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THE EQUATION xpyq = zr

AND GROUPS THAT ACT FREELY ON Λ-TREES

N. BRADY, L. CIOBANU, A. MARTINO, AND S. O ROURKE

Abstract. Let G be a group that acts freely on a Λ-tree, where Λ is an ordered
abelian group, and let x, y, z be elements in G. We show that if xpyq = zr

with integers p, q, r ≥ 4, then x, y and z commute. As a result, the one-relator
groups with xpyq = zr as relator, are examples of hyperbolic and CAT(−1)
groups which do not act freely on any Λ-tree.

1. Introduction

There has recently been a great deal of interest in tree-free groups, that is, groups
which act freely and without inversions by isometries on some Λ-tree. The principal
source of this interest has been related to the solution of the Tarski problem, where
limit groups, one of the main objects of study, have been shown to act freely on
Z

n-trees for some n. Groups that act freely on Λ-trees (so-called Λ-free groups)
generalise free groups in the sense that Z-free groups are precisely free groups.
Moreover, for general Λ, these groups satisfy properties reminiscent of free groups.
For example, they are torsion-free, closed under free products, and commutativity
is a transitive relation on non-identity elements. In addition, all known examples
of finitely generated Λ-free groups that contain no copy of Z × Z are hyperbolic.

The purpose of this article is to generalise a classical theorem in free groups to
the broad class of tree-free groups. The result of Lyndon and Schützenberger ([14])
states that any elements x, y, and z of F , a free group, that satisfy the relation
xpyq = zr for p, q, r ≥ 2 commute. (See also [13], [4], [19], [18], [7].) Therefore all
solutions to this equation are contained in a cyclic subgroup of F . Here we show,

Theorem 3.2. Let G be a group that acts freely, and without inversions, by isome-
tries on a Λ-tree, where Λ is an ordered abelian group, and let x, y, z be elements
in G. If xpyq = zr with p, q, r ≥ 4, then x, y and z commute.

While the argument of Lyndon and Schützenberger relies on combinatorics of
words in the free group, our argument relies on the information provided by the
action via isometries of the group on the Λ-tree.

A Λ-metric space can be defined in the same way as a conventional metric space
with R replaced by Λ. A Λ-tree can be characterised as a geodesically convex
Λ-metric space (X, d) which is 0-hyperbolic and which satisfies d(x, v) + d(y, v) −
d(x, y) ∈ 2Λ for all x, y, v ∈ X (see [5]). When the group Λ is Archimedean the
free actions on Λ-trees are well understood. In particular, the finitely generated
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groups that act freely on R-trees have been completely classified by Rips. They
are the groups that can be written as a free product G1 � G2 � · · · � Gn for some
integer n ≥ 1, where each Gi is either a finitely generated free abelian group
or a non-exceptional surface group. In the non-Archimedean case, Martino and
O Rourke (see [16]) have provided examples of Z

n-free groups. Also, it is known
that among the groups that act freely on R

n-trees are the fully residually free
groups, or limit groups ([12], [20], [10]). The fact that limit groups are exactly the
groups with the same universal theory as free groups (see [17]) immediately implies
that solutions of xpyq = zr commute in limit groups. We show that in addition to
limit groups, the commutativity of solutions to xpyq = zr holds in all the groups
that act freely on Λ-trees, with some restriction on the exponents.

We would like to point out one intriguing difference in the behaviour of the
equation x2y2 = z2 in free groups versus groups that act freely on Λ-trees. In
free groups, if we have elements x, y and z such that x2y2 = z2, then x, y and
z commute, while for general Λ-free groups this is not true, since the exceptional
surface group 〈x, y, z, | x2y2z2 = 1〉 acts freely on a Z

2-tree ([8]). By the Base-
Change Functor Theorem (see Section 2) it follows that this group acts freely on
any non-Archimedean tree.

