Department of Computer Science - University of Fribourg, Switzerland

RECOGNITION OF ULTRA LOW RESOLUTION, ANTI-ALIASED
TEXT WITH SMALL FONT SIZES

THESIS

Submitted to the the Faculty of Science, University of Fribourg (Switzerland)

To obtain the degree of Doctor Scientarium Informaticarum

Farshideh Einsele-Aazami
from

Switzerland and Iran

Thesis N° 1610
Imprimerie St Paul, Fribourg
2008

Accepted by the Faculty of Science of the University of Fribourg
following the proposal of:

- Prof. Ulrich Ultes-Nitsche, University of Fribourg (Jury President)
- Prof. Rolf Ingold, University of Fribourg (Thesis Director)
- Prof. Horst Bunke, University of Bern, Switzerland (External Expert)

- Prof. Roger Hersch, Federal Institute of Technology Lausanne (EPFL), Switzerland (Ex-
ternal Expert)

- Dr Jean Hennebert, University of Fribourg (Expert)

Fribourg, July 3rd, 2008

Faculty Dean Thesis Director

Prof. Titus Jenny Prof. Rolf Ingold

Acknowledgements

This thesis was conducted in Computer Science Department of the University of Fribourg and
was founded by Swiss National Science Foundation (SNF), University of Fribourg and Hasler
Stiftung. This thesis is the achievement of 5 years of research in the area of document analysis

and image processing.

Firts of all, I would like to express my sincere appreciation to Prof. Rolf Ingold, for accepting
me in his research group DIVA, for his belief on me, for his valuable guidance and insight,
encouragment and reliance throughout this research.

I am also greatly indebted to Dr Jean Hennebert for supervising me especially with his
valuable knowledge on the hidden Markov models and besides for his patient and guidance in
various domains of research and scientific writing.

I also would like to thank the Jury President Prof. Ulrich Nitsche for accepting to preside
my thesis defense and also the official referees of this thesis: Prof. Hurst Bunke and Prof. Roger
Hersch for the honor they gave me and for their excellent expertise and precious advices to
improve this thesis and for the wonderful discussions we had during the thesis defense process.

I am also thankful for the support and friendly atmosphere in the entire DIVA group that
made me work with pleasure for my research. Especially I want to thank my colleague Andreas
Humm firstly for his useful programming and LaTex tips and secondly for being a good friend
and not let me feel down in the crucial periods of this thesis. As well, I express my gratitude to
the secretary team of Department of Informatics (DIUF) and especially to Mrs Eliane Schaller

for her optimistic and kind way.

Lastly but most importantly, I thank my wonderful husband Alex for his love and patience
and moral support he gave me during every phase of this thesis. I am also very lucky to have
such lovely kids as Cyrus and Semira that always heard about the progress of Mami’s work with

great, interest.

ii

ACKNOWLEDGEMENTS

Abstract

In this thesis, we address the problem of recognizing text at ultra low resolution (between 72-100
dpi) that is anti-aliased and has font sizes between 7-12 points. Such text is frequently found
in web images and is an important carrier of information indexing and retrieval on the web.
Anti-aliasing is applied to smooth out edges and diagonals, thus making text more legible on
computer screens. However, the anti-aliased characters are mostly connected and can not be
segmented with common segmentation methods used in classical document analysis. Moreover,
anti-aliasing produces contextual noise at the left and right sides of adjacent characters causing

drastic deterioration in recognizing such characters, even if they have been segmented.

The classical OCR systems are not capable to recognize such text, as they are basically
designed for bilevel text with a resolution of more than 150 dpi, typically obtained using flat
scanners. Several research works report on algorithms for detection and recognition of text
embedded in web images. However, these works are often directed towards the implementation
of front-end image processing methods in order to enhance the image quality and pass it through
classical OCRs.

The main contribution of the work presented here is about a novel approach to segment and
recognize anti-aliased text at ultra low resolution (ULR) with small font sizes. The dedicated
recognizer, presented in this thesis, can be directly applied on the detected and extracted anti-
aliased text with no needs for using of cost-intensive pre-processing methods to enhance image

quality to be recognized with classical OCRs.

Several studies on single characters and words are presented in this report. We used syn-
thetical character and words for all our studies. The first study aimed at choosing an adequate
feature extraction methodology for anti-aliased low-resolution characters. The features that
were selected are based on the computation of central moments which are translation invariant
and convey sufficient spatial information from character shapes at ultra low resolution. The
second study aimed at understanding the mutual influence of the connected characters in a
word. In both studies, the recognition of characters is performed by computing an estimation of
the probability density functions of central moment features using Gaussian based estimators.
We could reach good Character Recognition Rates (CRR) of 99.93% for isolated characters.
These results have shown that central moments are adequately discriminative. The CRRs for

contextual characters were less accurate (98.45%) due to the contextual noise between adjacent

il

iv ABSTRACT

characters. On the other hand, these experiments have shown that we need an intrinsic model
to simultaneously segment and recognize connected characters in ULR anti-aliased words with
small font sizes.

Therefore, hidden Markov models (HMMs) using a sliding window feature extraction have
been chosen to build dedicated word recognizers. In addition, the insights of the previous studies
have been beneficial to the design of the word recognizers. Furthermore, each word is modeled
using the character models which are constrained by minimum and mixmum width constraints.
The contextual noise is modeled as an inter-character state inserted between character models.
Further optimizations of the HMM implementation have also been implemented to further in-
crease the Word Recognition Rate (WRR), such as using mixture of Gaussian models instead
of mono Gaussian models to estimate the emission probabilities.

We have implemented two dedicated recognizers. The first one is a dictionary-based recog-
nizer which can recognize up to 60’000 words. The second one is an open vocabulary recognizer
that can recognize any arbitrary word in any language written in Latin alphabet. We performed
experiments in a mono-font context and achieved a WRR. of up to 97.56% for the dictionary
based recognizer. We achieved an overall WRR of 97.43% for the open vocabulary recognizer.
Furthermore, we assessed the performance of the open vocabulary recognizer in a multi-font
context more specifically as a sans serif and a serif recognizer. We achieved an overall WRR of
96.94% for both cases.

Zusammenfassung

In dieser Dissertation wird das Problem der Texterkennung in Anti-Aliased Bildern mit sehr
tiefer Auflésung von 72 bis 100 dpi und bei Schriftgrossen zwischen 7 bis 12 Punkten behandelt.
Solche Texte kommen haufig in Bildern im Web vor. Da die darin enthaltenen textlichen In-
formationen von grosser semantischer Bedeutung sein kénnen, verbessert eine ausreichend gute
Erkennung die Qualitit der Indexierung und erhdht auch die Gewinnung von Informationen bei

automatischen inhaltsbasierten Suchsystemen.

Anti-Aliasing ist eine Technik, die zur Verbesserung der Lesbarkeit bei einer limitierten
Anzahl von Pixeln verwendet wird. Dabei werden die Pixel in Graustufen dargestellt und
ermOglichen damit eine bessere Erkennbarkeit, speziell bei Kanten und Diagonalen. Anti-
Aliasing fiihrt aber auch dazu, dass ein Teil der einzelnen Buchstaben auf jeweils beiden Seiten
miteinander verschmilzt. Diese Verschmelzung fiihrt dazu, dass die einzelnen Buchstaben nicht
mehr mit den bekannten Segmentierungsmethoden der klassischen Dokumentanalyse aufschliissel-
bar sind. Zuséatzlich erzeugt diese Technik ein so genanntes ”kontextliches Rauschen”, sowohl
auf der linken wie auch auf der rechten Seite der einzelnen Buchstaben. Dieses Rauschen fiihrt zu
einer deutlichen Verschlechterung der Schrifterkennungsrate selbst dann, wenn die Buchstaben
eines jeden Wortes vorgéangig segmentiert worden sind. Die klassischen OCR-Systeme sind nicht
in der Lage, solche Texte ausreichend zu erkennen, da sie grundsétzlich zum Erkennen von Scans
aus gedrucktem Text mit einer minimalen Auflésung von 150 dpi entworfen worden sind. In der
Literatur findet man so auch zahlreiche Artikel, die von der Extraktion und Erkennung von Tex-
ten in Web-Bildern handeln. Diese Arbeiten konzentrieren sich aber fast ausschliesslich auf die
Textextraktion und die Erhéhung der Auflésung des extrahierten Textbildes mittels Anwendung
diverser Preprocessing Techniken. Die somit erhaltenen Textbilder werden dann anschliessend

mittels eines kommerziellen OCR Softwares erkannt.

Die hier vorgestellte Arbeit verwendet einen neuartigen Ansatz, sowohl fiir die Segmentierung
wie auch fiir die Erkennung von Anti-Aliased Texten in Bildern mit sehr niedriger Auflésung
auch bei kleinen Schriften. Die hier eingesetzten Methoden werden direkt auf den extrahierten
Anti-Aliased Text angewendet und verwenden somit auch keine Preprocessing Methoden zur

Verbesserung der Bildqualitdt und Erhohung deren Auflosung.

Es werden zuerst Experimente mit einzelnen Buchstaben vorgestellt. Eine erste Studie

diente zur Ermittlung einer geeigneten Methode zur Extraktion der Merkmale von isolierten

vi ZUSAMMENFASSUNG

Buchstaben. Die so ermittelten Eigenschaften waren die zentralen Momente erster und zweiter
Ordnung. In einer zweiten Studie wurden die gegenseitigen kontextlichen Einfliisse von be-
nachbarten Buchstaben untersucht. Die Verteilung der Merkmale in den beiden ersten Studien
erfolgte dabei unter der Annahme einer einfachen Gauss’schen Verteilung (Mono-Gauss). Damit
konnte bei isolierten Buchstaben eine bemerkenswert gute Erkennungsrate von 99.93% erreicht
werden. Bei Buchstaben, die aus dem Kontext eines Wortes herausgelost worden sind, betrug
die Erkennungsquote immer noch 98.45%. Diese Abnahme ist in erster Linie auf den Einfluss
des ”kontextlichen Rauschens” zurckzufiihren.

Beide Studien haben die Notwendigkeit nach dem Einsatz einer statistischen Methode aufge-
zeigt, die in der Lage sein sollte, verbundene Buchstaben in einem Wort gleichzeitig zu segmen-
tieren und zu erkennen. Eine Methode, die sich dazu als sehr geeignet erweisen sollte, ist die
Hidden Markov Modelle (HMM). Um das Problem der Segmentierung zu umgehen, wurde das
unbekannte Wortbild in mehrere kleine Fenster aufgeteilt (mittels der sogenannten Sliding Win-
dows Technik) und es wurden dann die Eigenschaften jedes einzelnen Fensters berechnet.

Im Weiteren konnten auch die Erkenntnisse der ersten Studien bei der Entwicklung eines
Erkennungssystems fiir ganze Worter einfliessen. So konnte zum Beispiel ein zusétzlicher Buch-
stabe zur Darstellung des ”kontextlichen Rauschens” eingefiihrt werden oder es wurden Multi-
Gauss’sche Funktionen anstelle der einfachen Gauss’schen Verteilung zur Darstellung der Distri-
bution der Merkmale eingesetzt. Zur weiteren Verbesserung der Wort-Erkennungsrate wurden
die Zustande mit einer minimalen und maximalen Vorkommenslange versehen.

Es wurden zwei verschiedene Erkennungssysteme fiir isolierte Worter implementiert. Das Er-
ste basiert auf einem Worterbuch und ist in der Lage, bis zu 60’000 Worter zu erkennen. Dem
Zweiten liegt kein Worterbuch zugrunde und kann daher auf jedes beliebige Wort in jeder Sprache
angewendet werden, solange nur der Text in lateinischen Buchstaben geschrieben ist. Es wur-
den auch Experimente zur Messung der Performances beider Erkennungssysteme durchgefiihrt.
Diese Experimente wurden vorerst in einem ”Mono-Font” Kontext ausgefiihrt.

Danach wurden die zu diesen typographischen Schrifteigenschaften passenden und opti-
mierten Charakter-Modelle dem Erkennungssystem zugefithrt. Damit und mit dem FEinsatz
des Viterbi-Algorithmus wurde das richtige Wort erkannt. Mit einer solchen Konfiguration
wurde eine generelle Wort-Erkennungsrate bei 48 Fonts von 97.56% fiir das Worterbuch-basierte
Erkennungssystem und von 97.43% fiir das Worterbuch-unabhéngige Erkennungssystem erre-
icht. Zuséatzlich wurden die Moglichkeit der Gruppierung der Serif und Sans Serif Fonts zur
Bildung eines Serif oder Sans Serif Erkennungssystems fiir das Worterbuch-unabhéngige Sys-
tem iiberpriift. Es konnte eine generelle Wort-Erkennungsrate von 96.94% in beiden Féllen

erreicht werden.

Contents

Acknowledgements
Abstract
Zusammenfassung

1 Introduction

1.1 OCR OVEIVIEW v o e e e e e e e e e e
1.1.1 Data acquisition
1.1.2 Applications
1.1.3 Technologies e

1.2 Context e

1.3 Contribution

1.4 Thesis Outline e

2 State of the art

2.1 Text detection and recognition in web images
2.2 Text detection and recognition in video images
2.2.1 Scenetext
2.2.2 Superimposed text
2.3 Text detection and recognition in images captured from digital cameras
2.4 Screen-shot images L
2.4.1 Recognition of screen-shot images with commercial OCRs
2.4.2 Works in detection and recognition of screen-shot images
2.5 Thesis motivation

3 Low resolution text rendering

3.1 Digital typography L
3.2 Fontdesign
3.2.1 Bitmapfonts
3.2.2 Outline fonts

vil

iii

T xR W W NN ==

12
13
15
21
25
25
28
31

viii

CONTENTS

3.2.3 Font metrics 40
3.2.4 Character spacing 41

3.3 Specificities of ULR text 41
3.3.1 Segmentation of words in an ULR sentence 42
3.3.2 Segmentation of characters in an ULR word 42
3.3.3 Variability due to Grid alignment 0. 43
3.3.4 Adjacent characters 43

3.4 A simulation method to gain ULR database 44
3.4.1 ULR characters e 44
342 ULRwords e 45
Algorithmic fundamentals 47
4.1 Feature extraction L L L 48
4.2 Classification methods L o 50
4.2.1 Fundamentals of Bayesian decision theory 51

4.3 Fundamentals of hidden Markov models 53
4.3.1 Elements of hidden Markov models 53
4.3.2 Topologies e 55
4.3.3 Gaussian mixture models to model emission probability 57
4.3.4 Expectation maximization(EM) for estimation of GMMs 58
4.3.5 The evaluation problem of the HMMs 60
4.3.6 Viterbi algorithm: How to find the ’correct’ state sequence? 61
4.3.7 N-best decoder: modified Viterbi algorithm 63
4.3.8 Pruning 63
4.3.9 Training with HMMs 64

4.4 OCR systems using HMMso o 66
4.5 Cursive handwriting recognition using HMMs 68
4.5.1 On-line handwriting oL 68
4.5.2 Off-line handwriting e 71
Study of ULR single characters 75
5.1 Feature extraction e 75
5.1.1 Selected features 75
5.1.2 Verification of marginal features’ normal distribution: x? test 76

5.2 System description 78
5.3 Experiments on single isolated characters 81
5.3.1 Imtroduction 81
5.3.2 General study L 82
5.3.3 Influence of rendering method L. 83

5.3.4 Multi-font experiment oL 87

CONTENTS

5.3.5 Conclusion

7.3 Future perspectives

Index

5.4 Experiments on contextual characters
5.4.1 A method to obtain contextual characters
5.4.2 Mono-font experiment L L
5.4.3 Multi-font experiment
5.4.4 Conclusion e

5.5 Discussion and further conclusions,

6 Recognition of ULR single words using HMMs

6.1 Introduction e

6.2 Fundamental experiments L
6.2.1 System description L
6.2.2 Evaluation tests
6.2.3 Conclusion e

6.3 Experiments on a large dictionary oo oL
6.3.1 System descriptiono L
6.3.2 Evaluation tests
6.3.3 Error analysis
6.3.4 Conclusion e

6.4 Experiments on an open-vocabulary recognizer
6.4.1 System description
6.4.2 Experimental results L
6.4.3 Conclusion

6.5 Conclusions e

7 Conclusions and future works
7.1 Study of single characters
7.2 Recognition of single words

X

89
89
90
92
96
98
99

101
101
102
102
107
108
108
109
111
114
115
116
117
118
124
125

127
127
129
130

138

CONTENTS

Chapter 1

Introduction

Optical Character Recognition (OCR) is the process of converting text embedded in a digital
image into text or word processing files that can be easily edited and stored. OCR technology
has made significant impact on the way information is stored, shared and edited. Prior to OCR,
to turn a book into a word processing file, each page would have to be typed word for word.
OCR has made considerable advances in recent years thanks to the progress in the recognition
methodologies and also to the availability of better and inexpensive scanners. As a drawback,
OCR technology has been tuned to perform well in the context of high quality scanned documents
and still does not perform well in recognizing text in images with a resolution less than 150 dpi.
In addition, OCRs often fail to recognize anti-aliased text with small font sizes, as they are
generally designed to recognize bilevel text in high resolution images. In this chapter, we first
provide an overview of the OCR domain and then focus on our thesis work from the perspective

of data acquisition, application and used technologies.

1.1 OCR overview

When looking to the OCR domain from a broad perspective, we can distinguish three different

categories as follows:

1.1.1 Data acquisition

Data acquisition is the way the input image is produced. We can think of various ways to

produce the input image digitally:

e Scanner:
The text is lying on a sheet of paper and its image is fed to a dedicated scanning device

which typically is of high resolution.

o Digital steady or video camera:

Text is in a scene such as store signs, road signs, billboards, etc.

2 CHAPTER 1. INTRODUCTION

e Superimposed text in digital video camera:
Text is artificially produced and added to the scene like subtitles, headlines of news pro-

grams or sport news.

e Rendered text using some image processing tools like Adobe Photoshop or Macromedia
Fireworks:

Text is synthetic with special effects applied to it like hinting, anti-aliasing etc.

o Screen-captured text using screen snapshot software on top of other word processing tools:

Text is altered by rendering options of word processing software.

1.1.2 Applications

Detection and recognition of text in digital images can be useful for different application domains

such as below:

e Document processing:
The objective here is to convert scanned documents, text embedded in web images, video

images and digital cameras into a word processing document.

o Web indexing:
The text contained in a web image is of high semantical value. Therefore its detection and

recognition makes indexation of web pages more efficient.

o (Content based image retrieval and indexing of video images:
Indexation and retrieval of the archived videos that contain movies, news and sport pro-
grams is an important application. In addition to this, the explosive growth of recent video
applications like YouTube demands for even more efficient systems to index and retrieve

their textual context.

e Automated reading:
This can be used to help the visually impaired or blind to read the embedded text in digital
images. A great deal of applications for automated narrating of documents for people such

as car drivers also exists.

o Screenshot OCR:
Recent word processing softwares pose an option to construct screenshots from portions
of a document. This option is frequently used as a fast and uncomplicated way to share
interesting parts of a document amongst people. Currently some of the available commer-
cial OCRs are capable of detecting and recognizing such text if the snapshot is sufficiently

zoomed-in.

e Object/Product recognition:

Getting more information about an interesting object or product. For example, we may

CHAPTER 1. INTRODUCTION 3

be interested to find out more details or the best catalogue price for a bottle of wine from

its picture that was captured with a digital camera.

e License plate recognition:
Identification of cars’ license plates for various police forces and as a method for electronic
toll collection on pay-per-use roads. Monitoring traffic activity like adherence to a red

light at an intersection, etc..

1.1.3 Technologies

Text that is embedded in digital images using multiple text acquisition technologies as previously
described, needs to be detected and recognized for each of the different applications that we have
listed above. A complete OCR system has to be able to work on scanned documents and to
detect and recognize text in digital images. However, most of the commercial OCR systems are
designed to detect and recognize text from bilevel images having a resolution of at least 150 dpi.
Most of the work found in literature about text detection and recognition of digital images is
focused on developing methods to extract and detect the embedded text in such images. That
is, methods to localize text and to separate it from its background, binarize it to have a bilevel
text image, and preparing it so that it can be fed to classical Optical Character Recognition
(OCR) engines. Few works of developing a dedicated recognizer that can be applied directly
following extraction and detection of text have been reported. In chapter 2, we provide a survey
about methods and algorithms that are reported in the literature for text detection in digital
images. Text recognition can be applied either on isolated characters, words, text lines or an

entire page.

1.2 Context

The World Wide Web is the world’s largest publicly available information provider nowadays.
Text embedded in web pages contains valuable information that can be used for information
retrieval and indexing. The success of the World Wide Web has made information accessible
at low costs around the globe. The images as a powerful communication medium [1] have been
rapidly integrated into web pages since digital devices are available at reasonable costs which
allows the images to be produced and published in large scales. Consequently, web images are
now a substantial part of web pages and often contain textual information with high semantical
value that can be used for information retrieval and indexing [2].

Search engine crawlers constantly scan web pages for information indexing. However, such
crawlers are usually programmed to only seek out the HTML plain text. The Internet Engineer-
ing Task Force (IETF) has made a recommendation to utilize the < Alt > tag to describe the
content of an image and overcome this drawback. However, web designers often disregard this

recommendation and thus web engine crawlers are not able to retrieve and index such crucial

4 CHAPTER 1. INTRODUCTION

textual information.

Various works report on methods to index the web images. These approaches are either
content-based or text-based. The content-based approaches use the image shape, color and
texture for search and indexing. They usually compare description of features of a target image
with the images contained in their database [3], [4] and [5]. Content-based indexing is firstly
computationally cost intensive when used in a large database and secondly it needs a draft of
the searched image to query the database which is not simple nor always available. Text-based
indexing analyzes the HTML text associated with these images [6]. Textual description of the
image content is stored in the database. Such description can be for ex. textual information
contained in the < Alt > tag or in alternative optional fields, image titles or surrounding text
in a HTML page. When the user enters a keyword description of his searched information, this
keyword is then compared to the description of the stored images in the database. Text-based
indexing is obviously computationally less cost intensive because it needs a textual keyword
description to search for contextual information.

However, both described approaches are still insufficient to provide good retrieval quality
since the content-based approach does not use textual information embedded in images or in
the surrounding HTML text and the text-based approach uses textual annotations in HTML text
that is added manually. Textual human annotations are unfortunately mostly poorly provided
in HTML pages.

1.3 Contribution

In this thesis, we propose a novel approach aiming at developing a dedicated recognizer that
can be directly applied to anti-aliased text embedded in web images. Such a dedicated recog-
nizer can be employed instead of cost intensive pre-processing algorithms to enhance the image
quality. The main advantage of the proposed dedicated recognizer is that it is developed taking
into account the specificities of anti-aliased, ultra low resolution text in small font sizes. Our
motivation for developing such recognizer has been to gain higher recognition accuracy which
can significantly contribute to the domain of information retrieval and indexing of web pages.
Another practical application we can think of is to be able to cut and paste text from web images
into different word processing applications. Ultimately, the developed recognizer could be used
for other purposes such as automatic reading to aid visually impaired in reading text embedded
in images contained in a web page.

We have conducted two preliminary studies aiming at understanding the specificities of such
text and at extracting features that are strongly discriminative. To show the proof of our
concept we have applied the chosen features on isolated characters with ultra low resolution
(ULR) that are anti-aliased at small point sizes between 5-12 points. We could confirm that
the selected features were fairly discriminative. The next challenge we faced was the character

segmentation. As shown in Fig. 1.1 the characters in such words are mostly connected, thus

CHAPTER 1. INTRODUCTION)

the well-known segmentation methods in classical document analysis like connected component
analysis or vertical and horizontal projection profiles cannot be applied to isolate characters in

the words.

Figure 1.1: A magnified image of word ”School” at ULR, anti-aliased with 9 point size

Therefore, we have chosen hidden Markov models (HMMs) that are able to simultaneously
segment and recognize the characters. In the literature we can find studies that deal with similar
segmentation challenges as ours. Such problem domains, for example, are cursive handwriting
recognition that has to simultaneously segment and recognize connected characters or automatic
speech recognition which faces the segmentation and recognition of connected speech phonemes.
Most approaches in these two research fields make use of HMMs to segment and recognize
handwritten text or voice signals. HMMs are sophisticated and flexible statistical models that
are used in a wide variety of signal and data analysis applications such as biological sequence
analysis, study of protein molecules and financial problems allowing to sort through the random

”noise” of the financial markets.

1.4 Thesis Outline

The thesis is structured as follows:

Chapter 2: State of the art

Introduces the related work for text detection and recognition in digital images.

Chapter 3: Low resolution text rendering
Provides an overview of the techniques used in digital typography to represent text on low
resolution screens and ends up with the specificities and challenges faced with the ultra

low resolution, anti-aliased texts at small font sizes.

Chapter 4: Algorithmic fundamentals
Provides an overview of the state of the art techniques used in pattern recognition and
specifically in the document analysis. We delve into the details of the selected features

and classification methods we have used for training and testing.

Chapter 5: Study of ULR single characters
This chapter reports the following;:

6 CHAPTER 1. INTRODUCTION

e Investigate if the selected features have a normal distribution

e Investigate the discriminative power of the selected features

e Investigate the classification performance of Bayes decision theorem

Chapter 6: Recognition of ULR single words using HMMs

This chapter reports on various recognition systems that we have implemented for recog-
nizing ULR single words. The recognition systems are based on hidden Markov models
as an intrinsic model to simultaneously segment and recognize connected characters in an
ULR word. Basically, we have implemented two different recognition systems:

e A dictionary-based recognizer

e An open vocabulary recognizer

In addition, in this chapter we report on the improvements we have made to our recognizers.

These improvements are:

e Inter-character model that is inserted as an extra character between the characters

Different HMM-topologies

Automatic training using HMMs

Optimization of Viterbi algorithm for a dictionary-based word recognizer

Determining an optimal training set for an open vocabulary word recognizer

Chapter 2

State of the art

There is no doubt about it: The rapid growth of images containing text in multimedia environ-
ments demands for efficient systems for information indexing and retrieval. As the text contained
in such images is of high semantical value, many studies have been conducted on detection and
recognition of such embedded text. Jain et al. [7] state that text detection is interchangeably
used with text localization and text extraction. However, for the sake of clarity, we can divide

both text detection and recognition into different areas as shown in Fig. 2.1.

Text Detection

| |
| |
I Text Text Text }
} Presence Localization Extraction 1 |
| |
| |

—

b

Text Recognition

|

|

|

Pre- Word/Char Feature Pattern Post- |
Processing Segmentation Extraction Classification Processing }
|

|

Figure 2.1: Text detection and recognition
Therefore text detection includes following stages:

e Text presence determination: Determining the precise presence of the text in a given image

o Text localization: Locating the text in the image and generating bounding boxes around
it.

o Text extraction: Segmentation or separation of the text from the background

Text Recognition can be divided into five stages:

7

8 CHAPTER 2. STATE OF THE ART

e Pre-processing: Binarizing, normalizing and enhancing the image

e Word / Character segmentation: Segmentation of words in a text line and characters in a

word

o Feature extraction: Transforming the data set into discriminative features in order to

extract the relevant information from the input data

e Pattern classification: Using classification algorithms to assign an unknown pattern to a

certain class

e Post-processing(Language-based Modeling): Improving the recognition rate by assigning
the knowledge-based probability of character or word sequences to the recognition system,

making some assumptions such as spoken language, vocabulary used, etc.
From a broad perspective, we can divide digital images into four major applications:

1. Web images
2. Video images
3. Images captured by digital cameras

4. Screen-shot images

Each of these applications has its own specificities that differentiates them. Consequently
we can find in the literature various studies of text detection and recognition in each specific
application. In the next section, we provide a survey of the related works for text detection and
recognition from these four types of digital images. Liang, Li and Doermann in [8] [9] provide
another survey that lists the works of two first types, i.e. web and video images.

A further analysis of the existing literature shows that the quantity of such studies dealing
with text detection of digital images predominate the works devoted to text recognition of such
images. To be precise, the general procedure of the majority of the published works is to con-
centrate on pre-processing methods to improve the quality of the detected images and enhance
their resolution to be suitable (> 150 dpi) to be recognized with classical OCRs. Consequently,
we can find few works that developed dedicated recognizers designed for text embedded in digital
images.

Acknowledging this, we decided to focus our research on the development of a targeted rec-
ognizer that is specifically trained for the recognition of such text. We were specially interested
in developing a system for recognition of text in web images that is anti-aliased with ultra low
resolution (between 70-96 dpi) and has small point sizes (between 6-12 points). While we focus
on text on anti-aliased text in web images, we believe that the principles of our approach could
also be generalized to the recognition of other kind of texts, like shadowed text etc., embedded
in web images and even further to text embedded in images from video and those shot using a

digital camera.

CHAPTER 2. STATE OF THE ART 9
2.1 Text detection and recognition in web images

Typical images from the web are banners, headers, illustrations, buttons etc.. Web images
are in many ways different from real scene images and other document images. First, the
text embedded in web images is in visual distinction from its background to attract quickly
the attention of web site visitor. Second they are of ultra low resolution (72-100 dpi) and
have various artifacts due to the color quantization and lossy compression that speeds up the
download. Third such text is often of small font size (between 6-12 points). Finally because few
pixels are available to represent the shape, anti-aliasing filters are used to help smoothing the
transitions between edges and diagonals of the characters. On the other hand, such text shows
a few advantages as it is unskewed and does not contain noise often seen in scanned documents
like blurring and speckles and additional noisy pixels. Fig. 2.2 shows two web images containing
textual information. The image at the top is the original image and the image below is its

enlarged version.

LU EH
CHOBRLCS

2007

Figure 2.2: Examples of web images; top: image in original size, bottom: magnified image

However, classical OCRs often fail to recognize such text as they are designed to work with

mostly bilevel images having a resolution up to 150 dpi and font sizes bigger than 10 pts. We
have verified this fact on a commercial OCR and report of the obtained results later in this
chapter.
Nevertheless, several studies are conducted on the problem of detecting and recognizing text
embedded in web images. In the following we give a survey of the works in the literature in this
research field. We are not aware of works that might have been performed under industrial con-
fidentiality codes and therefore not accessible in the scientific literature. Additionally, table 2.1
shows an overview of the described works.

Kanugo et al. in [18] investigate the fraction of images on the Web which contain text and

also the percentage of image text that does not appear in the corresponding HTML file. They

10 CHAPTER 2. STATE OF THE ART

Table 2.1: Overview of the works for extraction and recognition of text in web images

Author Year | OCR type Test Detection | Recognition Detection
Database | Rate Rate Method
Antonacopoulos | 2000 | - 42 70.05% - Color space
[10] analysis
Antonacopoulos | 2002 | - ? 80-95% - Combined connected
[11] component & Fuzzy
segmentation
Antonacopoulos | 2004 | - 115 51-75% - Split-Merge
12
Lopresti 1996 | dedicated 50 - 8 character Surface Fitting
(13] classes: 69.7%
Lopresti 1997 | dedicated 50 - 8 character N-tuple
[14] classes: 89.3%
Lopresti 1997 | - 262 47% - Color clustering &
[15] Connected components
Perantonis 2003 | FineReader | 650 85.58% 61.58% Text Area
[16] identification
Perantonis 2004 | FineReader | 1°100 80.45% 64.07% Text area
[17] location

statistically sample the images contained in web pages that were retrieved by a search engine
for specific queries. Then they try to find the fraction of sampled images that contain text.
This fraction is used to estimate the probability of finding text in a web image. Additionally
they count the number of image words that do not appear in the corresponding HTML files.
They randomly chose 265 images containing text from 862 web pages that contained total
18’161 images. They have built a ground truth by manually entering the image text file into a
corresponding text file. They show in their evaluation tests that 42% of the images in the sample
contain text. In addition to this, they show that 59% of the images containing text have at least
one word that does not appear in HTML text. Thy have also performed preliminary experiments
with other queries and have obtained similar results. Their finding shows two important facts:
first the indexation of text in images is crucial, as words in the images are not always included
in the surrounding HTML text and second they raise the question of if the image content of web
pages is increasing with time. The authors state that their quantitative estimates concur with
the subjective hypothesis that the amount of text in web images is increasing.

In [2] Antonacoupolous et al. conduct a study to assess the impact and consequences of text
contained in images. They report on the fact that of the total number of words visible in a web
page, 17% are in image form. Of the words in image form, 76% do not appear elsewhere in the
encoded text. In addition to this, the recommended Alt tag for textual description in images
are wrong, incomplete or does not exist in 56% of the cases.

Furthermore in [10] the authors propose their first approach to text extraction from WWW
images. They approximate in their method the human perception characteristics for the iden-
tification of character regions. Their method is based on a combination of Hue-Luminance-
Saturation(HLS) and a wavelength-luminance representations to analyze the differences in chro-
macity and luminance. Then, they group together regions with more than 25% similarity and

finally use a connected components analysis by taking into account the size, aspect ratio and

CHAPTER 2. STATE OF THE ART 11

density of individual components to examine whether a component is a character or not. They
extract 124 images from web with varying degrees of their for- and background complexity for
their training set and 42 images with the same complexity variation for their test set. They vi-
sually inspect if the characters are correctly identified or partly identified or are missing. They
find out that their method works well for monochrome text and background as 89% of characters
have been correctly identified. Moreover 72% of characters contained in a monochrome text over
multicolored background were correctly identified. The character recognition rates decreases to
66% for multicolored text over monochrome background and to 56% for multicolored text over
multicolored background. However, in their approach the recognition of the extracted text is
still an open issue. Later in [11] they describe a new method for the extraction of text from web
images. Pixels of similar colors are merged into components and a fuzzy inference mechanism
is devised to group components into larger character-like regions. They report of a character
extraction rate that varies between 80-95% regarding the image background and foreground
complexity. Finally in [12] the authors propose a complete method to extract characters from
non-uniform color and in more complex situations. They use a split-and-merge segmentation
algorithm by using the Hue-Light-Saturation representation of color. They achieve character
recognition rates (CRR) up to 74.24%. Besides their text extraction method achieves 53.4%

precision and 88% recall.

Lopresti and Zhou in [13] explore some possible web applications for existing document
analysis techniques and report that classical image processing and pattern recognition techniques
can not be applied to different web applications without modification. They further report
in their work that most web pages contain at least a fraction of their text in image format
and besides for most pages in average about 18% of the image text doesn’t appear elsewhere.
Additionally they report about a method for text detection by quantizing the color space into a
small number of color classes by clustering colors into groups. After quantization of color space,
they separate the correct foreground color classes that represent the text. However, this method
can not be applied on text with varying colors and images with gradually changing colors. At
recognition step, they present a method that models a character shape by a polynomial surface
function. Further they report of preliminary experimental results showing that their recognition
method is effective to distinguish the majority of character classes. However, their method
can not distinguish between character classes with similar shapes like 'c’ and ’e’. Besides the
polynomial surface representation method is computationally cost intensive.

In [15] the same authors report on an approach based on color clustering for text extraction
followed by a connected component analysis for text detection. Their approach assumes that the
foreground color is roughly uniform for a given character. Pixels are assigned to the character
classes closest to their original colors. Then, they find out connected components belonging
to each color class. Their algorithm classifies connected components into text-like and non-
text-like classes. Finally they apply additional tests to eliminate spurious components as short

words or non-text lines. The evaluation test is done on 262 images chosen from web. To

12 CHAPTER 2. STATE OF THE ART

assess performance, they manually transcribe the text from web image and compare it with the
extracted characters. They have found out that in 1/5 of the samples the detection algorithm
has extracted more than 90% of the text from input. In this paper, they report an average
charceter detection rate of 47%.

Additionally, in [14] they describe a further method for recognizing text embedded in web images.
This method is based on n-tuple technique that works better than polynomial surface fitting
method. To measure the effectiveness of their second method, they use a practical searching
algorithm to find n-tuples that are ’shift’ invariant which makes them independent of sample
variations. They achieve higher CRR by increasing the number of n-tuples. When setting the
number of n-tuples to 20, they obtain an average CRR of 90.2%.

Pretagonis et al. in [16] present a novel web image processing algorithm for text area iden-
tification that helps commercial OCR engines to improve their web image recognition accuracy.
Their algorithm converts first the web image color into gray scale to consider the transitions of
brightness that are perceived by human eyes. Second, they use an edge extraction technique
that helps to extract all objects from the web image. Finally they use a conditional dilation
technique to iteratively choose the text objects among all objects. Then, they pass the extracted
text through a commercial OCR. They test their algorithm on a test corpus of 680 images and
obtain promising detection rates up to 83.5% and CRR up to 61.5%. In [17] the authors have
improved their algorithm. They define a threshold to distinguish between the brightness transi-
tions from the text body to its background. For the recognition task they use a classical OCR
engine that is fully integrated with their text extraction method. They report results on a test
corpus of 1’100 images in 4 different European languages that have been extracted from laptop
offers and job offers. They have created a ground truth set with the annotations of the text
areas. Their performance evaluation method is based on counting the number of matches be-
tween the text areas detected by the algorithm and the text in the ground truth. They report
of 80.45% detection rate. They perform a quantitative evaluation of the performance of the
text extraction and preprocessing tool in combination with a commercial OCR engine. and can
improve the recognition rate of commercial OCR by 20%. The authors argue in that work that
the main reason why they do not achieve higher recognition rates is that they use a classical
OCR engine to work with ultra low resolution images. They additionally proclaim that their

future work would be devoted on integrating a specific low resolution OCR engine.

2.2 Text detection and recognition in video images

Digital videos play an important role in entertainment, education and other multimedia appli-
cations. In addition to this, new video applications like YouTube has been literally exploding
in terms of quantity of data. As it is indeed nowadays extremely easy to produce a ”private”’
video and make it publicly available for example on YouTube. Therefore, Content-based index-

ation and retrieval of video images is an important application that needs automatic systems to

CHAPTER 2. STATE OF THE ART 13

efficiently and properly search and index large video databases. We can find extensive studies
in the literature that propose various text detection methods for specific applications like page
segmentation, license plate recognition etc. Text in video images is often in ultra low resolution
that depends on the poor quality of used screen device poor quality but has the advantage of
not containing noise of scanned documents like additional noisy pixels.

Text can be found in video images in two different categories:

e Scene text that is embedded in natural scenes like shop names, street names, text on a

T-shirt, street signs. Fig. 2.3 shows some possibilities of scene text in video images.

e Superimposed text that is artificially added to the video frames like in news videos, video
commercials, sport videos and others as shown in Fig. 2.4. Such text has the additional
advantage of being mostly unskewed as such text is added in rectangular frames to the

video images

Various works are published dealing with detection and recognition of both text types in

video images. Below we give a survey of the works for both types.

