACCTTCTCACCGGTCAA Arabidopsis
At3g53260
Lactuca AAO 13347
PAL 2b (04127) ATCGCGAGTACTTCTTCGCC PAL 2 La Camera et al. 2004 [32]
GTCACCTTCTCACCGGTCAA Arabidopsis
At3g53260

Defense-related

Lactuca AAO 13347

Chitinase
(00271, 03889, 03038, 04202, 03133)

Glucanase (01113, 00896, 00032)

TGGCTCCATCGTTACTGCATCTG
AGTTGTGGGATAGCTGGATAGGTC

CGACCCGGTTAACATCAAGCTCG

Chitinase Kasprzewska 2003 [37]
Helianthus Jwa et al. 2006 [36]
AAB57694

Chitinase, class Il
Arabidopsis At4g01700

Beta-1, 3-glucanase Doxey et al. 2007 [35]

CGTCGAAAACTCCGTCGTCTTACC Arabidopsis
At4g14080
Standards
Actin (01058) ACCAACATGAGAACAACCGATAC Actin
TCACACTGGTGTCATGGTCGGAAT Gossypium hirsutum
AAP73454

Cytochrome C oxidase (Weller et al. 2000)

CGTCGCATTCCAGATTATCCA

Weller et al. 2000 [60]

CAACTACGGATATATAAGAGCCAAAAC

TG
Ubiqutin

ACAACATCCAGAAGGAGTCC

GCAACACAGCAAGCTTAACC

The annotation of each Centaurea stoebe unigene(s) is given followed by Unigene ID numbers in parentheses (publicly accessible from the PLAN
database, http://bioinfo.noble.org/plan/, project 30060). For each annotation, forward primer sequence is listed first and reverse primer sequence is
listed second. The top BLAST hits (annotation, species, accession number) for each unigene are given in the column "homologs," and references
describing information about the genes or gene families are given in the right column.

comparisons of LSmeans to determine significant effects
(p < 0.05) for the two pre-planned comparisons. For
pair-wise comparisons, the degrees of freedom for all
gene expression analysis was equal to 20, and for plant
characteristics degrees of freedom are as follows; height
= 18, flowering & biomass index = 19, mortality = 17,
new rosettes = 15, capitula = 11. Using a Bonferroni mul-
tiple comparisons adjustment, the p-values for all
reported comparisons remain significant at the p < 0.05
level, except for the chitinase gene expression when com-
paring native tetraploids to invasive tetraploids (p =
0.089) and the number of new rosettes when comparing
native diploids to native tetraploids (p = 0.061). A simi-
lar mixed model was run for both gene expression data
and plant performance data. All reported values are
LSmeans and pooled standard errors.

Simulation of seed production

Total seed production over time was simulated for C.
stoebe geo-cytotypes to understand possible differences in
fecundity over multiple generations. Data was used from
the plant performance analysis for each geo-cytotype (see
Additional File 1: Table 1). The simulation followed a
cohort of 1000 plants over fifteen generations (years)
assuming that the number of flowering plants for each
generation was 75.2, 82.1, and 44.3% (invasive tetra-
ploid, native tetraploid and native diploid, respectively)
of the total population (Figure 1E); and each generation
the number of flowering plants declined according to a
mortality rate of 7.3, 23.6, and 62.3% (invasive tetraploid,
native tetraploid and native diploid, respectively) as
shown in Figure 1F. For each flowering plant, the total
number of seeds was estimated as the product of the
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number of new rosettes per plant (5.88, 5.75, and 2.8 for
invasive tetraploid, native tetraploid and native diploid,
respectively; Figure 1D), number of capitula per rosette
(14.6, 18.6, and 15.7 for invasive tetraploid, native tetra-
ploid and native diploid, respectively; Figure 1C), and 30
seeds per capitula [17]. See Additional File 1: Table 1 for
the LSmean values used.
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Additional material

Additional file 1

Measurements of plant performance and life-cycle traits for C. stoebe
geo-cytotypes, statistical values. C. stoebe plants were grown from seed
in a common greenhouse environment. Plants were measured for leaf
length and leaf number while in rosette form, and these values were mul-
tiplied to obtain an early indicator of biomass. After bolting, stem height
of each bolting plant was measured the day the first flower opened and the
number of capitula per plant were counted after the stems had senesced.
The number of newly formed rosettes after flowering, the percent of flow-
ering individuals, and the percent mortality after flowering were moni-
tored. Legend; 2x EU, native Eurasian diploid populations; 4x EU, native
Eurasian tetraploid populations; 4x US, invasive North American tetra-
ploids. Significant differences in plant traits were determined for geo-cyto-
types of interest (EU 2x versus EU 4x and EU 4x versus US 4x) using
pair-wise comparisons of LSmeans. Reported values are LSmeans. Fisher's
LSD and absolute t values are reported for each pair-wise comparison.
Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2229-9-33-S1.doc]

Additional file 2

Housekeeping gene expression profiles of C. stoebe geo-cytotypes.
Standards used to create normalization factors for analysis of genes of
interest. For each sample, total RNA (ng/ul) was estimated using the
appropriate standard curve and a normalization factor was calculated
based on the geometric mean of all three standards, as suggested in
Vandersompele et al. 2002 [61]. Significant differences in gene expres-
sion (log cDNA) were determined for geo-cytotypes of interest (EU 2x ver-
sus EU 4x and EU 4x versus US 4x) using pair-wise comparisons of
LSmeans. Bars represent back-transformed LSmeans and standard errors.
Fisher's LSD was used for pair-wise mean comparisons, and values are
reported in Table 1. Different letters above the columns indicate signifi-
cant differences (P < 0.05) between pairs of geo-cytotypes. Legend; 2x
EU, native Eurasian diploid populations; 4x EU, native Eurasian tetra-
ploid populations; 4x US, invasive North American tetraploids.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2229-9-33-S2.doc]
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