One interesting question to ask is where the arguments for free groups and tree-
free groups must diverge when considering equations. In fact, most of our techniques
work in the various cases we consider for all equations of the type xpyq = zr, with
p, q, r ≥ 2. The real difference seems to be that in free groups for the cases of small
exponents one has to use inductive arguments on length which cannot work for a
general Λ-tree, since there are generally infinitely many lengths less than any given
one. For example, if p = q = r = 3, we can successfully employ the same techniques
we used for larger values of p, q and r. However, we encountered difficulties in part
(3) of our proof, when the intersection ∆ of the axes Ax and Ay has exactly the
same length as the shortest of the translations, yq.

Nevertheless, one immediate consequence of our result is that one can construct
many groups which cannot act freely on any Λ-tree. In particular, if we look at the
one-relator groups, defined as follows,

Gpqr = 〈x, y, z |xpyq = zr〉,

we get a family of groups which do not act freely on any Λ-tree, for p, q, r ≥ 4.
Moreover, these groups are all small-cancellation groups; they are C(6) − T (4) for
all p, q, r ≥ 2, and so are word hyperbolic (see [9]). Therefore we obtain

Corollary 1.1. The groups Gpqr form a family of word hyperbolic groups which
cannot act freely, and without inversions, by isometries on any Λ-tree.

We note that Chiswell ([6]) has produced a family of word hyperbolic groups
with no non-trivial action on a Λ-tree; any such action by one of these groups
has a global fixed point. In the same spirit, any group which satisfies Kazdan’s
property T has no non-trivial action on a Λ-tree, and so one would expect that
generic hyperbolic groups will not be tree-free. However, the groups Gpqr do not
have property T because their abelianisation is infinite, which implies that they act
non-trivially on an R-tree.

Note that by contrast the groups

〈x1, x2, . . . , xn |xα1
1 xα2

2 · · ·xαn
n = 1〉
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are expressible as amalgamated free products of free groups over maximal cyclic
subgroups for n ≥ 4 provided at least four αi are non-zero. It follows that these
groups are Z

2-free (see [1], [16]). In fact, these groups are fully residually free
groups ([2], [3]).

In the final section of the paper we show that these groups Gpqr have CAT(−1)
structures. This question arises naturally since, intuitively, a result true for tree-
like structures often has a weaker analogue for hyperbolic structures. Our aim,
initially, was to try to provide examples of word hyperbolic groups which do not
have CAT(−1) structures, using the sorts of length arguments we employ for the
case of Λ-trees. While this naive approach doesn’t seem to work, there is still some
hope that the arguments may provide some restrictions to the possible CAT(−1)
structures, in particular translation lengths. The aim would then be to construct
multiple HNN-extensions from the groups Gpqr which are word hyperbolic via the
Bestvina and Feighn Combination Theorem, on the one hand, and which violate
the translation length restrictions for CAT(−1) structures, on the other hand.

2. Background

A complete account of Λ-trees is given in [5]. Here we recall the basic relevant
definitions and results. An ordered abelian group is an abelian group Λ, together
with a total ordering ≤ on Λ, compatible with addition. For a ≤ b, we define
[a, b]Λ = {x ∈ Λ | a ≤ x ≤ b}. A Λ-metric space (X, d) can be defined in the same
way as a conventional metric space. That is, d : X ×X → Λ is symmetric, satisfies
the triangle inequality and satisfies d(x, y) = 0 if and only if x = y. A segment in
X is the image of an isometry α : [a, b]Λ → X for some a, b in Λ, with α(a), α(b)
the endpoints of the segment. A Λ-metric space is geodesic if for all x and y in X
there is a segment [x, y] with endpoints x and y.

Definition 2.1. A Λ-tree is a geodesic Λ-metric space (X, d) such that:
(a) if two segments of (X, d) intersect in a single point, which is an endpoint

of both, then their union is a segment;
(b) the intersection of two segments with a common endpoint is also a segment.