2.2.1 Scene text

Scene text appears mostly without intention in video scenes like in a scene of shopping mall
with many shop names or on a surface like on a T-shirt. Such text tends to be very difficult to
detect and recognize. Such text is embedded in a 3D scene and therefore can be rotated, tilted,

slanted, partially hidden, partially shadowed, or be upon different surfaces.

Pacificlronrf 1 KelWE Un ion|
101 776-1177 5208 SUITET08 “200 1A
‘Mi A49619 rcrav v TR O
reonienrco [T Pﬁﬁﬁlﬁfﬁ MARKET -Luﬂ

Figure 2.3: Some examples of scene texts

Below we give a short survey of works devoted for detection and recognition of text in scene
images. Additionally, table 2.2 shows an overview of these studies.

Jun Ohya et al. in [19] describe a method for character recognition in scene images. They
have employed this method to read variously formatted characters with unknown size, font and
gray-level under uncontrolled lighting. While the authors report reliable recognition results, their
approach is restricted to text characters that are almost upright, monochrome and not connected
in order to facilitate the text detection. In addition to this, in the presented work they have
focused on still images rather than video streams. Their system is trained to extract isolated

characters from scene images of road signs, sign boards of shops, etc.. The scene characters have

14 CHAPTER 2. STATE OF THE ART

Table 2.2: Overview of the works for extraction and recognition of text in natural scenes in video
images

Author | Year | Used OCR | Test Detection | Recognition | Detection
Database | Rate Rate Method
Ohya 1994 | ? 100 93.4% 66.5% Local thresholding
[19]
Wu 1999 | - 650 93.5% - Text area
[20] identification
Shim 2000 | - 5’000 98.77% - Extracting candidtae
[20] text regions & text
characteristics verification
Zhang 2002 | dedicated 2’000 ? 85.7% Local intensity
[21] normalization
Chen 2001 | commercial | 4’000 - 13.4% Edge based
[22] frames

various sizes, gray-levels and formats under uncontrolled lighting conditions. They have tested
on 100 images and obtained a character extracting rate of 71.1% and a character non-rejecting
rate of 93.4%. They also report of an overall CRR of 66.5%. They do not mention the method
they have used for recognizing characters but mention that the reported recognition rate is lower
than the rate they obtained from current OCRs. But since they are working with scene images
that contain different font sizes and uncontrolled lighting conditions, they consider their results

as relaible.

Shim et al. in [20] propose a robust and effective text extraction system. This system can
handle complex image backgrounds, deal with different font sizes and font colors that appear
in a scene text such as normal and inverse video. They first extract candidate text regions
and pass it through a verification process by removing the candidate region that is less than 12
pixels width or 4 pixels height. They apply their method to more than 5’000 frames. They then
prepare a ground truth for each frame to assess their system’s performance. They measure a
detection rate of 98.77%. Finally, they do not report of recognition rates for the detected text
but mention that their future works consists of developing OCR techniques specialized for video

fonts.

J. Zhang et al. in [21] introduce a reliable approach for recognition of Chinese characters
captured from a TV camera. Instead of using binary information as most OCR systems do, they
extract features from image intensity directly. They normalize the image intensity and employ
Gabor transforms for feature extraction and finally use LDA (Linear Discriminant Analysis) for
features classification. They train their system on 6 kinds of different Chinese fonts of total
3’755 characters. For their test set they use 1’630 randomly selected characters from their sign
library which contains more than 8’000 characters from more than 2’000 images. They achieve
an overall CRR of 85.78% for their test set and up to 99.81% for their training set. As their
system is tested on character images with different fonts, various lighting conditions, rotation

and even affine transform, they consider their results as fairly satisfying.

CHAPTER 2. STATE OF THE ART 15

Another interesting application for text detection and recognition in natural scenes is au-
tomatic recognition of vehicle license plates. One can find a large number of related works for
license plate recognition like [23], [24], [25], [26] and many others. However, most of these
works make assumptions that are only applicable to license plate recognition, i.e. they assume
for example that the background of characters/numbers is mainly monochrome and that their
location is restricted. Therefore, these works are out of our scope and we do not give a detailed

survey here.

2.2.2 Superimposed text

(a) Sport video (b) News video

Figure 2.4: Example of video images containing superimposed text

One can find in the literature other synonyms for superimposed text like caption text or
artificial text. However, superimposed text that is artificially produced and laid over the scene
in a post-processing stage like for example embedded captions in TV programs or commercials
or newscasts like on CNN or BBC, is often an important carrier of information and suitable
for information indexing and retrieval. Superimposed text usually appears in clusters and lies
horizontally and therefore does not have perspective deformations. In addition, superimposed
text usually moves in an uniform way and unlike scene text does not have an arbitrary motion;
moreover such text is usually monochromed but it can also have shadows for effective visualiza-

tion.

Most of the published methods to detect and recognize superimposed text embedded in video

images can be classified into four categories:

e Connected-component-based
Connected-component-based methods detect text regions by analyzing the geometrical ar-
rangement of edges or homogeneous color or grayscale values belonging to text. Connected
component-based methods are efficient methods to extract text when text does not contain

connected characters and background is monochrome and simple.

o Texture-based
Such methods are based on distinct textual properties of text in video images. Texture

based methods use usually specific knowledge of textural properties of the text region prior

16 CHAPTER 2. STATE OF THE ART

to classification. These textural properties can be for example the contrast between text
and background and the horizontal intensity variation of text that is different from its

background.

o Fdge-based
The edge-based methods seek for features that are independent of contrast, font-color,
font-size and language. Text string in videos has sharp transitions of color and luminance,
i.e. edges, against its local background. Therefore edge-based features can be more reliable
than font-color features as they contain two important properties: edge strength and edge

density.

o Hybrid methods

Hybrid methods combine two or more of the methods described above.

The majority of the related works to detect and recognize superimposed text in video images
is concentrated on developing algorithms to localize and detect the embedded text. As a con-
sequent of this, most of the researchers have applied various pre-processing techniques such as
binarizing and up-sampling to enhance the image quality in order to employ commercial OCR
engines. Few works report of developing a dedicated recognizer that is specifically trained to
recognize the detected and extracted text. Table 2.3 shows an overview about works on detec-
tion and recognition of superimposed text in video images. Below we provide also a short survey

of these works. A more detailed survey is provided in [7] by K. Jung et al..

Connected component-based

R. Lienhart and F.Suber in [27] describe a character segmentation method that operates on
uncompressed frames and makes use of intra and inter-frame features of text appearances in
digital videos. They employ a Split-and-Merge algorithm that performs segmentation by merging
the regions with an average color together. They test their algorithm on 8 video samples and
obtain a character segmentation rate ranging from 86% to 100%. They also test their own OCR
software using a feature vector classification. They do not report on the obtained recognition
rate in this work but mention that their software has to be further improved to reach the
accuracy rate of commercial OCR packages. In [28] they test their segmentation algorithm
on thirty video samples from title sequences of feature films, newscasts and commercials and
obtain a character segmentation rate between 96% and 99%. They additionally report of a
character recognition rate around 80%. The authors mention that the reason for the fairly low
recognition rate originates from the narrowness of their current implementation of OCR, software
that is firstly trained only with 12 fonts and secondly does not deal with connected characters.
However, They state that the recognition performance is still good enough for simple indexing
of caption text. The authors have improved their algorithm in [29] so that individual characters

have not different colors after text segmentation but have been binarized to enable a standard

CHAPTER 2. STATE OF THE ART 17

Table 2.3: Overview of the works for extraction and recognition of superimposed text in video
images

Author Year | Used OCR | Test Detection | Recognition | Detection
Database Rate Rate Method

Lienhart | 1996 | dedicated 8 video 86-100% ? Connected
[27] samples components

Lienhart | 1996 | dedicated 30 video 96-99% 80% Connected
(28] samples components

Lienhart | 1998 | dedictaed 30 video - 46-76% Connected
[29] samples components
Smith 1995 | - 63 video 63% -, Texture based
(30] samples

Zhong - 8 video s 99% - Texture based
(31] samples

Shin 2000 | - 2500 94.1% - Texture based
(32] keyframes

Lienhart | 1999 | commercial | 7 79.6% 69.9% Texture based
[33]

Xi 2001 | commercial | 40 minutes 94.7% 67.5% Texturebased
[34] video

Sato 1998 | dedicated 210 minutes | - 83.5% Edge based
[35] video

Chen 2001 | commercial | 4’000 frames | - 82.6% Edge based
36]

Chen 2000 | dedicated 30 minutes 97% 97% Hybrid
[22] video

Zhang 2002 | dedicated 3 sport 97% 95% Hybrid
[37] videos

Shim 1998 | - 12 video 98.2-100% | - Hybrid
[20] samples

OCR software to recognize them. The conventional OCR they incorporate into their system is
Recognita V3.0 for Windows 95. They obtain a character recognition rate between 47% and
76%.

Michael A. Smith and Takeo Kanade in [30] propose a method to automatically create video
browsing data that incorporates content specific video information. After detecting the text,
they do not deal with its segmentation and recognition. They characterize text as a ”horizontal
rectangular structure of clustered sharp edges”’ and use this feature to extract text. They test
their method on 63 images and obtain an overall detection rate of 63%. As they do not explicitly
mention how they asses the detection performance of their method, we assume that this has been
done by trained operators. Additionally they do not use a classical OCR or a dedicated OCR

for recognizing the detected text.

Texture-based

Y. Zhong et al. in [31] report on a texture-based caption text localization method which operates
directly in the DCT domain for MPEG video sequences or JPEG images. The DCT coefficients
in JPEG images or MPPEG video, which capture the directionality and periodicity of local

image blocks are used as texture measures to identify text regions. Each unit block in the

18 CHAPTER 2. STATE OF THE ART

compressed images is classified as either text or nontext based on local horizontal and vertical
intensity variations. Additionally, they use postprocessing procedures including morphological
operations and connected component analysis to refine the detected text. However, they use in
their algorithm only the luminance and not the color information to locate text. They evaluate
on 2’360 frames from 8 different video sequences. They report that 99% of the preseneted caption
text is localized but they get still 1.58% of noncaption areas that are falsely accepted. The False
rejects happens firstly when the font size or the gap between the characters is too big so that no
strong texture is present and secondly when the contrast between foreground and background is
too weak so that texture energy is not sufficiently high. Furthermore, the authors do not report

of recognition results in their work.

C.S. Shine et al. in [32] describe a method that uses a small window to scan the image
and classify the pixel located in the center of window as text or non-text using a SVM. To
facilitate the detection of various text sizes, they use a pyramid of images generated from the
original image by gradually reducing the resolution at each level. The classified images are then
post-processed to generate the bounding boxes of text in the image. Then, they increase the
resolution of the images to their original scale. They test their method on 2’500 key frames
with a size of 320x240 manually selected Korean news archives and 200 commercials. 500 of
these frames were used in the training time and the rest were used at testing time. They have
manually tagged a set of rectangles representing text for each frame and compared the output
of the classifier with those tags. The proposed method can detect 94.5% of the text regions
with the false-detection rate of 4.2%. The authors report that the errors are primarily because
of the low resolution. They plan to use a larger training set or incorporating domain-specific
knowledge to overcome the false-detection rates. The authors do not report of a recognition
step.

R. Linehart et al. in [33] propose a novel approach for localizing and segmenting text
in complex images and videos. Text lines are identified using a multi-resolution feed-forward
network that have been trained to detect text at a fixed scale and position. Localized text is then
scaled to a fixed height of 100 pixels and segmented to a binary image with black characters and
white background. Such text is then ready to be recognized with a classical OCR system. They
have tested their system on a large dataset of complex video images and achieved a character

segmentation rate of 79.6% and a character recognition rate of 69.9% .

J. Xi et al. in [34] report on a new system for text information extraction from news videos.
They use a texture-based detection method by using edge maps as the texture features of text
lines. They then use projection profiles to extract the text line. To increase the accuracy of
text block identification, they use some rules to filter out non-text blocks. Additionally, thea
have enlarged text blocks resolution and binarized the image to pass it through an existing
OCR module. They have collected several CNN news videos with a total length of 40 minutes.
They manually annotate each video frame so that the positions and the ASCII strings of each

text line in this frame is stored into a ground truth file. Finally, they perform their detection

CHAPTER 2. STATE OF THE ART 19

algorithm on this data and get a detection rate of 94.7% when comparing detected text with
the annotations of the ground truth data. They also report of a CRR of 67.5% by passing the

detected text through a commercial OCR software.

Edge-based

T. Sato et al. in [35] describe a VideoOCR technique that uses an interpolation filter to overcome
the problem of low resolution characters and complex backgrounds of text embedded in news
archives. They use edge properties of characters to detect text regions. They combine sub-
pixel interpolation on individual frames and multi-frame integration across time to increase the
resolution and reduce background variability. They further use 15x3, 3x7, 9x7 and 9x7 filters
to detect vertical, horizontal, left diagonal and right diagonal elements that present a character
shape. Then, they add the positive values at the same position among the filtered images to
integrate four directional line elements. Additionally, they use a thresholding at a fixed value
to produce a binary image which is used to determine positions of characters and recognize
characters. They apply a simple segmenentation technique by using a vertical projection profile.
The peaks indicates character boundaries. To avoid oversegmentation, they use a recognition-
based character segmentation using a conventional pattern matching algorithm to recognize the
characters. They evaluate their method using CNN Headline News programs. They use seven
30-minute programs that includes a total number of 2’370 characters. They obtain a CRR of
83.5%. Additionally, they implement a simple OCR program that consists of binarization of an
image by straightforward thresholding at a fixed value and character extraction by horizontal
and vertical projections of the binary image and matching by correlation. The test data is passed
through the implemented OCR and delivers a character recognition rate of 46.5%. Therefore,
the VideoOCR technique is twice more efficient as method of the simple OCR. Although the
authors gain a reliable character recognition accuracy by their VideoOCR, the word recognition
rate of 48.3% is still insufficient. By incorporating the differences between recognition results
with words in a dictionary and selecting a word having the least difference, they can increase

the word recognition results to 65.2%.

Hybrid

D. chen et al. in [36] present a two-step method for text detection. They propose a localiza-
tion/verification scheme that quickly extracts text blocks in images with a low rejection rate.
This localization process allows the authors to further extract individual text-lines and nor-
malize the size of the text. Then, they perform precise verification in a set of feature spaces
that are invariant to gray-scale changes. A post-processing step as a new gray-scale consistency
algorithm is proposed to improve segmentation results. The text localization step is evaluated
on a half hour video from a Belgian news program. The performance of the text localization

step is measured in terms of rejection rate and precision. They get no rejected regions, whereas

20 CHAPTER 2. STATE OF THE ART

the precision rate is 55.4%. Then, they test their text verification algorithm on a database
consisting of still images and half an hour of video recorded from TV. The verification scheme
of the authors has removed 7’225 regions of the 7’537 false alarms and gives a 0.24% rejection
rate and a 97% precision rate. The authors have implemented a multiple hypotheses recognition
scheme and report of a character recognition rate of 97% and a 93% word recognition rate. The
authors state that the performance of their proposed system is good enough to be used in a
video annotation and indexing system.

D. Zhang et al. in [37] propose domain-specific video algorithms for extraction and recog-
nition of superimposed text in digital video. Their system uses DCT coefficients and motion
vectors as features for localization of superimposed text. Additionally, they employ long-term
temporal consistency to enhance the localization performance. For character segmentation, they
combine unsupervised cluster-based classification and local minima searching of projection pro-
file to obtain more accurate segmentation. For text recognition, they use Zernike moments. By
exploring domain-knowledge and a statistical transition graph, they finally enhance the recogni-
tion rate by inferring constraints about domain-specific knowledge, such as ball counts and game
score of baseball videos. They test three baseball videos and one NBA basketball video as ex-
perimental subjects. To perform evaluation tests on their data base, they produce groundtruth
keyframes and obtain only 3% misses and 21.9% false alarms. In addition to this, they perform
character recognition on the detected keyframes. The recognition algorithm is not precisely
described but it is obvious that the authors use a dedicated recognizer presumably a pattern
matching algorithm. They achieve character recognition rates of 92%. After applying some do-
main knowledge about strike-ball image sequences, they can improve the character recognition
rate to 95%. Their system is a mono-font system and can not handle yet font variations but
they plan to improve it to be a multi-font system. The authors claim that though their system
is primarily implemented and tested for baseball videos, it can be generalized and used in other
video text extracting applications such as news and films.

In addition to the above works, one can find in the literature few works that describe algo-
rithms that deal both with scene text and superimposed text. Below we list some works dealing
with both text types in video sequences.

Shim et al. in [20] present a text extraction system that is robust enough to handle scene
text as well as superimposed text. Moreover, their algorithm can deal with different font sizes,
font styles and font appearances such as normal and inverse video. Besides, their algorithm
can deal with noise and artifacts introduced by block-based MPEG encoding of digital video.
They test their text extraction system on 12 video streams whose play-durations varies from
10 seconds to 1 minute. The total number of tested frames are 5’°000. Their text extraction
algorithm has a character miss rate between 0-2.68%. The authors do not mention recognition
rates in their work but state that their future work is directed towards handling multi-colored
text and developing a dedicated OCR specialized for video fonts.

In [22] Chen et al. locate the sub-structures of the text in video images using edge-detection

CHAPTER 2. STATE OF THE ART 21

and estimate the orientation and scale of each sub-structure using a family of filters. Besides
they select three scale ranges and enhance the contrast of these sub-structures as character
strokes in each scale range individually to improve the performance of both text detection and
segmentation. In order to use a standard OCR system, the detected text region is normalized
and then directly binarized to segment text and background. They use TypeReader OCR
package and report of character recognition rates of 7.4%-13.4% for scene text and of 36.1%-
82.6% for superimposed text. This experiment shows clearly that the recognition of scene text

in comparison to the superimposed text is indeed more difficult.

2.3 Text detection and recognition in images captured from dig-

ital cameras

With the fast popularization of digital camcorders and mobile phones or PDAs with integrated
digital cameras, the necessity of camera based character recognition has been immensely in-
creased. One could think of different applications in this field like tourist guide system, nav-
igation system, meeting archiving systems, wearable cameras for visually impaired persons,
documenting ancient books that are too sensitive to touch, etc. One could additionally say that
though these are important applications, but the size of their market is limited. However, an
important application is probably the indexation of personelle or publicly available pictures on
the web. A Gartner group survey [38] says that 48 percent of cellular phones will incorporate
cameras by 2006 and 81 percent will have them by 2010. Consequently, people use more often
their digital cameras to capture text instead of using bulky scanners. Therefore, the amount of
camera-captured documents is growing constantly and this automatically can boost and accel-
erate the research activities of camera-based document analysis.

Despite the fact that the field of traditional scanner-based document analysis has been ex-
tensively researched during the last 30 years [39], their techniques can not be applied directly on
camera-based images. This is because camera-based images have additional sources of noise due
to their perspective distortions, blur, lightening conditions, low resolutions and low brightness
contrast. Notwithstanding, the constant growth of resolution of mobile cameras (recently min. 2
Megapixel) is a motivating factor making them enough versatile tools to be integrated in future
document analysis systems.

Various researchers have been recently working on the field camera-based document analysis.
These works are either focused on a specific application like sign translation, systems for visually
impaired persons, document archiving, etc. or on a specific technique like image mosaicing to
better zoom and capture pieces of a full document, capturing documents under predefined angle
of a digital camera, working with bigger fonts but having arbitrary camera angles, etc. Most
of the proposed systems concentrate after text detection on techniques for pre-processing the
captured image like perspective normalization and warping, image enhancement methods like

interpolation, deblurring, adaptive thresholding, etc.. Then, the obtained high quality images are

22 CHAPTER 2. STATE OF THE ART

binarized and ready to be recognized with commercial OCRs. A few works have tried to develop
a dedicated recognizer that takes into account as much as possible the specificities of such images
and need as few as possible image pre-processing techniques. Most of the researchers argue that
the reason here fore is that the classical OCRs have reached a high level of recognition maturity
so that it is more advantageous to enhance the image quality for passing through commercial
OCRs. On the other hand, the same authors claim mostly in the conclusion of their studies that
there is still a substantial need for a dedicated OCR to increase the recognition accuracy of the

detected text from images shot by digital cameras.

Table 2.4: Overview of the works for extraction and recognition of text captured from digital
cameras

Author Year | Used OCR | Test Detection Recognition | Detection
Database Rate Rate Method
Zandifar 2002 | commercial | ? - 98% Hybrid method
[40]
Ezaki 2004 | - 504 images: Precision: 0.56 | - Connected
[41] mostly chars Recall: 0.7 components
> 30 pixels height
Ezaki 2005 | - 75 images: Precision: 0.62 | - Fischer’s
[42] only chars Recall: 0.64 discriminant rate
< 30 pixels height
Doermann | 2006 | - ? ? ? Image mosaicing
[43] technique
Uchida 2006 | - ? per line: - Character cross
[44] 84% ratio
Omachi 2006 | commercial | 7 ? 95.5% Embedding inf.
[45] in char patterns
Bae 2006 | commercial | 6’756 ? 99.19% hybrid method
[46] characters
Ohya 1994 | dedicated 100 text 93.4% 66.5% Local thresholding
[19] images
Zhang 2002 | dedicated 8’000 - 99.7% Gabor transforms
[21] chars & LDA
line Gao 2001 | - ? 93% - Adap. color modeling &
[47] searching algorithm

In [40] Zandifar et al. propose a camera based system that speaks the textual information
for visually impaired people. The system consists of a computer, a digital video camera, an
audio interface and a classical commercial OCR. The camera captures text from the scene with
full control of focus and zoom. They apply different operations on captured images such as
image mosaicing to enhance OCR results, auto-focusing to gain the best focusing positions,
auto-zooming to reach OCR font-size. They have developed a system conssitsing of a digital
camera, a computer and loudspeakers. The system scans document images in the environment
of the visually impaired and converts them to speech. A commercial OCR is integrated into
their system. The authors report of obtained recognition rates of bigger than 98%. However
they do not mention if such rate is character or word based.

Ezaki et. al. in [41] describe a system design for a camera-based reading system that extracts

text information from natural scenes images. In their study the authors find out that the system

CHAPTER 2. STATE OF THE ART 23

effectiveness is strongly dependent on character size. This would be specially the case for the
natural scenes acquired by a visually impaired person. Text extraction of their system is based
on connected component method. First, their system tries to find images containing text areas
with small characters. Then it zooms into the found text area to retake higher resolutions images
necessary for character recognition. To evaluate their algorithm, they use the dataset available
in ICDAR 2003 Robust Reading Competition. This dataset contains 504 realistic images with
textual content. They report of a precision rate up to 0.56 and a recall rate up to 0.7. They
have improved their system in [42] to cope with more complex backgrounds and to have more
accuracy when extracting smaller font sizes. The proposed system tries to find out the image
areas with small characters to zoom them into the found areas to enlarge the resolution that
is necessary to recognize text by the classical OCR systems. A new text extraction system
is introduced that uses Fisher’s Discriminant Rate (FDR) to decide whether an image area
should be binarized using local or global thresholds. If the text area is detected in the initial
image, the camera zooms-in to obtain more detailed images of each candidate text area. The
higher resolution characters are then recognized and read out to the blind person via a voice
synthesizer. For evaluating the performance of the proposed system, they use the same database
as the first study (ICDAR 2003 Robust Reading Competition). To more precisely assess system
performance that is especially improved for small characters, they choose from this database 75
images containing characters smaller than 30 pixels in height. They achieve a Precision rate up
to 0.62 and a Recall rate up to 0.64. For character recognition, they use a commercial OCR, a

dedicated character recognizer is not implemented yet.

In [48] Clarck et al. describe a novel automatic text reading system using an active camera
for OCR. The authors use for their system a low-resolution, stationary video camera with pan,
tilt and zoom control to actively generate a high resolution representation of a previously located
text region and determine how to best partition the region into a set of tiled segments. These
segments are finally mosaicied together using a simplified cross correlation. The final mosaic is
then fed into an OCR engine. They have tested their algorithm on two text images. The first one
delivers 90% word accuracy and the second one delivers 83% word accuracy. The same authors
in [49] propose a method for recovery of paragraphs of text under full perspective transformation
in a single image. They use the projection profiles from hypothesized vanishing points in order
to recover accurately the lines of text. After estimating the horizontal and vertical vanishing
points of the text planes, they transform the text to a so called ’fronto-parallel’ view and apply
image enhancement methods to increase the resolution to be suitable for classical OCRs. The
authors state that their algorithm performs well for a wide range of paragraphs, provided each
paragraph has at least three or more full lines. The author do not report either of explicit
evaluation performance of their system or of recognition results when using a commercial OCR

like in [48]. They intend to improve an automatic recognition system in their future works.

In [43] Doermann et al. present an image mosaicing technique for camera-captured images to

reconstruct a full page image. Their image registration method can align document images with

24 CHAPTER 2. STATE OF THE ART

as little as 10% overlap and severe perspective distortions. The number of mosaics in their test
varies from four to eight. In the overlapping area, they apply a sharpness blending across the
border and within. They also propose an image blending method that is optimized for document
images, which addresses the inconsistent lighting, ’ghost’ image and varying sharpness problems.
Then, they have applied their method in full A4 page document mosaicing experiments. The
authors state that in all cases the registration is accurate but they do not mention an explicit
performance of their system. In addition to this, the authors do not address the recognition
task in their work.

In [44] Uchida et al. present a method that uses the cross ratio of each character class. Each
character image is printed with a pattern that comprises five strips and the cross ratio is then
calculated from these strips. As cross ratio is projective invariant, the class information can be
extracted correctly regardless of camera angle. They have evaluated their method on a limited
set of 167 character images captured by digital camera from various angles. The experimental
results shows a line detection rate of 80.4% . They do not conduct a recognition process.

In [45] Omachi et al. propose a method of embedding information in a character pattern
so that the class of the character can be identified. Their algorithm should be robust against
geometric distortions that is usually the case for camera-captured images. They assign two
colors to each character pattern like adding shadow or using different color for the character
profile line. They use character patterns of 500 pixel height and generate shadow by moving the
character pattern right by ten pixels and below by ten pixels. Then the area ratio of the shadow
and the character pattern is calculated. To assess performance of the proposed system, they use
twelve word patterns that were used for traffic signs generated with their character patterns.
Each word is photographed in sunlight by a digital camera with three camera angles. They use
4 font families and achieve an overall CRR of 95.5%.

In [46] Bae et al. describe a camera based character recognition system, which is implemented
for mobile devices such as PDA and cellular phones with color cameras. The authors have firstly
developed a camera based character recognition system for PC that includes techniques such
as image enhancement, local adaptive binarization and noise reduction in order to effectively
extract character regions. Then, they apply vertical projection profiles to segment the the lines
into words and further to characters. This method works well for the Korean text for two
reasons: first the Korean characters are almost four times bigger in size than Latin characters,
second the Korean characters are not connected and though vertical projection profiles are able
to clearly discriminate the character boundaries. Finally they convert the PC based OCR system
to an embedded system for cellular phones. They evaluate their system using camera document
images of the ETRI database. They have trained MLPs with 11260 characters and tested with
6’756 characters. They report reliable character an overall character recognition rate of 99.19%.

In [19] Ohya et al. propose a flexible new method for character recognition for scene images.
Their method can deal with a variety of illumination conditions and without a-priori knowledge

of the size, font, position, gray level and format of the characters. Their method uses a local

CHAPTER 2. STATE OF THE ART 25

thresholding that does not need a training process for image segmentation. The differences
of gray-level values between adjacent regions is used for character segmentation. A character
recognition process calculates the similarity between a pattern candidate and each category in a
dictionary. They use a relaxation operation to boost the recognition and remove the ambiguities
and contradictions between similar patterns. They measure the performance of their algorithm
on 100 images in which characters are printed on road sign, license number plates of cars, sign
board of shops, etc.. They achieve a character detection rate of 93.4% and and a character
recognition rate of up to 66.5% with their relaxation approach. The authors state that the
recognition rate is lower than a commercial OCR that they currently use, but since the dictionary
used in the experiments does not include all the fonts like the current-use-OCR, the results are
considered appropriate. However, their system assumes that the characters are almost upright,
not textured, having the same gray level in different images and not connected.

In [21] Zhang et al. present a robust approach for text embedded in natural scenes. The au-
thors use local intensity normalization for image enhancement and Gabor transforms for feature
extraction. In order to reduce dimensions of feature vectors to make them computationally less
cost intensive, they utilize system LDA. They have evaluated the proposed system on a Chinese
sign recognition task. Their system includes 6 different chinese fonts each containing more than
3’000 characters for training set. For test sets they used 2’000 chinese sign images containing
more than 8000 characters under various perspective and lightening conditions. By combining
two wavelength Gabor features they achieve reliable character recognition rates up to 99.7%.
Their system is now integrated into an automatic chinese sign translation system.

Gao and young in [47] describe a system for sign detection, recognition and translation from
natural scenes that are shot for example by international tourists with digital cameras. They
propose an automatic text detection method based on an adaptive color modeling and searching
algorithm. Color modeling is optimized by using EM algorithm under the constraint of text
layout relations for a specific language. Their text detection model works fairly well with an
overall detection performance of 93%. However, the authors do not explicitly state recognition

performance of their proposed system.

2.4 Screen-shot images

2.4.1 Recognition of screen-shot images with commercial OCRs

Since recently there exists softwares that can recognize text in images as a screen-shot using for
ex. Adobe PDF or Word 2007. We fed such a commercial OCR, i.e. AbbyFineReader Intelligent
OCR, with screen shot images of different zooms and different backgrounds. We found out that
this OCR has three basic limitations:

o Text with complex layout

Fig. 2.5 shows a website with a complex layout structure. The selected OCR is unable to

26

CHAPTER 2. STATE OF THE ART

segment all the contained images correctly as the website contains images with complex
backgrounds like the scene pictures having different colors and shapes. The selected OCR
cannot accurately segment such images with complex backgrounds. Consequently, the
OCR is not able to properly recognize the text in the non-segmented areas. However,
this limitation is out of our scope, as we did not deal with text layout analysis in this

dissertation.

SCHWEIZER
FERNSEHEN

SF TAGESSCHAU SF SPORT SF METED SF WISSEN SF 2wel £24 EURO2008

SENDUNGEN IM ABO

" SF EURO2008
FUR UNS DAS GROSSTE.

Figure 2.5: Website with complex layout

e Text with complex backgrounds

Fig. 2.6 shows examples of buttons containing text. Such buttons are used frequently in
web sites. We have chosen these images, because the buttons have a large variety of back-
grounds. Some backgrounds are monochrome like the third button in the top row. Some
are designed with uniform color like the forth button in the top row. Others have gradient
colors like the second and third button in the second top row, etc. Furthermore, text is
rendered both in black or white. Fig. 2.7 shows the recognition results of the correspond-
ing buttons. The buttons with gradient backgrounds are not-recognized. Besides text in
button images with gray or white backgrounds or backgrounds with an uniform color or
monochrome backgrounds are mostly well recognized. In addition, the selected OCR can
recognize both black and white rendered text, presumably it simply inverts the pixels of

the segmented white colored text to black and then recognizes it.

Text with small font sizes, i.e. < 10 poins

Another limitation that such OCRs show is that they can either fail to, or only partly
recognize the screen-rendered text with small font sizes (10pts). Fig. 2.8 shows some
examples we tested. These examples were chosen from our synthetic single word database
that we produced for our work. The details of this database can be read in chapter 3. The
fonts are serif (Georgia, Times New Roman) and sans serif (Verdana). In addition, we

tested two basically different font styles: roman (plain) and italics as we speculated that

CHAPTER 2. STATE OF THE ART

Pick from the rrbany' predefined button styles:

e | N €
| [(D N oo
N (o] (-) 2N

Pick and customize the button shape:

Pick a button color, font color, font etc. The button sizes automatically!
e | @)
-l —

Figure 2.6: Buttons containing text with different backgrounds

Pick from the manypredeflned button styles

Button J
Button Button J 1 [Button

Pick and customize the button shape:

| ORE | e n e Sy @
I v WV * vy ety

Pick abuttoncolor, font color, font etc. The button sizes automatically!

Figure 2.7: Recognized text in different buttons

27

28 CHAPTER 2. STATE OF THE ART

recognition of italics text in small font sizes could be an extra element of difficulty for the
selected OCR. The results show that the selected OCR has major difficulties recognizing
screen shot (screen-rendered) words with small font sizes. In addition, recognition of italics

style seems to be even worse than roman style.

Font Font Font | Point Word (original | Word (close-up | Recognized
family | group | style | size size) size) text
Georgia | Serif | Plain | 9 pts. | band Inn::l
EHEHIN

Georgia | Serif Plain | 8 pts. fright r'" :ll.hl: iyt
Verdana | Sans Ttalics | 9 pts. band -

serif a3nad
Verdana | Sans Ttalics | 8 pts. pack -

=

serif]..'-ﬂ'-_ E
Times Serif Plain | 9 pis. hand band
New ard
Roman

Figure 2.8: Examples of limitations of the selected OCR to recognize ULR, anti-aliased words
with small points sizes

2.4.2 Works in detection and recognition of screen-shot images

An interesting approach for detection and recognition of screen-shot images is the recent pub-
lished works of Wachenfeld et al. [50] [51] [52] [53]. The authors report in their works on a
recognition system for screen-rendered text. The kind of the screen rendered text which they use
are text in screen shot images that has font sizes < 10 points. Such a definition of their work
make them a parallel approach to ours and though we give below a short survey of the database
and the recognition system they produced and implemented. As noted above, the terminology
the authors use in their published works for such text is the screen-rendered text, whereas in our
work we use in general the term ultra low resolution text.

Due to the fact that no standard databases exist for ultra low resolution, anti-aliased text at
small font sizes, the authors build two freely available databases [54] that they describe in [53].
The first database is the so called Screen-Char database, which holds currently 28’080 screen-
shot images of single characters. They use this database for training and test of classifiers for
screen-rendered characters. The second database is the the so called Screen- Word database and
contains two data sets: a collection of 400 embedded words and a collection of 2’400 isolated

words. This database is used to train and test their recognition system. The embedded words

CHAPTER 2. STATE OF THE ART 29

have been obtained from several existing documents and represent real-world data. The isolated
words are synthetically generated for specific combinations of font type, font style, font size
and other rendering conditions such as sampling grid. They have chosen 20 words for building
the synthetical isolated word database. The first 10 words are words containing all letters in
Latin alphabet both for lower and upper case letters and the other 10 words have been chosen
randomly while taking into consideration that some character pairs like ™ and c¢l leading to
confusions with m and d were included in random words. The proposed recognition system of

wachenfeld et al. is shown in Fig. 2.9.

Capture screen

!

Pre- processing:
(Background / foreground separation
Word boundary determination)

!

oversegmentation

!

Combined
merging
And
classifiying

hybrid classification

)

optimal path

!

plausibility check

Figure 2.9: Recognition system Wachenfeld et al.

Their approach consists of 6 steps:

e Pre-processing
After capturing and loading a screen-shot image, they first use a threshold to separate
background from foreground. Next, they determine the word boundaries by processing
components of connected foreground pixels. They finally group components close together

and remove those which cannot be characters due to their form or size.

e Segmentation

The authors use a soft segmentation, where the choice between multiple segmentation

30

CHAPTER 2. STATE OF THE ART

candidates is based on recognition. They first split the foreground pixels of the word
boundary region into a sequence of smaller units. This results in an over-segmentation.
For an image w x h they compute w segmentation paths of height A which minimizes a
cost function using a dynamic programming algorithm. The paths are laid over a graph

and the n — 1 paths are selected iteratively using a threshold wy,;y,.

Feature extraction

In this step, the authors segment the images into several 5 x 5 blocks. They compute the
average gray value of each block using sub-pixel precision. They then get a 25 dimensional
feature vector for each block. The authors state that many features like contour based
approaches have difficulties with self-touching or broken characters at small font sizes.
Additionally they find that typographic grayscale features as proposed in [55] are not
suitable. Further, the authors state that the Hu’s seven moment invariants and Fourier

descriptors need a much higher spatial resolution of 64 x 64 or 128 x 128 to work properly.

Classification

For the classification task the authors use 48 character classes from 52 lower and upper
case letters, i.e. the authors merge eight pairs of very similar classes (0/0, ¢/C, s/S, v/V,
w/W, x/X, z/Z) and add two additional classes. They then compute a plausibility as the
average Euclidean distance between the corresponding feature vector and class ¢;. The

classification result for a single segment is a list of classes ordered by a plausibility test.

Optimal n-best path: Hypothesis graph

A hypothesis graph is built in parallel during the over-segmentation step. A complete
graph would consist of the resulting sub-components and all possible merging of neighbor-
hood sub-components. To avoid huge graphs they have limited merging by aspect ratio
conditions. For each segment in the graph they compute the plausibility that the segment
belongs to the class cx. This is done for all classes. The concatenation of classifications
along all paths results in word candidates. For each word candidate they compute a plau-
sibility as a product of the classification plausibilities of its segments, weighted by their

segment’s width in pixels wy,. The result is a list of word candidates ordered by plausibility.

Post-processing: Plausibility check

This post-processing task uses knowledge about typography to modify or remove the order
of word candidates. They check here whether the classification result for a segment is
conform with its height or position. The result of this step is an improved word candidate
list.

Further, the authors perform evaluation tests to show the performance of their recognition

system. They do not use dictionaries or language models for their tests. The only constraints

that is employed in their system is based on typographical knowledge at character level. They

perform two different evaluation tests. The first experiments test the performance of the isolated

CHAPTER 2. STATE OF THE ART 31

characters. They use 20’080 ultra low resolution isolated characters for training. For test, they
use a test subset of 15’808 plain characters and gain a character recognition rate of 98.91%. In
addition, they test their system on 400 embedded words. The authors report that in 347 cases
the correct word is in the first place and in 383 cases the correct word is under the first ten word

candidates.

2.5 Thesis motivation

To summarize, the majority of the works we have introduced for detection and recognition of
text in digital images report mostly of significant results at text detection level. Furthermore,
these works use a commercial OCR for recognition of the extracted text, as they claim that such
softwares have reached a high accuracy above 99.9%. However, the commercial OCRs have a
major limitation, as they are designed to recognize bilevel text that has a minimum resolution of
150 dpi. In this dissertation, we have dealt with the problem of recognition of anti-aliased text
with small font sizes such as those frequently embedded in web images. Such text has a poor
quality between 72-100 dpi(computer screen resolution) and therefore has to be enhanced before
feeding to commercial OCRs. We could think of another approach that employs a dedicated
recognizer for such text that would not use methods such as normalization, binarization and
others.

