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In this paper, we numerically investigate the structural characteristics that affect the
synchronizability of coupled identical oscillators on scale-free networks. By using the
edge-exchange method, we can change the network structure with degree sequence fixed.
An optimal algorithm, namely Tabu Search, is applied, respectively, to enhance and
weaken the synchronizability. The numerical results indicate that the synchronizability
is most sensitive to the maximal betweenness. By tracking the optimization process, most
previous works suggest that the synchonizability can be enhanced by reducing assortative
coefficient and clustering coefficient; however, interestingly, our numerical simulations
show that the depression of synchronizability also corresponds to the reduction process
of those two coefficients.
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1. Introduction

Synchronization in coupled oscillators, extensively observed in a variety of natu-
ral, social, physical, and biological systems, has been studied for many years.'®
Recent empirical studies have demonstrated that many real-world networks are
small-world® and scale-free,'® thus cannot be treated purely as regular or random
networks. As network structure has significant impacts on the dynamical processes,
an increasing effort has been devoted to the exploration of synchronization phe-
nomena in complex networks. 14

Previous works indicated that homogeneous network has stronger synchroniz-
ability,’>"'7 but the strict and clear conclusions have not been achieved. On the
basis of an ideal mathematical model, Zhou et al.'® found that the average dis-
tance, D, is a key factor to the synchronizability. The maximal betweenness, B ax,
has also been extensively studied. Some numerical results suggested that the net-
work with smaller Bpax would have stronger synchronizability;'%171? however, a
counterexample is reported recently?® against this oversimple conclusion. In addi-
tion, Zhou et al.?! studied the phase synchronization of community networks and
found that the community structure will hinder global synchronization. Actually, a
network contains countless topological measures, such as degree distribution P(k),
average distance D, clustering coefficient C, maximal betweenness By,,x, and so on.
In most of the previous works, if one wants to show the effect of a structural char-
acteristic on synchronizability, he/she would tune this characteristic and monitor
the change of synchronizability while keeping others approximately fixed.?? Using
the edge-exchange operation, presented by Maslov et al.,?3 Donetti et al.?* opti-
mized the network synchronizability from different initial configurations and found
that the optimization process will lead to the same optimal result, namely FEntan-
gle Network. In this paper, combine the Tabu Search (TS) algorithm?® and the

edge-exchange method,20:23,26,27

we enhance and weaken the synchronizability of
scale-free networks with degree sequence fixed. The numerical results indicate that
the synchronizability of scale-free networks is most sensitive to Bpax. In addition,
different from most previous works, which suggest that the synchonizability can be
enhanced by reducing assortative coefficient?®?® and clustering coefficient,20:27:29
our numerical simulations show that the depression of synchronizability also corre-

sponds to a reduction process of those two coefficients.

2. Synchronizability

In this section, we will introduce a generic model of coupled oscillators on networks
and a useful measure®® to quantify the stability of the global synchronized states.
Consider a network of N linearly coupled identical oscillators, the dynamics reads

N
X =F(x')-0)» GyHx'), i=1,... N, (1)
Jj=1
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where x* = F(x') governs the local dynamics of the ith oscillator, H(x?) is the
output linear vectorial function, o is the coupling strength, and G = {g;;} is the
Laplacian matrix, where

k’i ’ 1= J )
gij = 713 ieAia (2)
0, otherwise .

Here A; is the set of all is neighbors. Because the symmetry and the positive semidef-
inite of G, all its eigenvalues are non-negative real values and the smallest eigenvalue
Ao is always zero. The eigenvalues can be ranked as 0 = Ag < A1 < Ay < -+ < An.

Stability of the synchronous state x*(t) = x*(t)(i = 1,..., N) can be accounted
for by diagonalizing the linear stability equation, yielding N blocks of the form
(ji = [JF(xs) — o \;H(x;)]¢;, where J is the Jacobian operator, ¢; is the eigenmode
associated with the eigenvalue \; of G and i = 1,2,..., N. Replacing o\; by v in
the equation, the master stability function (MSF)3° fully accounts for the linear
stability of the synchronization manifold. For a large class of oscillatory systems,
the MSF is negative in a finite parameter interval I = (11 < v < V2).30 When
the whole set of eigenvalues (multiplied by o) enters the interval I, the stability
condition is satisfied. This is accomplished when oAy > v and oAy < v simul-
taneously. As v» and 17 depend on the specific choice of F(x) and H(x), the key
quantity for assessing the synchronizability of a network is the eigenratio

AN
- N 3
Q=3 )
which relies on the topology only. The smaller the @), the easier to synchronize the

oscillators, and wice versa.3!

According to the MSF,?0 the eigenratio ) can measure the network synchro-
nizability, when the stable zone is bounded. When the stable zone is unbounded,
synchronizability could be measured by the maximal nonzero eigenvalue Apax. ™

In this paper, we will not address a particular dynamical system but concentrate
on how the network topology affects the eigenratio @), with an assumption that the
stable zone is bounded.

3. Algorithm and Numerical Results

The procedures of the edge-exchange operation in an undirected network are given
as follows:

e Randomly pick two existing edges e; = (v1,v2) and ez = (v3,v4). The four
nodes {v1,v2,v3,v4} must be different, and there is no edge connecting vy
and vy, as well as vy and vs.

e Exchange these two edges to obtain e} = (v1,v4) and e}, = (va, v3).