It follows that there is a unique segment having x and y as endpoints. We
denote this segment by [x, y]. From now on, X shall denote a Λ-tree. We note that
a subtree of X is a subset A ⊆ X such that x, y ∈ A implies [x, y] ⊆ A.

Isometries of Λ-trees are classified, just as those of ordinary trees, and come in
three distinct types: inversions, elliptic and hyperbolic isometries. Elliptic isome-
tries are those which fix some point in the tree, inversions are those which do not fix
a point but whose square does and hyperbolic isometries are the remaining ones. It
is usually convenient (and no loss of generality, see 2.4) to assume that all isometries
are either elliptic or hyperbolic, as we shall now do.

For every isometry, g, of X, there is a well-defined translation length,

‖g‖ = min {d(x, gx) | x ∈ X}.

It can be shown that this minimum is always realised, so that it is equal to zero for
elliptic elements and is strictly positive for hyperbolic ones. One then defines Ag,
the characteristic set or axis of g, as

Ag = {x ∈ X | d(x, gx) = ‖g‖}.
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For an elliptic element this is simply the fixed subtree, and for a hyperbolic element
it is the maximal invariant linear subtree of X on which the isometry acts by
translation. For an isometry, g, of X the characteristic set is also equal to

Ag = {p ∈ X | [g−1p, p] ∩ [p, gp] = {p}}.
It is an easy exercise to verify the following.

Lemma 2.2. If g is a hyperbolic isometry and n is a non-zero integer, then ‖gn‖ =
|n|‖g‖ and Ag = Agn .

To better visualise axes of translation in Λ-trees, especially for hyperbolic ele-
ments, we provide Figure 1. We remark that if [p, x]∩Ag = {x}, then p, x, gx and
gp are collinear in this order.

Figure 1. Axis of translation Ag

In a Λ-tree, X, every triple of points, p1, p2, p3 has a Y -point, Y (p1, p2, p3), which
uniquely lies on all segments [pi, pj ], for i 
= j. The characteristic set of an isometry
g is also equal to {Y (g−1p, p, gp) | p ∈ X}.

If g and h are hyperbolic isometries of X such that Ag ∩ Ah 
= ∅, and g and
h translate in the same direction along Ag ∩ Ah, then we say that g and h meet
coherently. If Ag ∩ Ah 
= ∅ and g and h translate in different directions along
Ag ∩ Ah, then g and h meet incoherently.

Now let G be a group that acts on X via isometries. In this paper we consider
only free actions, that is, actions without inversions in which no non-trivial element
of G fixes a point in the tree. Thus all non-trivial isometries are hyperbolic.

One of the characteristics of free actions on Λ-trees is that for gh 
= hg we have
that Ag ∩ Ah is a segment of length not exceeding ‖g‖ + ‖h‖, since otherwise the
commutator of g and h would be an elliptic element, contradicting the freeness
of the action. We state this formally, because of its importance, even though it
amounts to a fairly trivial observation.

Lemma 2.3 ([5, Remark, page 111]). Let G be a group acting freely without in-
versions on a Λ-tree, and let g, h ∈ G. Then if g and h do not commute, Ag ∩ Ah

cannot contain a segment of length greater than or equal to ‖g‖+ ‖h‖. Conversely,
if g and h commute, they share an axis and hence Ag ∩ Ah will contain a segment
of length greater than or equal to ‖g‖ + ‖h‖.

One property of Λ-free groups that we will use in this paper is that of commuta-
tive-transitivity of non-identity elements, which is equivalent to saying that cen-
tralisers of non-identity elements are abelian and follows from the fact that two
non-identity elements commute if and only if they have the same axis. Therefore,
if F is a non-abelian free group, F × Z is not tree-free. However, letting T denote
the Cayley graph of F , F ×Z acts on the contractible space T ×R, which fails to be
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an R-tree under the natural sum metric since property (a) of Definition 2.1 is not
satisfied. However, we note that it is possible to make T ×R into an R-tree (with a
finer topology) analogous to the two-sided comb metric on R

2; in this metric, F ×Z

no longer acts isometrically.
Another useful fact about actions on Λ-trees is the device that relates actions on

Λ1-trees to actions on Λ2-trees, as in the following theorem.