However, to the best of our knowledge and with the exception of the recent works of Wachen-
feld et al., we could not find any research work aiming at developing and using a dedicated rec-
ognizer for text at ultra low resolution that is anti-aliased and is rendered at small point sizes.
Such a dedicated recognizer has the clear advantage to be directly applicable on the detected
text without using cost-intensive image pre-processing methods. We believe that such a recog-
nizer can indeed deliver better recognition results and provide a substantial contribution to a
more accurate retrieval and indexation of textual information encapsulated in the web pages.
Therefore, we have studied the recognition task for isolated characters and isolated words and
have built different single word recognizers that were based either on a real-word dictionary or
were even not dependent to a vocabulary and even language. Further, we believe that we can
use the principles of the presented system for the recognition of text embedded in other digital
images. However, our system needs to be modified in some certain aspects to be applicable for

recognition of text in video images and those images shot from mobile cameras.

32

CHAPTER 2. STATE OF THE ART

Chapter 3

Low resolution text rendering

3.1 Digital typography

Typography is at least as old as the printing system in the history of human civilization. There
are basically two different models regarding possible interactions of the typographical devel-
opment. Some historians view the development of this technique in ”the Far East” (China) as
separate from that occuring in mid-15th century in Europe, while others view them as connected.
Digital typography is a field that overlaps two others: a) classical or letterpress typography and
b) computer science [56]. A detailed explanation of the complex field of typography and in our
particular case digital typography is beyond the scope of the presented work. In this chapter
this chapter we present some descriptions on the topics relating to our work about recognition
of anti-aliased text at ultra low resolution with small point sizes.

Typography is the art and techniques of type design, modifying type glyphs, and arranging
type. Type glyphs (characters) are created and modified using a variety of illustration tech-
niques. The arrangement of type is the selection of typefaces, point size, line length, leading
(line spacing) and letter spacing. A font is a set of glyphs (images) representing the characters
from a particular character set in a particular typeface. A glyph is the actual artistic repre-
sentation of an abstract glyph, in some typographic style that may be drawn on the screen
or paper. From the mid-1980s, as digital typography has grown, type designers have adopted
several printed font formats as computer fonts. Computer fonts (”digital font”) are stored in
a computer file containing letter forms . Principally there are two different requirements that
typography has to fulfill. These are the readability and the legibility of the font. As these two
terms are mostly confused together, we give a short description of them to be able to make a

clear distinction between these two terms:

o Legibility
Legibility is that characteristic of the typeface that allows the eye to distinguish one
character from the other. In some fonts, the actual shapes of some letters cause the

typeface to have a depreciated legibility. For instance, a lower case i’ next to another

33

34

CHAPTER 3. LOW RESOLUTION TEXT RENDERING

straight, upright character like an I’ or ’t’ makes these characters illegible in certain font

families. Therefore, legibility is built in to the font by the font designer.

Readability

Readability is the relative ease with which a typeface can be read when characters are
arranged in words, sentences, and paragraphs. It concerns the difficulty of the language
itself, not its appearance. Factors that affect readability include sentence and word length,
and the frequency of uncommon words. Readability is therefore more important for printed
text, whereas the more relevant factor that matters for text on low resolution screens
especially when embedded in images, is its legibility, as such text is generally not in long

sentences and paragraphs.

Some fonts, such as Verdana, are designed primarily for use on computer screens and we

assume that more effort has been done on their legibility than readability.

Digital fonts store the image of each character either as a bitmap or by geometrical de-

scription of their outline also called a vector font. The main advantage of outline fonts is their

scalability. A font family is typically a group of related fonts which vary only in size, scale,

weight, orientation, width, etc, but not design. For example, Arial is a font family, whereas

Arial Roman, Arial Italic and Arial Bold are individual fonts making up the Arial font family.

Font families can be divided into two different groups:

e Serif fonts

Serif fonts have some decorative embellishments at the end of their strokes. Common
examples for such fonts are Times and Georgia. Serif fonts are the most used fonts in
printed material like books, newspapers and magazines. Fig. 3.1 shows a sentence written

with the serif font 'Georgia’.

The quick brown fox jumps over the lazy dog

Figure 3.1: An example of a text line written by serif font 'Georgia’

Sans serif fonts

Sans serif fonts are free of serifs as the name suggests. The low contrast and absence of
serifs makes most sans serif fonts harder to follow for general reading. They are fine for a
sentence, passable for a paragraph, but are not well suited to be used in the text of a book.
Sans serif fonts are commonly used for display typography that demands legibility above
high readability. For example most web pages use modern sans serif fonts, because it is
commonly believed that, in contrast to the case for printed material, sans serif fonts are
easier than serif fonts to read on the ultra low resolution computer screen. For instance,
since Verdana was first shipped with Internet Explorer in 1996, it has become one of the
most widely used fonts in web sites round the globe. Fig. 3.2 shows a sentence written

with the sans serif font "Verdana’.

CHAPTER 3. LOW RESOLUTION TEXT RENDERING 35

The quick brown fox jumps over the lazy dog

Figure 3.2: An example of a text line written by sans serif font "Verdana’

Additionally digital fonts contain glyph descriptions, font metrics information that are used for

text composition.

3.2 Font design

The early approach of creating digitized characters was to draw them by hand and then dig-
itize it manually point by point using an appropriate software such as Ikarus [56]. Another
approach is to simulate the hand-drawn designs with the mathematical specification of pen tra-
jectories and shapes by using Metafont [57]. Characters can also be digitized by scanning the
drawing and using an interactive outline editor like Fontlab’s TypeTool, FontLab Studio [5§],
Fontographer [59], etc..

Applications using digital fonts and their rasterizers (font engines), appear in Microsoft and
Apple Computer operating systems, Adobe Systems products, desktop publishing applications
and other applications from various companies. Fonts can be designed either as bitmap fonts or

outline fonts.

3.2.1 Bitmap fonts

Bitmap fonts store each letter, number, symbol for every point size, style and resolution with a
unique bitmap. The bitmaps are a bunch of rows and columns of pixels that are on or off. For
example, a font that has three sizes, and any combination of bold and italic, needs 12 complete
sets of images. Bitmap fonts have the advantage that they are fast and simple to render but they
generally show the disadvantage of having a visually poor quality than scalable outline fonts.
Fig. 3.3 shows a bitmap font written on different point sizes on the computer screen. Bitmap

fonts were used in the early days of computer fonts and are mostly replaced by outline fonts.

Figure 3.3: Bitmap font in different font sizes

36 CHAPTER 3. LOW RESOLUTION TEXT RENDERING

3.2.2 Outline fonts

When an outline font is used to be rendered on the computer screen in a specific size by an
application, a ratserization routine uses an already stored character’s outline, usually at big
resolution, and renders it to the desired size and then creates a bitmap of the letter on the fly.
It takes nearly 20 milliseconds to render the font. The advantage of outline fonts is that they
save space on the disk by creating an outline for each letter rather than calling up a discrete
bitmap from memory. The disadvantage of outline fonts are the rounding errors that happen
while the resulting bitmap has to be fitted into the computer grid. To overcome this drawback,
some font engines use techniques like hinting and anti-aliasing to reach an optimal legibility of
that character on the computer screen. Fig. 3.4 shows the outline of character "M’ in different

sizes and transformations.

%*MM

) rotated) small c) big (d) mirrored

Figure 3.4: An example of scalability of outline fonts: Character M” in different transformations
and scales

Common outline font formats are PostScript Type 1 and 3 [60], TrueType and OpenType [61]
and METAFONT [57]. TrueType (TT) and PostScript Type 1 (PS1) are both Multi-platform
outline font standards for which the technical specifications are openly available. Multi-platform
means that both font types are usable on multiple sorts of computer systems. Postscript fonts
were introduced by Adobe at early 1980 and were the first computer fonts that have been taken
seriously by the printing industry. They have been used in Macintosh operating system. The
fast popularity of PostScript fonts was due to the fact that Macintosh operating system provided
any application with the ability to use any fonts installed on the system. Doing so, more software
developer were encouraged to work on Macintosh operating system as at that times fonts were
costly and software developers had to pay extra charges on font designer companies to be able
to integrate them in their software. Facing this successful approach of Macintosh, Microsoft has
launched the same strategy and has made True Type accessible with the windows operating

System.

e Postscript Type 1 and Type 3
As already said, Postscript Type 1 and Type 3 were developed by Adobe for professional
digital typesetting. The glyphs in PostScript are outline fonts described with cubic Bezier

curves. Type 1 fonts were restricted to a subset of the PostScript language that has

CHAPTER 3. LOW RESOLUTION TEXT RENDERING 37

been originally developed as a language to process graphics. Type 1 and Type 3 fonts use

additionally hints that are not publicly available and though can not be copied or imitated.

e True Type and Open Type

Apple was irritated that Adobe licensed PostScript to printer manufacturers who undercut
Apple’s own LaserWriter. So, Apple and Microsoft agreed a cross-licensing and product
development deal, the fruits of which would be available to both parties: Microsoft would
bring a PostScript-style graphics engine to the table (Truelmage), while Apple would
create a font system even better than Adobe’s. The outcome of this cross-license was the
font TrueType developed in late 1980s as a competitor to Adobe’s Type 1 fonts used in
PostScript. Therefore True Type is a joint-work of both companies and has been used
in their both operating systems. The first difference between TrueType and PostScript
fonts is their use of different sorts of mathematics to describe their curves. The primary
advantage of TrueType over PostScriptl fonts is the fact that TrueType allows better
hinting. TrueType hints can do all that PostScript can, and almost anything else, as
defined by the very flexible instructions. Hinting is described later in this chapter.

e METAFONT

METAFONT [57] is a programming language used to define vector fonts. It is also the
name of the interpreter that executes METAFONT code, converting the vector fonts into
bitmap fonts that can be included in PostScript documents. METAFONT uses a different
sort of glyph description. Thus, rather than describing the outline of the glyph directly, a
METAFONT file describes the curve traveled by the center of the pen, and the pen’s shape
is allowed to vary as the pen moves. The result is much like an outline font, but with slightly
softened corners defined by the pen shape. LaTeX has initially used METAFONT fonts.
Not too long ago (before Adobe Type Manager (ATM) was available for the Macintosh
and Microsoft Windows), fonts were too expensive to be generally available. In those days,
a font building tool like METAFONT was essential if TeX was going to have a number of
typefaces and a large number of mathematical symbols. Today, the role of METAFONT
is diminishing. Many people choose to use PostScript fonts almost entirely. In fact, with
PostScript alternatives to the Computer Modern Math fonts now available, it’s possible
to use TEX without using METAFONT fonts at all.

Hinting

Hinting is a technique to fit the character outline into a given grid. Fitting an unmodified
outline into a grid of an output device especially on computer screens, causes some severe
legibility problems. Due to the fact that a pixel is the smallest visual unit on a computer screen,
it is possible that part of a character’s outline for a given grid alignment could only fit in a
fraction of a pixel. By a monochrome screen a character shap has a bilevel representation, i.e.

a pixel is either on (black) or off (white). In such a case deciding whether a pixel to be black

38 CHAPTER 3. LOW RESOLUTION TEXT RENDERING

or white is very crucial. This decision is even more sensitive for the small font sizes (6-12 pts.),
where few pixels are available to represent a character shape. A modification of the character’s
outline is often of great help to increase the characters’s legibility. This modification is called
hinting or grid-fitting. Hinting includes many mathematical instructions stored in a font file that
allow the distortion of a character outline at a specific size. Consequently the original outline
remains undistorted as distortion is an a case-by-case base, i.e. only in specific font sizes.
Hersch et al. have developed techniques for the grid-fitting of character outlines to a given
rasterization grid [62] [63] [64]. In [65] a model-based matching and hinting of fonts is described.
This model uses a table of applicable hints for automatic hint generation that are added to
character’s outline description. Additionally, the authors report on first building higher-order
character structural parts like serifs, stems, bowls and junctions and second mapping them
into the outline descriptors to design more advanced fonts. In [66] the authors introduce an
universal auto-hinting system for typographic shapes as the existing hinting systems have been
often conceived to match particular families of fonts such as Latin, Kanjai, Arabic etc.. The
authors report of a method for the automatic recognition of character structure elements. They
then use the gained knowledge about location of the stems and analysis of the outline parts
between stems for producing automatically appropriate grid constraint rules (hints). Fig. 3.5

shows an unmodified outline of character "M’ and its hinted version.

Figure 3.5: M’ unhinted / hinted

Anti-aliasing

Using color screens has the advantage to use 255 gray scale colors. Anti-aliasing is a technique
that uses these gray level colors in order to smooth the sharp edges and diagonals of a character
by a bilevel (black and white) representation of a character shape. As a consequence of this, if
the character includes a vertical line which should be one pixel wide but falls exactly between
two pixels, it will appear on screen as a two-pixel-wide gray line. This blurriness is a trade off of
clarity for accuracy. The text on the screen will appear sharper but wider than it is when using
a printing device and looking at it on the paper. Fig. 3.6 illustrates bilevel versus anti-aliased

representation of character *A”’.

CHAPTER 3. LOW RESOLUTION TEXT RENDERING 39

(a) ’A’ Bilevel (b) ’A’ Anti-alised

Figure 3.6: Character A’ in bilevel and anti-aliased representation

Hinting of anti-aliased text

Bilevel characters are rendered on low-resolution displays by applying hinting techniques as
described above. Ultra low-resolution anti-aliased characters are normally created from high-
resolution instances by filtering and resampling. However, for anti-aliased character rendering,
hinting techniques are also often applied in order to create sharp anti-aliased character images.
Such an approach is for example presented in [67]. The proposed method relies on the set of
visual rules that type designers have derived from many years of manual design. The authors
call their method perceptually tuned generation of anti-aliased fonts, because it is based on the
designer and reader’s perception. Additionally, their method promotes accurate weight and
phase control to ensure that the character elements have a minimum width even at a small size
and without having shape variability in different grid alignments. Ultimately, it computes the
most visually spacing of adjacent anti-aliased characters using a model based on the way the
human vision system perceives space between characters. The authors claim that this spacing
is a crucial part of their work because correct spacing leads to improved font quality. As a
proof of this concept, they generate and space anti-aliased characters for a size of 12 points (see
Fig. 3.7) and compare them with filtered but not hinted anti-aliased characters (see Fig. 3.8).
The authors expect that their method can generally enhance the display capability of ultra low

resolution computer screens.

mainly of two diskinct operakbions

Figure 3.7: A perceptually tuned anti-aliased text

We assume that such hinting techniques are incorporated into the Adobe Acrobat reader
software. Fig. 3.9 shows a magnified screen-shot image of hinted anti-aliased text extracted
from Adobe Acrobat reader.

40 CHAPTER 3. LOW RESOLUTION TEXT RENDERING
u u u u u
u | | II | | ‘ I | | I II . I | II | | I u I | | I | | .
IRy el s LR L ATl RAE
u
Figure 3.8: A traditinally filtered anti-aliased text

Talking face verification system.

3.2.3 Font metrics

As stated earlier, each character from a particular font in digital typography is stored in a file
containing its shape as a bitmap font or an outline font. This file contains additional information
to adjust for example the proper character’s interspacing between the precedent and following
characters. These additional information is called font metrics. Font metrics components that
are often used in digital typography are advance, bounding box (bbox), and left and right side
bearings. The advance of a character is the distance from the character’s origin to the origin of
the next character. The bounding box of a character is the smallest rectangle that completely
contains the visible portion of the character. The left-side bearing (LSB) is the distance from
the character’s origin to the left of its bounds rectangle. If LSB is negative, part of the character
is drawn to the left of its origin. The right-side bearing (RSB) is the distance from the right
side of the bounds rectangle to the next character’s origin (the origin plus the advance). If RSB
is negative, part of the character is drawn to the right of the next character’s origin. Fig. 3.10

demonstrates these components for characters ’a’ and ’f”.

LSB bounding box RSB bounding box

(a) Metrics of ’a’ (b) Metrics of ’f’

Figure 3.10: (a) Font metrics for *a’ with positive RSB (b) Font metric for ’f* with negative RSB

CHAPTER 3. LOW RESOLUTION TEXT RENDERING 41

3.2.4 Character spacing

As stated earlier, inter-character spacing is stored together with font shape in font file. There

are two kinds of possible inter-character spacing:

e Proportional spacing
Proportional-spaced fonts adjust the inter-character space based on the shape of the in-
dividual characters. The width of a character is varied based on its shape. Adjusting
inter-character spacing is actually a function of kerning. Kerning is an algorithm that de-
fines the space of specific character pairs rather than those characters alone. This method
increases the legibility at computer screens. For instance, the letter A’ and the letter "V’
are typically stored in each font as a kerning pair where they will be spaced differently
when appearing next to each other. Kerning is a feature of many typesetting systems and
computer programs, but will not be further discussed here. An example of a proportional-

spaced font is ’Verdana’. Fig. 3.11 shows a word written using this font at size of 40

wrapper

Figure 3.11: An example of a proportional font "Verdana’ for word "Wrapper’

points.

e Monospace spacing
In this method the space between the characters does not vary. An example of such font
is "Courier’. Fig. 3.12 shows an example of a word written using this font at size of
40 points. Virtually all typewriters of a few decades ago used Courier. More modern
printing devices including some electronic typewriters are nowadays capable of producing

proportional spaced fonts.

wrapper

Figure 3.12: An example of a proportional font ’Courier’ for word "Wrapper’

3.3 Specificities of ULR text

As stated earlier, the aim of our work has beeb to develope a recognition approach for anti-
aliased, ultra low resolution (ULR) text, i.e. text having a resolution between 72-100 dpi and
small font sizes between 6-12 points. We described in the previous section the general techniques
that are used to generate such text. In this section we describe specificities of this kind of text,

i.e.the previously introduced techniques like hinting and anti-aliasing are employed. However,

42 CHAPTER 3. LOW RESOLUTION TEXT RENDERING

the aim of this work has not been to develop a complete OCR system that is usually designed
to analyze a full page containing paragraphs, phrases, linking signs etc. Thus we chose as our

start point to study the specificities of such text a text line.

3.3.1 Segmentation of words in an ULR sentence

The quick beown fox jumnps over the lazy dog

Figure 3.13: A text line containing ULR words in original size

The guick brown fox jurnps over the lazy dog

Figure 3.14: An enlarged version of a text line containing ULR words

As previously described, wenn text is rendered at ultra low resolution, most of the font
engines use anti-aliasing. As noted in last section, anti-aliasing is a useful technique when few
pixels are available to make the sharp edges and diagonals of characters look smoother and
more legible. Fig. 3.13 shows a sentence written with the font family ’Verdana’, font style
roman (plain) at 9 point size in its original size. Fig. 3.14 shows its enlarged version. As can be
seen, the words in such a sentence usually have a distance of one or more white pixels from each
other. This distance is suitable to apply well-known segmentation-first algorithms of classical

document analysis to segment such a text line into words.

3.3.2 Segmentation of characters in an ULR word

Figure 3.15: Segmentation problem by ULR Words

Apparently, by looking at ULR words, we can observe that, especially for font sizes <
9 points, the characters can not be segmented prior to recognition. This specificity is a challeng-
ing issue for recognition of such words. Because the majority of segmentation methods that are
used in classical document analysis need a minimum distance of one pixel between the adjacent
characters. Therefore, we can not use for example connected components analysis for segmenting

the characters in context of a word that is rendered at ULR. Fig. 3.15 shows an enlarged version

CHAPTER 3. LOW RESOLUTION TEXT RENDERING 43

of word ’brown’. As can be seen the bounding boxes of characters can not be separated. One
approach to segment characters could be to simultaneously segment and recognize characters.
One could also think of using one of the few existing segmentation-first algorithms like the one
introduced in the work of Wachenfeld et al. [51]. However, in our approach we decided to apply
a statistical methods that can simultaneously segment and recognize such characters. We go

further into details in chapters 4 and 6.

3.3.3 Variability due to Grid alignment

Figure 3.16: Character ’0’ in different grid alignments

Most of the image processing applications, utilized by web designers, like Adobe Photoshop,
Macromedia Fireworks etc. use anti-aliasing to render ULR-text. However, this technique has
the effect that the images of the same character are not identical. That is, the anti-aliased char-
acters have different gray values dependent to the spatial grid alignment. Fig. 3.16 demonstrates
such variability for character o’ in different words like ’brown’, fox’ and ’over’ that are placed

in different grid alignments due to their occurrence in the text line shown in fig. 3.14.

3.3.4 Adjacent characters

As seen in Fig. 3.10, each character in a low resolution screen is rendered within a bounding box.
We can define three possibilities regarding the mutual influences of bounding boxes of adjacent

characters in a word rendered at ultra low resolution as below:

e The bounding boxes are separated, i.e. they have a distance of at least one pizel. This
is usually the case when characters are rendered with a font size > 10 points. Fig. 3.17
demonstrates this case for the characters ‘w’ and ’n’ in the word ’brown’ rendered using

font family 'Verdana’, roman (plain) style at point size 13.

Drown

Figure 3.17: Characters w’ and 'n’ with separate bounding boxes

44 CHAPTER 3. LOW RESOLUTION TEXT RENDERING

e The bounding boxes are touching, i.e. there is no distance between them. This is usually
the case when characters are rendered with a font size between 8-10 points. Fig. 3.18
shows this case for characters b’ and ’r’ in word ’brown’ using font family ’'Verdana’,

roman (plain) style at point size 10.

Brown

Figure 3.18: Characters b’ and v’ with touching bounding boxes

e The bounding boxes are overlapping, i.e. one or more pizels of both bounding boxes merge

together at their left and right borders.

Figure 3.19: Characters ‘w’ and 'n’ with merged bounding boxes

This happens mostly when characters are rendered with font sizes < 10 points. Fig. 3.19
shows the word ’brown’ rendered with font family 'Verdana’, roman (plain) style at point
size 9. As can be seen the rightmost pixel column of bounding box of "w’ is merged with

the leftmost pixel column of bounding box of n’.

3.4 A simulation method to gain ULR database

3.4.1 ULR characters

At the time of our investigations no standard database of ULR characters was publicly available.
Therefore we decided to build our own database for training and test. According to previous
section, the ULR characters have to be of a resolution between 72-100 dpi, anti-aliased and
multi-aligned with small font sizes (between 6-12 pts). To generate representative samples, we
produced binary images of character classes (52 classes, lower- and upper-case letters) with
a resolution k times larger and down-sampled them by the same factor using different image
processing tools. The shape variability is achieved by varying the precise portion of the binary

shape relatively to the re-sampling grid. This technique allows to produce k? different samples.

CHAPTER 3. LOW RESOLUTION TEXT RENDERING 45

Fig. 3.20 illustrates this method with a re-sampling factor of k = 5. The binary images of
character 'w’ at big font size (= 45 points) have the same shape as can be seen at the left hand
side of fig. 3.20. Therefore this technique allows us to obtain k? = 52 = 25 different shapes as
can be seen at right hand side of Fig. 3.20.

Figure 3.20: Character 'w’ at high resolution (left side) and ultra low resolution (right side)

brown brown brown brown brown

Figure 3.21: Example of binary images of word brown (45 pts) in different grid alignments

brown brown brown brown Brown

Figure 3.22: Example of down-sampled images of word brown (9 pts) in different grid alignments

3.4.2 ULR words

The same method can be applied to gain ULR words with different shapes. We can produce
binary images of such words that have the same shape in big font size as shown in Fig. 3.21.
When the image dimension is re-sampled according to down-sampling factor k, we gain words
with different shapes by placing them in different coordinates of sampling grid as illustrated in

Fig. 3.22.

46

CHAPTER 3. LOW RESOLUTION TEXT RENDERING

Chapter 4
Algorithmic fundamentals

Machines can certainly beat humans in repetitive tasks like calculation of mathematical instruc-
tions or brute force search algorithms. Perhaps the most famous example of machine’s capability
for brute force algorithms has been demonstrated by the world chess championship in 1997 [68]
when a machine named ’deep blue’ has outperformed the Russian Garry Kasparov, the reigning
world chess champion. However, the issue of building machines in order to recognize patterns
is still the most challenging field in computer science. Machines have usually limited ability to
perceive their environment. On the other hand, humans have a highly developed perception
that happens below the conscious level of humans and obviously the complex mechanism of
such a perception has been a matter of investigation in the past 40 years. In the recent years,
researchers have made significant improvements to develop algorithms and theories to make
machines recognize patterns. Consequently we now have machines that are able to recognize
patterns better than humans in a specific problem area like face [69] and character recogni-
tion [70] and other recognition tasks. Machines can be connected to very performant sensors
that sometimes beat the ability of humans. However, the most important difference between
machines’ and humans’ perception is that human can mix easily different modalities and higher
level of contextual information from one recognition task to another while machines lack this
ability and can be used only for a limited and well-defined recognition task .

Although pattern recognition is therefore dependent of special characteristics of the problem,
there exists a commonly used abstract classification model for pattern recognition. This model

has three components:
e q transducer that prepares the input data for machine processing,
e q feature extractor that gathers relevant information from the input data

e q classifier that uses and compares the information given by the feature extractor to assign

the input data to one of the finite possible classes for that specific problem.

In this chapter, we describe the fundamentals of these components that we have chosen and used

for our recognition system. The first component of our recognition system, i.e. the transducer is

47

48 CHAPTER 4. ALGORITHMIC FUNDAMENTALS

the set of image preparation tools that one put together to cope with the limitations of computer
screen and specially with its limited resolution of 72-96 dpi. Other physical characteristics of
the computer screen are out of scope. Therefore we give in the following the fundamentals of

the selected feature extractor and the used classification algorithms.

4.1 Feature extraction

The borders between the feature extraction and classification task are arbitrary. The perfect
feature extractor has the capacity to deliver such a good representation that a simple classifier
is able to categorize the classes. On the other hand, a powerful classifier does not necessarily
need the use of an ideal feature extractor. However, feature extraction is related always to
the specific problem domain. Generally speaking, features have to be discriminative enough
and invariant to the irrelevant transformations of the input data. The transformations of the
input data is dependent from the problem domain. Generally speaking, there exist three kinds
of transformations: a) horizontal and vertical translation b) rotation c¢) scale. Some other
transformations can happen in other problem domains like isomorphic transformation when
taking a picture from digital cameras in a 3D-scene, or artificial horizontal spacing that are
invented by the web designer to make text in web images more legible and dominant.

One can find in the related works of classical document analysis a wide variety of suggested
features. A complete list of these features is out of the scope of this work. However, we introduce

here some frequently used features in the classical document image analysis.

¢ Geometrical features
Geometrical features are features like perimeter, area, maximum and minimum distances
from a boundary to the center of mass, number of holes, Euler number, compactness,
etc.. However, these features are commonly used for the pre-classification of objects into

characters or graphics. More details about these features can be found in [71].

e Aspect ratios
These features are extracted from shape sizes in x- and y- directions. They are computed
from building the ratio of width and height of the bounding box of a particular image.
They can significantly contribute to the final classification of characters as can be seen

in [72]. They are generally less used for word recognition tasks.

e Horizontal and vertical projection profiles of black pixels
Projection is defined as an operation that maps mostly a binary image into a one-dimensional
array called a histogram or projection profile. The values of the histogram are the sums of
the black pixels along a particular direction. Two types of histograms are defined. They
are at O-degrees (horizontal projection histogram) and 90-degrees (vertical projection his-

togram) with respect to the horizontal axis y. A horizontal projection histogram h(x) of a

CHAPTER 4. ALGORITHMIC FUNDAMENTALS 49

binary image (x,y) is the sum of black pixels projected onto the vertical axis x. A vertical
projection histogram v(y) of a binary image (x,y) is the sum of black pixels projected onto
the horizontal axis y. These features are very efficient in the classical document image
analysis and therefore have been used in most of OCR engines for for segmentation and
classification of characters of text in images scanned from printed material like books,
newspapers or a sheet of paper. In addition, they have been used as reliable features for
a font recognition system [73] that has been developed in our group. We assume that
the reason for such a good reliability is that printed text has enough pixels available for
characters that are mostly bi-level. In our case, where few pixels are available and the
pixels representing anti-aliasing filters are applied to character shapes that let their pixel
have 255 different gray values, we came to the conclusion that we better find other features

that would be able to discriminate such character shapes.

e Gabor filters
The Gabor Filters have received considerable attention because the characteristics of cer-
tain cells in the visual cortex of some mammals can be approximated by these filters.
In addition these filters have been shown to possess optimal localization properties in
both spatial and frequency domain and thus are well suited for texture segmentation
problems [74] and [75]. Gabor filters have been used in many applications, such as tex-
ture segmentation, target detection, fractal dimension management, edge detection, retina
identification, image coding and image representation. Gabor filters have been also spo-
radically used for document analysis. However, since such filters are rather general, we
have decided to concentrate on features which could be more specific and therefore better

suited for our purpose.

e Fourier descriptors
Fourier descriptors are frequently used in classical document analysis mostly in the pre-
processing step, as they can be made translation, scale and rotation invariant [76] and
[77]. Therefore the contour of a known image can be recognized irrespectively of its size,
position and orientation. Fourier descriptors use only the boundary of the object and can
be used to capture the gross essence of a boundary and though are very useful for the
shape analysis. These features have the disadvantage that they can not deal with disjoint

shapes where single closed boundary may not be available.

e Hough Transform
Hough transform are used mostly to identify positions of arbitrary shapes, most commonly
circles or ellipses and even non-parametric curves [71], [78] and [79]. The Hough transform
is a technique which can be used to isolate features of a particular shape within an image.
The main advantage of the Hough transform technique is that it is tolerant of gaps in
feature boundary descriptions and is relatively unaffected by image noise. This technique

is particularly useful for computing a global description of a feature, given (possibly noisy)

20 CHAPTER 4. ALGORITHMIC FUNDAMENTALS

local measurements. The motivating idea behind the Hough technique for line detection
is that each input measurement (e.g. coordinate point) indicates its contribution to a

globally consistent solution (e.g. the physical line which gave rise to that image point).

e Zernike moments
The Zernike polynomials were first proposed in 1934 by Zernike [80]. They are a set of
complex polynomials which form a complete orthogonal set over the unit circle z2+y% = 1
in polar coordinates (r,). Their moment formulation is noise resilient and does not
obtain information redundancy. Zernike moments are used mostly for image reconstruction
purposes. The disadvantages of Zernike moments are that they are only rotation invariant,

i.e. the image has to be first normalized in order to be scale and transformation invariant.

e Central moments
Central moments have the substantial advantage that they do not just use the boundary
information of a shape but also all the pixels of it. It can also be applied to gray scale
images and is insensitive to the distribution of the gray values in that shape. Therefore,
they convey the area information of the shape, which is a valuable feature extraction

method, when the shape contains only few pixels.

Generally speaking, given a 2D input data f(x,y), a set of moment features based is

defined via

Mpg =y > @yl f(z,y) pg=0,1,2,. (4.1)
Ty

where f(x,y) are gray values of a pixel at = and y coordinates.

The central moments are related to the center of mass or center of gravity. The coordinates

of center of the mass are & and §j and are defined via Z = %—ég and g = ﬁ—gé

Therefore, the central moments can be defined via

/'qu = ZZ(x—.@)p(y—Q)qf(x,y) pvq:O7172a" (42)
oy
For detailed description of central moments see also [77], [76] and [81].

4.2 Classification methods

Methods that are used in pattern classification can be divided into three groups: syntactic and
structural and statistical pattern recognition [82]. Below we give a short description of these

three groups. The first two groups can be linked together.

CHAPTER 4. ALGORITHMIC FUNDAMENTALS 51

e Syntactic and structural pattern recognition
Syntactic pattern recognition take the view that a pattern is composed of simpler sub-
patterns that can also be built from even smaller subpatterns. Application areas for
syntactical pattern recognition can be natural language processing, line drawing analy-
sis and 3-D ’blocks-word’ description. The structural pattern recognition uses symbolic
data structures, such as strings or trees and graphs for the representation of individual
patterns. In this case, the recognition problem turns into a pattern-matching problem.
These approaches can be used in applications like music notes interpretation or maps in-
terpretation that are made of strong hierarchical structures. It is worth asking if this
pattern recognition approach is still relevant. On the one hand one can admit that the
pattern representation capability of tractable formal grammars is limited, mostly because
of parsing difficulties. On the other hand, the syntactical Pattern recognition using rep-
resentations such as trees and attributed graphs are gaining popularity in certain areas.
However, some recent studies show that combining the syntactical and statistical pattern

recognition delivers reliable pattern representation capabilities [83].

e Statistical pattern recognition
Statistical pattern recognition is based on statistical characterisations of patterns, assum-
ing that the patterns are generated by a probabilistic system. The generation in itself can
be deterministic but with a deteroriation process which is itself stochastic that present
characteristics that are similar to a stochastic process. Statistical pattern recognition are
widely used in the classical character recognition tasks with significant results. There-
fore, we decided to employ them for our approach. We have basically used two statistical

methods which we describe below.

4.2.1 Fundamentals of Bayesian decision theory

Bayes decision theory is a statistical approach that is used successfully since decades for many
applications of pattern recognition [84]. This theory makes the assumption that the decision
problem is posed in probabilistic terms and that all of the relevant probability values are known.
Let w1, ...,w. be the finite set of ¢ classes and feature vector x be a d-component vector. The
distribution of x conditional on w; being the true class is called class-conditional probability
density function p(z|w;) or also the likelihood. If we suppose that we have some prior knowledge
of how likely we are to get the class w; and we call this prior knowledge the a priori probability
P(w;), then the joint probability that a pattern is in category w; and has the feature vector x

can be written as follows:
plwj,) = P(wjlx)p(z) = p(x|w;)P(w;). (4.3)

By rearranging this we get the so called Bayes formula:

52 CHAPTER 4. ALGORITHMIC FUNDAMENTALS

Pluyla) = P20 (4.4)

where

c

px) = prlw;)P(w;) (4.5)

j=1
p(z|w;) P(w;)
P(wjlr) = =¢ (4.6)
’ 2 j=1 Pla|wi) P(w;)
Bayes formula can be expressed in informal English like:
posterior — likelihood x prior (@7)

evidence
For the sake of simplicity, we can further assume that all of our classes are equiprobable,
which means that they all have the same prior probability. In this case our formula can be

simplified as follows:
p(z|w;) P(w;)
(2251 p(@lw;)) P(wj)

Further, the sum of all the probabilities of all classes is a constant and does not influence

Plwjl) = (4.8)

the decision which class is more probable to represent the unknown pattern. Therefore, the
structure of a Bayes classifier is primarily determined by the conditional density or likelihood
of w; with respect to feature vector x, i.e. p(z|w;). The density function that has received more
attention, is the multivariate normal or Gaussian density. The reason of such attractivity could
be the analytical tractability of Gaussian density. Besides Gaussian densities are corresponding
to many natural stochastic phenomena. Therefore, we use this function as the state-conditional
probability function in our case. Supposing to have a feature vector with d components, the

general multivariate normal density can be written as:

1

expl—5 (@ = 13" (@ = p)] (4.9)

NI =

(ko) =
g (2n)

)2

Where z is a d x 1 feature vector and p is a d x 1 mean vector and ¥ is a d x d covariance
matrix. These values have been obtained during the training process and are known values.
The system we have designed will then calculate feature vectors from the unseen image of the
isolated characters and will then calculate all the conditional state probability functions for all
classes w;. The class with the maximum probability value will be the winner class and the
unseen image will then be assigned to this class. The maximum probability value is also called
mazimal likelihood.

As maximal likelihood values can become very small and computationally less tractable,
we have decided to work on the log-domain that delivers sum values rather than product and

division values and is though of more practical use avoiding very small values in the dominator

CHAPTER 4. ALGORITHMIC FUNDAMENTALS 53

of a fraction leading the problem to be numerically unsolvable. The maximal likelihood in the
log domain is:
1

B d 1
9(wlw;) = =5 (z = w)'S7 (@ =) = Slog2m — Slog|3)| (4.10)

4.3 Fundamentals of hidden Markov models

Bayes desicion theory is well suited when making a single decision like recognizing single charac-
ters in our case. We may have to make a sequence of decisions while the sequences are influenced
directly by their proceeding sequences. Therefore, we could be interested in modeling sequences.
Such sequences are usually representing a temporal process (like speech or stock values). They
can also be representing a spatial process like in handwriting, DNA or screen rendered charac-
ters connected by anti-aliasing process like in this work. Hidden Markov models can be used for
obtaining such sequence of decisions as a powerful statistical model. Hidden Markov models are
called after the Russian mathematician Andrei Andrejewitsch Markov that lived from 1856 till
1922 in Russia. The complete theory has been firstly introduced some decades later by Baum
and Welsch in 1960. However, this was written by mathematician and was rather difficult to
implement and understand. Later in 1970s Viterbi, a telecommunication engineer graduated
from MIT and USC, has developed a decoding algorithm based on dynamic programming for
the signal processors. Viterbi algorithm was a break through for the theory of hidden Markov
models and made it usable for a wide variety of practical applications in wireless communi-
cations, automatic speech processing, bioinformatics and for some specific areas of document
analysis like cursive handwriting recognition.

Basically, a hidden Markov model (HMM) is a statistical model in which the system being
modeled is assumed to be a Markov process with unknown parameters, and the challenge is
to determine the hidden parameters from the observable parameters. Therefore, in a hidden
Markov model, the state is not directly visible, but variables influenced by the state are visible.
Hence the name hidden Markov models. Transitions among the states are governed by a set of
probabilities called transition probabilities. In a particular state an outcome or observation can

be generated, according to the associated probability distribution.

4.3.1 Elements of hidden Markov models

In the following we give an overview about the elements of the HMMs. The complete theory is
explained in [85] and [86]. We have made the assumption in our model that the next state is
dependent only upon the current state, such model is called first order hidden Markov model.
First order HMMs are also much easier to implement than the higher order HMMs. We used this
model, as for our case, the characters in a single word influence only their adjacent characters.
We call this influence contextual noise. Such noise does not spread itself, according to our

observations, to some other characters after or before a specific character.

o4

CHAPTER 4. ALGORITHMIC FUNDAMENTALS

In order to define a HMM completely, the following elements are needed.

o The number of states of the model, N. The states are denoted as S = {S1, S9,, SN } and
the state at time t as ¢;. Generally the states are interconnected in such a way that any
state can be reached from any other state, as it is the case for the ergodic model; however

many other interconnections between states are also of interest. The interconnections
define the topology of the HMM.

o The number of distinct observation symbols per state, M. We denote the individual symbols

as O = {o01,092,...,00r}

o The state transition probabilities A = {a;;}.

aij =plar = jlae =1}, 1<i,j <N, (4.11)

where ¢; denotes the current state. For the special case where any state can reach any
other state in a single step, a;; > 0 for all i,j. For other types of HMMs, we could have

a;j = 0 for one or more (i,j) pairs.