We take the eigenratio @ as the objection to minimize or maximize, and study the
relationship between the synchronizability and structural characteristics during the
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optimization process via a TS algorithm. Due to the use of the tabu list to keep
several standard optimal objects, TS algorithm is much more efficient than the
classical Monte Carlo (MC) algorithm. From the viewpoint of statistical mechanics,
TS and MC algorithms are very similar. The processes of TS algorithm, weakening
the eigenratio @, is demonstrated as follows (the enhancing process is similar):

Step 1. Generate a BA network!® with N nodes and E edges, and denote its
coupling matrix by Go. Set the optimal coupling matrix G}, = G, the
optimal network of tabu table G = Gy, and the time step k = 0. Compute
Q of G},

Step 2. Randomly chose two edges and intercross them, denote the new coupling
matrix by G.

Step 3. If Q¢ < Qq:, Giyy = G, Grr1 =G, else if Qe < Qgy, Gry1 =G, else if
G does not satisfy the tabu condition |Qg, — Q¢|/Qc > ¢ (where § is a
random number between 0.5 and 0.75), then G111 = G, else Gxr1 = Gk.

Go to Step 2.
. 0.18- .
255 : :
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: ! : \
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Fig. 1. (Color online) The structural characteristics versus the eigenratio Q. (a) average distance
D; (b) clustering coefficient C; (c) assortative coefficient r; and (d) maximal node betweeness
Bmax. The black and red curves represent the processes on enhancing and depressing synchroniz-
ability, respectively. Blue dashed line denotes the initial condition.
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Start from N = 500 and the average degree (k) = 6. At each time step, we
record the structural properties, including average distance D, clustering coefficient
C, assortative coefficient 7, and maximal node betweenness B .x. Figure 1 gives
the changing process of the structural measures when enhancing and weakening
the eigenratio Q). Figure 1(a) demonstrates that D remains stable when weakening
@, whereas it increases a little when enhancing Q. Figures 1(b) and 1(c) show the
changing procedure of C' and r, from which one can find that in both the enhancing
and weakening processes, C' and r decrease from the initial value. Figure 1(d) shows
the change procedure of By ax. When weakening ), By.x decreases, on the contrary,
Bax gets larger value than the initial value and fluctuate greatly. With the increase
in @, this result indicates that the network with higher synchronizability would have
smaller Bpax.

It should be emphasized that the edge-exchange method could solely suppress
the assortative coefficient. Therefore, the decrease in the assortative coefficient pre-
sented in Fig. 1 may not be aroused by the change of the network synchronizability.
Figure 2 demonstrated the change process of assortative coefficient, r, solely aroused
by the edge-exchange method. From which one can find that r would decrease to
about —0.22 at 5000 time steps. However, the numerical simulation results presented
in Fig. 1 shows that r would not decrease beyond —0.2. Although the difference is
very small, we cannot get the conclusion that the assortative coefficient r is a key
factor to network synchronizability.

4. Conclusion and Discussions

In summary, using the TS algorithm, we maximized and minimized the network syn-
chronizability by changing the connection pattern between different pairs of nodes
while keeping the degree sequence unchanged. This work is based on the MSF with a
fundamental assumption that the essential dynamics can be locally linearized. The
eigenratio () is used to measure the network synchronizability. Besides the MSF,
some other methods, such as the time series analysis,??33 are proposed to evalu-
ate the synchronizability. Though its own limitation, the MSF is, thus far, widely
accepted as a standard analytical tool for network synchronization. Especially, it
avoids the details embedded in the idiographic dynamics. Anyway, it is worthwhile
to warn the readers that all the analyses presented here are only valid under the
framework of MSF.

The numerical results indicate that D, C, r, and Bpax influence network syn-
chronizability simultaneously. Especially, the network synchronizability is most sen-
sitive to Bmax. By tracking the optimization process, most previous works suggest
that the synchonizability can be enhanced by reducing assortative coefficient20:28
and clustering coefficient.?%-2%27 However, our numerical simulations show that the
depression of synchronizability also corresponds to a reduction process of clustering
coefficient. It should be emphasized that the decrease in the assortative coefficient

may be caused by the edge-exchange method. Although there is a small difference
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between the deceasing ranges caused by the synchronizability optimal process and
the edge-exchange, respectively, we cannot get a conclusion that the assortative co-
efficient would decrease enhancing or weakening the network synchronizability. The
significant and interesting result [see Fig. 1(b)] gives rise to a challenge about the
mentioned claims. Although a completely clear picture about the roles of structural
characteristics on synchronizability is not obtained here, the present idea about the
comparison between the enhancing and weakening processes may be useful to dis-
tinguish/judge the validity of prior conclusions.

By using the optimal algorithm, we can expect to reveal the common structural
characteristics of networks with nearly maximal synchronizability. For example,
Donetti et al.?* found that the more homogeneous the distributions of degree and
node distance, the stronger the synchronizability, and Wang et al.2” concluded that
the networks of stronger synchronizability should have lower clustering coefficient
and fewer low-order loops. In addition, we can track the optimization process to
detect the possible trends of structural change. One should note that, since all
the structural characteristics change simultaneously, mathematically speaking, it is
impossible to obtain the strict conclusions (e.g., recently, by using the classical graph
theory, Duan et al.3* presented us some counterexamples to the widely accepted
conclusions). However, the observed changing trends are statistically reasonable for
the large-scale real-world networks (as shown in Fig. 2(d) about the changing of
Biyax). Actually, there are countless topological measures, and no one can keep all
others unchanged while tuning one monitored measure, unless the analytical tools
can be as accurate as microscope — knowing the exact change of any measures
induced by adding one node or rewiring one edge. However, it is not feasible when

-0.10

-0.15 4

-0.20

0 1x10°  2x10°  3x10°  4x10°  5x10°
Time steps

Fig. 2. r versus the randomly edge-exchange process without any dynamical functions. All the
data are obtained by 10 independent runs.
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analyzing the real networks with thousands to millions nodes. Therefore, we believe
that this work could shed some light to the readers in this interesting field.
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