Theorem 2.4 ([15], [5], Corollary 2.4.9, page 76 (Base-Change Functor)). Let
h : Λ1 → Λ2 be an order preserving homomorphism between ordered abelian groups
and let G be a group acting by isometries on a Λ1-tree, (X1, d1). Then there is a
Λ2-tree, (X2, d2) on which G acts by isometries and a mapping φ : X1 → X2 such
that

(i) d2(φ(x), φ(y)) = h(d1(x, y)), for all x, y ∈ X1,
(ii) φ(gx) = gφ(x) for all g ∈ G and x ∈ X1,
(iii) ‖g‖X2 = h(‖g‖X1) for all g ∈ G.

For the X2 constructed in the proof of Theorem 2.4 we have that if the action
of G on X1 is free and h is injective, then the action of G on X2 is also free. In
particular we can construct the barycentric subdivision X ′ of X1 by taking the
endomorphism h to be λ → 2λ; the resulting action is then without inversions.

Note also that since Z
n embeds in R

n every free action on a Z
n-tree gives rise

to a free action on an R
n-tree.

3. The main theorem

The proof of our main theorem will be a length-based argument relying on the
analysis of the various configurations of axes. Formally we shall argue by contradic-
tion by assuming xpyq = zr in a tree-free group, for x, y, z which do not commute.
By commutative-transitivity, this is equivalent to the assumption that no two of x,
y, z commute, which is expressed in the proof via Lemma 2.3.

The proof itself is elementary from the point of view of Λ-tree theory, though the
justification of the figures we provide would be rather technical from first principles.
However, we should stress that the technical proofs we refer to are largely formal
demonstrations that one’s geometric intuition works perfectly well in the context
of Λ-trees. The following lemma provides a useful tool for determining the position
of axes, which is a crucial part of our proof.

Lemma 3.1. Let u, v be distinct points in a Λ-tree, X, and g a hyperbolic isometry
of X. Then if u, v, ug, vg are collinear in the order given, all the points u, v, ug, vg
must lie on the axis of g.

Informally, one chooses a point u which one wants to show is on the axis of g,
and a point v, ‘close’ to u in the positive g direction, and checks collinearity of the
images in the given order.

We shall now present three lemmas which describe the axis of a product of
two elements, depending on how the original axes intersect. These are all standard
results which we recall here so as to more easily refer to them in our main argument.
The detailed proofs of each of these lemmas may be found in [6]; however we also
provide more informal justifications based on Lemma 3.1.

Lemma 3.2 (Lemmas 3.2.2 and 3.3.1, [5]). Let g and h be hyperbolic isometries
of a Λ-tree (X, d).
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• If Ag ∩ Ah = ∅, then ||gh|| = ||g|| + ||h|| + 2d(Ag, Ah). (See Figure 2.)

Figure 2. Disjoint axes

• If Ag and Ah meet coherently, then ||gh|| = ||g|| + ||h||. (See Figure 3 for
a possible configuration of points.)

Figure 3. Coherent axes

Proof. To prove the first statement, we shall simply justify Figure 2 and appeal to
Lemma 3.1, since it is clear that d(h−1g−1u, u) = ||g|| + ||h|| + 2d(u, v).

The segment [u, v] meets the Ag only at v; therefore [g−1u, g−1v] is a seg-
ment that meets the Ag only at g−1v. Hence g−1u, g−1v, u are collinear, and
[g−1u, u] meets the Ah only at u. So h−1g−1u, h−1g−1v and h−1u are collinear and
[h−1g−1u, h−1u] meets Ah only at h−1u. One then applies Lemma 3.1 to the points
h−1g−1u, h−1g−1v, u, v to deduce that h−1g−1u is on the axis of gh.