Transition probabilities have to satisfy the normal stochastic constraints,

N
Y aj=1, 1<i<N (4.12)
j=1

o An output (emission) probability in each of the states, B = {b;(k)}.

There are two general types of HMM split according to the form of their output (emission)
distribution. If the output (emission) distribution is based on discrete elements then the
models are called discrete HMMs. Alternatively if the output (emission) distribution is
continuous, i.e. if the feature vectors are of any real numbers as is in our case, they are
referred to as continuous HMMs. We have used Gaussian distribution, such as multivariate
mono-Gaussian distribution (see previous section) or Gaussian mixture models (GMMs).
GMMs are used, when the distribution tends to have more than one local maximums.
GMMs are introduced later in this chapter. For the GMMSs, the emission probability of

being in each state can be written as:

M
b]<k) = Z CmN(Om; Hm s Em) (4.13)
e The initial state distribution, 7 = {m;}. where

mi=p{g =i}, 1<i<N (4.14)

CHAPTER 4. ALGORITHMIC FUNDAMENTALS 55

Therefore a complete specification of a HMM requires specification of two model parame-
ters (N, M), specification of observation symbols and the specification of three probability

measures A, B, . For the sake of simplicity, we can use the compact notation

A= (A, B,TI) (4.15)

Fig. 4.1 illustrates an example of a HMM model for 3 states and 4 possible observations with

the corresponding transition and emission probabilities [87].

aig

04 02 03 04

S: states
0: observations
a: transition probabilities
b: emission probabilities

Figure 4.1: An example of a HMM model

4.3.2 Topologies

The possible topologies of HMMs are:

e Ergodic or fully connected models
In such models every state could be reached from every other state. Fig. 4.2 demonstares

a 4 state ergodic model.

e Left-right or bakis model
Such models assume that states proceed from left to right. Fig. 4.3 shows a 4-state left-
right model. In this model the states can skip to the two further states to the right. One
could think of many other different types of skips. However, the topology is very much

dependent to the nature of the problem domain. We do not make use of skip between

o6

CHAPTER 4. ALGORITHMIC FUNDAMENTALS

Figure 4.2: A 4 ergodic HMM-topology

characters in our recognition approach. We rather assume that states are interconnected

either to themselves or to their proceeding state like for ex. in fig. 4.4.

Figure 4.3: A 4 state second order left-right HMM-topology

by

Figure 4.4: A 4 state first order left-right HMM-topology

e Modified left-right model
The left-right model shown above is the simplest topology one can think of. This model,
which we call in our work ’simple left-right is without incorporation of a-priori knowledge
about the behavior of states, i.e. knowledge about minimum and maximum number of
times a state can repeat. This is an advantage as the system is a general and not knowledge
based, but on the other hand the recognition accuracies can be lower than systems including
knowledge. Therefore, we have evaluated some modifications of left-right system that we

describe below:

— Left right with minimum width constraint

CHAPTER 4. ALGORITHMIC FUNDAMENTALS o7

This topology is a modified left right topology that considers minimum width con-
straints of the characters. When we assume that the states are characters in our
case, with this topology we oblige the Viterbi to spend a minimum amount of time
in the same state. This is meaningful because some characters like 'w’ and 'm’ are
wider than the others. This topology has the disavantange that we have to use some
a-priori-knowledge like font metric information. This implies that we first must be
aware of the font family of the words prior to its recognition. On the other hand, as it
is always the case by machine learning, we gain more recognition accuracy. Fig. 6.17

shows such a topology modeling a single character.

(@)@ @)

Figure 4.5: A character topology based on minimum width constraint

— Left-right with minimum and maximum width constraint
In this topology, we go even further than minimum width constraints and assume
additionally a maximum width constraint for each character. This means that a
single character has to be visited by the Viterbi algorithm a minimum and a maximum
amount of observation sequences. This topology is knowledge-based. We will show
in chapter 6 that we can infer this knowledge automatically during HMM-training.
This makes such a topology independent of an a priori font knowledge. Fig. 4.6 shows

this topology used to model a single character.

Figure 4.6: A character topology based on minimum and maximum width constraint

4.3.3 Gaussian mixture models to model emission probability

The unimodal multivariate Gaussian distribution that has been previously discussed in this
chapter, has some significant limitations when it comes to model a data set with a distribution
that has more than one local maximum. In such cases a linear superposition of multiple Gaus-
sians gives a better characterization of the data set. Such a linear superposition is named in
the literature as mixture distributions. If we assume that the distribution is a Gaussian normal
distribution, then we can call it a Gaussian mixture model (GMM). Data sets with more than

one local maximas can therefore more accurately be modeled by using a sufficient number of

o8 CHAPTER 4. ALGORITHMIC FUNDAMENTALS

Gaussian distributions each representing with their local means, weights and variances. The

superposition of K Gaussian densities can be written as

K

bo;(05) = Y 7N (o), S)1 < j < T (4.16)
k=1

and is called a mixture of Gaussians for a given observation being. Each Gaussian density
N (x|pg, Xk) is called a component of the mixture having its own py and Y. Therefore the
form of the Gaussian mixture distribution is determined by the parameters = = {my, w9, ..., 7x },
po= {u1, 2, px} and X = {1,390, ..., Xg}. We could call the above equation also the

likelihood to have vector X = {x1,x9,...,x7} as data set.

For small values we better consider the likelihood in the log domain given by

Inb(O|m, 1, Zl”{ZWkN by Xk) (4.17)
7j=1

We have therefore a more complex equation than a single Gaussian, due to the asummption
over k inside of the logarithm. To find a mixmal likelihood for this equation, we no longer
can consider a closed-form analytical solution. An elegant and powerful method to find the
maximum likelihood for GMMs is the ezpectation mazimization (EM) framework. This method

is discussed in the next section.

4.3.4 Expectation maximization(EM) for estimation of GMMs

Suppose that we have a set D with N independent samples 01 ...07 according to the probability as
b(Olg;). Suppose that we assume that b(O|g;) is a normal density with mean p; and covariance
matrix ¥;. We can assume that a parameter verctor ; consists of the components of x; and ¥;.
To show the dependence of p(o|g;) on 60;, we write p(o|g;) as p(o|g;,8;). The problem is now to
use the information provided by the training samples to estimate the unknown parameters for
the vector §. We define the likelihood of 6 with respect to the set of samples o0;...or as p(D|0)

written

p(D|F) = Hp x|0) (4.18)
We can finally define /() as the log-likelihood function as follows:

1(0) = Inp(D|O) (4.19)
By writing a formal equation as the argument # that maximizes the log-likelihood, that is,

0 = arg maxyl(0) (4.20)

CHAPTER 4. ALGORITHMIC FUNDAMENTALS 59

The basic idea of the EM algorithm is to iteratively estimate the likelihood given the data that
is present. That is to find a set of model parameters 6 that maximizes the log-likelihood ().
The search of best model starts with some initial value of the model parameters , 8. Then in
the Mth step, the optimal 8 is found.

In our implementation, to better model the data and to find out the optimal distribution
of different Gaussians, we use a splitting technique, i.e. we define a splitting sequence set like
split sequence = {1,2,4,...,64} that defines the constituent splitting steps till the target number
of Gaussian components. Therefore, in our model the initial values come from a one-clump
Gaussian distribution. The next step consists of both expectation and maximization processes.
In the expectation step, we begin to split according to the ascending order of the splitting
sequence set. To better model the data, we split the Gaussians with the highest weight into
two Gaussians and calculate the new means, covariance matrices and weights of the new multi
Gaussian distribution. In the maximization step we maximize the log likelihood of the previously
calculated distribution until a stopping criteria is reached. This two processes are repeated until
the target number of Gaussian components is reached. We could write it in pseudo-code like
this:

e split number = 1

e calculate the initial Gaussian values for split number=1
e set the initial weight =1

® repeat

— take the next splitting number

% if split number=2
- then split the mono-Gaussian into 2 Gaussians
- calculate the new weight, Gaussian parameters for each Gaussian
- perform expectation
- perform maximization

* else
- take the Gaussian with the highest weight

- split this Gaussian into 2 Gaussians and calculate weight and Gaussian

parameters for each Gaussian
- perform expectation

- perform maximization

e until split number = target number of Gaussian components

60 CHAPTER 4. ALGORITHMIC FUNDAMENTALS
4.3.5 The evaluation problem of the HMMs

We can look at the evaluation problem as one of scoring how well a given model matches a given
observation sequence. For example when we want to choose among several competing models,
the model which best matches the observations. In other words, we are likely to calculate the
probability of the observation sequence o1,, op given the model A, i.e. P(O|)). Let us consider

every possible state sequence of length T(the number of observations)

Q= qq--9N (4.21)

Thus the probability of the observation sequence O for the specific state sequence Q is

T
P(0|Q,\) = [P(otla:,) (4.22)

t=1

Under the assumption that the observations are statistical independent, we get
P(O[Q; A) = by, (01)...bg (07) (4.23)

Besides, the probability of state sequence Q can be written as
P(QIX) = T4, 0q192 04205 +-Qar _1qr (4.24)

The joint probability of O and Q, i.e. the probability that O and Q occur simultaneously,
can be calculated by the product of each probability, i.e.,

P(O,QN) = P(O]Q, \)p(Q, A) (4.25)

We can therefore get the probability of O, given the model A by summing the joint probability

over all possible state sequences Q:

PON) =) POIQNP(Q,N) = Y g4, (01)ag,4:04,(02).-Ggp_1grbar(07) (4.26)

alle@ q1492...9T

This equation is computationally not feasible, as the number of multiplications and additions
even for small values are proportional to N7, e.g. for N = 3 (states) and 7" = 70 (obser-

370 computations, which is rather inefficient. Thus the number of terms in

vations), we have
the summation grows exponentially with the length of the chain. Therefore different methods
have been developed to make the evaluation task computationally more cost efficient. The most
famous methods are Baum-Welch-algorithm known as forward-backward algorithm and Viterbi
algorithm. The most significant difference between Baum-Welch algorithm and Viterbi is that

Viterbi allows additionally a backtracking giving the best state @* by computing P(O,Q*|\)

CHAPTER 4. ALGORITHMIC FUNDAMENTALS 61

that maximizes the value of Q*.
We have chosen the Viterbi algorithm for our work because of its fast convergence comparing
to the other methods. We give in the following a short and comprehensive description of this

algorithm.

4.3.6 Viterbi algorithm: How to find the ’correct’ state sequence?

In many applications of the HMMs it is often of interest to find the most probable sequence of
hidden states for a given observation sequence. This can be solved efficiently using the Viterbi
algorithm. As we already mentioned, the number of possible paths through the lattice grows
exponentially with the length of the chain. The advantage of Viterbi algorithm is that it searches
this space of paths efficiently to find the most probable path with a computational cost that
grows only linearly with the length of the chain. To find the best state sequence ¢ = {q1¢2...q7}

for a given observation sequence O = {0102...0r}, we need to define the probability

0:(1) = P [q1q2---Qt—1, @t = 1,0102...0¢|] (4.27)

where 0;(7) is the highest probability along a single path, at time t, for the first t observations
and ends in state i. Therefore in order to obtain the distribution at time ¢ + 1 , we have to
maximize the product of §;(7) and the corresponding probability to be in state i at time ¢+ 1 as

follows
Ot+1(j) = [mazidi(i)aij] .bj(or+1) (4.28)

In order to retrieve the most probable state sequence, we need to keep track of the argument
that maximized the equation 4.28 for each t and j. We introduce the term ;(j) for as maximal

probable state. The Viterbi algorithm is a recursive process defined as:

1. Initialization

51(t) —Tszl(Ol), 1< <N 4.29
Y1(t) =0 (4.30)
2. Recursion
0t(J) = max [04—1(2)a;ijl bj(or), 2<t<T, 1<j<N (4.31)
Q(j) = argmazi<i<n [61—1(4)a;jl bj(or), 2<t<T, 1<j<N (4.32)

3. Termination

62 CHAPTER 4. ALGORITHMIC FUNDAMENTALS

pP* = mari<;<nN [(5,5(2)] (4.33)

qr = argmazi<i<n[07(i)] (4.34)

4. Path (state sequence) backtracking

@ = VYr+1(q41) (4.35)

Fig. 4.7 demonstrates the recursion and backtracking step of the Viterbi algorithm.

Bt+1(j)=
3i(2)by(01+1)
Yeil) =2

.ﬁ L

(a) Recursion step (b) Backtracking step

Figure 4.7: (a) The recursion step of Viterbi (b) The backtracking step of Viterbi

Generally looking, Viterbi makes a dramatic computational cost saving as follows: Consider
a particular time step n and a particular state k at that time step. There will be many possible
paths on the corresponding node at the lattice diagram. If we only retain the particular path
with the highest probability and keep track of the previous states. Suppose that the number of
states would be K at time n, then at time n + 1 we would have K? possible paths to consider,
but we need only to obtain K of these corresponding to the best path for each state at time
n + 1. When reaching the final step N, we will discover which state corresponds to the overall
most probable path. As there is an unique path coming into that state, we can trace the path
back to N-1 to discover the state occupied at this time, and continue this back-tracking through

the lattice to the state n=1. A detailed explanation of Viterbi algorithm can be found in [85].

CHAPTER 4. ALGORITHMIC FUNDAMENTALS 63

4.3.7 N-best decoder: modified Viterbi algorithm

The previously described Viterbi algorithm results to the best path. It can likely happen that
there are existing competing paths that have very close d.,q. Comparing the best path with the
ground truth can deliver some mismatches. A reasonable solution to avoid such mismatches in
the recognition process is to keep a certain amount of paths that are above a certain threshold
till the last observation and have n several paths by backtracking. These competing paths
can pass through a second discrimination process, that defines a certain criteria to be fulfilled.
The second step could be performed either manually like for example comparing the labeled
best paths and use human judgement or some lexical or grammatical constraints or language
models for a more accurate text recognition. Fig. 4.8 shows a left-right HMM based on a closed

dictionary consisting of 2 words: {cat, cut}, i.e. the system contains 6 states {c, a, u, t, o, m}.

))

S8
u @ end

Figure 4.8: A two word dictionary left-right HMM

Fig. 4.9 shows the trellis diagram for this HMM when using modified Viterbi when the
number of best paths are two. As we can see, two words: {cat,cut} are best candidates to

represent the genuine word ’cat’.

4.3.8 Pruning

The Viterbi algorithm calculates in each step all possible ds for all states at time t, chooses the
maximum of these ds at time t per state and finally takes the maximum of the competing Js as
the best choice in that observation sequence. In case of large HMMs like for example parallel
word-HMMs built from a large dictionary, there could be a vast number of possible transitions
between the different states that brings the system at its memory and processor limits. For
such cases a special algorithm called pruning is developed that takes a decision at such sequence
to remove all the paths until now, when their § is below a certain threshold. pruning has the
advantage that it accelerates the computation time but on the other hand it could remove the
genuine path as this could not be maximum at a certain time or observation sequence.

The pruning algorithm we use for our experiments consists of following values:

64 CHAPTER 4. ALGORITHMIC FUNDAMENTALS

Observation sequence c (o3 [a a a t t

Time or sequence axis 0 1 2 3 4 5 6 7

Figure 4.9: Modified Viterbi for 2 best paths

e Pruning coefficient: A positive constant value smaller than 1.
e Pruning threshold: A threshold with initial value smaller than 0.1.

e Maximum number of paths: Defines the maximum number of paths for each time step

or observation sequence

e N-best coefficient: The maximum number of best paths

The Pruning threshold is therefore defined as:
Pruning threshold = din + (0maz — dmin) * pruning coefficient (4.36)

4.3.9 Training with HMMs

One of the most powerful features of hidden Markov models is its ability to perform an automatic
training. That is, it determines a reliable set of transition probabilities as a;; and emission
probabilities as b;, from a set of training samples. There are different methods for applying
the automatic HMM training. However, we are interested in our work to build a single word
recognizer. Each word is made up of different characters for those we need to have a reliable
set of transition and emission probabilities. We have chosen an iterative approach with the

following steps:

e Linear segmentation
This step has the goal of obtaining an initial segmentation of the words into characters.
After this initial segmentation, we can calculate the initial transition and emission prob-

abilities that we can use in our iteration process. As one can see from fig 4.10, a single

CHAPTER 4. ALGORITHMIC FUNDAMENTALS 65

Figure 4.10: Sliding window technique for word ’school’ at ultra low resolution and 9 point size

ULR word image gives no evidence about the segmentation of the characters. Therefore,
we have decided to lay a sliding window that is 2 pixels wide and is shifted by one pixel
to the right at the top of each word as shown in Fig. 4.10. We then compute the chosen
features for each sliding window. The chosen features for our several studies have been
central moments as will be explained in chapters 5 and 6. Conequently for a word of
width = w pixels, we obtain a set of feature vectors X containing wxy = w — 1 feature
vectors, i.e. X = {X1, Xy,, Xy }- The only infered constraint in this step is the ground
truth information about number of characters in a specific word. By dividing the number
of feature vectors by the number of the existing characters in a word, we can assign an
equal number of feature vectors to each corresponding character. This step ends, when the
feature vectors of the sliding windows of all words in trainning set have been claculated
and assigned to each character class. Finally, the initail emission (output) and transition
probabilities for each character will be calculated. Generally the transition probabilities

are calculated as below:

of transitions 11— j
a;j =
Y total # of transitions i

(4.37)

where i,j are in our case the Latin letters

e Iterative reestimation
In this step, we first determine the new emission probabilities based on the EM algorithm
assuming a mixture of Gaussian distribution (GMM). The number of mixture components
is the subject of investigation at training time. Next we define the character intercon-
nections or with the other words the word topology according to our choice and let the
Viterbi algorithm label the correct character sequences. This labeling of the observation
sequences allows us to assign a more accurate set of feature vectors to each character class.
Additionally, the knowlege about the assigned number of feature vectors to each charac-
ter, let us to estimate new transition probabilities according to the formula 4.37. Finally

we calculate the total probability of the previously labeled that were obtained with the

66 CHAPTER 4. ALGORITHMIC FUNDAMENTALS

Viterbi algorithm.

e Termination
The reestimation step is finished when the difference of the total probabilities of the pre-
vious and the present iteration is below a give threshold, i.e. we have obtained a satisfied
convergence, or the number of iteration steps is bigger than a certain amount. By reach-
ing the stopping criteria, we obtain the following parameters of our implemented hidden

Markov model:

1. Optimized transition probabilities for all characters
2. Optimized emission probabilities for all characters

3. The correct number of observation sequences for each character. This number can
be also named as character’s alignment. This number could be logically different in
context of different words. However, knowlege about such alignment can assist us to

better model the character states at testing time.

4.4 OCR systems using HMMs

The hidden Markov models (HMMs) have several powerful capabilities like simultaneous segmen-
tation and recognition, automatic training on non-segmented data and also language-independent
training and recognition. One could think of using HMMs in classical, scanner based OCR sys-
tems. The approaches to recognize printed and scanned text with HMM have begun early after
1990. The first efforts report limited success like in [88]. Such works show clearly that ap-
proaches like Bayesian multivariate density formula or pattern matching deliver better results,
where characters are well-formed and separated from their neighbors. As stated earlier, the
disadvantage of such methods is a segmentation-first dependency and consequently they prove
to have massive difficulties, when it comes to the recognition of blurred and connected charac-
ters. Therefore, in the area of recognition of printed text, HMMs have been used for special
cases when segmentation and recognition needs to be performed at the same time. This can be
for example poorly printed text that consists of connected and degraded characters forming a
word. Bose et al. introduce in [89] the promising results using HMMs for such condition. Since
their system has been one of the earliest works in this area, the authors have used a combined
structural and statistical approach. Their system is based on a sub-character segmentation by a
structural analysis to identify the dominant strokes for the segmentation process. These strokes
have then been used to obtain the number of states in their HMM topology. Therefore, the HMM
topology they have used is a left-right topology by which each character has different number
of states based on the pre-segmentation process. At training time, they have generated a set of
approximately 550 non-overlapping training characters for one font at several blur models using

a specific noise model and have kept other noise parameters constant. However, estimation of

CHAPTER 4. ALGORITHMIC FUNDAMENTALS 67

transition and emission probabilities at training time has been performed with automatic HMM
training. At recognition time, they have used Viterbi scoring to find the character string that
best matches the given connected and degraded string. They have achieved reliable results for

recognizing words that have been modeled using the described character topology.

In [90] the authors have developed an omnifont open-vocabulary OCR system that is prin-
cipally capable of recognizing printed text from most of the world’s languages. Their system
depends on the estimation of character models, as well as a lexicon and a grammar, from train-
ing data. Both for training and test they perform some preprocessing on the scanned data like
deskewing the page and locating lines of text. They then divide the line into a sequence of
overlapping frames. Each Frame is a narrow vertical strip whose width is a small fraction of
the line and they normalize the height of the frame to have scale invariancy, i.e. minimizing the
independency of the font size. Then they apply a feature extraction for training and test by
selecting script-independent and simple features like intensity, vertical and horizontal derivative
of intensity and local slope and correlation. They obtain a 80 dimensional feature vector. For
computational reasons, they divide their 80 dimensional feature vector into eight separate sub-
vectors of 10 features each, that are modeled to be conditionally independent so that they can
perform the probability density as a product of eight probabilities. This probability density is
modeled with a GMM with 64 components. They model each character by a 14 states left-right
second order HMM. However, they do not use the possibility to have a different number of states
for each character, i.e. more states for wider character like 'w’ and less states for narrower char-
acters like ’i’ and ’I’. They have also developed a mathematical formula to find out the proper
amount of training data each for plain and italic data so that the system could be assumed to
behave well for a mixed style recognition task. The system also considers statistical language
models at character and word level, i.e. character bigrams, character trigrams and word bi-
grams. While injecting character bigram and trigram constraints into their system makes their
system an open-vocabulary system, i.e. unlimited vocabulary can be recognized, injecting word
bigram constraints make the system dependent of a closed vocabulary. Finally they report of
a hybrid system that performs character-based recognition with some high level constraints set
by a word lexicon and a unigram language model at word level. With the hybrid system they
obtain recognition rates, which were closed to the closed vocabulary system that contained word
bigram constraints. They report of a fairly good character error rate for the hybrid system that

is 1.1% for English scripts and 3.3% for arabic scripts.

Velagaupudi in [91] reports on the advantage of using HMMs to boost accuracy in OCR
systems by using the Viterbi error correction for a limited vocabulary. He uses a pre-segmented
image data of a vocabulary of 6877 handwritten English words. He uses additionally different
classifier like neural networks, support vector machines and multi layer pereceptrons. He has
shown that for the limited vocabulary cases, Viterbi error correction boosts the accuracy about

10% in average.

68 CHAPTER 4. ALGORITHMIC FUNDAMENTALS

4.5 Cursive handwriting recognition using HMMs

In the cursive handwriting the only a priori segmentable entities are whole words and not single
characters. Therefore, traditional ’segmentation first’ approaches can not be used for cursive
handwriting recognition. Hence, HMMs can be used as an intrinsic classification task as they

are capable to segment implicitly during the recognition.

4.5.1 On-line handwriting

The development of mobile terminals like PDAs, electronic notepads, electronic books and mobile
phones creates an increasing need for new types of mediums like electronic pens. Electronic pens
are likely because first the mobile terminals are mostly too small for keyboards and second some
people prefer pen input interface that corresponds to their handwriting habit . A recognition
system for such mobile devices requires to be firstly adapted to work with relatively low level
memory and processor resources and secondly be easily customizable to allow users to define
their own writing style, signs, abbreviations etc. Most of the existing systems lack still these
properties as for example user have to enter isolated characters and still with pre-defined shapes
to make the recognition system to deal with their handwriting. Hidden Markov models have
intrinsic properties that make them attractive for handwriting recognition where characters are
connected in the words and segmentation need to be done simultanouesly with the recognition.
Specifically, on-line handwriting has some common issues with the problem of continuous speech
recognition. Because it can be viewed as a signal (x, y, coordinates) over time. Besides the shape
of a handwritten character depends on its neighbors. On the other hand, handwriting has also
some differences with speech. For example the dots and crosses involved in the characters i’
and ’j’ and ’x’ and 't’ are added after the whole word is written and therefore the characters are
not fully recognized until the whole word is written. In the following we introduce some works
in this field, which have used HMMs.

Hu and Brown in [92] introduce a HMM based on-line handwriting system that incorporates
HMDMSs into a complex stochastic language model. The pattern elements of the handwriting
model are subcharacter stroke types modeled with HMM’s. They also introduce new invariant
features called similitude transformation that is a combination of translation, rotation and scal-
ing and are invariant with respect to these three factors of geometric distortion. Their test and
training model is a first order HMM connecting subcharacters as strokes to build a character
model. They have tested their system on almost 4000 unconstrained word samples from 18
writers covering a 32 word vocabulary containing confusing word pairs like cut and out and
achieved an overall word recognition rate of 94%.

Stanter et al. in [93] describe an on-line cursive handwriting recognition based on HMMs.
They use the HMM based continuous speech recognition system called BYBLOS for their pur-
pose. The whole system is unmodified except for using another feature vectors than the ones for

automatic speech recognition. The system is based on a left-right second order HMM in which

CHAPTER 4. ALGORITHMIC FUNDAMENTALS 69

each character has 7 states. Additional HMMs are used to model contextual effects between
adjacent characters. A statistical bigram grammar to relate pairs of words has been also created
for a larger set of sentences from ATIS corpus. Experiments have shown that both context
and grammar are powerful tools to improve the recognition rates. Motivated by these results,
they have embarked on evaluating a larger vocabulary consisting of 25000 words and 6 writers
including non-native writers. They have achieved an average of 4.2% word error rate and 1.4%
character error rates.

Tokuno et al. in [94] report on a context-dependent substroke model for on-line handwriting
recognition that uses substroke HMMs for Kanjai and Hiragana characters in Japanese. The
authors have used HMM-substrokes to reduce the huge amount of memory and enormous com-
putation time. As there are more than 6000 characters in those Japanese writing systems, using
this system allows them to model each character as a concatenation of only 25 substroke HMMs.
They have achieved a CRR of 92% for cursive Kanjai and 98% for Hiragana handwritings.

Funada et al. in [95] prpose an on-line handwriting recognition algorithm that is based on
an HMM Self-Organizing Map(SOM) density tying in order to reduce memory for Japanese
handwriting. SOM density tying has reduced the dictionary size to 1/7 of the original size. The
CRR without SOM has been 91.34%, while using SOM in the recognition system has slightly
reduced the CRR to 90.45%.

Bellagarda et al. in [96] introduce a possible solution to on-line handwriting recognition in
the domain of small portable platforms. Such platforms have limited resources and this makes
considering a continuous parameterization of hidden Markov models not practical. Therefore,
the authors propose a discrete parameterization for HMMs using allographic methods. The dis-
crete labels come from an alphabet of sub-characters, elementary handwriting units. To decrease
the CPU usage they use a clustering phase followed by a pruning phase. They achieve over all
speakers a large decrease of CPU time for experiments, while the average error rates remains
essentially unchanged. This reduction varies from a factor of 14 for writer indepenendent(WT)
to a factor of 20 for writer dependent(WD) experiments. They show that discrete parameter
HMMs work well on small platforms with limited resources.

Biadsy et al. in [97] introduce the first HMM-based solution to on-line Arabic handwriting
recognition. On-line handwriting recognition of Arabic script is a challenging task as it is both
cursive and unconstrained. Arabic script has some similarities to Roman script, because it uses
spaces and punctuation markers to separate words. However, Arabic script is more challenging
than Roman script to recognize as arabic script has more dots above or under the letters. Besides
eliminating, adding or moving a dot or more would produce a completely new word other than
the one was intended. Arabic script has more variations of delayed strokes attached to a letter
body which creates a new word than those in Roman script. Since in the Arabic script each
letter has 2 to 4 shapes, the authors have decided to use each letter shape as a character. The
underlying HMM is a discrete Left-to-right model first order using empirically chosen number

of states for each letter shape. In addition, to enhance the word recognition, the authors have

70 CHAPTER 4. ALGORITHMIC FUNDAMENTALS

added more words constraints into the system by embedding each letter shape model in a word-
part dictionary network. They achieve reliable results for a test corpus of 6000 word parts
written by ten writers down to 94.4% for a word part dictionary of 40’000 words. One must
alsoconsider the fact that the authors could not compare their results, as no Arabic on-line

handwriting recognition system previously existed.

Okumara et al. in [98] propose a new HMM implementation for on-line handwriting recog-
nition that uses not only pen-direction feature but also pen-coordinate feature to describe ac-
curately the shape variation of on-line Japanese characters. By their proposed HMM, a pen-
coordinate feature is observed at an inetr-state transition and a pen-direction feature is observed
at an intra-state transition, i.e. self-transition. Thus, each state specifies the starting position
and the direction of a line segment by its incoming inter-state transition and its self-transition.
Additionally, they have implemented another HMM framework for multi stroke characters by
embedding the proposed HMM into a stroke-order free character recognition framework called
cube search [99]. Cube search is a technique for determining the optimal stroke-to-stroke match-
ing between two K-stroke on-line chinese character patterns. The authors could improve sig-
nificantly the recognition results by using the additional pen-coordinate feature both for single

stroke and for multi stroke Chinese characters.

Kosmala et al. in [100] present a novel method for the introduction of context dependent
hidden Markov models for on-line handwriting recognition. They use an advanced tree-based
state clustering that is more advantageous than the data driven clustering especially for large
vocabulary of 200’000 words. The advantage of tree-based clustering is to map unseen n-graphs
onto seen n-graphs by analyzing class memberships of the context graphemes. To give an
example 23’000 unseen words in their test set can be synthesized by mapping them onto 2’000
seen trigraphs. The mapping process is carried out by means of questions, which concern a set
of HMM states S. The state set S is collected on the root of the tree. Applying question g splits
the set S into different subsets. This process is carried out until all leave nodes are reached
or until a further splitting yields no significant increase of log-likelihood of the training data.
The clustering is done on trigraphs. The tree-based clustering of trigraphs allows to incorporate
context dependencies into the system that leads to better recognition rates comparing to context
independent HMM character models. They achieve with the explained trigraph approach the

highest accuracy of 90.6% and a relative error reduction of 36%.

Humm et al. in [101] propose a novel user authentication system using combined acquisition
of online signature and speech modalities. The system is based both on GMMs and HMMs,
whereas the authors show in this paper that GMMs can be advantageously replaced by HMMs
by considering the optimal number of states for HMM models and also using the maximum a
posteriori adaptation (MAP) for training of model parameters. They further report on a sig-
nificantly better performance when both modalities are used, i.e. on-line handwritten signature

and speech, than each modality used alone.

CHAPTER 4. ALGORITHMIC FUNDAMENTALS 71
4.5.2 Off-line handwriting

Off-line handwriting can be divided into three areas: Handwriting interpretation that is the task
of determining the meaning of a body of handwriting like letter addresses, Handwriting recog-
nition is about determining the meaning of a handwriting text and Handwriting identification
and/or verification is determined to authenticate (identify/verify) the author of a special text
for example genuine signatures. Off-line handwriting is an unique task for every individual like
DNA, finger prints, iris, etc. As computerization is becoming more prominent these days, hand-
writing recognition is gaining more importance in different fields like signature authentication
in the banks, recognition of ZIP codes and addresses on letters or recognizing the handwritten
legal amount on personal checks etc. The task of off-line handwriting recognition is more diffi-
cult than on-line handwriting recognition due to the fact that off-line handwriting recognition
can not utilize the information inherent in the writing trace like time and pressure of the pen
because only binary images of handwritten words are available and hence it is not an easy task
to reconstruct the writing movement from the image without knowing the correct meaning of

the character sequence.

Mohamed et al. in [102] describe a lexicon-based, handwritten word recognition system
that combines segmentation-free and segmentation based techniques. The segmentation-free
technique applies lexicon information and character level information provided by continuous
density HMMs. The segmentation-based method uses a segmentation technique as a combina-
tion of connected components and a further splitting module that results to a set of primitive
segments. This set of primitives is passed through a dynamic programming matching. The
dynamic programming matching delivers the best match between the primitives and characters
in a string representing the word image. Each method delivers reliable recognition rates down to
78%. However, the combination of these two techniques improves significantly the recognition
rate down to 89%.

Chen et al. in [103] propose a complete scheme for totally unconstrained handwritten word
recognition based on HMMs. They use a modified Viterbi algorithm to improve the performance
by choosing the L-best paths, instead of a single best path and a two step re-estimation strategy
to check which of the L-best paths satisfies a given criteria. They use a variety of features
like moment features, geometrical and topological features, pixel distribution features and also
reference line features to capture information among the segments. The authors have developed
a comprehensive system for estimation of model statistics. For example they estimate the
emission probabilities by using the K-nearest neighbor and Vector Quantization (VQ) classifier.
At the recognition time, for each iteration of the modified Viterbi algorithm, an optimal state
sequence is obtained. If its corresponding letter sequence exists in the dictionary, the modified
Viterbi algorithm stops and this word is said to be the result of Direct recognition. On the
other hand, if within 20 iterations the modified Viterbi algorithm, still can not find a word

existing in the dictionary as a perfect match, a Hypothesis Generation scheme will be applied

72 CHAPTER 4. ALGORITHMIC FUNDAMENTALS

to. The hypothesis is ranked by matching all the 20 optimal state sequences to every word in
the dictionary with equal costs for deletion, insertion and substitution.

Vinciarelli et al. in [104] introduce an off-line recognition system for a large vocabulary of
unconstrained handwritten texts that uses HMMs. By assuming that the written text is in
English, they develop a statistical language model that helps improving the recognition system.
Their statistical language model makes use of the dependency of the words to the previous
written words. They call this dependency the statistical language model (unigrams(no word
dependency is considered), bigrams (dependency of adjacent words) and threegrams(dependency
of two previous and following words)) and calculate the transition probabilities for a large lexical
(10’000 to 50’000 words) of unigrams, bigrams and trigrams to train their HMM based model.
The model topology is left-right HMM assuming that all the letters in the Latin alphabet
have the same number of states and Gaussains per state. They obtain the required number
of states and Gaussian components through a validation test that determines the best score
among different systems having different states 10 < S < 14 and 10 < g < 15. The words are
modeled as letter sequences having the number of states gained through the described validation
test. They use various offline-handwriting databases for their evaluation test and get different
results showing that the recognition improvement using statistical language models is database
dependent. Some databases like Reuters seem to be more aligned than the others and in these
databases they obtain no further improvement using trigrams over baseline of twograms, whereas
in the TAM database using trigrams transition probabilities to train the system improves system’s

performance.

Zimmermann et al. in [105] investigate the impact of bigram and trigram language model
on the performance of a HMM based off-line handwritten recognition system. They use N-gram
language models that provide a simple approximation for sentence probabilities based on the
relative frequencies of word sequences of length n. They set in their experiments N=2 (resp.
3). They calculate the frequencies of bigrams and trigrams in a relative big training data.
Additionally they add an arbitrary amount of (grammatically correct) random sentenced to the
data set and again calculate the bigram and trigram frequencies. Their results show that the
trigram language models outperform significantly the bigram language models. This finding is
in contrast to [104] where no improvement of the system using a trigram language model over
bigram language model has been achieved. The authors explain the reason of this mismatch
due to the limited number of words in [104] and a not reliable alignment of linguistic resources
in the experimental set ups of [104] in comparison to their experiments. The authors also find
out that using the random sentences does not bring any improvement over the baseline system.
The authors mention the reason here for due to the using a general-purpose treebank grammar
rather than a well-aligned small and task-specific random sentences used by [104].

Marti et al. in [106] present the improvements they have achieved by using statistical lan-
guage model in their HMM-based cursive handwriting recognition system. They apply firstly

some preprocessing like line separation, skew and slant correction and finding the baseline.

CHAPTER 4. ALGORITHMIC FUNDAMENTALS 73

They extract nine geometrical features from sliding windows of one column width and the im-
age’s height m, moving from left to right over each text line. In their system, a 14 states HMM
model is build for each character. They choose a left to right first order HMM topology for the
character models. At training time, the initialization of the model has been done by using the
Viterbi alignment for segmenting the training observations and recomputing model parameters
and reestimating of transition and emission probabilities is done by applying the Baum-Welch
algorithm. At recognition time, the character models are concatenated to words and words to
the sentences leading to a recognition network. This network does not include any contextual
knowledge at character level. They use Viterbi algorithm to find the best path in their model.
Their system automatically segment the lines into words and words into characters. This HMM
has been improved using a language model incorporating linguistic information beyond the world
level. Their system have included constraints of word-unigrams and word-bigrams that were au-
tomatically obtained from a large text corpus. They show that the incorporation of language

models clearly enhance system’s performance.

The task of handwritten writer identification and verification is addressed by Schlapbach et
al. in [107]. They use a HMM based handwriting recognition system that consists of N different
HMMs for N different writers. All the HMMs have the same architecture but differ from each
other as each HMM has its own transition and emission probabilities. For the identification task,
a text line of unknown identity is presented to each HMM based recognizer. Each recognizer
delivers a recognized text line with a recognition score. The system claims the person to be
the writer for whom there has been obtained the highest score among all the HMM recognizers.
They achieve an overall writer identification rate in 96.56% of all cases. Additionally they use
a confidence measure as an error rejection that is calculated using the log-likelihood scores of
first N ranks of the underlying HMM recognizer. By changing the number of N they have
achieved different error rejection rates that have improved the identification rate. For the writer
verification task, they decide whether a text line with a text line identity was written in fact by
an author or not. For this, they have a set of text lines each belonging to a person and a set of
forgeries as malicious attempts af impostors trying to access an authorizing system. They test
their system for different values of N and achieve an equal error rate of 2.5%. Similarly to the
writer identification results, they observe that increasing the number of N to calculate the error

rejection rate has an impact on the performance of their system.

For the task of off-line writer identification, in [108] Schlapbach et al. have compared the
previously described HMM system [107] with a system using Gaussian mixture models (GMMs).
Both systems are evaluated on two test sets. The first set is a unskillfully forged set containing
in total 8100 text lines from 100 clients and 20 impostors. The second test is a skillfully
forged set containing 238 text lines from 20 clients and 20 impostors. They have studied three
different confidence measures for their evaluation. These are based on the raw log-likelihood
score, a cohort model and a world model approach. The authors have found out that GMM

system works better than HMM system on confidence measure based on the raw log-likelihood

74 CHAPTER 4. ALGORITHMIC FUNDAMENTALS

score. This is not surprising, because the HMM system is made of several states and needs
both trained transition and emission probabilities, whereas GMM system consists of one state
and needs only the trained emission probabilities. Consequently by applying world model and
cohort model the authors get better results for their HMM system than GMM system, that is
what can be expected, as HMMs model the words and characters much precisely than GMMs
and take also the character orders in a word and word orders in a sentence into consideration
by using a left-right character and word topology. The lowest error rate they get is with their
HMM system using the cohort model as confidence measure for both test sets, i.e. skilled and

unskilled forgeries.