The second part of the lemma is justified similarly. If ∆ ≥ ||g|| + ||h||, then
Ag = Ah and the stated equality is clear. Otherwise Ag ∩ Ah is a segment [u, v]
where u ∈ [g−1u, v] ([5]); that is, v lies in the positive Ag direction from u. Then
[g−1u, u] meets Ah only at u, and [h−1g−1u, h−1u] meets Ah only at h−1u. Since
gu is in the positive Ag direction from u, we can apply Lemma 3.1 to the points
h−1g−1u, h−1u, u, gu to show that h−1g−1u is on the axis of gh. The only possible
ambiguity is whether gu is on the left or right of v, but this makes no difference to
the argument. �
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Lemma 3.3 ([5, Lemma 3.3.3]). Let g and h be hyperbolic isometries of a Λ-tree
(X, d) which meet incoherently, and let ∆(g, h) be the intersection of Ag and Ah.
If |∆(g, h)| < ||h|| ≤ ||g||, then

• gh meets g, h coherently,
• ||gh|| = ||g||+||h||−2|∆(g, h)|, and the configuration can be seen in Figure 4.

Figure 4. Incoherent axes - small intersection

Proof. We identify four ordered collinear points that will allow us to use Lemma
3.1. The positions of the points h−1u and gu can be immediately deduced. We
only need to show that v, gu and ghv are collinear and occur in this order. It is
clear that hv is in the positive direction of Ah from u. Since the segment [u, hv]
meets Ag only at u, [gu, ghv] meets Ag only at gu, and we are done. �

Lemma 3.4 ([5, Lemma 3.3.4]). Let g and h be hyperbolic isometries of a Λ-tree
(X, d) which meet incoherently, and let ∆(g, h) be the intersection of Ag and Ah.
If ||h|| < |∆(g, h)| ≤ ||g||, then

• gh meets g, h−1 coherently,
• ||gh|| = ||g|| − ||h||, and the configuration can be seen in Figure 5.

Figure 5. Incoherent axes - large intersection
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Proof. One can easily establish that the points [h−1u, v, gu, ghv] are collinear and
then apply Lemma 3.1. Arguments similar to those given in Lemma 3.3 can then
be used to show that Agh ∩ Ah = [h−1u, v] and Agh ∩ Ag = [v, ghv]. �
Lemma 3.5 ([5, Lemma 3.3.5]). Let g, h and gh be hyperbolic isometries of a Λ-
tree (X, d) such that g and h meet incoherently, and let ∆(g, h) be the intersection
of Ag and Ah. If ∆ = |∆(g, h)| = ||h|| < ||g|| and w = Y (h−1g−1v, v, ghv), then

• gh meets g coherently. Agh ∩ Ag = [w, ghw].
• Agh ∩ Ah is either empty or a single point. The latter case occurs if and

only if w = v, which implies {w} = Agh ∩ Ah.
• ||gh|| = ||g||−||h||−2d(v, w), and the configuration can be seen in Figure 6.

Figure 6. Incoherent axes - exact intersection

Proof. Since the axis of gh is equal to {Y (h−1g−1p, p, ghp) : p ∈ X}, it is immediate
that w ∈ Agh. It is clear that ghv = gu is on Ag, in the positive Ag direction from
v. Next note that [g−1v, u] is a segment of length ‖g‖ − ∆ which meets Ah only
in the point u. Therefore, [h−1g−1v, v] is a segment of the same length which only
meets Ah in the point v. Hence, if h−1g−1v were to lie on Ag, it would have to
be in the positive Ag direction from v and by comparing lengths it would have to
be equal to ghv = gu, contradicting the fact that gh is hyperbolic. Thus h−1g−1v
does not lie on Ag.