Chapter 5

Study of ULR single characters

As stated earlier, the ULR text has some specificities that makes its recognition a difficult task.
In this chapter, we present a study about anti-aliased single characters that are of ultra low
resolution and with small font sizes. Single characters are either isolated or reside in the context
of a word. In the latter case we call such characters contextual characters.

In this chapter we first introduce our selected features and report on the tests that we have
employed to investigate their distribution. Second, we will describe our implemented single
character identification system. To assess performance of our identification system we have
conducted evaluation tests for the identification of both single isolated characters and single
contextual characters. We will present results, error analysis and conclusions for both cases.

The chapter ends with our final conclusion about the conducted study.

5.1 Feature extraction

5.1.1 Selected features

In chapter 4, we introduced some common features used in classical pattern recognition. Most
of the introduced features work properly for printed bilevel text that has a minimum resolution
of 150 dpi. Therefore, we sought for features that could deal with an average height of between
6 — 12 pixels and would take advantage of the additional information contained in gray values

of anti-aliased pixels.

We have chosen central moments for three reasons:

e Central moments can convey satisfactory spatial information about the whole geometric

shape of an object.

e Central moments are translation invariant. We expect the shift-invariance property to

hold also in sub-pixel domain.

75

76 CHAPTER 5. STUDY OF ULR SINGLE CHARACTERS

e Central moments are computationally more cost efficient than for example Fourier descrip-

tors or Zernike moments.

Therefore we decided to study them more deeply for our dissertation.

The general formula of central moments is already introduced in chapter 4. Here we introduce
the central moments we used as features for our work. The central moments are related to the
center of gravity. The coordinates of the center of gravity are & and y. The mathematical

definition of & and ¢ is described in chapter 4. Central moments can be defined by

g = > (@ —2)Py—9)"f(zy) pg=0,1,2. (5.1)

where f(x,y) are gray values of a pixel at z and y coordinates.

In chapter 4, we have defined the moment features as follows:

Mpg =3 aPyf(z,y) pg=0,1,2,. (5.2)
T Yy

The central moments we use are poo, f411, M20, [o2, M21, [12, M22. One can verify
that the central moments p19 und po; are zero.
When using the definition of moment features, our selected central moments can be written

as follows:

Koo = o0

H11 = M1l — TMo1 = M11 — YMmio

H20 = M2 — M0

Ho2 = Mo2 — Ymo1

pi21 = Moy — 28ma1 — Jmao + 2% mo

. . 9
12 = mi2 — 2gmi1 — Tmo2 + 27 Mo

5.1.2 Verification of marginal features’ normal distribution: Y? test

As stated in chapter 4, we decided to use methods of statistical pattern recognition for our work.
Further we chose to use normal multivariate density functions for estimating the likelihood of
an unknown character image to belong to one of the 52 classes. The parameters of multivariate
density functions are obtained assuming that extracted features have a normal distribution. In
this section we report on the investigation we employed to verify the normal distribution of
selected features. We used 2 test for this purpose.

x? test is a statistical test for testing the null hypothesis that the distribution of a discrete

random variable coincides with a given distribution. Null hypothesis is an assertion before the

CHAPTER 5. STUDY OF ULR SINGLE CHARACTERS 77

analysis that has yet proven . x? test is one of the most popular goodness-of-fit tests. As in all
significance tests, a sufficiently large sample size is necessary. There is no accepted cutoff. Some
set the minimum sample size at 50, while others would allow as few as 20. The hypothesized
distribution is specified in advance, so that the number of observations that are expected to
appear, can be calculated without reference to the observed values. As already described in
chapter 3, we produce samples by down-sampling high resolution character images. For this
test, we have chosen a down-sampling factor of 10. This allows us to have 100 different patterns
for each class that is judged enough for the x? test. Following steps need to be performed for
the x? test:

e Specification of the null hypothesis Hy, i.e. with which standard value P(in %) the zero
hypothesis shall be accepted. P is called the significance value. In practical environments
this standard value P is mostly 95% or 99%. With 100 samples in our case we have
decided for P = 95% which can be considered as an acceptable significance level for the

distribution.

e Building the classes. When the significance value P is 95%, we can build 6 classes to

distribute 100 samples. We define the classes as follows:

Lclass: [—3.0% , p—2.0%
— 2.class: [u—2.0%, u—1.0%|
p—1.0%,

H

3.class: |

4.class: [, p+1.0%
H
H

— B.class: [p+1.0% , u+2.02

6.class: [+ 2.0% , p+ 3.0%
where 1 is the mean and o2 the variance of the distribution
e Calculation of the theoretical frequency in % for each class

o Assigning frequency limits for each class

e Calculation of the expectation value E for each class as follows:

_ theoretical frequency. N
B 100

E

(5.9)

where N = number of samples
In order to have enough samples in a class, we consider only classes with a E > 3%.

Classes that do not fulfill the previous condition are merged with adjacent class

o (Calculating B as the observed frequency value of each class

78 CHAPTER 5. STUDY OF ULR SINGLE CHARACTERS

e Determining the degree of freedom f =k — 1 where k = number of classes

o Calculation of the x? as follows:

X=> (B — B (5.10)

e According to a standard look-up-x2-table, if the calculated total y? value is higher than
the expected x? value in the table for the specific number of degree of freedom, then the

null hypothesis is rejected.

We produced two data bases each containing 100 samples for each of the 52 upper and lower
case character classes for two different rendering methods. The chosen font was Arial in plain
style with 9 points. The methods we used, were Adobe Photoshop and a method contained
in the Java library [109]. Next we calculated the features for each class and investigated their
normal distribution using the x? test.

Fig. 5.1 shows the results of x? test for Adobe Photoshop and for Java rendering method.
The features extracted from Adobe Photshop have a normal distribution in 93.13% of cases.
Those extracted from Java show a far less normal distribution, i.e. in 31.87% of the cases.
Therefore features related to Adobe Photoshop have mostly a normal distribution whereas those
extracted from Java rendering method are most likely not distributed normally. The reason
herefor could be that the variability of samples produced with the Photoshop method are much
greater than of samples produced with Java method. Fig. 5.2 and Fig. 5.3 show 15 different
samples produced with Photoshop and Java method. The calculated standard deviation of
Photoshop patterns is between 5-10 times bigger than the one for Java patterns. We assume
that the patterns produced with Java patterns are probably hinted and therefore have a low
standard deviation as the shapes of hinted anti-alised patterns show a marginal spatial variability

as demonstrated in chap 3.

5.2 System description

This chapter describes the single character identification experiment. We have set up a character
identification system as illustrated in Fig. 5.4. With this system, each test corresponds to an
identification task that aims at determining what character is the most probable for a given
ULR character image as input. The system computes the features of an unknown character
image. This feature vector is then fed into M parallel models with M equal to the number of
different characters to recognize. The system is supposed to be applicable both for isolated and
contextual characters. For the isolated characters, we considered a feature vector consisting of

7 central moments and used 52 character models. For the recognition of contextual characters

79

CHAPTER 5. STUDY OF ULR SINGLE CHARACTERS

m00 |m11 m20 m02 |m21 |m12 |m22

Character

m00 |m11 m20 m02 |m21 |m12 |m22

Character

(b) Results of x? test for Java fea-

tures

(a) Results of x? test for Photoshop

features

Results of normal distribution test for extracted features of 52 character classes

Figure 5.1

a feature vector consisting of 8 components and a set of 26 character models were considered.

Using this identification system we were able to, first, assess the discriminative power of the

selected features, and secondly, to study the impact of rendering algorithms by calculating

the resulting chracter recognition rates(CRR). We were additionally interested to assess the

performance of the system for both isolated and contextual characters. The probability density

function of feature vector x = {x1,..,xp} given the character class ¢; was estimated using a

multivariate mono-Gaussian function as follows:

(5.11)

p(zlci) = N(z, pi, X4)

80 CHAPTER 5. STUDY OF ULR SINGLE CHARACTERS

4 a4 a 3a 4
4 3 A 4 4

& d d « 4

Figure 5.2: 15 samples of character 'a’ downsampled with Photoshop

a4 B 8 8 =
4 &8 a8 a4 A4

itoioa o\ A

Figure 5.3: 15 samples of character 'a’ downsampled with Java

in which ¢ = 1...M is the index of the character class and the Gaussian density N is param-
eterized by a mean D x 1 vector u; and a D x D covariance matrix ¥;, where D is the number

of features.

character
image
test DB .
i---- classifier oo
; pixla) !
! model char ‘a’ !
ingle ch feat x=[m m}: del char ‘b’)| d
single char eature =[m,,....mg] | : i
_9]] 1 8l model char : comparator recognize
image extraction ! ; character
: :
E pixlz) |
! model char b’ :
= |

Figure 5.4: Schematic view of the single character identification system

Classification can then be performed in the comparator block of Fig. 5.4 with

CHAPTER 5. STUDY OF ULR SINGLE CHARACTERS 81

I" = argmax p(x|c;) (5.12)

where I* is the index of the winner character class. In this last equation, we make the
assumption that a priori probabilities of character classes are all equal, which is not always the

case in practice.

5.3 Experiments on single isolated characters

5.3.1 Introduction

This section aims at demonstrating the of central moments as the chosen features to discriminate
isolated, anti-aliased characters at ultra low resolution and small font sizes. We performed three
different evaluation tests on single isolated characters. The first two experiments were conducted
in a so called mono-font context assuming that the font family was supposed to be known and
the system could thus choose the appropriate training set for the character recognition. Such
an approach is justified when combining judiciously font recognition using an Optical Font

Recognition (OFR) tool that is, for example developed in our group, with character recognition.

o (General stuy:
These series of experiments aimed at gaining character recognition rates in the cases of
varying font sizes, font styles and font families. These experiments were performed using
Photoshop rendering method. We chose Photoshop as the rendering method for our general
study. We verified that the distribution of the extracted features from characters rendered
by this method, is normal in most of the cases. Aside from this fact, the features extracted
from characters rendered by Photoshop show a much greater variability than extracted

features of patterns rendered by the Java method.

e Impact of rendering method:
This set of experiments had the objective of investigating the impact of two different

methods that used anti-aliasing filter for character rendering (Photoshop & Java).

o Multifont experiment:
In the third evaluation series, we tested the system performance of a so called multi-
font character identification system, where the corresponding training set would contain
characters of different font families. While the font size and style were assumed to be
known, such a system has the advantage that character images of an unknown character

can be recognized without a priori knowledge of its font family.

82

CHAPTER 5. STUDY OF ULR SINGLE CHARACTERS
5.3.2 General study

Our character identification system is described in fig. 5.4. It is fed with a data base
containing synthetical isolated characters. For this experiment we have chosen 196 different

fonts by combining the following;:

— 4 sans-serif font families: Arial, Comic sans MS, Verdana, Tahoma
— 3 serif font families: Times New Roman, Courier New, Century
— 4 font styles: roman, italics, bold, bold & italics

— 7 font sizes: 3-9 points

To gain a synthetical data base containing single isolated characters, we produced 25 dif-
ferent patterns of each 52 classes in big font size and down-sampled them with a factor
of £k = 5 by using our ULR text simulation method described at the end of chapter 3.
Therefore, each character class in our database was presented in 4’900 different shapes.
Hence, our database included 254’800 isolated characters.

Table. 5.5 shows the absolute number of errors (#) and the percentage of errors (%) when
recognizing single isolated characters for different font families, sizes and styles. Each set
of experiments contains 1’300 samples. Table 5.6 shows good results for font sizes be-
tween 4-9 points. On the other hand, the error rates drastically increases for font size of
3 points. Furthermore, we noticed that a significant number of the errors are due to the
confusion between 'i’ & 1’ especially for the sans-serif fonts. Table 5.7 shows the number
of errors and error rates when such confusion were not taken into account. Fig. 5.8 shows
the overall error rate in this case. When we compare table 5.5 and 5.7, we can conclude
that the sans serif font Arial shows the highest overall number of such confusions, whereas
other sans-serif fonts like Comic sans serif, Tahoma and Verdana show this when point
size is below 4 points. Generally speaking, one can say that fonts like Verdana, Tahoma,
Comic sans Serif that have been designed especially for computer screens, have a higher
legibility also for our computerized method. Another surprising conclusion of the above
experiments is the fact that the machine is able to recognize patterns at very small font
sizes, i.e. less than 4 points, whereas the human vision system fails to recognize such small
patterns. This fact shows again the outstanding capability of machines to outperform

human perception for a particular task as we stated it at the beginning of chapter 4.

The overall CRR results are summarized at table 5.1.

Table 5.2 shows the overall recognition rates for different font styles. We see that the
recognition of italic fonts are slightly better than roman fonts. In addition, bold sytle

increases the recognition rates both for roman and italic fonts.

CHAPTER 5. STUDY OF ULR SINGLE CHARACTERS 83

Font Size | o | 8 | 7 | & | s | 4 | 3 |
[#] sl ol w[o] e[#] o[#] w[s] 4
Font Type Font Style
Plain 28] 215 31] 238] 27] 208] 39[3] 34[262] o ocoo[157 1208
Bold 25| 192] 25[192] 25| 1oz 3s[202| 25] 192] 15| 115| 75| 577
Ttalics 27| 208] 17 131] 21| 12| o 37] 285 25| 192| 127] 977
Arial Boldthalies | 44| 338] 16| 1.23] 25| 192] 18| 138] 2s[192] 10| o77| 77 sz
Plain of ol o o of o of o 1[owe] 4] w31 s3] ses
Bold of ol o o o of of o of of 5| o3g| =4 415
Ttalics of ol of o of o of o o of 1] oos] s7] eeo
Comic Bold+Halics of ol of o o o of o of of o ooo] o] aez
Plain of o o o of of s|loss| 3[oz3] o ooo| 141] 1085
Bold of o 13 1] ol o o] o] o o o ooo] 116] 892
Ttalics of ol of o of o of o 4[o31] of ooo| 138] 1062
Tzhoma BoldtHalics of ol of o o o 1loos] o of o ooo] s sos
Plain of ol of o of of slozs| o of 2] o1s] 100] 7e0
Bold 11] oes| sloes] o] o o o o e 13 100] es] 531
Ttalics of ol of o of o of o o o of oo ss eez
Verdana BoldtHalics of ol o o o of of o o o o ool ss[423
Plain of ol o o of of of o 1[oos] 2] o1s] 2612008
Bold of ol of o o o of o of o of ooo| 14¢] 1146
Ttalics of of o o of o of o 1[owe] 4] o31| 232]1785
Century BoldtHalics of ol of o o o of o of o 3] o3| 118] sos
Plain of o o o 1[oos] | o4s] 11 0es| 14] 108] 115 ses
Bold of ol o o o of o o of of 4] o3| 37 285
Ttalics of o of o of of 12]ooz| =2[o1s] 18] 138] 79| so0s
Courier BoldtHalics of ol o o o of of o of o o ool 36 277
Plain 3023 o] o of o o o 6[o4e] 24] 185] 110] s4s
Bold of ol of o o o of o 3[o23[4] o31] s1] 392
Ttalics 4 031] o o o o 1|cos| 3[o023 15| 115 76| 585
Times BoldtHalics of ol of o o of of o of of o oee| 24 185
Error in % 0.39 0.3 027 034 043 0473 7.651

Figure 5.5: Error table of character identification of different fonts

9.00

8.00

7.00 x

6.00 \

5.00 \

4.00 \
2.00 \
1.00 \

0.00

error rate

font size

Figure 5.6: Error rate in % for different font sizes

Table 5.1: Overall recognition rates of isolated characters by different font sizes

Font size 9 8 7 6 5 4 3
99.93% | 99.92% | 99.99% | 99.82% | 99.84% | 99.66% | 92.59%

Table 5.2: Recognition rates of isolated characters for different font styles

Roman | Italics Mean
Normal | 99.51% | 99.71% | 99.61%
Bold 99.72% | 99.93% | 99.83%
Mean | 99.62% | 99.82%

5.3.3 Influence of rendering method

In order to investigate the influence of the rendering method on the recognition rates

of isolated characters, we performed various experiments using two rendering methods:

84

CHAPTER 5. STUDY OF ULR SINGLE CHARACTERS
Font Size | o | 8 | 7 | & | s | 4 | 3 |
[#] sl ol w[o] e[#] o[#] w[s] 4
Font Type Font Style
Plain ol oes] 7] 054] 2l o1s] 19 146] 10[077 o o] 137] 1054
Bold of ol o o of of of o 13 1] o o s2[400
Ttalics of o of o of of 1410 o o o o] 104] soo
Arial Bold+Halics of ol of o of o 1leog] o o o o] 55 423
Plain of of o o of o of o 1[owe] 2] ois4] s3] ees
Bold of ol of o o of of o o o o o] 54 415
Ttalics of ol of o of o of o 1[oos] 4] o3o8] a7] eeo
Comic Bold+Halics of ol of o o o of o of of 3] 0z31| o] aez
Plain 3023 o] o of of o] o e[o46] 24] 1846] 141] 1085
Bold of ol of o o o of o 3[o23[4] oz08] 116] 892
Ttalics 4 031] o o o o 1loos| 3[o023 15 1154 138 1062
Tzhoma BoldtHalics of ol of o o o of o] of of o] oeez| 66| so0s
Plain of ol of o of o of o 1[oos] 4] o3o8] 100 760
Bold of ol o o o of of o of of 5] o3es| 63 531
Ttalics of ol of o of of of o o of 1] corr| se] eez
Verdana BoldtHalics of ol of o o of of o o o o o] ss[423
Plain of o of o 1foos| | oas| 11] 0ss| 14| 1077] 261] 2008
Bold of ol of o o o of o] of of 4] oz0s] 149] 1146
Ttalics of o o o of of 12]oez| =2[o1s] 18] 1385 2321785
Century BoldtHalics of ol of o o of of o o o o o 118] so0s
Plain of of o o of of s|lozs| 3[oz] o o] 115 ass
Bold of o 13 1] o ol of o o o o o 37] 285
Ttalics of of o o of o of o 4fo31] o o 79[608
Courier BoldtHalics of ol of o of o 1leos] o o o o] 3¢] 277
Plain of ol of o of of s|lozs| o of 2] o1s4] 110] s4s
Bold 11]oes| sloes] o] o o o o o 13 1 s1] 392
Ttalics of of o o of of of o o o o o 7¢] 585
Times BoldtHalics of ol of o o of of o o o o o] 24 185
Error in % 0.07 0.08 001 0.18 016 034 741

Figure 5.7: Error table of character identification of different fonts without confusion between ’I’

&7

6.00 \

5.00 \
4.00 \
3.00 \
2.00 \

efror rate

font size

Figure 5.8: Error rate in % for different font sizes without confusion between 1’ & i’

Photoshop and Java. We produced two different databases containing isolated characters
from different fonts and rendering methods. The evaluation tests were performed using

the following combinations:

— 4 sans serif fonts: Arial, Comic sans MS, Tahoma, Verdana

— 3 serif fonts: Century, Courier, Times new Roman

1 point size: 8 points

4 different font styles: plain, bold, italics, bold & italics

We have performed three sets of experiments as follows:

CHAPTER 5. STUDY OF ULR SINGLE CHARACTERS 85

— Standard experiment
In these tests we aimed at evaluating the CRRs when using the same rendering
method as training and test set. Table 5.4 shows the results for Photoshop method
and table 5.3 for Java method. We gained a CRR of 97% with Photoshop method
and of 98% with Java method. The higher CRR for Java method is possibly a result
of the fact that the variability of Java patterns is considerably lower than that of

Photoshop patterns as previously described in section 5.1.2.

Table 5.3: Influence of rendering method; training set: Java, test set: Java

plain bold italics bold + italics | Mean

| % # | % # | % # | % %
Arial 251 98.08 | 25| 98.08 |21 9838 |0 | >999 98.63
Comic 0 [>999|0 |[>999 |0 | >999 |0 | >99.9 > 99.9
Tahoma 0 [>999 |13 99 0 [>999 0 | >99.9 > 99.9
Verdana 0 | >999]9 |99.31 0 | >999 |0 | >99.9 > 99.9
Century 0 [>999|0 | >999 |0 | >999 |2 | 99.85 99.96
Courier 0 [>999|0 |[>999 |0 | >999 |0 | >99.9 > 99.9
Times 0 [>999|10 |[>999 |0 | >999 |0 | >99.9 > 99.9
Mean in % | - 99.73 | - 99.73 | - 99.77 | - | 99.98 99.8

Table 5.4: Influence of rendering method; training set: Photoshop, test set: Photoshop

plain bold italics bold + italics | Mean

1% # 1% # | % # | % %
Arial 311 97.62 | 25 | 98.08 17 | 98.69 16 | 98.77 98.29
Comic 0 [>999|0 |[>999|0 | >999 |0 | >999 > 99.9
Tahoma 0 | >999 | 13|99 0 [>999 |0 | >999 99.75
Verdana 0 | >999]9 |99.31 0 [>999 |0 | >999 99.83
Century 0 [>999|0 |[>999 |0 |>999 |0 | >0999 > 99.9
Courier 0 [>999|0 |[>999|0 | >999 |0 | >999 > 99.9
Times 0 [>999|0 |[>999 |0 |>999 |0 | >0999 > 99.9
Mean in % | - 99.66 | - 99.48 | - 99.81 | - 99.82 99.7

— Influence of different models
These series of experiments had the objective of evaluating the CRRs when one
rendering method is used as training set and the other as test set. Table 5.5 shows
the unusable results,i.e. an overall CRR of 36.38%, when Java method is used for
character modeling to recognize the Photoshop patterns. On the other hand, using
Photoshop patterns to recognize Java patterns, delivers an overall CRR of 93.69%
(see table 5.6). A comparison of these two results indicates that trained Photoshop
patterns are able to recognize Java patterns with good accuracy, whereas trained Java
patterns show an unsatisfactory result to recognize Photoshop patterns. Once again,
the reason could be that the trained Java patterns show a small variability and thus

fail to recognize the Photoshop patterns as previously described in section 5.1.2.

86 CHAPTER 5. STUDY OF ULR SINGLE CHARACTERS

Table 5.5: Influence of rendering method; training set: Java, test set: Photoshop

plain bold italics bold + italics | Mean

% # % # % # % %
Arial 946 | 27.23 | 771 | 40.69 | 981 | 27.54 | 600 | 53.85 36.58
Comic 968 | 25.54 | 523 | 59.77 | 823 | 36.69 | 501 | 61.46 45.87
Tahoma 984 | 24.31 | 677 | 47.92 | 870 | 33.08 | 455 | 65 42.58

Verdana 977 | 24.85 | 617 | 52.52 | 897 | 31 397 | 69.46 44.46
Century 988 | 24 875 | 32.69 | 954 | 26.62 | 776 | 40.31 30.9

Courier 1012 | 22.15 | 980 | 24.62 | 1010 | 22.31 | 989 | 23.92 23.25
Times 950 | 26.92 | 896 | 31.08 | 923 | 29 816 | 37.23 31.06
Mean in % | - 25 - 41.33 | - 29.03 | - 50.18 36.38

Table 5.6: Influence of rendering method; training set: Photoshop, test set: Java

plain bold italics bold + italics | Mean

| % # | % # | % # | % %0
Arial 80 | 93.85 | 57 | 95.62 | 226 | 79.54 | 58 | 95.54 91.13
Comic 22 19831 | 41 | 96.85 | 54 | 95.85 | 63 | 95.15 96.54
Tahoma 41] 96.85 | 5 | 99.62 | 119 | 90.85 | 50 | 96.15 95.87
Verdana 19 | 9854 | 6 | 99.54 | 83 | 93.62 | 26 | 98 97.42

Century 118 | 90.92 | 63 | 95.15 | 157 | 87.92 | 47 | 96.38 92.6
Courier 185 | 85.77 | 22 | 98.31 | 272 | 79.08 | 36 | 97.23 90.1
Times 80 | 93.85 | 72 | 94.46 | 196 | 84.92 | 59 | 95.46 92.17
Mean in% | - 94.01 | - 97.08 | - 874 | - 96.27 93.69

— Influence of mized models
When we mix both sets of patterns and use them as training sets, we can observe
excellent CRRs for both test sets: 99.7% for Java patterns (see table 5.7) and 99.59%
for Photoshop patterns (see table 5.8).

Table 5.7: Influence of rendering method; training set: Photoshop + Java, test set: Java

plain bold italics bold + italics | Mean

| % # | % # | % # | % %0
Arial 31 1 97.62 | 25 | 98.08 | 23 | 98.23 | 22 | 98.31 98.06
Comic 0 [>999|0 |[>999 |0 |>999 |0 | >999 > 99.9
Tahoma 3 19977 |2 (998 [0 | >999 |0 | >999 99.9
Verdana 0 [>999|0 |[>999 |0 | >999 |0 | >999 > 99.9
Century 0 [>999|0 | >999 (0 | >999 |2 | 9985 99.96
Courier 0 [>999|0 |[>999|0 | >999 |0 | >999 99.98
Times 0 | >999 0 [>999 |0 |>999 |0 |>999 > 99.9
Mean in % | - 99.63 | - 99.7 - 99.74 | - 99.74 99.7

More generally, we can state that the single isolated character classifier can be trained to

make it capable of recognizing characters independently to the rendering algorithm.

CHAPTER 5. STUDY OF ULR SINGLE CHARACTERS 87

Table 5.8: Influence of rendering method; training set: Photoshop + Java, test set: Photoshop

plain bold italics bold + italics | Mean

| % # | % # | % # | % %
Arial 34 | 97.38 | 36 | 97.23 | 26 | 98 24 | 98.15 97.69
Comic 0 | 100 0 | >99 0 | >99 0 | >999 >99.9
Tahoma 1 19992 | 13199 0 | >999 |0 | >99.9 99.73
Verdana 0 | >999 |7 |9946 |3 [99.77 |0 | >0999 99.81
Century 0 | >999|0 | >999 |0 |>999 |0 | >0999 >99.9
Courier 119992 |0 | >999 |2 |9985 |0 | >999 99.94
Times 119992 |0 [>999 |0 | >999 |0 | >99.9 99.98
Mean in % | - 99.59 | - 99.38 | - 99.66 | - 99.74 99.59

5.3.4 Multi-font experiment

We achieved fairly reliable CRRs in the two previous evaluation tests. Both tests were performed
using a mono-font character identification system. We were interested to assess the performance
of the system for a muti-font classifier, as such a classifier is more of practical use than a mono-

font classifier. For this test series we used the following configurations:

e 6 fonts:

— 3 sans-serif fonts: Arial, Tahoma, Verdana

— 3 serif fonts: Century, Georgia, Garamond
e 1 point size: 8 points
e 4 font styles: plain, bold, italics, bold + italics

e training sets containing:

— all selected 6 fonts
— 3 sans serif fonts

— 3 serif fonts

e 1 rendering method: Photoshop
We have evaluted two series of experiments as follows:

e The objective of these tests was to gain CRRs when the character models were trained
with all 6 fonts for point size 8 but each time for one font style. Using 4 font styles, we
gained 4 different character models as training sets. We chose the following strategy for
our tests:

We mixed the patterns of all 6 fonts (serif, sans serif) for each style, and then randomly
generated 1/3 of them as training sets and 2/3 of them for test. Table 5.9 shows the results

for testing with Photoshop patterns. These results were rather not convincing.

88 CHAPTER 5. STUDY OF ULR SINGLE CHARACTERS

Table 5.9: Multi-font exp.; Training set: all 6 fonts

plain bold italics bold + italics | Mean
| % # % # | % # | % %
Arial 135 | 89.62 | 58 95.54 | 152 | 88.31 | 134 | 89.62 90.79

Tahoma 146 | 88.77 | >99.9 | 92.31 | 137 | 89.46 | 108 | 91.69 90.56
Verdana 162 | 87.54 | 102 92.15 | 162 | 87.54 | 94 | 92.77 90
Century 122 | 90.62 | 108 91.69 | 228 | 82.46 | 199 | 64.69 87.37
Garamond | 186 | 85.69 | 156 88 225 | 82.69 | 370 | 71.54 81.98
Georgia 142 | 89.08 | 78 94 186 | 85.69 | 114 | 91.23 90
Mean in % | - 88.55 | - 92.28 | - 86.03 | - 86.94 88.45

e The previous experiments did not deliver satisfactory results when all fonts were trained to
model the characters. Therefore we decided to group sans serif and serif fonts together and
train two character models each with 4 different styles. We chose the same test strategy as
the previous experiments and observed much better CRR than in the former experiments.
Table 5.11 shows the CRRs for serif fonts when recognized with a serif classifier. Table 5.10
illustrates the CRRs for sans serif fonts recognized with the sans serif classifier. We gain
an overall CRR. of 98.99% for the sans serif classifier and of 97.53% for the serif classifier.

Table 5.10: Multi-font exp.; Training set: 3 sans serif fonts

plain bold italics bold + italics | Mean
| % # | % # | % # | % %
Arial 60 | 95.38 | 48 | 96.31 | 41 | 96.85 | 48 | 97.23 96.44

Tahoma 46 | 96.46 | 41 | 96.85 | 8 | 99.38 | 12 | 99.08 97.94
Verdana 36 | 97.23 | 54 | 9585 |4 | 99.69 | 0 | >99.9 98.19
Mean in % | - 96.39 | - 96.33 | - 98.64 | - 98.77 97.53

Table 5.11: Multi-font exp.; Training set: 3 serif fonts

plain bold italics bold + italics | Mean
1% # 1% # % # % %
Century 61 | 9531 | 3 |99.77 | 81 | 93.77 | 42 | 96.77 96.4
Garamond | 80 | 93.85 | 10 | 99.23 | 125 | 90.38 | 115 | 91.15 93.65
Georgia 52 | 96 8 199.38 | 50 | 96.15 | 17 | 98.69 97.56
Mean in % | - 95.05 | - 99.46 | - 93.44 | - 95.54 95.87

The overall CRR for both group of classifiers can be seen at table 5.12. We can see from
table 5.12 that a classifier that is trained with serif fonts or sans serif fonts delivers better results
than a classifier that is trained with all selected fonts. Therefore, in order to achieve better CRR,

we still would need the a priori knowledge that the font is serif or sans serif.

CHAPTER 5. STUDY OF ULR SINGLE CHARACTERS 89

Table 5.12: Overall recognition rates of isolated charcters using the multi-font classifier

plain bold italics bold + italics
6 fonts 86.87% | 92.14% | 83.35% | 85.96%
sans serif | 97.6% | 97.45% | 98.92% | 99.06%
serif 97.01% | 99.58% | 95.92% | 97.19%

5.3.5 Conclusion

This section presented the results of evaluation tests on single isolated characters that do not
contain contextual noise. The objective for choosing such training and test environment was to
determine the discrimination power of the selected features by means of estimation of mono-
Gaussian multivariate density functions to model the feature’s distribution.

It has been shown that central moments are fairly discriminative. We can conclude that they are
able to convey sufficient information from character shapes in ultra low resolution, anti-aliased
character images. Additionally, it could be shown that character discrimination performs well for
font sizes down to 5 points. In addition, it was shown that classifiers can be trained independently
of the applied anti-alaising rendering methods. Finally the possibility of clustering the serif and
sans serif fonts as classifiers still delivered reliable CRR. The gained study shows that if the
characters are isolated, they can be recognized very accurately. In the next section, we report on

additional evaluation tests performed on contextual characters that were extracted from words.

5.4 Experiments on contextual characters

The previous evaluation tests showed that central moments are able to discriminate single iso-
lated characters by the means of estimation of features’ distribution with mono-Gaussian mul-
tivariate density functions. Another outcome of the previous study was that recognition of
uppercase letters was more accurate than of lower case letters. This is due to the fact that
upper case letters have a larger and more distinguishable shapes than the lower case letters. For
example a confusion between i’ & I’ is more likely than between I’ and 'L’. there are also other
pairs of lower case letters that exhibit the same form of confusion for ex. confusion between ’t’
and '’ vs. "I & 'F’ etc. Thus, for the study of contextual characters, we decided to perform
evaluation tests only on the lower case character samples. In addition, for these experiments, we
added the relative baseline as a new feature, since we observed errors resulting from confusions
between characters that were similar in shape but their stems were above or below the baseline.
This was for example the case for example between p’ & b’ or ¢’ & ’d’ etc..

We have evaluated two groups of experiments for the recognition of contextual characters:
1)mono-font recognition and 2)multi-font recognition. As we needed a database for running our
experiments, we developed a method to gain contextual characters from words. Below, we will

describe our segmentation method first, followed by an explanation of how we built our training

90 CHAPTER 5. STUDY OF ULR SINGLE CHARACTERS
set. Finally we will report about the results of our evaluation tests.

5.4.1 A method to obtain contextual characters

In order to build a database containing contextual characters, we first produced a synthetic
database of 520 English words chosen from a real word dictionary containing 120’000 words.
Then we used our method described in chapter 3 to segment words into contextual characters.
Additionally, the occurrences of each character in our database was proportional to its frequency

of a real world dictionary.

Extracting contextual characters

To obtain contextual characters, we had to overcome the segmentation problem in a ULR-word.
Fig. 5.9 shows the word bank from our ULR-word database. As it can be seen, the characters in
this word are connected. We developed a segmentation method based on a-priori knoweldge of
font metrics information to isolate the contextual characters. To use font metrics information,

the character string of each word had to be known.

Bank.

Figure 5.9: The ULR image of the word bank in point size 9

Bank

Figure 5.10: The segmented characters of word bank in point size 9

Our algorithm used the following information:

o the reference point for each character: p; where p is defined as follows:
p = x; — LSB, where z; is the lower-leftmost-x-coordinate of character’s bounding box

and LSB is the character’s left side bearing (see chapter 3 for more details)
o The width of bounding box for each character: w

e A shift value s to skip the noisy zone between the adjacent characters and adjust the
rounding error that is applied to the down-sampled image due to its transformation to

sub-pizel domain

CHAPTER 5. STUDY OF ULR SINGLE CHARACTERS 91

Our algorithm can be written in pseudo-code as below:

Get the big font size: n

e Get the bounding box for each character in big font size: r

e Get the lower leftmost x coordinate of each bounding box in big font size: x4
e Get the width of the bounding box in big font size: w

e Add some additional pixels (= s) to the width to catch up with rounding correction

when rendering at small point size

Tnew = Told + 8 (513)
Wpew = Wold + S (514)

e Define down-sampling factor of k to obtain ULR-patterns in a small size of %

points.

e calculate the reference point and width of the bounding box for the resampled

pattern as follows:

Tsmall = xr;:w (515)
T + Wpew
Wsmall = T — Tsmall (516)

Fig. 5.10 shows the segmented characters {b, a,n, k} from the word bank segmented with our
method.
Building training sets

To have a training set with sufficient sample variability, we have decided to build a set containing

the following samples:

e The segmented character images from our word data base by using our segmentation
method

e The images of the single isolated characters

e Images of single isolated characters cut on their left and right sides, see also fig. 5.4.1 so

that their new width was:

widthnew = Widthoriginal —1 (5.17)

92 CHAPTER 5. STUDY OF ULR SINGLE CHARACTERS

(a) Character ’a’ original (b) Character ’a’ cut one pixel (c¢) Character 'a’ cut one pixel
column at right side column at left side

Figure 5.11: Three versions of ’a’ contained in the training set of contextual characters

5.4.2 Mono-font experiment

We used the identification system shown at Fig. 5.4. We conducted our experiments as follows:
First the unknown ULR word was segmented into single contextual characters using our pre-
viously described segmentation method. Next, under the assumption that the segmented char-
acters were unknown, we passed them through our character identification system. Then, the
system calculated the maximum likelihood of unknown characters for each known class and de-
termined the most probable character class. Our tests were performed using the following font

combinations:

e 3 sans serif fonts: Arial, Tahoma and Verdana
o 3 serif fonts: Century, Georgia and Times
e 5 font sizes: 8-12 points

e 4 font styles: plain, bold, italics, bold + italics

The above combination led to 120 different fonts.

Table 5.12 shows the gained results in the form of number and percentage of errors for all
the selected fonts. We can observe from the results that bold style increases the recognition
rate both for plain (roman) and italics fonts as is illustrated in Fig. 5.13. Furthermore, the
results of the italics fonts are worse than the ones of roman fonts. The reason being that we
used rectangular segmentation windows, which are probably not appropriate for italics fonts.
Improvements should be obtained with slanted windows. Furthermore, table 5.13 shows the

overall recognition rates of selected fonts for different font sizes.