Now observe that w is on the axis of g, since Y (h−1g−1v, v, ghv) ∈ [v, ghv] =
[v, gu] ⊆ Ag; also note that ghw = Y (v, ghv, (gh)2v) ∈ [v, ghv] ⊆ Ag. Thus
[v, ghv] = [v, w] ∪ [w, ghv] and we shall prove that ghw ∈ [w, ghv]. We shall
therefore argue by contradiction and assume that ghw ∈ [v, w]. Since ghv, ghw ∈
Ag this would imply that (gh)2w ∈ Ag. Moreover, as w ∈ [v, ghv], ghv must be in
the positive Ag direction from w. Clearly, (gh)2w ∈ [ghv, ghw] and so by comparing
lengths, (gh)2w = w, which contradicts the assumption that gh is hyperbolic.
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To completely justify the picture the reader should also satisfy themselves that
the segment [w, v] can only meet Agh at w. This is because we already know that
Agh contains h−1g−1w, w, ghw and that it is a linear set. However, the only point
on [w, v] which can be collinear with all of h−1g−1w, w and ghw (in some order)
is w itself. Similarly, [ghw, ghv] ∩ Agh = {ghw} and [h−1g−1v, h−1g−1w] ∩ Agh =
{h−1g−1w}. Thus Ag ∩ Agh = [w, ghw].

Now one can easily compute ||gh|| = d(hw, ghw) − 2d(v, w) − |∆(g, h)| = ||g|| −
||h|| − 2d(v, w), using the fact that w is on the axis of gh. �

We now proceed with the proof of the main theorem.

Theorem 3.6. Let G be a group that acts freely, and without inversions, by isome-
tries on a Λ-tree, where Λ is an ordered abelian group, and let x, y, z be elements
in G. If xpyq = zr with p, q, r ≥ 4, then x, y and z commute.

Proof. Let us assume that x, y and z do not commute and let Ax, Ay and Az be
the axes of translation of x, y and z, respectively. By Lemma 2.2, we know that
Ax = Axn and ‖xn‖ = |n|‖x‖ (the same is clearly true for y and z) for every non-
zero integer n. We can assume without loss of generality that p, q, r are positive
and

(1) r‖z‖ ≤ q‖y‖ ≤ p‖x‖.
If Ax ∩ Ay = ∅, then by Lemma 3.2,

r‖z‖ = ‖zr‖ = ‖xpyq‖ > ‖xp‖ + ‖yq‖ = p‖x‖ + q‖y‖,
which contradicts assumption (1).

Now let us assume that Ax ∩Ay 
= ∅. Let ∆(x, y) be the intersection of the two
axes, and let ∆ = |∆(x, y)| ∈ Λ be the length of this segment. Since we assume
that x and y do not commute and the action is free, by Lemma 2.2,

(2) ∆ < ‖x‖ + ‖y‖.
If Ax and Ay meet coherently, then by Lemma 3.2,

r‖z‖ = ‖zr‖ = ‖xpyq‖ = ‖xp‖ + ‖yq‖ = p‖x‖ + q‖y‖,
which also contradicts assumption (1).

Now let us assume that Ax and Ay meet incoherently. Let ∆(x, z) and ∆(y, z)
be the intersection of Ax and Az, and Ay and Az, respectively. Then we have three
cases to consider, depending on the length of ∆ relative to ‖yq‖.

(1) Let us first assume that the intersection of Ax and Ay is relatively small:

(3) ∆ < ‖yq‖.
Then by Lemma 3.3, setting g = xp and h = yq, Az meets both Ax and Ay

coherently, and we have the configuration as in Figure 7.
Since ‖zr‖ ≤ ‖yq‖ and ‖zr‖ = ‖xp‖ + ‖yq‖ − 2∆ we have

(4) ∆ ≥ ‖xp‖
2

.

Inequalities (2) and (4) give (p− 2)‖x‖ < 2‖y‖ and by using the assumption (1) we
also get (q − 2)‖y‖ < 2‖x‖.