Table 5.13: Mono-font exp.: Overall recognition rates of contextual characters for different font
sizes

Font size 12 11 10 9 8
99.03% | 98.81% | 98.14% | 97.34% | 96.12%

CHAPTER 5. STUDY OF ULR SINGLE CHARACTERS 93
Point plain bold italics bold + italics
size # % # % # % # %

Century 8 181 316 80 3.61 260 11.72 30 1.35
9 125 564 57 302 193 8.70 15 0.68
10 36 3.88 79 356 201 9.06 21 0.95
11 5 0.23 2 0.09 55 2.48 13 0.59
12 2 0.09 23 1.26 81 3.65 3 0.27
Mean 3.60 2.31 7.12 0.77
Georgia 8 29 1.31 42 1.89 76 343 144 5.49
9 40 1.80 30 1.35 54 243 22 0.89
10 10 045 11 050 30 138 12 0.54
11 16 072 14 063 41 1.85 16 0.72
12 7 0.32 5 0.27 29 1.31 30 1.35
Mean 0.92 0.93 2.07 2.02
Times 8 160 721 B4 289 305 1278 175 7.89
9 125 5.64 9 0.41 196 5.584 30 361
10 58 2.61 1 0.08 96 4.33 53 2.84
11 13 059 5 027 15 518 38 171
12 5 023 5 0237 62 2.80 43 1.94
Mean 3.26 0.78 6.98 3.60
Arial 8 75 3.38 42 1.89 57 3.02 72 3.25
9 43 194 54 243 73 352 111 5.00
10 29 131 12 054 75 3.38 30 135
11 25 1.13 5 0.27 20 0.80 5 0.27
12 41 1.85 14 0.63 9 0.41 1 0.05
Mean 1.92 1.15 2.25 1.98
Tahoma 8 33 149 23 1.04 73 3.29 39 1.76
9 34 1.53 22 0.89 21 0.85 25 1.13
10 4 0.18 22 0.89 25 1.13 17 0.77
11 1 005 46 207 16 072 9 0.41
12 52 2.34 13 0.59 7 0.32 1 0.05
Mean 1.12 1.14 1.28 0.82
Verdana 8 29 131 5 037 37 167 22 0.99
9 23 1.04 30 135 11 0.50] 0.36
10 97 4.37 10 0.45 2 0.09 1 0.05
11 102 4.60 50 271 8 0.36 3 0.14
12 43 194 27 122 3 0.14 0 0.00
Mean 2.65 1.20 0.65 0.31

Figure 5.12: Mono-font exp.: Number
ferent fonts

and percentage of errors of contextual characters for dif-

100 ics
Bold /,/‘
99 Plaim I
W Bfé’ + Halics
ltalics
98 Paim —
.//\ tai Bold + ltalics
o7 — Bold alics —+— Century
/ —8— Georgia
96 Bold + ftalics Times
Arial
95 —+— Tahoma
—*— Verdana
o
93 o Italic
92

Figure 5.13: Mono-font exp.: Recognition rates of contextual characters for different fonts

We analyzed the errors and observed that a considerable number of mis-recognition errors

belonged to two main groups:

1. Confusion between %’ and ’I’. Fig. 5.14 shows words ’quiz’ and ’polk’ that contain the

94

CHAPTER 5. STUDY OF ULR SINGLE CHARACTERS

letters %’ and I’ As can be seen, only one or two pixels have a different gray value,
whereas the majority of the pixels of both letters have similar gray values. Such confusion
led to a considerable amount of mis-recognition especially by sans serif fonts. This error
can also be seen by serif fonts at small point sizes where the decorative ’serif’ is represented

by only one pixel.

|:|u|: |:|-|::II:

) The word quiz) The word polk

Figure 5.14: Example of misconfusion between ¢ and [in two ULR~words

Figure 5.15: Example of misrecognition when ’f’ is the precedence letter

2. Mis-recognition when the precedence character is a 'f’. The character ’f’ has a negative

RSB (right side bearing), i.e. the upper most left side of its bounding box overlaps with the
bounding box of the adjacent character at its right side. This adds one or more additional
'noisy’ pixel at the upper left side of the bounding box of the adjacent character. When
segmenting the characters with our segmentation method, it so happens that these "noisy’
pixels lead to confusion errors. Fig. 5.15 illustrates this for the word fork. The character
’f’ is the preceding letter of the character ‘o’ which deteroriates the shape of ’0’ and leads

to a mis-recognition of ‘o’ as the character ’b’.

Omitting these errors led to higher CRR, as can be seen in table 5.16. The improvement to

recognition rates is between 2-3%.

Fig. 5.18 shows the results for different font styles. As already seen in Fig. 5.13 the recognition

of ’italics’ fonts were worse than ’roman’ fonts. However, the results for ’italics’ fonts after

correction of previously described errors, that are shown in Fig. 5.18, were better than roman’

fonts. The reason can be explained as follows: first the majority of errors found for the “talics’

fonts were when ’f” was the precedence letter in a word. Second ’italics’ fonts are more slanted

and thus have a wider bounding box. As a result more pixels from both adjacent characters are

in the overlapped zone as Fig. 5.17 illustrates.

CHAPTER 5. STUDY OF ULR SINGLE CHARACTERS 95

Point plain bold italics bold + italics
size # % # % # % # %

Century 8 59 4.01 64 2.69 73 329 11 0.50
9 33 374 B5 2.93 3 0.36 7 0.32

10 34 153 79 3.56 0 0.00 13 058

" 5 023 2 0.09 a0 1.35 1 0.05

12] 0.00 25 1.13 16 072 1 0.05

Mean 1.90 2,12 1.156 0.30
Georgia 8 3 0.14 7 0.32 5 0323 17 077
9 24 1.08 4 0.18 12 0.54 4 0.18

10] 027 10 0.45 5 0.23 3 0.14

1" 11 0.50 5 023 g 0.36 1 0.05

12 4 0.18] 0.00 8 0.368 5 0.23

Mean 0.43 0.23 0.34 0.27
Times 8 44 1.98 16 0.72 22 0.09 12 0.54
9 23 1.04 1 0.05 11 0.50 12 0.54

10 10 045 1 0.05 5 0.23 10 045

1" 4 0.18 5 0.23 18 0.81 4 0.18

12 3 0.14 5 0.23 g 0.2y 11 0.50

Mean 0.76 0.25 0.56 0.44
Arial 8 &7 3.02 40 1.80 16 072 9 0.41
9 40 1.80 54 243 1 0.05 3 0.14

10 27 122 11 0.50 0 0.00 0 0.00

" 25 1.13 B 0.27 11 0.50 3 0.14

12 41 185 12 0.54 1 0.05 0 0.00

Mean 1.80 1.11 0.26 0.14
Tahoma 8 18 0.86] 0.00 11 0.50 8 0.38
9 15 0.68 13 0.59 8 0.36 2 0.08

10 11 0.50 a 0.00 27 1.22 43 1.94

1 25 1.17 3 0.14 18 0.81 g 0.27

12] 027 50 225 0 0.00 4 0.18

Mean 0.69 0.60 0.58 0.57
Verdana 8 23 1.26 g 0.27 14 0.63 0 0.00
9 23 1.04 a0 1.35 38 0.36 0 0.00

10 95 4.33 8 0.36 0 0.00 0 0.00

" 102 460 55 2.48 4 0.18 0 0.00

12 43 1.94 27 1.22 0 0.00 0 0.00

Mean 2.63 1.14 0.23 0.00

Figure 5.16: Mono-font exp.: Number and percentage of errors of contextual characters after error
correction for different fonts

(T

(a) italics style (b) Roman style

Figure 5.17: Segmentation of ’f” in word ’fork’

According to the above observations, the font Verdana has specific characteristics as it has the
least number of errors whereas other fonts show higher recognition rates when the previously
described errors were not considered. Table 5.16 demonstrates this fact. Therefore, we can
conclude that the font Verdana, amongst the selected fonts, is the most legible font for our

computerized character recognition algorithm.

96 CHAPTER 5. STUDY OF ULR SINGLE CHARACTERS

Table 5.14 shows the overall recognition rates of all selected fonts for different font sizes after

error correction.

100 R— e e
- %
Plain Bold
9 > Bold + ltalics
ltalics
08 Plaing——__
/ —
97 Plin —e— Century
—=— Georga
96 Times
Arial
95 —#*— Tahoma
—*— Vercana
94
93
92

Figure 5.18: Mono-font exp.: Corrected recognition rates of contextual characters for different
fonts

Table 5.14: Mono-font exp.: Overall recognitin rates of contextual characters for different font
sizes

Font size 12 11 10 9 8
99.17% | 98.79% | 98.73% | 98.25% | 97.26%

5.4.3 Multi-font experiment

Another interesting question for the identification of contextual characters was to assess the
performance of our identification system as a multi-font recognizer. According to the results of
the experiments performed on single isolated characters, we decided to build classifiers that rely
on the a-priori knowledge whether the character to be recognized is serif or sans serif. Therefore
we needed to feed the system with two training sets: one with serif and another with sans serif
characters and the task was to recognize an unknown serif or sans serif character image. Our

tests were performed using the following font combinations:

3 sans serif fonts: Arial, Tahoma and Verdana

3 serif fonts: Century, Georgia and Times

5 font sizes: 8-12 points

4 font styles: plain, bold, italics, bold + italics

CHAPTER 5. STUDY OF ULR SINGLE CHARACTERS 97

Point plain bold italics bold + italics
size # % # % # % # %

Arial 8 107 9.30 67 316 234 11.05 161 760
9 207 a.77 71 335 71 335 240 11.33

10 145 5.85 57 269 83 392 58 274

" 32 1.51 37 1.75 41 1.94 34 1.61

12 139 6.56 29 1.37 26 123 14 0.66

Mean 6.80 2.46 4.30 4.79
Tahoma 8 181 355 a2 434 208 14.54 138 556
9 148 5.99 15 0.71 100 472 93 4.39

10 28 1.32 20 0.94 100 472 112 528

" 12 0.57 58 274 20 137 56 2.64

12 11 052 29 137 100 472 47 222

Mean 3.59 2.02 6.02 4.22
Verdana 8 140 5.61 &7 3.16 345 16.29 8 0.38
9 113 5.34 14 0.66 85 4.01 9 042

10 8 0.38 20 0.94 116 548 10 047

il 3 0.14 50 238 52 246 11 052

12 2 0.08 41 1.94 44 2.31 12 057

Mean 2.51 1.81 6.11 0.47

Figure 5.19: Multi-font exp.: Number and percentage of errors of contextual characters using a
sans serif classifier

Point plain bold italics bold + italics
size # % # % # % # %
Century 8 172 512 102 482 158 748 196 9.25
9 156 7.37 106 5.00 173 .17 51 241
10 122 576 16 078 178 8.31 59 279
11 29 1.37 2 0.08 148 5.89 85 3.07
12 61 288 29 1357 175 526 Bl 146
Mean 5.10 2.4 7.82 3.80
Georgia 8 0 0.00 125 540 130 6.14 117 552
9 41 1.94 37 175 133 5.28 79 3.73
10 38 178 41 1.94 108 5.15 49 2.31
11 18 085 24 113 108 496 44 2.08
12 4 0.19 32 1.51 68 M 0 0.00
Mean 0.95 245 5.15 2.73
Times 8 1585 7.32 77 3.64 247 11.66 219 10.34
9 101 477 204 9.63 168 7.98 174 8.22
10 17 0.80 74 349 162 7.65 230 10.86
11 20 094 48 227 140 6.61 137 547
12 40 1.89 56 312 143 675 137 647
Mean 3.14 4.43 8.13 8.47

Figure 5.20: Multi-font exp.: Number and percentage of errors of contextual characters using a
serif classifier

Table 5.19 shows the number and percentage of identification errors when our system used

as a sans-serif recognizer. Table 5.20 shows the results of using the system as a serif recognizer.

We grouped the results for both classifiers according to different font style and point sizes.
The results are listed in table 5.15 to table 5.18. When looking at sans serif classifier results in
table 5.15 and table 5.16, we can see that font Verdana shows the highest overall recognition rates
amongst sans serif fonts. We can additionally see from serif classifier results shown in table 5.17

and table 5.18 that the font Georgia has the highest overall recognition rates amongst serif fonts.

98 CHAPTER 5. STUDY OF ULR SINGLE CHARACTERS

We studied more deeply the improvement history of legible fonts developed by Microsoft
inc. [110]. Concerning sans serif fonts, we noticed that Tahoma has also been designed for
computer screens but Verdana has been designed later as an extension of Tahoma to be more
legible. The most important extension of Verdana is that it has extra space between characters
so they don’t touch each other (in our terminology: not connected). The bold style is quite
bold, ensuring that there is a difference between bold and roman, yet the bold characters never
fill-in, even at small sizes (we can still read it at 4 point, at least under Windows). Additionally,
special care has been taken with letters like 'I’; 'I’, ’i” and ’J’ so that they aren’t confused as
follows: The lowercase ’i’ is slightly shorter than the lowercase ’I’; which also makes them more
distinct. Letter combinations such as 'fi’ and 'fl” and ’ff” are designed so that they clearly do not
touch each other and therefore are more legible. These special considerations are in accordance
with our error analysis that we described above. As previously stated, our experiments showed
that Georgia as a serif font is more legible amongst other selected serif fonts for our machine
learning algorithm. The reason could be that this font has been designed to be a serif font with
fairly clear characters at 8-12 points. Additionally, its x-height is larger than Times, but not as
large as Verdana’s. Furthermore, its italics is fluid, and its bold is ultra-bold similar to bold of

Verdana.

Table 5.15: Multi-font exp.: Recognition rates of contextual characters using a sans serif classifier
for different font styles

Plain | Bold | italics | Bold + italics
Arial 93.2 | 97.54 | 95.7 95.21
Tahoma | 96.41 | 97.98 | 93.98 | 95.78
Verdana | 97.49 | 98.19 | 93.89 | 99.53

Table 5.16: Multi-font exp.: Recognition rates of contextual characters using a sans serif classifier
for different font sizes

Arial | Tahoma | Verdana
8 | 92.22 | 91.50 93.39
9 | 93.05 | 95.8 97.39
10 | 95.95 | 96.93 98.18
11 | 98.3 | 98.17 98.63
12 | 97.54 | 97.79 98.77

5.4.4 Conclusion

The evaluation tests regarding the recognition of contextual characters indicated that:

1. Central moments are fairly discriminative features

CHAPTER 5. STUDY OF ULR SINGLE CHARACTERS 99

Table 5.17: Multi-font exp.: Recognition rates of contextual characters using a serif classifier for
different font styles

Plain | Bold | italics | Bold + italics
Century | 94.9 | 97.59 | 92.18 | 90.75
Georgia | 99.05 | 97.55 | 94.85 | 97.27
Times 96.86 | 95.57 | 91.87 | 91.53

Table 5.18: Multi-font exp.: Recognition rates of contextual characters using a serif classifier for
different font sizes

Century | Georgia | Times
8 | 92.59 95.61 91.76
9 | 94.26 96.58 92.35
10 | 95.6 97.2 94.3
11 | 97.14 97.75 95.93
12 | 96.51 98.77 95.44

2. Recognition accuracy of single isolated characters is higher (above 99.9%) than contextual
characters (98.45%).

3. Contextual noise between adjacent characters deteriorates the recognition accuracy. There-
fore, we decided to define an extra character to represent contextual noise. We named this

extra character the inter-character.

4. Multivariate mono-Gaussian density functions are insufficient to represent the distribution
of features of contextual characters. Thus, we decided to use mixtures of Gaussian models

(GMMs) to estimate the probability density functions of our features.

5. The segmentation of single words can not be solved using the classical segmentation meth-
ods in pattern analysis. Therefore, to develop an automatic single word recognizer, we can

choose one of the following approaches:

e Either we develop methods to pre-segment the characters in an ULR~-word and then

recognize them using a classical segmentation-first-classifier

e Or we would make use of a classification method that is able to simultaneously seg-

ment and recognize connected characters in an ULR word

5.5 Discussion and further conclusions

In this chapter, we presented a study of single anti-aliased characters with a resolution of 72-

100 dpi with font sizes between 3-12 points. We reported on the performance of the selected

100 CHAPTER 5. STUDY OF ULR SINGLE CHARACTERS

feature extraction method and showed that it works very accurately for isolated characters and
delivers fairly good results for contextual characters. Therefore, we can integrate this method
in a recognition system for words. Additionally, we provided a thorough study on the mutual
influence of adjacent characters at their left and right borders. We defined this mutual influence
as contextual noise. In the experiments of contextual characters we showed that we were able
to get good recognition results when we skipped this noisy zone.

Moreover, we can state that the system used to obtain the results in this chapter is not
realistic as it intrinsically implies that the segmentation of characters inside the word is known.
A direct observation of the ULR-word ”bank” in this chapter can convince us that most of the
well-known pre-segmentation methods used in classical OCR systems [39] are not applicable
to segment connected characters in such a word. As already argued in the previous section,
a possible way to resolve this problem would be to develop specific segmentation methods for
such characters and use, for instance, Bayesian classifier for the classification task. However,
we strived for a statistical method capable of segmenting and recognizing connected characters
at the same time. Hidden Markov models (HMMs) are highly capable of resolving this task.
Hence, we opted to build a word recognizer using HMMs. In addition, HMMs are also capable
of performing automatic training when no a-priori knowledge of font metrics and character
segmentation is needed. Furthermore, HHMs are also well suited to include linguistic knowledge
such as probabilities of character and word sequences, which will allow increased recognition
rates of ULR words. Next chapter reports on using HMMs to build a word recognizer that is
able to deal with the specificities of the ULR, antialiased word images, with font sizes between

6-12 points.

Chapter 6

Recognition of ULR single words
using HMMs

6.1 Introduction

The experiments in the prior chapter have shown that we have to design a dedictaed recognizer
based on a statistical approach capable of dealing with the recognition problem of connected
characters in an ULR word. As hidden Markov models have shown outstanding ability to simul-
taneously segment and recognize for example the connected characters in handwriting recog-
nition or connected speech phonemes in speech recognition, we opted to build our single ULR
word recognizer using HMMs.

important outcome of the experiments of the previous chapter has been that the central moments
as selected features are reliable enough to discriminate the different character classes and can
be hence integrated in our single word recognizer. Central moments also present the property
of being translation invariant. This property is interesting in the case of recognition of isolated
words using HMMS where a sliding window must be used to extract the features. In addi-
tion, the comparison of the experiments with contextual characters with the ones using isolated
characters has shown that the contextual noise at both end sides of the characters significantly
deteroriates the recognition results. Knowing this, we aimed at building HMM topologies for
word models that have been composed from the characters and additionally incorporate the
specificities of contextual noise due to the close proximity of adjacent characters. Therefore,
we opted to build a new extra character model between the adjacent characters. We named it
inter-character and developed several methods to infer it from single words that we will explain
in this chapter.

We have built several HMM-based recognizers each with different objectives. The first objec-
tive was to measure how the performance of the recognition system would evolve when using
a HMM word topology that would contain the inter-character model. The second objective

was to investigate the performance of the recognizer using different HMM topologies. Another

101

102 CHAPTER 6. RECOGNITION OF ULR SINGLE WORDS USING HMMS

interesting aspect was to enlarge the database both for training and test in order to find out the
system limitations. We also investigated the possibility of fully automated training, i.e. using
a training procedure without the need of manually segmenting a bootstrap set to initialize the
values of the HMM parameters. Furtermore we were interested to know the system’s perfor-
mance when the dedictated recognizer was relying on a large dictionary. Since the experiments
of prior chapter cleary have shown the limitations of mono-Gaussian probability density func-
tion to model the feature’s distribution, we estimated the feature’s distribution for our word
recognizer with GMMs. Therefore, we were interested to find a balanced trade off between the
number of Gaussian components and the size of training set. Obviously as number of Gaussian
components increases, more training data is needed to reasonably model the mixture of Gaus-
sian models. Finally we were interested on designing an open vocabulary recognizer that would
recognize any arbitrary word written in Latin Alphabet in any language. Our motivation for
such an approach was twofold: building a multi-lingual system and removing the limitations in
terms of vocabulary size. This final system also proved itself to be very efficient in terms of cpu
and memory footprint as all linguistic constraints were removed from the HMM topology. In
the following we describe the experimental set ups and the results obtained when investigating

the above objectives.

6.2 Fundamental experiments

In this stage we have aimed at measuring the impact of the following components on the system’s

performance
e Impact of injecting inter-character into the word models
e Impact of different HMM topologies

e Impact of using a full covariance matrix vs. a diagonal covariance matrix for the estimation
of states’ emission probabilities, under the assumption that features would follow a mono-

Guassian normal distribution

6.2.1 System description

As is described below, we have built our recognizer using a sliding-window feature extraction
feeding a HMM based classifier. This combination has the clear advantage that the segmentation
and recognition problem can be solved simultaneously. However, for this first set of experiments,
the training was employed using already segmented contextual characters. In this stage, we
used the automatic HMM-training to obtain the optimal values of emission probabilities for
already segmented characters. In other words, we did not infer the character segmentation at
training time, as we supposed that characters were pre-segmented using our knowledge-based

segmentation method as described in chapter 5.

CHAPTER 6. RECOGNITION OF ULR SINGLE WORDS USING HMMS 103

Hik for
Word 1

| Probability | "M
Computation

Hik for
Word 2
Indesx of

_Test Obs. ¥ recognized
image| Feature | 5ed. | Probability | PUM;) ,| Select | word
Extraction | x Computation ¢ [Maximum

HhAR for
Word T

,| Probability | PUMJ
Computation

Figure 6.1: Single word Recognizer

The chosen features for training and test were the first and second order central moments plus
an additional feature computed from the difference between the baseline and the y coordinate of
the gravity center of each analysis window. This last feature is actually optimistically computed
as the baseline is here assumed to be correctly estimated. The font we used to produce our
training and test set is Verdana due to its high legibility as shown in the previous chapter.

As already described, at training time we laid a sliding window on top of each character and
claculated the chosen features for each sliding window. These feature sets were used to obtain
the optimal emission probability using the EM-algorithm described in chapter 4.

At testing time the sliding window was employed at the top of the whole unknown word.
Our System is illustrated in Fig. 6.1. Generally speaking, the image of an unknown word was
fed to the system, where the recognizer compared the competing probabilities of the unknown
image being each word in the system dictionary. The word model having the greatest probability
value among all word models in the dictionary was then selected as the recognized word.

The recognition system was built of different components that are explained below:

The inter-character model

The experiments on contextual characters showed the importance to model the contextual noise
between connected characters as an extra character in ULR words. We named this extra char-
acter inter-character and labeled it in our report as '#’. In this stage, we used the font metrics

information about the width of the bounding box of each character to separate the characters

104 CHAPTER 6. RECOGNITION OF ULR SINGLE WORDS USING HMMS

from the inter-characters in training database. For this reason we developed a simple algorithm

written in pseudo-code as follows:

e Get the next character from the word
e Determine the width of bounding box of the character = w
e Determine two different widths for the character: w; =w and wo =w — 1

e Cut two 2-pixel rectangles between the adjacent characters. The leftmost z

coordinate of the rectangles are calculated as:

— X1 = W1

— X9 = W2

Figure 6.2: Example of extracting inter-character from a single ULR-word

Training configuration

We used a training database containing 750 ULR words (the same words as the experiment
on contextual characters). As a by-product of applying the described method to gain inter-
character, we could isolate the contextual characters. We laid a sliding window at the top of
each character as shown in Fig. 6.8 and extracted the corresponding features. The ULR words
were rendered with Adobe Photoshop. As shown in chapter 5, the corresponding extracted
features follow a normal distribution. Therefore we calculated the mean vector and covariance

matrix for each class that were used for the estimation of character states’ emission probabilities.

Test configuration

We used two different topologies for recognition of unknown words. We also used two different

inter-character models. Below we give a description of the chosen topologies:

e Inter-character topology The availability of the inter-character is dependent to the
font family and especially to the font size. The smaller is the size the less probable it
is that we can cut a 2-pixel window between the adjacent characters. However, we can

distinguish the following cases:

CHAPTER 6. RECOGNITION OF ULR SINGLE WORDS USING HMMS 105

1. Inter-character is not or once available, i.e. inter-character is modeled using 0 or 1

sliding windows as shown in fig. 6.3. This is usually the case using small font sizes(< 9

e

Figure 6.3: Inter-character topology for small font sizes

pts).

2. inter-character is once or twice available, i.e. 1 or 2 sliding windows model the inter-
character as shown in fig. 6.4. This is usually the case using font sizes between 9-12

pts.

#

Figure 6.4: Inter-character topology for font sizes between 9-12 pts

e Chosen topologies

— Simple Left-Right

This topology was chosen for its simplicity and was, for us, the first configuration to
investigate. Fig. 6.5 and Fig. 6.6 show the modified simple left-right topology which

were introduced in chapter 4 using inter-character models.

Figure 6.5: Example of simple left-right topology using 0/1 inter-characters

— Left-Right minimum width
At testing time we analyzed some misrecognized results. Doing this, we inspected
some state sequences obtained on mis-recognized words. An example of state se-

quence for word two’ obtained with simple left-right topology is reproduced below:

106 CHAPTER 6. RECOGNITION OF ULR SINGLE WORDS USING HMMS

Figure 6.6: Example of simple left-right topology using 1/2 inter-characters

Genuine word= two
Recognized word = one
Best state sequence for word one: oooooooooonneeee

Best state sequence for word two: ttttwwwwoooooo000

EE R

Ground truth state sequence for word two: ttttwwwwwwwoooo0o0

What is happening can be explained as follows. By nature, the HMM is trying to maximize
its likelihood. It will then associate few observations to states that gives low emission prob-
abilities while it will spend more observations in states giving high emission probabilities.
The state sequence for the winning word ’one’ is clearly spending only two observations

in character model 'n’.

Character 'n’ is of course longer than 2 pixels (actually 3 pixels
considering the width of the analysis window) in our images. In order to avoid phenom-
ena as the one described above, one can introduce so-called minimum width topologies.
This topology is simply obtained by repeating a state a given number of time obliging
the Viterbi algorithm to spend a minimal amount of observations in the same category of
character while the last character state has the possibility to be repeated for an unlimited
amount of time. Fig. 6.7 illustrates such a topology for word two’. In our configuration,
the minimum width values have been obtained from the a priori known font metric infor-
mation. We have to underline that such minimum width values are dependent to a given

font, leading to a system tuned for a specific font.

Figure 6.7: Example of minimal width topology using 0/1 inter-characters

The data base that was used as test set contained the same 500 ULR words as the experiments on
contextual characters. We chose this limited size of dictionary for these first series of experiments
to be able to answer the different questions we raised at the beginning of this chapter. Doing
this, we aimed at being able to compare the recognition rates from the HMM-based system
with the ones of the previous study on contextual characters. If the new system would be able

to segment and recognize the words simultanouesly and deliver satisfactory recognition results,

CHAPTER 6. RECOGNITION OF ULR SINGLE WORDS USING HMMS 107

then we would have the confirmation of having chosen the appropriate classification algorithm
for our purpose.

As explained in previous chapters, the characters in an ULR-word are connected and therefore
can not be isolated. Thus we decided to lay a sliding window at the top of each unknown word
image that is 2 pixel wide shifting one pixel to the right of the word as shown in Fig. 6.8. The
features were then extracted for each window and were fed to the recognition system. Words
were built using the chosen HMM-topologies at Fig. 6.5 and Fig. 6.7. The recognition system
used then the Viterbi algorithm to find out the most probable word among all the competing

words existing in the system dictionary.

Figure 6.8: Example of sliding window with width = 2 pixels and shift= 1 pixel

6.2.2 Evaluation tests

According to the topologies introduced above, different evaluation tests were performed. We
also experimented with two implementations of the Gaussian probability density functions used
to estimate the emission probabilities. The first one is using the regular full covariance matrix.
The second one used a simplified diagonal covariance matrix, making the extra assumption that
the components of the feature vectors are de-correlated. While this assumption is potentially
too restrictive, it allows a much faster computation of the emission probabilities, where the
computation of the inverse of the covariance matrix is involved. We have chosen a dictionary
with a limited size of 500 words for these evaluation test in order to be able to see the impact
of the inter-character, different HMM-topologies, size of training set and choice of covariance
matrix on the recognition rate of test words without having extra errors that would come from
the impact of a large dictionary size. Notwithstanding, we report in the next section about the

impact of dictionary size on recognition rates. The results of our tests are presented at table 6.1.

Table 6.1: WRR for font Verdana, plain, 9 points; training size: 750 words

without inter-character | diag. covariance | full covariance
Simple L-R-HMM 52% 56%
L-R-Min-Dur-HMM 60% 79%

with inter-character diag. covariance | full covariance
Simple L-R-HMM > 99% > 99%
L-R-Min-Dur-HMM > 99% > 99%

108 CHAPTER 6. RECOGNITION OF ULR SINGLE WORDS USING HMMS

6.2.3 Conclusion

Looking at the results presented at table 6.1, we can make the following conclusions:

e As expected, we see clearly an improvement coming from the introduction of minimum

width topology.

e Using full covariance matrices leads to slightly better results than with diagonal covari-
ance matrices. Therefore, for the sake of a fast computation, we will use in our further

experiments the diagonal covariance matrix.

e The introduction of the inter-character model into the HMM topologies has increased the

recognition rates about 30% which is a significant improvement.

These encouraging results indicate clearly that HMMs are strongly suitable to simultaneously
segment and recognize ultra low resolution words, provided that the right topologies and models
are used. We should however underline at this stage that, while the recognition rates are

encouraging (> 99%), the vocabulary size is here quite limited (500 words).

6.3 Experiments on a large dictionary

The previous evaluation tests showed that using HMMSs for the segmentation and recognition of
test words shows reliable results. We could see clearly that inserting inter-character between the
adjacent characters in a word model and also using minimal width topology significantly increases
the word recognition rates. Additionally we could show that employing diagonal covariance ma-
triz leads still to reliable results and accelerates the computational process. Notwithstanding,
the related training procedure was performed using the a priori knowledge of font metrics in-
formation and therefore the character segmentation was nearly ideal and thus the system did
not need to be fed with a large amount of training data. In this section we are introducing
evaluation tests that are based on automatic HMM-training as explained at chapter 4. The
advantage of applying automatic HMM-training is that the system works independently from a
certain a-priori knowledge about font metrics. On the other hand the algorithm we introduced
at chapter 4 uses linear segmentation as the initial segmentation of data to then iteratively infer
the optimal alignment of the characters in an ULR-word. Such method has the disadvantage
that it requires to train on more data in order to smooth out the imperfections of the linear
segmentation. For this reason, we increased the number of words in the training set. In addition,
the dictionary size of the HMM-recognizer of the previous tests was increased in order to verify
the system’s limitations. Furthermore, as the system’s complexity was increased, in terms of
number of to be recognized words, we attempted to introduce richer probability density function
estimators based on a weighted sum of Gaussian densities and employed Gaussian Mixture mod-

els (GMMs). Finally we tested system’s performance for both a sans serif and a serif font used

CHAPTER 6. RECOGNITION OF ULR SINGLE WORDS USING HMMS 109

as training and test sets. We have to note that our the HMM-based ULR single word recognizer
is still a mono-font recognizer, i.e. the recognizer assumes that the font of the unknown word
image is a priori known. Such an approach is justified, as we can make use of an Optical Font
Recognition (OFR) tool for ULR words developed, for example, in our group. To sum up, we

aimed at measuring the impact of the following components on system’s performance:

e Performing an automatic HMM-training using linear segmentation as bootstrap alignment

Increasing the system’s dictionary size up to 60’000 words

Increasing the size of the training set up to 6’000 words

Using Gaussian mixture models (GMMs) to estimate the emission probabilities

Using serif versus sans serif font as training and test sets

6.3.1 System description

As illustrated in the block diagram of Fig. 6.9, our recognizer system consists of two processes,
training and recognition. Both processes are based on HMMs where states are associated to
characters. In this manner, any word can be modeled by a HMM where the corresponding

states are simply connected together.

Training Data Feature
—_— 3 . >
Extraction Viterbi
Alignment
Ground Truth i
PP TR L Left-Right N Expectation

HMM Builder
Maximization

Training
_____________________________________ Word e
Model
Recognition

Test data Feature Viterbi Recognized Word
Extraction Search

Figure 6.9: Block diagram of the dictionary-based word recognizer

110 CHAPTER 6. RECOGNITION OF ULR SINGLE WORDS USING HMMS

Training configuration

The training method was performed directly on words using an expectation maximization (EM)
iterative process as explained in chapter 4. The likelihood-function we selected is based on
Gaussian mixture models (GMMs). Additionally, as we could show in the last section that the
impact of using full covariance matrix vs. diagonal covariance matrix is negligible, we made the
assumption that the components of the feature vector were uncorrelated. Therefore, we were able
to use the diagonal covariance matrix. Such an assumption made the recognizer computationally
considerably faster than using the full covariance matrix. Fig. 6.10 shows the topology of an
HMM recomposed at training time for the word ’cat’. In this topology we assumed that a fix
number of '#’(inter-characters) like, for example, 1 or 2 times are inserted between the adjacent

characters.

mﬂf\@_,
ool U

start

Figure 6.10: Word topology for training

Test configuration

At recognition time a large HMM was built by taking into account the vocabulary defined in a
dictionary and according to a tree-like structure that was built to optimize the memory usage.
In order to reduce the computation time, a pruning procedure that is explained previously
in chapter 4, was applied to discard the less probable paths along the dynamic programming
computation. As we were testing our system on unseen vocabulary, the HMMs for each word
were composed using the states trained on each character. For estimating the optimal alignment
at testing time, we used the Viterbi criterion as explained in detail in chapter 4, stating that
instead of considering all potential paths through the HMM, only the best path is taken into
account, i.e. the path that maximizes the product of emission and transition probabilities. As
stated before, the characters were associated to states in our word models. The number of
states was defined by the number of characters composing the word and the choice of the HMM
topology to model each character. We chose both the simple-left-right and the minimum width
topology with inter-character injection such as presented at Fig. 6.5 and Fig. 6.7 to build the
large HMM at testing time and compared the resulting system performance. The minimum
width values for each character class that were used in the minimum width topology were still

inferred from the a priori font metric information.

CHAPTER 6. RECOGNITION OF ULR SINGLE WORDS USING HMMS 111

An algorithm for memory optimization

The dictionary-based HMM would work theoretically as presented in Fig. 6.1, i.e. we had to build
the word topology for all the competing words in the dictionary and calculate the probability
of the unknown image for each word to determine the index of the word that would have the
highest probability. Such an algorithm works well when using a relatively small dictionary, i.e.
< 3000 words, but the augmentation of the dictionary size to some 10’000 words, increases
drastically the computation time and the system turns to be inefficient. Hence, we developed an
algorithm that optimized the resulting HMM by merging states that were in common from the
start state. In other words, the resulting HMM was like a tree structure where the root would
be the starting state and the sons of the root would be the first states of the different HMMs

with no duplications of these states. We can write the algorithm in pseudo-code as follows:

e Repeat

Build the HMM of the n-th word
— Build the HMM of the n+1-th word
— Build a new empty HMM as merge of both HMM

— Find all the father states in both HMMs that have the same label and equal

self-loop and transition probabilities
— Add one of the father states to the merged-HMM

— Modify the new transitions to the merged father state and add them to the
merged-HMM

— Add all the transitions from father states to the merged-HMM
— Add all the son states to the merged-HMM
— Delete o0ld transitions that have been modified

— Delete the second father state that has not been added to the merged-HMM

e Until n=size of dictionary

To give an example, let us suppose that we have a big dictionary consisting a large quantity
of words including the words but and bat, the father states '’ from words ’but’ and ’bat’ are
merged together as shown in Fig. 6.11. Further optimization of the tree topology could be
obtained by performing similar merging from the end state, but were not implemented here.

Optimization from the root state was enough in terms of cpu and memory footprint reduction.

6.3.2 Evaluation tests

The training set that we used for these evaluation tests contained 6’000 ULR words. Using

automatic HMM-training procedure enabled us to segment words into characters in order to

112 CHAPTER 6. RECOGNITION OF ULR SINGLE WORDS USING HMMS

start

end

Figure 6.11: Optimization algorithm

estimate the mean vector and diagonal covariance matrix to feed the recognition system. We

performed different evaluation tests that we can group as follows:

e Impact of the number of iteration to estimate the emission probabilities
The first question for an automatic training was to tune optimally the components that
were used in the process. As already described at chapter 4 we repeated the iteration step
until a certain number of iterations at which the previous probabilities were converging
to a constant value. Fig. 6.12 shows that after 10 iterations this convergence is reached.
When continuing the process until 20 iterations, we see clearly that the probability values

are swinging around the value of 10 iterations.

e Impact of number of Gaussian components
We were interested to investigate the impact of number of Gaussian components on the
word recognition rates (WRR) for different fonts. Therefore performed various experiments
for a serif font and a sans serif font in roman (plain) style and 9 point size by which we
increased the number of Gaussian components. The results are shown in table 6.2. We
see clearly in this table that increasing the number of Gaussian components from 1 to 2
drastically increases WRR. Going from 2 to 4 components does not lead to much bigger
improvements. Additionally, serif font system reaches less accuracy when comparing to
sans serif font. This again is probably due to the fact that serif fonts have more complicated
character shapes including small flourishes. We can also observe that the serif font requires

more complex models than sans serif font, i.e. using a mixture of 4 Gaussian components

CHAPTER 6. RECOGNITION OF ULR SINGLE WORDS USING HMMS 113

-7050000.0 — T T — T T — T T —
71000000 ++—23 4 5 6 7 8 9 10 11 12 43 14 15 16 47 18 19 20 21

-7150000.0

3 -7200000.0
a4+

= -7250000.0 /‘/"/"’,—4———7— +
) -7300000.0
T e
£ -7350000.0
g- -7400000.0

-7450000.0

-7500000.0 3

-7550000.0
of iterations

Figure 6.12: Estimation of optimal number of iterations for automatic HMM-training for Verdana,
Plain, 9pts

is more accurate for serif font while a mixture of 2 Gaussians seems to be optimal for sans

serif font.

Table 6.2: Influence of the number of Gaussian components on WRR of a 3’000 word system for
two fonts, plain, 9 points

’ # Gaussians \ Sans Serif \ Serif ‘

1 52.6% 16.6%
2 99.5% 97.5%
4 99.0% 98.9%

e Impact of vocabulary size and HMM-topology
We analyzed here the influence of the vocabulary size and of the different HMM-topologies
described above. Results were obtained using the 2 Gaussian components-system and
are shown in 6.3. We see that the accuracy is slightly decreasing when increasing the
vocabulary size. However, the system was still leading to good accuracy even for large
vocabulary up to 60’000 words. As already seen from the results of the previous evaluation
tests, the minimum width topology delivers in general better results. Additionally, we
can observe that similar to the first set of experiments, the serif font is more difficult
to recognize than the sans serif font. This is probably also the reason that most chosen
fonts for screen-rendered text are sans serif fonts due to their overall better legibility
comparing to the serif fonts. Once again, this is an interesting observation that the
implemented automatic recognizer has similar tendencies to the human vision system as
already described in chapter 3 and is able to better recognize legible sans serif fonts than

readable serif fonts.

114 CHAPTER 6. RECOGNITION OF ULR SINGLE WORDS USING HMMS

Table 6.3: WRR for different vocabulary size and HMM topologies and for two fonts: sans serif
and (serif), plain, 9 points, 2 Gaussian components

Sans serif 3’000 words | 12’000 words | 60’000 words
Simple left-right 99.5% 98.0% 96.0%
Minimum width 99.8% 99.4% 97.7%

Serif 3’000 words | 12’000 words | 60’000 words
Simple left-right 97.5% 92.4% 90.3%
Minimum width 98.6% 96.5% 93.4%

6.3.3 Error analysis

We also performed an error analysis that is summarized in Table 6.4 for the serif font. Many
errors were related to confusions between characters that are globally similar such as for example
t’ and 'i’ or ’o’ and ’e’. Increasing the number of Gaussian components could recover some
of these mistakes by allowing more precise modeling. This is clearly illustrated for the word
‘’aloi’ and ’'wenda’. Besides, a large number of errors were related to characters that shared
local similarities such as, for example, the vertical strokes of letters 'm’ and 'n’. This also led
to insertion errors as in the case of 'd’ recognized as ’c1’. The introduction of minimum width
topology allowed to recover some of these mistakes. In some examples, this is the combination
of minimum width and model complexity that allowed to remove the mis-recognition, like for
the word ’shah’ in Table 6.4.

Table 6.4: Typical examples of mis-recognition for sans serif font, 12’000 test words

Genuine word Recognized word
simple, 2-Gauss [simple, 4-Gauss [min dur, 2-Gauss [min dur, 4-Gauss
aloi alot aloi alot aloi
wenda wonda wenda wonda wenda
l moller [noller [noller [moller [moller]
dumm clum clum clum dumm
shah shale shale shale shah

We can see the image of the confused words in two exapmles as below:

o Confusion between ’‘aloi’ and ’alot’
The first line of Fig. 6.13 shows the genuine word ’aloi’ and the mis-recognized word ’‘alot’
for serif font. The second line shows these two words for sans serif font. As we can see
the characters %’ and ’t’ are more likely to be confused by the serif font than by the sans
serif font. The character ’t” is wider and therefore can be less confused with the character

i’ by the sans serif font, whereas they have the same width by the serif font.

o Confusion between ‘wenda’ and "wonda’

K

The shape of character ’e’ in word ‘wenda’ and ‘o’ in word ‘wonda’ in Fig. 6.14 for the

CHAPTER 6. RECOGNITION OF ULR SINGLE WORDS USING HMMS 115

serif font, are pretty similar to each other, for example they both have some white pixels
representing a hole in their middle, whereas for the sans serif font, these characters are

different as ‘e’ has no white pixels comparing to ’o’.

The above error analysis confirms again the higher legibility of screen-rendered ULR sans

serif fonts over the serif ones.

.J|l.ll alcH

) Genuine word ’aloi’ serif ~ (b) Misrecognized word ’alot’ serif
) Genuine word ’aloi’ sans d) Misrecognized word ’alot’ sans
serlf serlf

Figure 6.13: Confusion between ’aloi’ and ’alot’

'.|.|:1:|.:||:| el

) Genuine word 'wenda’ serif b) Misrecognized word 'wonda’ serif
) Genuine word ’wenda’ sans serif (d) Misrecognized word 'wonda’ sans erif

Figure 6.14: Confusion between 'wenda’ and ’wonda’

6.3.4 Conclusion

The above experiments have shown that:

e The recognizer is able to perform automatic HMM-training that does not need the a priori
knowledge of font metrics to segment characters in an ULR word. Instead the training

process finds iteratively the best character alignment within a word

116 CHAPTER 6. RECOGNITION OF ULR SINGLE WORDS USING HMMS

e The recognizer is able to reliably recognize up to 60’000 words that is fairly close to the

size of a real world dictionary

e The system’s performance increases by using the Gaussian Mixture models (GMMs) to

estimate the emission probabilities

e The recognizer can be trained both for serif and sans serif words. However, serif fonts
are leading to a slight degradation of the accuracy probably due to their lower legibility
comparing to sans serif fonts. This is probably the reason why serif fonts are mostly used

for printed text as they have higher readability than sans serif fonts.

6.4 Experiments on an open-vocabulary recognizer

With the previous set of experiments we used a HMM-based single ULR word recognizer that was
able to solve the character segmentation and word recognition at the same time. In addition, the
system was able to perform automatic training and we additionally showed that using GMMs
instead of mono-Gaussian density function to model the features’ distribution, considerably
increased the WRR specially when the recognizer contained a large vocabulary. In this approach,
one left-right HMM was built for each word where characters were associated to one or more
HMM states. A large HMM was finally built considering the vocabulary taken from a dictionary
of up to 60’000 words, making each word-level HMMs competing against each other. While
giving reliable results, this approach had two drawbacks. First, the recognition was limited to
the words available in the dictionary and would have typically configured as mono-lingual. Some
potential inputs were, indeed, not available in the dictionary, such as inflected forms or proper
names, and therefore could not be recognized. Second, the memory and CPU usage was still
pretty high even when performing optimization algorithms. A porting of this system on low-end
devices such as PDAs would have been difficult to realize. To overcome these drawbacks, we
built a word recognizer based on ergodic topology for the HMM, where all character models
were connected to each other. With such a system, the vocabulary size is potentially unlimited
while keeping low the usage of system resources. We were specifically interested to investigate

the following;:
e Inferring the appropriate alignment of inter-character from the automatic training

e Inferring the minimum and maximum width values from the training procedure to replace

the previously used knowledge based approach
e Evaluating system performance using minimum and maximum width values
e Finding the optimal number of Gaussian components for training of GMMs

e Evaluating the system’s performance when changing font sizes from 6 to 10 points for
different fonts

CHAPTER 6. RECOGNITION OF ULR SINGLE WORDS USING HMMS 117

e Testing the robustness of the system for various fonts

e Building a serif and a sans serif recognizer and evaluating their performance

6.4.1 System description

As illustrated on Fig. 6.15, our recognizer consisted of two parts: training and recognition. The
training part was the same as for the dictionary-based recogfnizer and aimed at computing char-
acter models by recomposing word-level HMMs based on simple left-right topology iteratively
analysing a large training set of word images. During training, there was no minimum and
maximum width model used in this approach. At recognition time, we used an Ergodic HMM
topology for word modeling where each character model was connected to each other. At test
time, we tested different character topologies with minimum and maximum width constraints.
The values of such constraint were inferred either from font metrics information or from au-
tomatic HMM-training. The latter case had the advantage that it did not need the a priori

knowledge of font metrics. Below we give more details about the different blocks composing our

system.
Training Data Feature .
Extraction \'ﬂterbl
Alignment
Ground Truth Left-Right Expectation
— ¥ HMM Builder > Maximization
Character
. Models
Training
Recognition '
Ergodic HMM
Builder
Test data Feature Viterbi Recognized Word
Extraction Search "

Figure 6.15: Block diagram of open vocabulary word recognizer

e Training configuration

The training method was performed directly on words for which a simple left-right HMM
was recomposed by gluing together the corresponding character sub-models. At training

time, a character was modeled with one state where a self-loop transition allowed to remain

118 CHAPTER 6. RECOGNITION OF ULR SINGLE WORDS USING HMMS

in this model as long as the sliding window was on top of the character. Fig. 6.16 shows the
topology of an HMM recomposed at training time for the word ’cat’ as already introduced
in chapter 4. In this topology we let the ’#’(inter-character) to be treated as any other
character, i.e. we let Viterbi to remain an unlimited number of times in inter-character

and state and determine its optimum alignments (minimum and maximum constraints.

S 7y S B oy S B 0

i sl S = TS N

Figure 6.16: Word topology for training

e Test configuration

At testing time, we are proposing here to build an HMM with an ergodic topology at
character level. Each character sub-model can take different topology as introduced in
chapter 4, i.e. with or without minimum or maximum width constraints. In our previous
experiments, we used two different HMM topologies and observed that a topology using
minimum width constraints delivered better results than the simple left-right topology.
As the simple left-right topology basically impeaches the decoding procedure to leave too
early a state giving low local scores. However, the minimum width values were inferred
from the font metrics of each character. For these evaluation tests, we are additionally
introducing an extension of this topology that is illustrated in chapter 4. The values of
each transitions leading to the end of the model are corresponding to the probabilities
pi(n) of observing at least n feature vectors in a given character model i. These values are
computed during training by inspecting the Viterbi forced alignment on each word. This
new character model, while introducing similar minimum width constraints as in model
Fig. 6.17, introduces also a maximum width constraint, expressing the fact that characters
have limited width. For a given test image, we used the Viterbi criterion to determine the
best path in this ergodic topology. This path actually defines the recognized sequence of
characters composing the word. The Viterbi decoder was also configured to prune out the
less probable paths along the recognition process to keep the memory and cpu usage in
reasonable ranges.

In other related recognition domains where the vocabulary of the input is potentially very
large, ergodic topologies have also been proposed. We can refer to [111] where an ergodic
HMM system is presented to recognize handwritten street names, to [112] for automatic

language identification and to [113] for speaker verification.

6.4.2 Experimental results

We performed several evaluation tests that we group as follows:

CHAPTER 6. RECOGNITION OF ULR SINGLE WORDS USING HMMS 119

Experiments with character models based on minimum width constraints

R OSOR OSSO

Figure 6.17: A character topology based on minimum width constraints

Figure 6.18: Inter-character model

Figure 6.19: Ergodic HMM with character model based on minimum width constraints

We built an ergodic system as shown in Fig 6.19 where the characters are modeled as
Fig. 6.17. As can be seen on this Figure, the characters are all connected to inter-character,
that itself is modeled like in Fig. 6.18, and accessible in parallel and a transition is looping
back to all characters. In this Figure, the states represented by black dots are non-emitting
states classically used to glue sub-HMMs together. We employed this method on font Verdana
in different point sizes and for different number of Gaussian components. The results are shown

at table 6.5. We can conclude therefore the following points:

e Increasing number of Gaussian components up to 64 increases drastically as shown in
Fig. 6.20 the WRR. We noticed that a GMM with 64 Gaussian components is a good
trade-off between reaching a good WRR and the size of the available training data.

120 CHAPTER 6. RECOGNITION OF ULR SINGLE WORDS USING HMMS

Table 6.5: WRR(%) for open vocabulary recognizer with mininum width constraints

of Gaussians Font Size
6 pts \ 9 pts \ 11 pts \ 12 pts \ Mean
2 48.98 | 29.78 | 23.03 | 17.11 | 29.72
4 61.07 | 55.81 | 29.9 39.95 | 46.68
8 73.15 | 62.24 | 51.74 | 53.35 | 60.12
16 79.65 | 75.47 | 74.78 | 67.00 | 74.22
32 84.97 | 88.93 | 89.51 | 82.78 | 86.54
64 91.02 | 93.63 | 93.85 | 90.25 | 92.19
100.00
90.00 // —
= 80.00
£ e
o 70.00
E 60.00 /
£ ol 2
S 3000 ¢
E 20.00
10.00
0.00 T T T T T T T T T T T T T T T T
0 4 8 12 16 20 24 28 32 36 40 44 48 B2 56 60 64 68
of Gaussians

Figure 6.20: Increasing recognition rates by increasing the number of Gaussian components

e The WRRs for point size 12 are lower than those for point size 11 that has to be further

investigated.

Experiments with character models based on minimum and maximum width con-

straints

The last experiments showed that big font sizes like 12 points show worse WRR than smaller
font sizes like 9 and 11 points. We assumed that this is an imperfection of our model as we
forced the Viterbi whether to skip the inter-character or to stay one time in it as shown in
Fig. 6.18, which is apparently not correct for big font sizes. Probably with big font sizes, the
contextual noise between the adjacent characters can be represented by more than 2 pixels. This
forced us to use a new character model as illustrated in Fig. 6.21 with minimum and maximum
constraints that are inferred during the training process. Our ergodic topology is illustrated
on Fig. 6.22. As can be seen on this Figure, the characters are all accessible in parallel and a
transition is looping back to all characters from the inter-character model '#’. Furthermore,
the inter-character is modeled with minimum and maximum constraints as any other character.
We assumed that this model is more general and applicable both for small and big font sizes, as
the transitions between the states reflect the 'real’ probability of repeating each character and

sequence. Besides inserting the appropriate inter-character model for each point size reflects a

CHAPTER 6. RECOGNITION OF ULR SINGLE WORDS USING HMMS 121

better alignment of inter-character for each specific font than for previous experiments. Finally,
the word model lets either insertion of inter-character for big font sizes or skip the inter-character
for smaller font sizes.

In Fig. 6.22, the states represented by black dots are again non-emitting states that glue sub-
HMMs together. The transition probabilities going from submodel '#’ back to each character is

actually corresponding to the case of equiprobable character sequences, for any pair of characters.

start

Figure 6.22: Ergodic HMM for character models with minimum and maximum constraints

We experimented with font Verdana using different font sizes and GMMs with 64 components
and could get better WRR for point size 12 as can be seen at table 6.6. On the other hand the
WRRs of other font sizes were not significantly improved. We applied an error analysis for the

btained results that is shown in table 6.7.

Table 6.6: WRR (%) for open vocabulary recognizer with min-max width constraints

Font Size
7pts | 8pts | 9pts | 10 pts | 11 pts | 12 pts
sans serif | 91.60 | 92.08 | 93.01 | 93.63 | 93.77 | 97.76

We see in table 6.7 confusions between 'q’ and ’d’, ’b’ and ’p’, ’h’ and ’'n’, 'n’ and ’r’, 'n’ and

'h’. Our hypothesis is here that the training set does not contain enough training data for some

122

CHAPTER 6. RECOGNITION OF ULR SINGLE WORDS USING HMMS

Table 6.7: Error analysis for open vocabulary recognizer using min-max width constraints

Genuine word Recognized word for Font Size

12pts 11 pts 10 pts 9 pts 8 pts 7 pts
aldercy alglercy | aldercy | aldercy | aldercy | aldercy | algercy
dakar glakar dakar qlakar dakar glakar qdakar
dawn glawn dawn qlawn dawn glawmh | qdawn
deluded glelugled | deluded | gleluded | deluded | gleluded | qdeluged
enrique enridue | enrique | enridue | enrique | enridque | enridue
weapons weapons | weapons | weapons | weapons | weapons | weapbons
bausch bausch bausch bausch bausch bausch bpausch
stann stann starhn starhn stann stann stann
tsang tsang tsarhg tsarhg tsang tsang tsang
stann stann starhn starhn stann stann stann
exiting exiting exitirhg | exitirhg | exiting exiting exiting

letters that are frequently confused (for example 'q’).

Experiments with a balanced training set

We enlarged the size of training set that contained more words including the confused char-
acters and we obtained better intermediary WRRs. But we still had other confusions, which
motivated us to produce a balanced-training set containing a balanced quantity of each charac-
ter combined with each other character at its left and right sides. That is, we decided to use a
training set containing character trigrams of all possible combinations. Therefore, the training
set contained 26 * 26 * 26 = 17'576 trigrams. Since we gained better WRR with the character
models with minimum and maximum width constraints, we decided to run a new series of exper-
iments based on this character model and word models based on ergodic topology as in Fig. 6.22
and use the balanced-trigrams as training set. We were also interested to gain results for both
a serif and a sans serif font. The results are listed in table 6.8. In addition, we tested different
font sizes and font styles for the two selected fonts. We can see in this table that the WRRs for
sans serif font is indeed considerably improved when comparing to the results from table 6.6.
The improvement of WRR is about 1.5%(for 12 pts) and 6%(for 8,9 pts). When comparing the
WRRs of serif and sans serif fonts, we see that sans serif font has higher WRRs. This again
confirms the finding of the previous chapter that sans serif fonts are more legible than serif fonts

for our computerized recognition algorithms.

Mono-font experiments

To assess performance and roboustness of the open vocabulary recognizer that used as training

set the balanced trigrams and minimum-maximum constraint topology for modeling characters

CHAPTER 6. RECOGNITION OF ULR SINGLE WORDS USING HMMS 123

Table 6.8: WRR (%) for open vocabulary recognizer for a serif and a sans serif font with different
font styles and sizes using min-max width constraints and balanced training set

Font family | Font style Font Size
7 pts \ 8 pts \ 9 pts \ 10 pts \ 12 pts
plain 96.98 | 96.21 | 98.84 | 98.89 | 99.28
sans serif bold 97.09 | 97.25 | 98.34 | 99.09 | 99.48
italics 95.68 | 96.84 | 97.5 | 97.97 | 98.95
bold+italics | 96.81 | 98.22 | 98.67 | 98.89 | 99.36
plain 93.88 | 96.10 | 97.81 | 98.48 | 99.47
serif bold 94.83 | 95.09 | 98.34 | 98.14 | 99.96
italics 95.51 | 96.12 | 96.84 | 97.17 | 99.28
bold-+titalics | 96.59 | 96.64 | 97.44 | 98.12 | 98.81

in a word, we performed experiments with various serif and sans serif fonts. These experiments
were conducted in a mono-font context. As already stated, we supposed that we could recognize
the font in a preprocessing step using an existing OFR for ULR words. We used the following

font combinations to build 48 fonts for building training and test sets:

e 3 sans serif fonts: Arial, Tahoma, Verdana
e 3 serif fonts: Times New Roman, Garamond, Georgia
e 4 different font styles: plain, bold, italics, bold + italics

e 2 different font sizes: 9pts, 11pts

The results are shown in table 6.9. We see from this table that the sans serif font Verdana
has the best overall WRR. Furthermore, the serif font Georgia has the best WRR amongst serif
fonts. These observations are in accordance with the mono-font experiments performed on single

characters presented in the previous chapter.

Multi-font experiments

We were interested to assess the performance of our open vocabulary recognizer as serif or sans
serif classifier. Once again, we can assume here using an available OFR that determines whether
the to be recognized word is a sans serif or a serif font and the task it to recognize the serif
fonts with the serif recognizer and the sans serif fonts with the sans serif recognizer. We used
the same serif and sans serif fonts as for the mono-font experiment described in this section for
building training and test sets. Table 6.10 shows the gained results for the sans serif recognizer
and table 6.11 the results for the serif recognizer. As expected, the mono-font recognizer has a
better overall WRR. In addition, the overall WRR of the sans serif recognizer is better than the

124 CHAPTER 6. RECOGNITION OF ULR SINGLE WORDS USING HMMS

Table 6.9: WRR (%) for open vocabulary recognizer with min-max width constraints using the
balanced training set for different fonts

Font family | Fontsize Font Style
plain \ bold \ italics \ bold-titalics | Mean
Arial 9pts 96.89 | 97.87 | 96.78 | 97.4 97.24
11pts 97.6 |98.9 |97.1 98.23 97.96
Tahoma 9pts 97.03 | 98.53 | 97.12 | 97.98 97.67
11pts 98.89 | 99.01 | 97.67 | 98.56 98.53
Verdana 9pts 98.84 | 99.27 | 97.5 98.81 98.61
11pts 99.28 | 99.48 | 97.95 | 99.17 98.97
Times 9pts 94.09 | 95.14 | 93.23 | 94.56 94.26
11pts 96.45 | 97.65 | 95.34 | 95.1 96.14
Garamond | 9pts 95.76 | 96.53 | 95.12 | 96.35 96.57
11pts 96.8 | 97.64 | 96.18 | 97.49 96.76
Georgia Ipts 97.81 | 98.34 | 96.84 | 97.44 97.61
11pts 99.47 | 99.94 | 97.28 | 98.81 98.88
Mean 97.41 | 98.19 | 96.63 | 97.49 97.67

one for serif recognizer. Furthermore, these results show the same tendencies with those gained

from multi-font experiments presented in previous chapter.

Table 6.10: WRR (%) of open vocbulary system as a sans serif recognizer with min-max width
constraints using the balanced training set

Font family | Fontsize Font Style
plain \ bold \ italics \ bold-titalics | Mean
Arial 9pts 96.13 | 97.3 | 95.89 | 96.8 96.53
11pts 97.23 | 98.53 | 96.95 | 98.01 97.98
Tahoma Ipts 96.87 | 97.79 | 96.97 | 97.43 97.27
11pts 98.45 | 98.86 | 97.37 | 97.89 98.14
Verdana 9pts 98.24 | 98.75 | 97.2 98.1 98.07
11pts 99.04 | 99.35 | 97.76 | 98.9 98.75
Mean 97.66 | 98.43 | 97.02 | 97.86 97.74

6.4.3 Conclusion

The above experiments showed that our open vocabulary recognizer performs well for the recog-
nition of any arbitrary ULR single words. We could increase the recognition rates and remove

the system’s imperfections using the following improvements:

e Finding an optimal number of Gaussian components to represent the feature’s distribution

CHAPTER 6. RECOGNITION OF ULR SINGLE WORDS USING HMMS

125

Table 6.11: WRR (%) of open vocbulary system as a serif recognizer with min-max width con-
straints using the balanced training set

Font family | Fontsize Font Style
plain \ bold \ italics \ bold-titalics | Mean
Times 9pts 93.28 | 94.14 | 92.23 | 94.01 93.42
11pts 96.24 | 97.21 | 94.88 | 94.87 95.8
Garamond | 9pts 95.03 | 95.93 | 94.78 | 95.93 95.42
11pts 96.23 | 97.33 | 95.97 | 97.16 96.67
Georgia 9pts 97.24 | 97.85 | 96.12 | 97.17 97.1
11pts 99.01 | 99.32 | 97.01 | 98.38 98.47
Mean 96.18 | 96.99 | 95.17 | 96.25 96.15

e Using a more accurate character model with minimum and maximum width constraints

that were inferred during automatic HMM-training.

e Using a balanced training set, in which character trigrams were built to represent all the

possible adjacencies at their left and right borders

6.5 Conclusions

Table 6.12: Dictionary based word recognizer vs. open vocabulary word recognizer

Criterion

Dictionary based

\ Open vocabulary

Rec rates

better

good

of Gaussians

4 components

64 components

Training set size

medium < 8000 words

large > 19000 words

Language independence

typically no

yes if Latin chars are used

Flexibility

limited to dict.

high, no word limitation

Portability
for low end devices

low — medium

medium — high

In this chapter, we presented two dedicated recognizers for anti-aliased words at ultra low

resolution with font sizes between 7-12 points. Both recognizers use the central moments as fea-

ture extraction method and mixtures of Gaussian models to represent the features’ distribution.

Table 6.12 shows a comparison of both for different criteria.

As can be seen in table 6.12 the open vocabulary recognizer is more of practical use, as it

is portable to low end devices. In addition, the of open vocabulary recognizer can deal with an

unlimited dictionary size and is also not dependent to a specific language. The only limitation

with the open vocabulary recognizer is that it needs as input words written in Latin alphabet. We

believe but that it is also able to recognize words coming from other similar alphabetical systems

126 CHAPTER 6. RECOGNITION OF ULR SINGLE WORDS USING HMMS

like for example Cyrillic or Greece alphabet simply by train the corresponding character models.
Furthermore, we believe that we could use the principles of our system to develop dedicated
recognizers for Arabic, Chinese and other alphabets. On the other hand, the dictionary based
recognizer delivers more accurate results using less Gaussian components for estimating the
probability density functions of the chosen features and also needs a relatively smaller training

set. This is at the price of higher cpu, higher memory footprint and limited vocabulary size.

Chapter 7

Conclusions and future works

In this thesis, we have studied the problem of text recognition in Ultra Low Resolution (ULR)
images. Such text images are mostly produced using an image processing application like Adobe
Photoshop, Macromedia Fireworks, Corel Draw, Corel Photopaint etc.. Once text images have
been generated using one of these tools, they are often inserted into HTML pages to compose
menus or other clickable labels that appear in banners, buttons, advertisements etc.. The length
of such text is usually not more than a couple of words or even one single word in case of
embedded in buttons. When text contained in such images has a font size below 10 points,
anti-aliasing is usually applied in order to smooth edges and diagonals. Recognition of such text
in these types of images has been the target of our research.

In this dissertation, we have assumed that words can be accurately detected and segmented
using classical algorithms used in document analysis. In other words, we have made the assump-
tion that our system receives as input an image of a single word. To achieve our goals, first we
have conducted a preliminary study on isolated characters. We then have used the outcomes of
this study to better build a system for the recognition of isolated words. In our research work, we
have decided to use methods of statistical pattern analysis. Statistical pattern analysis is based
on two important components: 1)a feature extraction and 2)a statistical classification method.
As features, we have used the first and second order central moments. In addition, we have
used Bayes decision using the mono-Gaussian density functions for the task of identifying single
characters and hidden Markov models (HMMs) combined with mixtures of Gaussian models for

the recognition of a single word.

7.1 Study of single characters

In this study we aimed at testing the discriminative power of the selected features. Our classifi-
cation system used the principle of maximum likelihood to choose the most probable character
class for the test image, assuming equal class prior probabilities. We also assumed that the dis-

tribution of extracted features of character images would be corresponding to a mono-Gaussian

127

128 CHAPTER 7. CONCLUSIONS AND FUTURE WORKS

multivariate density function. We verified this assumption using a normal distribution goodness-
of-fit test. The gained results have shown that our selected features are fairly discriminative
and can be used as a part of our single word recognizers. Furthermore we have tested the
implemented single character identification system on 192 fonts and gained highly motivating
character recognition rates of up to 99.99 in a mono-font context. We have also investigated
the possibility of recognizing text for two different rendering methods and could show that the
system can be implemented to recognize single characters independently of the anti-aliasing ren-
dering methods.In addition, we could also test a multi-font single character identifier by training
the character models with all the selected fonts, but for one size and one style, and the task has
been to recognize any single character belonging to one of these fonts. We have obtained recogni-
tion results up to 95% for this task. We could group serif and sans serif fonts together and train
serif and sans serif character models to gain a serif and a sans serif classifier. We could obtain a
better CRR up to 99% for both classifiers. Additionally, we have obtained better overall CRRs
for sans serif fonts than for serif fonts as the decorative ’serifs’ cause more contextual noise at
character boundaries and decrease the recognition accuracy for serif fonts. Generally, we have
observed that we can make machine to better learn recognizing sans serif fonts than serif fonts.
It is interesting to observe that machins show similar perception tendencies as human vision
system for this task. Indeed, we can observe an increasing use of sans serif fonts like Verdana
and Tahoma in browsers or other computer screen text visualization software. These fonts have
also been specifically designed to be more legible for human eyes on computer screens than the
serif fonts. Serif fonts are mostly used for printed material where readability takes priority over

legibility.

We continued our study with an analysis of the impacts of anti-aliasing on adjacent char-
acters. This has resulted to a thorough and meaningful understanding of the contextual noise
between the connected adjacent characters for different font families and font styles with font
sizes between 3-10 points. We have concluded that such contextual noise has been a major di-
minishing factor for the recognition of contextual characters. By developing a knowledge-based
segmentation method we could discard such noisy zones and obtain higher recognition results.
However, such knowledge-based segmentation was completely artificial as we had to assume the
a priori knowledge of the character strings of a particular word. Therefore, we have decided to
consider such contextual noise as an extra character enabling us to segment it during training

and recognition process.

Finally the experiments of this study have clearly shown the limitations of the mono-Gaussian
density function to model the features of contextual characters. We have drawn the conclusion
that the common approach in document analysis to segment characters prior to recognition is
not applicable in our case. We sought thus for a statistical method capable of simultaneously

segment and recognize the connected characters in single words.

CHAPTER 7. CONCLUSIONS AND FUTURE WORKS 129
7.2 Recognition of single words

In this study, we have investigated the issue of recognizing single words. The targeted words, as
previously stated, assumed to be generated with ultra low resolution, rendered with anti-aliasing
filters and with small font sizes. Under such conditions, the characters in the words are usually
connected and the adjacent characters contain contextual noise between each other. Thus, the
features extracted for a given character are impacted due to this noise. Therefore we opted to
use hidden Markov models (HMMs) for the recognition task. Using HMMs, we could model
words with characters as states with a left-right topology and insert the inter-character as an
extra character model between them. HMMs can additionally perform an automatic training
that results in gaining optimal state emission and transition probabilities for each character
state without making any a priori assumption about the segmentation of words into characters.
Furthermore, we have shown that models linked to the minimum and maximum width constraints

of characters can be easily included in the HMM topologies, increasing further the performances.

We could show that inserting the inter-character model between the adjacent characters
significantly improves the recognition results. We also have tested different character inter-
connection possibilities(topologies) using knowledge-based character models with minimum width
constraints and moreover using minimum and maximum width constraints that have been in-
ferred during the automatic HMM training. Further, we used mixtures of Gaussian models
(GMMs) for modeling the distribution of our features. We can underline two justifications for
such a choice: first the system’s complexity has been increased as we no longer dealt with sin-
gle characters but with single words. Secondly the experiments dealing with single contextual
characters have shown the insufficiency of the mono-Gaussian density functions to model the

feature’s distribution.

We have basically built two single word recognizers. The first one is a dictionary-based
recognizer that relies on the recognition of test words that are chosen from a large dictionary.
The second one is a language-independent, open vocabulary recognizer that can deal with any
arbitrary word written in any language in Latin alphabet.

We have built a large HMM containing of several thousands of words and used a tree-based
optimization algorithm to reduce the system cpu and memory usage. The maximum number of
words contained in our dictionary-based system was 60’000 words. We could gain fairly good
word recognition rates (WRR) of up to 99.9% with a mixture of 4 Gaussian components to
model the features’ density functions. Although the results were highly promising, the system
has shown a major weakness: such a dictionary-based system is less suitable to be ported on
low-end devices like PDAs and mobile cameras and therefore not practical to be used for different
possible applications for such devices. Furthermore, the system was limited to the recognition

of the 60’000 words, automatically discarding all unknown inflections or proper names.

Thus we opted to build an open vocabulary recognizer that has relied on character models

using a HMM ergodic topology. This made it possible to build each arbitrary word by connecting

130 CHAPTER 7. CONCLUSIONS AND FUTURE WORKS

one character state to another character state. Such a recognizer is more portable as it uses only
HMMs of approximately 100 characters and special signs to be ported on low-end devices. On
the other hand, such an open vocabulary system is far more complex than the dictionary-based
system and experiments have shown that we have to use a mixture of 64 Gaussian components
to gain WRRs above 96%. Another complexity of such a system is that it needs a much larger
training set to cover all the potential details of the distribution of features. We have conducted
several experiments with frequently confused characters and could finally build a training set
that could deliver WRRs that have been comparable with the ones gained from the dictionary-
based system, i.e. up to 99.9%.

Finally, we have tested the robustness of our system using 48 different fonts and could gain
good WRRs of up to 99.54% in a mono-font context. We then have mixed the serif and sans-serif
training tests together building a serif and sans serif recognizer and could still reach still WRRs
of up to 99%.

7.3 Future perspectives

We have presented two single word recognizers for ultra low resolution words that are anti-aliased
and have small font sizes between 6-12 points. We could show that such a system is highly
capable to gain more accurate recognition accuracies than, for example a current commercial
OCR proclaimed to recognize screen-shot text images as shown in chapter 2. Our system can
generally be used in a mono-font context, such an approach is justified when combing our
system with an existing Optical Font Recognizer(OFR). Our goal for developing such a system
was primarily to recognize anti-aliased text with a maximum height of 10 pixels such as those
frequently found in web images. Going further, we believe that the principles of the presented
system could be generalized to recognize other text images that are captured with other low
resolution devices such as digital and video cameras. Obviously some components of the system
such as injecting of inter-character to model the noise in our case has to be modified and the
system has to be adapted to the new sources of noise in digital cameras like 3D-perspective
deteriorations, different illuminations and zooming. In addition, the presented recognizers are
not independent of the font size, i.e. they have to be further improved to be scale invariant.
Potential improvements in this direction could be additional scale invariant moment features
like 7 Hu’s moment invariants [114]. In addition, we could think of using the rotation invariant
moments like Zernike moments [80] as features to make the recognizers rotation invariant making
them independent of the different font styles like roman which has more rectangular shapes and
italics with more slanted and angled shapes.

Moreover, potential future works could go in the direction of including linguistic constraints
in the system architecture. One possibility would be to measure character trigram frequencies
from a dictionary and to use these values for the transition probabilities between character sub-

models. A generalization of this approach could also be performed computing n-gram character

CHAPTER 7. CONCLUSIONS AND FUTURE WORKS 131

sequences. Another possibility could be to keep the n-best recognition hypothesis as output of
the ergodic model and to prune out the hypothesis that are improbable looking in a dictionary.
Future work could also consider using real-life images extracted from the web in the evaluation

framework developped in this thesis.

132 CHAPTER 7. CONCLUSIONS AND FUTURE WORKS

List of Figures

1.1 A magnified image of word ”School” at ULR, anti-aliased with 9 point size

2.1 Text detection and recognition
2.2 Examples of web images; top: image in original size, bottom: magnified image
2.3 Some examples of scene texts L
2.4 Example of video images containing superimposed text
2.5 Website with complex layout o,
2.6 Buttons containing text with different backgrounds
2.7 Recognized text in different buttons oo
2.8 Examples of limitations of the selected OCR to recognize ULR, anti-aliased words
with small points sizes

2.9 Recognition system Wachenfeld et al..

3.1 An example of a text line written by serif font ’Georgia’
3.2 An example of a text line written by sans serif font 'Verdana’
3.3 Bitmap font in different font sizes oo oo
3.4 An example of scalability of outline fonts: Character M” in different transforma-

tions and scales L
3.5 °M’ unhinted / hinted oL
3.6 Character A’ in bilevel and anti-aliased representation
3.7 A perceptually tuned anti-aliased text L.
3.8 A traditinally filtered anti-aliased text
3.9 An enlarged screen-shot from Adobe Acrobat Reader
3.10 (a) Font metrics for ’a’ with positive RSB (b) Font metric for ’f” with negative

RSB . . e
3.11 An example of a proportional font ’Verdana’ for word "Wrapper’
3.12 An example of a proportional font ’Courier’ for word "Wrapper’
3.13 A text line containing ULR words in original size
3.14 An enlarged version of a text line containing ULR words
3.15 Segmentation problem by ULR Words

133

134

LIST OF FIGURES
3.16 Character ’0’ in different grid alignments 43
3.17 Characters ‘w’ and ’n’ with separate bounding boxes 43
3.18 Characters b’ and ’r’ with touching bounding boxes 44
3.19 Characters ‘w’ and ’n’ with merged bounding boxes 44

3.20 Character 'w’ at high resolution (left side) and ultra low resolution (right side) . 45
3.21 Example of binary images of word brown (45 pts) in different grid alignments . . 45

3.22 Example of down-sampled images of word brown (9 pts) in different grid alignments 45

4.1 An example of a HMM model L. 55
4.2 A 4 ergodic HMM-topology 56
4.3 A 4 state second order left-right HMM-topology 56
4.4 A 4 state first order left-right HMM-topology 56
4.5 A character topology based on minimum width constraint 57
4.6 A character topology based on minimum and maximum width constraint 57
4.7 (a) The recursion step of Viterbi (b) The backtracking step of Viterbi 62
4.8 A two word dictionary left-right HMM 63
4.9 Modified Viterbi for 2 best paths 0L 64

4.10 Sliding window technique for word ’school’ at ultra low resolution and 9 point size 65

5.1 Results of normal distribution test for extracted features of 52 character classes . 79
5.2 15 samples of character ’a’ downsampled with Photoshop 80
5.3 15 samples of character ’a’ downsampled with Java 80
5.4 Schematic view of the single character identification system 80
5.5 Error table of character identification of different fonts 83
5.6 Error rate in % for different font sizes 83

5.7 Error table of character identification of different fonts without confusion between

T &V e 84
5.8 Error rate in % for different font sizes without confusion between I’ & i’ 84
5.9 The ULR image of the word bank in point size 9 90
5.10 The segmented characters of word bank in point size 9 90
5.11 Three versions of ’a’ contained in the training set of contextual characters 92

5.12 Mono-font exp.: Number and percentage of errors of contextual characters for

different fonts 93
5.13 Mono-font exp.: Recognition rates of contextual characters for different fonts . . 93
5.14 Example of misconfusion between ¢ and [in two ULR-words 94
5.15 Example of misrecognition when ’f’ is the precedence letter 94

5.16 Mono-font exp.: Number and percentage of errors of contextual characters after
error correction for different fonts oL 95
5.17 Segmentation of f” in word “fork” 95

LIST OF FIGURES

5.18

5.19

5.20

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12

6.13
6.14
6.15
6.16
6.17
6.18
6.19
6.20
6.21
6.22

Mono-font exp.: Corrected recognition rates of contextual characters for different
fonts e
Multi-font exp.: Number and percentage of errors of contextual characters using
a sans serif classifier Lo
Multi-font exp.: Number and percentage of errors of contextual characters using

a serif classifier L e

Single word Recognizer
Example of extracting inter-character from a single ULR-word
Inter-character topology for small font sizes
Inter-character topology for font sizes between 9-12 pts
Example of simple left-right topology using 0/1 inter-characters
Example of simple left-right topology using 1/2 inter-characters
Example of minimal width topology using 0/1 inter-characters
Example of sliding window with width = 2 pixels and shift= 1 pixel
Block diagram of the dictionary-based word recognizer
Word topology for training L
Optimization algorithm L oo
Estimation of optimal number of iterations for automatic HMM-training for Ver-
dana, Plain, Opts
Confusion between ’aloi’ and ’alot’
Confusion between 'wenda’ and "wonda’
Block diagram of open vocabulary word recognizer
Word topology for training
A character topology based on minimum width constraints
Inter-character model Lo
Ergodic HMM with character model based on minimum width constraints
Increasing recognition rates by increasing the number of Gaussian components

Character model with min-max width constraint

Ergodic HMM for character models with minimum and maximum constraints . .

135

136 LIST OF FIGURES

List of Tables

2.1
2.2

2.3

24

0.1
0.2
9.3
5.4
9.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13

5.14

5.15

5.16

5.17

Overview of the works for extraction and recognition of text in web images . . . 10
Overview of the works for extraction and recognition of text in natural scenes in
video images e e e e 14
Overview of the works for extraction and recognition of superimposed text in
video Images e e e e e 17

Overview of the works for extraction and recognition of text captured from digital

CAMNETAS « .+« e v v v e e e e e e e e e e e e e e e e e e e 22
Overall recognition rates of isolated characters by different font sizes 83
Recognition rates of isolated characters for different font styles 83
Influence of rendering method; training set: Java, test set: Java 85
Influence of rendering method; training set: Photoshop, test set: Photoshop . . . 85
Influence of rendering method; training set: Java, test set: Photoshop 86
Influence of rendering method; training set: Photoshop, test set: Java 86
Influence of rendering method; training set: Photoshop + Java, test set: Java . . 86

Influence of rendering method; training set: Photoshop + Java, test set: Photoshop 87

Multi-font exp.; Training set: all 6 fonts 88
Multi-font exp.; Training set: 3 sans serif fonts 88
Multi-font exp.; Training set: 3 serif fonts 88
Overall recognition rates of isolated charcters using the multi-font classifier . . . 89

Mono-font exp.: Overall recognition rates of contextual characters for different
font sizes L e 92
Mono-font exp.: Overall recognitin rates of contextual characters for different font
SIZES . . . e e e 96
Multi-font exp.: Recognition rates of contextual characters using a sans serif
classifier for different font styles o0 98
Multi-font exp.: Recognition rates of contextual characters using a sans serif
classifier for different font sizes L. 98
Multi-font exp.: Recognition rates of contextual characters using a serif classifier
for different font styles L 99

138

5.18

6.1
6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9

6.10

6.11

6.12

LIST OF TABLES

Multi-font exp.: Recognition rates of contextual characters using a serif classifier

for different font sizeso 99
WRR for font Verdana, plain, 9 points; training size: 750 words 107
Influence of the number of Gaussian components on WRR of a 3’000 word system

for two fonts, plain, 9 pointso 113
WRR for different vocabulary size and HMM topologies and for two fonts: sans

serif and (serif), plain, 9 points, 2 Gaussian components 114
Typical examples of mis-recognition for sans serif font, 12’000 test words 114
WRR(%) for open vocabulary recognizer with mininum width constraints 120
WRR (%) for open vocabulary recognizer with min-max width constraints 121

Error analysis for open vocabulary recognizer using min-max width constraints . 122
WRR (%) for open vocabulary recognizer for a serif and a sans serif font with dif-
ferent font styles and sizes using min-max width constraints and balanced training
SEt . e e 123
WRR (%) for open vocabulary recognizer with min-max width constraints using
the balanced training set for different fonts 124
WRR (%) of open vocbulary system as a sans serif recognizer with min-max width
constraints using the balanced trainingset 124
WRR (%) of open vocbulary system as a serif recognizer with min-max width
constraints using the balanced trainingset 125

Dictionary based word recognizer vs. open vocabulary word recognizer 125

Bibliography

1]

[2]

D. Bathurst, R. Bathurst, and D. Davis. The Telling Image: The Changing Balance

between Pictures and Words in a Technological Age. Clarendon Press, 1990.