By putting these inequalities together we get that, if p ≥ 4,

(5) (q − 2)‖y‖ < 2‖x‖ ≤ (p − 2)‖x‖ < 2‖y‖.
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Figure 7. Incoherent axes - small intersection

This implies q < 4, which is not in our range, and so this configuration cannot
happen.

(2) Let us now assume that

(6) ∆ > ‖yq‖,
as in Figure 8.

Figure 8. Incoherent axes - large intersection

Note that if ∆ > ‖xp‖, then ∆ > max{‖xp‖, ‖yq‖} ≥ max{2‖x‖, 2‖y‖} ≥ ‖x‖ +
‖y‖, contradicting our assumption (2). Therefore, ‖yq‖ < ∆ ≤ ‖xp‖.

This is exactly the situation of Lemma 3.4, so if we set g = xp, h = yq, then
Az = Agh meets Ax coherently and Ay incoherently, and

(7) ‖zr‖ = ‖xp‖ − ‖yq‖.
Since x, y and z do not commute,

(8) ‖x‖ + ‖z‖ > |∆(x, z)| = ‖zr‖ =⇒ ‖x‖ > (r − 1)‖z‖
and (2) together with (6) give

(9) ‖x‖ > (q − 1)‖y‖.
Since p ≥ 4 we have

‖xp‖ = ‖xp−4‖ + ‖x2‖ + ‖x2‖ > ‖xp−4‖ + q‖y‖ + r‖z‖
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as q ≥ 3 and r ≥ 3 imply 2‖x‖ > q‖y‖ and 2‖x‖ > r‖z‖ by (8) and (9). This
contradicts (7).

(3) The last case to consider is ∆ = ‖yq‖. Note that in this case, ∆ < ‖xp‖
by (1), since otherwise y−qxp would be elliptic. Therefore, we are in the situation
described in Lemma 3.5, setting g = xp and h = yq. (See Figure 9.)

Figure 9. Incoherent axes - exact intersection

By (2) the above equality gives (q−1)‖y‖ < ‖x‖, which implies ∆ = ‖yq‖ < 2‖x‖
since q > 2. Using the notation from Lemma 3.5, let w be Y (y−qx−pv, v, xpyqv),
and let l = d(v, w). From Lemma 3.5, [w, xpyqw] is the intersection of Ax and Az

and

(10) |∆(x, z)| = ‖zr‖ = ‖xp‖ − ‖yq‖ − 2l.

We will show that

(11) ‖x‖ < ∆ < 2‖x‖ − 2l.

Suppose that the second inequality does not hold. Then, passing to the barycen-
tric subdivision if necessary, there exist points t ∈ [v, w] and t′ ∈ [yqw, u] such
that d(t, t′) = 2‖x‖ and t′ = yqt (see Theorem 2.4). This implies x2yqt = t and
so x2yq is an elliptic element, a situation possible only if yq = x−2. However, by
commutative-transitivity this implies that x and y commute, which contradicts our
initial assumption.

Now let us assume the first inequality of (11) does not hold, that is, ∆ ≤ ‖x‖.
If ∆ + 2l ≥ ‖x‖, then we can repeat the previous argument to show that xyq is an
elliptic element, which implies that x and y commute, and we obtain a contradiction.
So ∆ + 2l < ‖x‖. Since x and z do not commute, we have |∆(x, z)| < ‖x‖ + ‖z‖,
which implies ‖zr‖ < ‖x‖+‖z‖. But ∆+2l < ‖x‖ and (10) imply ‖z‖ > (p−2)‖x‖,
which is false by (1). This concludes the proof of (11).

It follows from (10) and (11) that ‖zr‖ > (p − 2)‖x‖. Since we assume that
x and z do not commute we get |∆(x, z)| = ‖zr‖ < ‖x‖ + ‖z‖, so in conclusion
(p − 3)‖x‖ < ‖z‖, which contradicts (1) if p, q ≥ 4. �
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4. CAT(−1) structures

In this section we show that the groups

Gpqr = 〈x, y, z |xpyq = zr 〉
are all CAT(−1). As mentioned in the introduction, the original motivation for
studying these CAT(−1) structures, was to see if certain multiple HNN extensions
(described in Remark 4.2 below) of Gpqr gave examples of hyperbolic groups which
are not CAT(−1). We do not know whether or not these HNN groups are CAT(−1).
However they should admit high-dimensional CAT(0) structures by the techniques
of Hsu and Wise ([11]).

Proposition 4.1. Let p, q, r ≥ 2 be integers. The groups

Gpqr = 〈x, y, z |xpyq = zr 〉
admit CAT(−1) structures corresponding to each isometry class of triangles in the
hyperbolic plane.

Proof. In order to see that the groups Gpqr are all CAT(−1), fix an arbitrary
triangle in the hyperbolic plane with positive angles α, β and γ. Subdivide the side
opposite the angle α (respectively β, γ) into p (respectively q, r) subsegments of
equal length, and label the subsegments by x (respectively y, z−1) as shown on the
left side of Figure 10.

The quotient space of this triangle obtained by isometrically identifying all the
x-edges (respectively y-edges, z-edges) is a cell complex, with one vertex, three
1-cells (labelled x, y and z respectively) and a single 2-cell corresponding to the
triangle. This cell complex is a presentation 2-complex for the group Gpqr. It is a
piecewise hyperbolic 2-complex.

Figure 10. 2-cell of Gpqr presentation 2-complex and vertex link

The link of the single vertex is the metric graph shown on the right side of
Figure 10. There are p − 1 edges from x+ to x−, q − 1 edges from y+ to y−, and
r − 1 edges from z+ to z−, all of length π. The remaining three edges have lengths
α, β and γ as indicated in the figure. There are no non-trivial loops in the link of
length less than 2π. Thus the link is a CAT(1) metric graph, and the 2-complex is
a locally CAT(−1) presentation complex for Gpqr. �

Remark 4.1. There are 3-dimensional CAT(−1) structures for Gpqr too. One way to
see this is to note that Gpqr is the fundamental group of the 2-complex obtained from
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a “thrice punctured sphere” (compact, orientable surface with three circle boundary
components and with Euler characteristic −2) by wrapping one boundary circle p
times around a target circle, wrapping another boundary circle q times around
a second target circle, and wrapping the third boundary circle r times around a
third target circle. This thickens up to give a compact, hyperbolic 3-manifold with
boundary an orientable surface of genus 2.

Extracting the combinatorial information from the previous description, we can
see that the Gpqr are the fundamental groups of graphs of groups with underlying
graph a tripod, edge groups all infinite cyclic, valence 1 vertex groups all infinite
cyclic, and valence 3 vertex group being free of rank 2. The inclusions from the
edge groups to the valence 3 vertex group map to generators a, b and their product
ab. The inclusion maps from the edge groups to the valence 1 vertex groups are
just multiplication by p, q and r.

Remark 4.2. It is easy to produce hyperbolic groups from the Gpqr via multiple
HNN extensions over infinite cyclic subgroups. For instance, one can add a stable
letter which conjugates one generator to another, add another stable letter which
conjugates a generator to a commutator of two generators, and so on. One uses the
Bestvina-Feighn combination theorem after each HNN extension to ensure that the
resulting groups are hyperbolic. The group Gpqr is a subgroup of these multiple
HNN groups. Therefore, if these HNN groups are CAT(−1), one gets an action of
Gpqr by semi-simple isometries on a CAT(−1) space with various restrictions on
translation lengths.

The graph of free groups over infinite cyclic edge groups viewpoint of the Gpqr

in Remark 4.1 leads to a large class of CAT(0) structures. The Sageev construction
techniques being developed by Hsu and Wise will give lots of new CAT(0) cubical
structures for the Gpqr. Their techniques should also apply to give CAT(0) cubical
structures for the hyperbolic multiple HNN extensions of the Gpqr. But these
appear to be very far from CAT(−1) structures.
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