A. Antonacopoulos, D. Karatzas, and J.O. Lopetz. Accessing textual information em-
bedded in internet images. In Proc. of Electronic Imaging,Internet Imaging 11, San Jose,
California, USA, 2001.

S. Santini. Multimodal search in collections of images and text. In Journal of Electronic
Imaging, Volume 11, Issue 4, pages 455-468, 2002.

S. Scarloff, T. Taycher, and M.L. Cascia. Imagerover: A content-based image browser for
the world wide web. In Proc. of IEEE Workshop on Content-Based Access of Image and
Video Librairies (CBAIVL97), pages 2-9, 1997.

A.B. Benietz, M.Beigi, and S.F.Chang. A content-based meta search engine for images.
In SPIE Proc. of Storage and Retrieval for Image and Video databases, 1997.

Z. Gong, L. Hou, and C. W. Cheang. Web image indexing by using associated texts. In
Knowledge and information systems, volume 10, No. 2, pages 243-264, Faculty of Science
and Technology, University of Macau, MACAQO, 2006.

K. Jung, K.I. Kim, and K. Jain. Text information extraction in images and video: a

survey. In Journal of Pattern Recognition, volume 37, pages 977 — 997, 2004.

J. Liang, D. Doermann, and H. Li. Camera-based analysis of text and documents: a
survey. In International Journal On Document Analysis and Recognition, volume 7, pages
84-104, 2005.

D. Doermann, J. Liang, and H. Li. Progress in camera-based document image analy-
sis. In Proc. of Seventh International Conference on Document Analysis and Recognition
(ICDARO03), volume 1, page 606, 2003.

A. Antonacopoulos and D. Karatzas. An anthropocentric appraoch to text extraction
from www images. In Proc. of the 4th IAPR Workshop on Document Analysis Systems
(DAS00), pages 515-526, Rio de Janiro, Brazil, 2000.

139

140

[11]

[12]

[16]

[18]

[19]

22]

BIBLIOGRAPHY

A. Antonacopoulos and D. Karatzas. Text extraction from web images based on human
perception and fuzzy interface. In Docuemnt Analysis Systems V, Princeton, NY, USA,
2002.

A. Antonacopoulos and D. Karatzas. Text extraction from web images based on a split-
and-merge segmentation method using color perception. In Proc. of the 17th International
Conference on Pattern Recognition (ICPR04), Cambridge, UK, 2004.

D. Lopresti and J. Zhou. Document analysis and the world wide web. In Proc. of IAPR
Workshop on Document Analysis Systems, pages 651-669, PA, 1996.

D. Lopresti and J. Zhou. Ocr for world wide web images. In Proc. of SPIE on Document
Recognition IV, pages 58—66, 1997.

D. Lopresti and J. Zhou. Extracting text from www images. In Proc. of the 4th Inter-
national Conference of Document Analysis and Recognition (ICDARI7), pages 248-252,
1997.

S.J. Perantonis, B. Gatos, and V. Maragos. A novel web image processing algorithm for
text area identification that helps commercial ocr engines to improve their web recognition
accuracy. In Proc. of the second International Workshop on Web Document Analysis,
Edinburgh, United Kingdom, 2003.

S.J. Perantonis, B. Gatos, V. Maragos, V. Karkaletsis, and G. Petasis. Text area identifi-
cation in web images. In Lecture Notes in Artificial Intelligence n. 3025 Springer Verlag,

pages 82-92, Samos, Greece, 2004.

T. Kanunngo and C. Ha Lee. Using html metadata to find relevant images on the web.
In Proc. of Internet Computing, volume 11, pages 842-848, Las Vegas, USA, 2001.

J. Ohya, A. Shio, and S. Akamatsu. Recognizing characters in scene images. In IEEFE
Transactions on Pattern Analysis and Machine Intelligence, volume 16, No. 7, pages 214—
220, 1994.

J. C. Shim, C. Dorai, and R. Bolle. Automatic text extraction from video for content-based
annotation and retrieval. In Proceedings of the 14th International Conference on Pattern
Recognition (ICPR98), volume 1, page 618, 1998.

J. Zhang, X. Chen, A. Hannemannn, J. Yang, and A. Waibel. A robust approach for recog-
nition of text embedded in natural scenes. In Proceedings of 16th International Conference

on Pattern Recognition, volume 3, pages 204207, 2002.

D. Chen, K. Shearer, and H.Bourlard. Text enhancement with assymetric filter for video
ocr. In Proc. of 11th International Conference on Image Analysis and Processing, pages
192-197, 2001.

BIBLIOGRAPHY 141

[23]

[26]

[31]

[32]

S. N. H. Sheikh Abdullah, M. Khalid, R. Yusef, and K. Omar. License plate recognition
using multi-cluster and multilayer neural networks. In Proc. of Information and Commu-
nication Technologies (ICTTAO06), volume 49, pages 1818-1823, 2006.

T. Naito, T. Tsukada, K. Yamada, and K. Kozuka nd S. Yamamoto. Robust license-plate
recognition method for passing vehicles under outside environment. In IEEE transactions
on Vehicle Technology, volume 49, pages 2309-2319, 2000.

S. L. Chang, L. S. Chen, Y. C. Chung, and S. W. Chen. Automatic license plate recogni-
tion. In IEEFE transactions on Intelligent Transportation Systems, volume 5, pages 42-53,
2004.

C. A. Rahman, W. Badaway, and A. Radmanesh. A real time vehicle’s license plate
recognition system. In Proceedings of IEEE Conference on Advanced Video and Signal
Based Surveillance, pages 163-166, 2003.

R. Lienhart and S.Frank. Automatic text recognition in digital videos. In Proc. SPIE
26606, pages 180-188, Boston, USA, 1996.

R. Lienhart. Automatic text recognition for video indexing. In Proc. of the ACM Multi-
media, pages 11-20, Boston, USA, 1996.

R. Lienhart and W.Effelsberg. Automatic text segmentation and recognition for video
indexing. In Proc. SPIE 2666, pages 180-188, 1998.

Micael A. Smith and Takeo Kanade. Video skimming for quick browsing based on au-
dio and image characterization. In Technical Repost CMU-CS-95-186, Carneige Melon
University, 1995.

Y. Zhong, H. J. Zhang, and A.K. Jain. Automatic captoion localization in compressed
video. In IEEFE Transactions on Pattern Analysis and Machine Intelligence, volume 22,
Issue 4, pages 385—-392, 2000.

C.S. Shin, K.I. Kim, M.H. Park, and H.J. Kim. Support vector machine based text
detection in digital video. In Proceedings of the 2000 IEEE Signal Processing Society
Workshop, volume 22, Issue 4, pages 634-641, 2000.

R.Lienhart and A.Wernicke. Localizing and segmenting text in images and videos. In
IEEE Transactions of Circuits and Systems for Video Technology, volume 12, No. 4, 2002.

J. Xi, X. Hua, X. Chen, L. Wenyin, and H. Zhang. A video text detectiona and extraction
system. In proceedings of IEEE International Conference on Multimedia and Expo, pages
873-876, 2001.

142

[35]

[38]

[39]

[40]

[41]

[42]

[44]

[45]

BIBLIOGRAPHY

T. Sato, T. Kanade, E. Hughes, and M.Smith. Video ocr for digital news archive. Proc. of
the 1998 International Workshop on Content-Based Access of Image and Video Databases
(CAIVDY8), page 52, 1998.

D. Chen, J. Odobez, and H. Bourlard. Text detection and recognition in images and video

frames. In Journal of the Pattern Recognition Scociety, volume 37, pages 595-608, 2004.

D. Zhang, R. Rajendran, and S. Chang. General and domain-specific techniques for de-
tecting and recognizing superimposed text in video. In Proceedings of IEEE International

Conference on Image Processing, volume 1, pages 1-593 — I-596, 2002.
Gartner group 2006 press release. http://www.gartner.com/it/page.jsp?id=498310.

G. Nagy. Twenty years of document image analysis in pami. In IEEE Transactions on

Pattern Analysis and Machine Intelligence, volume 22, pages 38-62, 2000.

A. Zandifar, R. Duraiswami, A. Chahine, and L.Davis. A video based interface to textual
information for the visually impaired. In Proc. of fourth IEEE International Conference
on Multimodal Interfaces, pages 325-330, 2002.

N. Ezaki, M. Bulacu, and L.Shoemaker. Text-detection from natural scene images: To-
wards a system for visually impaired persons. In Proc. of the 17thh International Confer-
ence on Pattern Recognition (ICPR0/), pages 1051-4651, 2004.

N. Ezaki, K. Kiyota, B. T. Minh, M. Bulacu, and L. Schomaker. Improved text-detection
methods for a camera-based text reading system for blind persons. In Proc. of the Fighth
International Conference on Document Analysis and Recognition (ICDARO05), pages 257—
261, 2005.

J. Liang, D. Menthon, and D. Doermann. Camera-based document image mosaicing.
In Proc. of the 18th International Conference on Pattern Recognition (ICPR06), pages
476-479, 2006.

S. Uchida, M. Iwamura, S. Omachi, and K. Kise. Ocr fonts revisited for camera-based
character recognition. In Proc. of the 18th International Conference on Pattern Recognition
(ICPR06), pages 1134-1137, 2006.

S. Omachi, M. Iwamura, S. Uchida, and K. Kise. Affine invariant information embed-
ment for accurate camera-based character recognition. In Proc. of the 18th International
Conference on Pattern Recognition (ICPR06), pages 1098-1101, 2006.

K.S. Bae, K. K. Kim, Y. G. Chung, and W. P. Wu. Character recognition system for
cellular phone with camera. In Proc. of 29th Annual International Computer Software
and Applications Conference (COMPSAC 2005), volume 2, pages 539-544, 2005.

BIBLIOGRAPHY 143

[47]

[49]

[50]

[60]

J. Gao and J. Yang. An adaptive algorithm for text detection from natural scenes. In Proc.
of the 2001 IEEE Conference on Computer Vision and Pattern Recognition (CVPRO01),
volume 2, page 84, 2001.

M. Mirmehdi, P. Clark, and J. Lam. Extracting low resolution text with an active cam-
era for ocr. In Proc. of the IX Spanish Symposium on Pattern Recognition and Image

Processing, pages 43—48, 2001.

P. Clark and M. Mirmehdi. Estimating the orientation and recovery of text planes in a
single image. In Proc. of British Machine Vision Conference (BMVC01), 2001.

S. Wachenfeld, S. Fleischer, and X. Jiang. A multiple classifier approach for the recogni-
tion of screen-rendered text. In Proc. of International Conference of Pattern Recognition
(ICPROG6), pages 1086-1089, 2006.

S. Wachenfeld, H. U. Klein, and X. Jiang. Segmentation of very low resolution screen-
rendered text. In Proc. of the 9th International Conference on Document Analysis and
Recognition (ICDARO7), volume 2, pages 1153-1157, 2007.

S. Wachenfeld, H.U. Klein, and X. Jiang. Recognition of screen-rendered text. In Proc. of
International Conference of Pattern Recognition (ICPR0G), pages 1086-1089, 2006.

S. Wachenfeld, H. U. Klein, and X. Jiang. Annotated databases for the recognition of
screen-rendered text. In Proc. of the 9th International Conference on Document Analysis
and Recognition (ICDARO7), volume 1, pages 272-276, 2007.

S. Wachenfeld, H. U. Klein, and X. Jiang. The official screen-char and screen-word
database website, 2006.

L. Wang and T.Pavlidis. Direct gray-scale extraction of features for character recognition.
In IEEE Trans. Pattern Analysis and Machine Intelligence, volume 15, pages 1053-1067,
1993.

J. Andre and R.D. Hersch. Teaching digital typography. In Electronic Publishing, Artistic
Imaging and Digital Typography, volume 5(2), pages 79-89, 1992.

D. E. Knuth. Digital Typography. CSLI Pulications, 1999.

Fontlab typographic tools. http://www.fontlab.com/index.php?option= com_content&
task=blogcategory&id=80&Itemid=39/.

Fontlab typographic tools. http://www.fontlab.com/index.php?option=com_content&
task=Dblogcategory&id=77&Itemid=104/.

Adobe postscript 3. http://www.adobe.com/products/postscript/, 2007.

144

[61]

73]

[74]

[75]

BIBLIOGRAPHY

Fontlab and opentype specifications: overview.

http://www.microsoft.com/typography /SpecificationsOverview.mspx, 2004.

R.D. Hersch. Character generation and grid constaints. In Proc. of SIGGRAPHS87, ACM
Computer Graphics, volume 21, pages 243-252, 1987.

P. Karow. Digital formats for typefaces. In URW Verlag, 1987.
P. Karow. Apple computer, truetypespec. In The TrueType font format specification, 1990.

R.D. Hersch and C. Betrisey. Model-based matching and hinting of fonts. In Proc. of
ACM Computer Graphics, volume 25(4), pages 71-80, 1991.

J. Herz and R.D. Hersch. Towards an universal auto-hinting system for typographic shapes.
In Electronic Publishing, volume 7(4), pages 251-260, 1994.

R.D. Hersch, C. Bétrisey, Justin Bur, and André Girtler. Perceptually tuned generation of
grayscale fonts. In IEEE Computer Graphics and Applications, volume 1, pages 537540,
1996.

Deep blue (chess computer). http://en.wikipedia.org/wiki/IBM_Deep_Blue.

Computers outperform humans at recognizing faces in recent tests.
http://www.technologyreview.com/Infotech /18796 /7a=f.

K. Chellapilla, K. Larson, P. Simard, and M. Czerwinski. @ Computers beat hu-
mans at single character recognition in reading based human interaction proofs (hips).

http://research.microsoft.com/displayArticle.aspx?id=1293.
D.H. Ballard and C.M. Brown. Computer Vision. Prentice Hall, 1982.

T.M. Ha and H. Bunke. Handwritten numeral recognition by perturbation method. In
Proc. of the Fourth Int. Workshop on Frontiers of Handwriting Recognition, volume 13,
pages 97-106, 1994.

A. Zramdini and R. Ingold. Optical font recognition using typographical features. In
IEEFE Transactions on Pattern Analysis and Machine Intelligence (PAMI), volume 2, No.
8, pages 877-882, 1998.

O. Pichler, A. Teuner, and B.J. Hosticka. A comparison of texture feature-extraction using
adaptive gabor filtering, pyramidal and tree-structured wavelet transforms. In Pattern

Recognition, volume 29, pages 733-742, 1996.

J.M.H. du Buf and P. Heitkemper. Texture features based on gabor phase. volume 23,
pages 227-244, 1991.

BIBLIOGRAPHY 145

[76]

[89]

[90]

B. Jahne. Practical Handbook on Image Processing for Scientific Applications. CRC Press,
1997.

R.C. Gonzalez and R.E. Woods. Digital image processing. Addison Wesley, 1992.

P.D. Picton. Hough transform references. In Int. Journal of Pattern Recognition and
Artificial Intelligence, volume 1, pages 413-425, 1987.

J. Nlingworth and J. Kittler. A survey of hough transform. In Computer Vision, Graphics
and Image Processing, volume 44, pages 87-116, 1988.

F. Zernike. Beugungstheorie des schneidenverfahrens und seiner verbesserten form, der
phasenkontrastmethode (diffraction theory of the cut procedure and its improved form,
the phase contrast method). In Physica, volume 1, pages 689-704, 1934.

H.Bunke and P. S P.Wang. Handbook of Character Recognition and Document Image
Analysis. World Scientific, 1997.

R.Schallkoff. Pattern recognition: statistical, structural and neural approaches. John Wis-
ley & Sons, 1992.

M. Basu, H. Bunke, and A. Del Bimbo. Guest editor’s introduction to the special section on
synctactic and structural pattern recognition. In IEEE Transactions an Pattern Analysis
and Machine Intelligence, volume 27, no.7, pages 1009-2005, 2005.

R.O. Duda and P.E. Hart. Pattern classification and scene analysis. John Wisley & Sons,
1973.

L. Rabiner and B.H. Juang. Fundamentals Of Speech Recognition. Prentice Hall, 1993.

C. M. Bishop. Pattern Recognition and Machine Learning. Springer Science+Business
Media LLC, 2006.

Hidden markov model from wikipedia, the free encyclopedia.
http://en.wikipedia.org/wiki/hidden_Markov_model.

R. Shinghal and G.T. Touissant. Experiments in text recognition with the modified viterbi
algorithm. In IEEE Transaction of Pattern Analysis and Machine Intelligence (PAMI),
volume 1, pages 184-192, 1979.

C.B. Bose and S.S. Kuo. Connected and degraded text recognition using hidden markov

models. In Journal of Pattern Recognition, volume 27, pages 1345-1363, 1994.

Z. Lu, I. Bazzi, A. Kornai, and J. Makhul. A robust, language-independent ocr system.
In Proc. 27th AIPR Workshop: Advances in Computer-Assisted Recognition SPIE, 1999.

146

[91]

[93]

[94]

[100]

BIBLIOGRAPHY

P. Velagapudi. Using hmms to boost accuracy in optical character recognition. In Proc. of
SPIE, 27th AIPR Workshop: Advances in Computer-Assisted Recognition, volume 3584,
pages 96-104, 1999.

J. Hu, M. Brown, and W. Turin. Hmm-based on-line handwriting recognition. In IEEFFE
Transactions on Pattern Analysis ans Machine Intelligence, volume 18, pages 10391045,
1996.

T. Starner, J. Makhul, R. Schwarz, and G. Chou. On-line cursive handwriting recogni-
tion using speech recognition methods. In Proc. of IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP07), volume v, pages 125-128, 2007.

J. Tokuno, N. Inami, S. Masuda, M. Nakai, H. Shimodaira, and S. Sagayama. Context-
dependent substroke model for hmm-based on-line handwriting recognition. In Proc.
of Eighth International Workshop on Frontiers in Handwriting Recognition (IWFHR02),
page 78, 2002.

A. Funada, D. Muramatsu, and T. Matsumoto. The reduction of memory and the im-
provement of recognition rate for hmm on-line handwriting recognition. In Proc. of Ninth
International Workshop on Frontiers in Handwriting Recognition (IWFHRU04), pages 383~
388, 2004.

E. J. Bellegarda, J. R. Bellagarda, D. Nahamoo, and K. Nathan. On-line cursive hand-
writing recognition using speech recognition methods. In Proc. of IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP95), volume 4, pages
2631 — 2634, 1995.

F. Biasdy, J. El-Sana, and N. Habash. Online arabic handwriting recognition using hidden
markov models. In Proc. of Tenth International Workshop on Frontiers in Handwriting
Recognition, 2006.

D. Okumura, S. Uchida, and H. Sakoe. An hmm implementation for on-line handwriting
recognition based on pen-coordinate feature and pen-direction feature. In Proc. of Eigth
International Conference on Document Analysis and Recognition (ICDARO0S5), volume 1,
pages 26-30, 2005.

J. P. Shin and H. Sakoe. Stroke correspondance search for stroke-order and stroke-number
free on-line character recognition — multilayer cube search —. In IECE Transactions, volume
J82-D-II, no.2, pages 69-81, 2004.

A. Kosmala, D. Willett, and G. Rigoll. Advanced state clustering for very large vocabulary
hmm-based on-line handwriting recognition. In Proc. of Fifth International Conference
on Document Analysis and Recognition (ICDAR99), pages 442-445, 1999.

BIBLIOGRAPHY 147

[101]

102]

[103]

[104]

[105]

[106]

107]

[108]

[109]

[110]

[111]

[112]

A. Humm, J. Hennebert, and R. Ingold. Hidden markov models for spoken signature ver-
ification. In proc. of IEEE Conference on Biometrics: Theory, Applications and Systems
(BTAS07), pages 1-6, 2007.

M. Mohamed and P. Ghader. Handwritten word recognition using segmentation-free hid-
den markov modeling and segmentation-based dynamic programming techniques. In IEEFE
Transcations on Pattern Analysis and Machine Intelligence, volume 18, pages 548-556,
1996.

M. Chen, A. Kundu, and J. Zhou. Offline handwritten word recognition using a hidden
markov model type stochastic network. In IEEE Transcations on Pattern Analysis and
Machine Intelligence, volume 16, pages 481-496, 1994.

A. Vinciarelli, S. Bengio, and H. Bunke. Offline recognition of unconstrained handwritten
texts using hmms and statistical language models. In Transcations of PAMI, IEEE, pages
709-720, 2003.

M. Zimmermann and H.Bunke. N-gram language models for offline handwritten text
recognition. In Proc. of 9th Int. Workshop on Frontiers in Handwriting Recognition
(IWFHRO0/4), pages 203-208, 2004.

U. V. Marti and H. Bunke. Using a statistical language model to improve the perfor-
mance of an hmm-based cursive handwriting recognition system. In Journal of Pattern

Recognition and Art. Intelligence, volume 15, pages 65-90, 2000.

A. Schlapbach and H. Bunke. Using hmm-based recognizers for writer identification
and verification. In Proc. of 9th Int. Workshop on Frontiers in Handwriting Recognition
(IWFHRO04), pages 167-172, 2004.

A. Schlapbach and H. Bunke. Off-line writer verification: a comparison of a hidden markov
model (hmm) and a gaussian mixture model (gmm) based system. In Proc. of 10th Int.
Workshop on Frontiers in Handwriting Recognition (IWFHRO06), pages 275280, 2006.

Java2 sel.4. http://java.sun.com/j2se/1.4.2/docs/api/java/awt/Image.html
/getScaledInstance.

Microsoft typography. http://www.microsoft.com/typography/default.mspx.

M. A. El-Yacoubi, M. Gilloux, and J. M. Bertille. A statistical approach for phrase location
and recognition within a text line: an application to street name recognition. In IEEE

Transactions on Pattern Analysis and Machine Intelligence, volume 24, No. 2, 2002.

S. A. Santoshkumar and V. Ramasubramanian. Automatic langauage identification using
ergodic hmm. In Proc. of ICASSPO05, pages 455-468, 2005.

148 BIBLIOGRAPHY

[113] Y. Miyazawa, J. I. Takami, S. Sagayama, and S. Matsunaga. An all-phoneme ergodic
hmm for unsupervised speaker verification. In Proc. of Int. Conf. on Acoustics, Speech
and Signal Processing (ICASSP94), pages 1-249 — 1-252, 1994.

[114] M. K. Hu. Visual pattern recognition by moment invariants. In IRE Trans. on Information
Theory, pages 179-187, 1962.

Curriculum Vite

Education

2003-2008: PhD Student at Department of Informatics, University of Fribourg, Switzer-
land

1989-1990: Master in Industrial Management at Institut of BWI, Federal Institute of
Technology Zurich (ETHZ), Switzerland

1983-1989: Master in Electrical Engineering, Spezialization: Telecommunications at
ETHZ, Switzerland

1979-1981: System Engineering at Melli University, Tehran, Iran

1972-1979: Physics-Mathematics gymnasium, Tehran, Iran

Professional Experiences

2000-2006: Lecturer in Telecommunications and Computer Science at Universities of

Applied Sciences, Switzerland

1999-2000: Key Account Manager for Telecommunication Networks at Commcare AG,

Zurich, Switzerland

1996-1999: Project Manager for internatinal customers at Swisscom AG, Zurich, Switzer-
land

1993-1996: Maternal leave and birth of Cyrus Einsele (1993) and Semira Einsele (1995)

1990-1993: Systems Engineer and Product Manager for EDI at IBM AG, Zurich, Switzer-
land

Languages
German: fluent
English: fluent

149

150 BIBLIOGRAPHY

French: intermediare

Persian: mother tongue

Research Interests

Image processing and document analysis
Camera-based document analysis
Digital typography

Information indexing and retrieval

Publications

- F. Einsele, R. Ingold, J. Hennebert, A Language-Independent, Open-Vocabulary System for
Recognition of Ultra Low Resolution Word Images. In Proc. of the 2008 ACM symposium
on Applied computing, pages 429-433, Fortaleza, Ceara, Brazil, 2008

- F. Einsele, R. Ingold, J. Hennebert, A HMM-based Approach to Recognize Ultra Low
Resolution Anti-Aliased Words. In Lecture Notes in Computer Science, volume 4815,
pages 511-518, Springer Berlin, Heidelberg,, 2007

- F. Einsele, R. Ingold, J. Hennebert, Recognition of Ultra Low Resolution Word Images
Using HMMs. In Advanced in Soft Computing, volume 45, pages 429-436, Springer Berlin,
Heidelberg, 2008

- F. Finsele, J. Hennebert, R. Ingold, Towards Identification of Very Low Resolution, Anti-
Aliased Characters. In proc. of IEEE International Symposium on Signal Processing and
its Applications (ISSPAQ7), Sharjah, United Arab Emirates, 2007

- F. Einsele, R. Ingold, A Study of the Variability of Very Low Resolution Characters and
the Feasibility of their Discrimination Using Geometrical Features In Proc. of 4th World
Enformatica Congress, International Conference on Pattern Recognition and Computer
Vision (WECO05), pages 213-217 Istanbul, Turkey, 2005

	Acknowledgements
	Abstract
	Zusammenfassung
	Contents
	List of Figures
	Figure 1.1: A magnified image of word "School" at ULR, anti-aliased with 9 point size
	Figure 2.1: Text detection and recognition
	Figure 2.2: Examples of web images; top: image in original size, bottom: magnified image
	Figure 2.3: Some examples of scene texts
	Figure 2.4: Example of video images containing superimposed text
	Figure 2.5: Website with complex layout
	Figure 2.6: Buttons containing text with different backgrounds
	Figure 2.7: Recognized text in different buttons
	Figure 2.8: Examples of limitations of the selected OCR to recognize ULR, anti-aliased words with small points sizes
	Figure 2.9: Recognition system Wachenfeld et al.
	Figure 3.1: An example of a text line written by serif font 'Georgia'
	Figure 3.2: An example of a text line written by sans serif font 'Verdana'
	Figure 3.3: Bitmap font in different font sizes
	Figure 3.4: An example of scalability of outline fonts: Character 'M' in different transformations and scales
	Figure 3.5: 'M' unhinted / hinted
	Figure 3.6: Character 'A' in bilevel and anti-aliased representation
	Figure 3.7: A perceptually tuned anti-aliased text
	Figure 3.8: A traditinally filtered anti-aliased text
	Figure 3.9: An enlarged screen-shot from Adobe Acrobat Reader
	Figure 3.10: (a) Font metrics for 'a' with positive RSB (b) Font metric for 'f ' with negative RSB
	Figure 3.11: An example of a proportional font 'Verdana' for word 'Wrapper'
	Figure 3.12: An example of a proportional font 'Courier' for word 'Wrapper'
	Figure 3.13: A text line containing ULR words in original size
	Figure 3.14: An enlarged version of a text line containing ULR words
	Figure 3.15: Segmentation problem by ULR Words
	Figure 3.16: Character 'o' in different grid alignments
	Figure 3.17: Characters 'w' and 'n' with separate bounding boxes
	Figure 3.18: Characters 'b' and 'r' with touching bounding boxes
	Figure 3.19: Characters 'w' and 'n' with merged bounding boxes
	Figure 3.20: Character 'w' at high resolution (left side) and ultra low resolution (right side)
	Figure 3.21: Example of binary images of word brown (45 pts) in different grid alignments
	Figure 3.22: Example of down-sampled images of word brown (9 pts) in different grid alignments
	Figure 4.1: An example of a HMM model
	Figure 4.2: A 4 ergodic HMM-topology
	Figure 4.3: A 4 state second order left-right HMM-topology
	Figure 4.4: A 4 state first order left-right HMM-topology
	Figure 4.5: A character topology based on minimum width constraint
	Figure 4.6: A character topology based on minimum and maximum width constraint
	Figure 4.7: (a) The recursion step of Viterbi (b) The backtracking step of Viterbi
	Figure 4.8: A two word dictionary left-right HMM
	Figure 4.9: Modified Viterbi for 2 best paths
	Figure 4.10: Sliding window technique for word 'school' at ultra low resolution and 9 point size
	Figure 5.1: Results of normal distribution test for extracted features of 52 character classes
	Figure 5.2: 15 samples of character 'a' downsampled with Photoshop
	Figure 5.3: 15 samples of character 'a' downsampled with Java
	Figure 5.4: Schematic view of the single character identification system
	Figure 5.5: Error table of character identification of different fonts
	Figure 5.6: Error rate in % for different font sizes
	Figure 5.7: Error table of character identification of different fonts without confusion between 'l'& 'i
	Figure 5.8: Error rate in % for different font sizes without confusion between 'l' & 'i'
	Figure 5.9: The ULR image of the word bank in point size 9
	Figure 5.10: The segmented characters of word bank in point size 9
	Figure 5.11: Three versions of 'a' contained in the training set of contextual characters
	Figure 5.12: Mono-font exp.: Number and percentage of errors of contextual characters for different fonts
	Figure 5.13: Mono-font exp.: Recognition rates of contextual characters for different fonts
	Figure 5.14: Example of misconfusion between i and l in two ULR-words
	Figure 5.15: Example of misrecognition when 'f' is the precedence letter
	Figure 5.16: Mono-font exp.: Number and percentage of errors of contextual characters after error correction for different fonts
	Figure 5.17: Segmentation of 'f ' in word 'fork'
	Figure 5.18: Mono-font exp.: Corrected recognition rates of contextual characters for different fonts
	Figure 5.19: Multi-font exp.: Number and percentage of errors of contextual characters using a sans serif classifier
	Figure 5.20: Multi-font exp.: Number and percentage of errors of contextual characters using a serif classifier
	Figure 6.1: Single word Recognizer
	Figure 6.2: Example of extracting inter-character from a single ULR-word
	Figure 6.3: Inter-character topology for small font sizes
	Figure 6.4: Inter-character topology for font sizes between 9-12 pts
	Figure 6.5: Example of simple left-right topology using 0/1 inter-characters
	Figure 6.6: Example of simple left-right topology using 1/2 inter-characters
	Figure 6.7: Example of minimal width topology using 0/1 inter-characters
	Figure 6.8: Example of sliding window with width = 2 pixels and shift= 1 pixel
	Figure 6.9: Block diagram of the dictionary-based word recognizer
	Figure 6.10: Word topology for training
	Figure 6.11: Optimization algorithm
	Figure 6.12: Estimation of optimal number of iterations for automatic HMM-training for Verdana, Plain, 9pts
	Figure 6.13: Confusion between 'aloi' and 'alot'
	Figure 6.14: Confusion between 'wenda' and 'wonda'
	Figure 6.15: Block diagram of open vocabulary word recognizer
	Figure 6.16: Word topology for training
	Figure 6.17: A character topology based on minimum width constraints
	Figure 6.18: Inter-character model
	Figure 6.19: Ergodic HMM with character model based on minimum width constraints
	Figure 6.20: Increasing recognition rates by increasing the number of Gaussian components
	Figure 6.21: Character model with min-max width constraint
	Figure 6.22: Ergodic HMM for character models with minimum and maximum constraints

	List of Tables
	Table 2.1: Overview of the works for extraction and recognition of text in web images
	Table 2.2: Overview of the works for extraction and recognition of text in natural scenes in video images
	Table 2.3: Overview of the works for extraction and recognition of superimposed text in video images
	Table 2.4: Overview of the works for extraction and recognition of text captured from digital cameras
	Table 5.3: Influence of rendering method; training set: Java, test set: Java
	Table 5.4: Influence of rendering method; training set: Photoshop, test set: Photoshop
	Table 5.5: Influence of rendering method; training set: Java, test set: Photoshop
	Table 5.6: Influence of rendering method; training set: Photoshop, test set: Java
	Table 5.7: Influence of rendering method; training set: Photoshop + Java, test set: Java
	Table 5.8: Influence of rendering method; training set: Photoshop + Java, test set: Photoshop
	Table 5.9: Multi-font exp.; Training set: all 6 fonts
	Table 5.10: Multi-font exp.; Training set: 3 sans serif fonts
	Table 5.11: Multi-font exp.; Training set: 3 serif fonts
	Table 5.12: Overall recognition rates of isolated charcters using the multi-font classifier
	Table 5.13: Mono-font exp.: Overall recognition rates of contextual characters for different font sizes
	Table 5.14: Mono-font exp.: Overall recognitin rates of contextual characters for different font sizes
	Table 5.15: Multi-font exp.: Recognition rates of contextual characters using a sans serif classifier for different font styles
	Table 5.16: Multi-font exp.: Recognition rates of contextual characters using a sans serif classifier for different font sizes
	Table 5.17: Multi-font exp.: Recognition rates of contextual characters using a serif classifier for different font styles
	Table 5.18: Multi-font exp.: Recognition rates of contextual characters using a serif classifier for different font sizes
	Table 6.1: WRR for font Verdana, plain, 9 points; training size: 750 words
	Table 6.2: Influence of the number of Gaussian components on WRR of a 3'000 word system for two fonts, plain, 9 points
	Table 6.3: WRR for different vocabulary size and HMM topologies and for two fonts: sans serif and (serif), plain, 9 points, 2 Gaussian components
	Table 6.4: Typical examples of mis-recognition for sans serif font, 12'000 test words
	Table 6.5: WRR(%) for open vocabulary recognizer with mininum width constraints
	Table 6.6: WRR (%) for open vocabulary recognizer with min-max width constraints
	Table 6.7: Error analysis for open vocabulary recognizer using min-max width constraints
	Table 6.8: WRR (%) for open vocabulary recognizer for a serif and a sans serif font with different font styles and sizes using min-max width constraints and balanced training set
	Table 6.9: WRR (%) for open vocabulary recognizer with min-max width constraints using the balanced training set for different fonts
	Table 6.10: WRR (%) of open vocbulary system as a sans serif recognizer with min-max width constraints using the balanced training set
	Table 6.11: WRR (%) of open vocbulary system as a serif recognizer with min-max width constraints using the balanced training set
	Table 6.12: Dictionary based word recognizer vs. open vocabulary word recognizer

	Chapter 1: Introduction
	1.1 OCR overview
	1.1.1 Data acquisition
	1.1.2 Applications
	1.1.3 Technologies

	1.2 Context
	1.3 Contribution
	1.4 Thesis Outline

	Chapter 2: State of the art
	2.1 Text detection and recognition in web images
	2.2 Text detection and recognition in video images
	2.2.1 Scene text
	2.2.2 Superimposed text

	2.3 Text detection and recognition in images captured from digital cameras
	2.4 Screen-shot images
	2.4.1 Recognition of screen-shot images with commercial OCRs
	2.4.2 Works in detection and recognition of screen-shot images

	2.5 Thesis motivation

	Chapter 3: Low resolution text rendering
	3.1 Digital typography
	3.2 Font design
	3.2.1 Bitmap fonts
	3.2.2 Outline fonts
	3.2.3 Font metrics
	3.2.4 Character spacing

	3.3 Specificities of ULR text
	3.3.1 Segmentation of words in an ULR sentence
	3.3.2 Segmentation of characters in an ULR word
	3.3.3 Variability due to Grid alignment
	3.3.4 Adjacent characters

	3.4 A simulation method to gain ULR database
	3.4.1 ULR characters
	3.4.2 ULR words

	Chapter 4: Algorithmic fundamentals
	4.1 Feature extraction
	4.2 Classification methods
	4.2.1 Fundamentals of Bayesian decision theory

	4.3 Fundamentals of hidden Markov models
	4.3.1 Elements of hidden Markov models
	4.3.2 Topologies
	4.3.3 Gaussian mixture models to model emission probability
	4.3.4 Expectation maximization(EM) for estimation of GMMs
	4.3.5 The evaluation problem of the HMMs
	4.3.6 Viterbi algorithm: How to find the 'correct' state sequence?
	4.3.7 N-best decoder: modified Viterbi algorithm
	4.3.8 Pruning
	4.3.9 Training with HMMs

	4.4 OCR systems using HMMs
	4.5 Cursive handwriting recognition using HMMs
	4.5.1 On-line handwriting
	4.5.2 Off-line handwriting

	Chapter 5: Study of ULR single characters
	5.1 Feature extraction
	5.1.1 Selected features
	5.1.2 Verification of marginal features' normal distribution: x2 test

	5.2 System description
	5.3 Experiments on single isolated characters
	5.3.1 Introduction
	5.3.2 General study
	5.3.3 Influence of rendering method
	5.3.4 Multi-font experiment
	5.3.5 Conclusion

	5.4 Experiments on contextual characters
	5.4.1 A method to obtain contextual characters
	5.4.2 Mono-font experiment
	5.4.3 Multi-font experiment
	5.4.4 Conclusion

	5.5 Discussion and further conclusions

	Chapter 6: Recognition of ULR single words using HMMs
	6.1 Introduction
	6.2 Fundamental experiments
	6.2.1 System description
	6.2.2 Evaluation tests
	6.2.3 Conclusion

	6.3 Experiments on a large dictionary
	6.3.1 System description
	6.3.2 Evaluation tests
	6.3.3 Error analysis
	6.3.4 Conclusion

	6.4 Experiments on an open-vocabulary recognizer
	6.4.1 System description
	6.4.2 Experimental results
	6.4.3 Conclusion

	6.5 Conclusions

	Chapter 7: Conclusions and future works
	7.1 Study of single characters
	7.2 Recognition of single words
	7.3 Future perspectives

	Bibliography
	Curriculum Vite

