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Abstract: A new program called pyVib has been developed as a tool for the analysis of Gaussian (Gaussian 03, Gaussian
Inc., Pittsburgh, PA) outputs of vibrational absorption (IR), Raman as well as vibrational optical activity (VOA) spectra
calculations. This program has been designed to help the computational chemistry practitioner in the task of analyzing
and visualizing molecular vibrations and cross sections. In particular, the analysis of absorption and scattering cross
sections can be done using new tools such as group coupling matrices (GCMs) and atomic contribution patterns (ACPs)
as either 2D or 3D representations, respectively (Hug, Chem Phys 2001, 264, 53). It reads the Hessian, the atomic polar
tensors (APTs), the atomic axial tensors (AATs) (Nafie, J Chem Phys 1983, 79, 4950), and the gradients of the various
polarizability tensors involved in VOA calculations and stored in Gaussian fchk ascii files. pyVib is capable of picking
suitably chosen atoms or group of atoms for evaluating the contribution of each atom or defined groups of atoms to the
calculated VOA scattered intensities. All the results generated by pyVib can be visualized in real-time but can also be
transferred to text editors and electronic spreadsheets, which facilitate a detailed subsequent analysis and the visualization
by other graphical user interfaces (GUIs).

This program is coded in Python and used the visualization toolkit (VTK) library. It is freely available under the terms
of the general GNU public license (GPL) for Linux platforms∗.
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Introduction

Visualization is a convenient and powerful way to interpret the
vast amount of data generated by some daily computational chem-
istry tasks. Therefore, there might be a need for efficient programs
for analyzing and visualizing large data sets generated by vibra-
tional absorption, Raman scattering, and vibrational optical activity
calculations. To address these needs, we have developed a new pro-
gram, which combines a graphical user interface and data-analysis
routines.

Among other capabilities, the molecular graphics program pyVib
has been intended to visualize molecular structures and vibrations.
pyVib is able to read both the optimized geometry and the Hes-
sian from the fchk ascii text files generated by Gaussian ab initio
quantum chemical program1 and perform geometrical reconstruc-
tions of molecular structures and vibrational analysis. Additionally,
it reads the gradients of electric dipole-electric dipole, electric
dipole-electric quadrupole, and electric dipole-magnetic dipole
polarizabilities and calculates two Raman invariants, a2 and β2,
and three vibrational Raman optical activity (ROA) invariants, aG′,

β2
G, and β2

A for each vibrational mode of the molecule.2 Similarly,
pyVib reads the atomic polar and axial tensors, APTs and AATs,
respectively, to calculate vibrational absorption (IR) and vibrational
circular dichroism (VCD) invariants3 and, in turn, cross sections.
Figure 1 summarizes the capabilities of pyVib.

To date, although some routines,† which necessite the Matlab
proprietary software, have been developed by the group of Hug
(University of Fribourg, Switzerland), pyVib is the only freely
available standalone software, which can visualize the atomic con-
tribution patterns (ACPs) and group coupling matrices (GCMs) as
defined by Hug.2
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Figure 1. Main capabilities of pyVib program. It needs a fchk ascii
output file to perform a vibrational analysis and IR/VCD as well as
Raman/ROA cross sections analysis. [Color figure can be viewed in the
online issue, which is available at www.interscience.wiley.com.]

Discussion

The program takes as input the optimized geometry, the hessian of
a frequency calculation and the APTs and AATs needed for IR and
VCD as well as the gradients of polarizabilities one needs for Raman
and vibrational ROA type calculations. pyVib has a main interface,
which allows one to select one of these four different vibrational
spectroscopies, for which vibrational analysis is performed from the
input Hessian, and the resulting modes can therefore be represented
graphically.

Representation of Vibrations and Vibrational Energies

pyVib can represent the vibrations in two different ways. The first
one consists in the classical representation of arrows where the
direction of the vibration of a given nuclei correponds to the direction
of the arrow while its amplitude is proportional to the length of the
arrow. The second one uses spheres instead of arrows as shown in
Figure 2. In this case, we exploit the three-dimensional represen-
tation of spheres centered at the equilibrium position of the nuclei
involved in a given vibrational mode. The size of the spheres is
taken proportional to the amplitude of the nuclear motion, and the
direction of the nuclear displacement is given by the normal to the
intersection plane of the two halve spheres.

To account for the importance of nuclear motions have in vibra-
tional absorption and Raman and VOA cross sections, pyVib allows
representing spheres with either surface or volume proportional to
the square of the Cartesian vector displacements Lx

α,p (where α and p
are respectively the nuclei and the vibrational mode). As the invari-
ants are proportional to (Lx

α,p)
2/�νp and, in turn, cross sections, the

size of the spheres is further divided by the wave number �νp asso-
ciated to vibrational mode p (except for VCD).4 This option based
on the sphere representation is implemented in pyVib.

A second approach based on representation by spheres resides
in considering the energy of a nuclei α, Eα,p, with respect to the
total energy of a vibrational mode p, Ep.4 Starting from the virial
theorem and the harmonic approximation, the fractional energy can

be written as

Eα,p

Ep
= mαLx

α,pLx
α,p. (1)

Therefore, it would be worth to set either the surface or the volume
proportional to mαLx

α,pLx
α,p. Like in Gaussian, the sum of Cartesian

displacements vectors is normalized so that

∑
α

Lx
α,pLx

α,p = 1. (2)

The advantage of this condition is mostly of practical nature; the
scale hardly ever needs to be readjusted when going from vibration
to another. For a given vibration, but not between vibrations, the
relative size of the spheres shows the relative importance nuclear
motion has for generating a particular cross section. Unfortunately,
comparison of the size of nuclear motion is not possible for different
modes. Although, the surface and volume are, by default, chosen
proportional to the displacements and kinetic energy, respectively,
it is, however, also possible to chose either surface or volume for
both options (excursion and kinetic).

Vibrational Analysis

The vibrational analysis performed by pyVib is not different from
that described by Wilson et al.5 Frequencies and normal modes are
calculated in pyVib, starting with Hessian read from the Gaussian
fchk output file. The vibrational analysis follows these steps:

1. First, pyVib mass weights the 3N ×3N Hessian and diagonalizes
it to yield 3N eigenvectors and 3N eigenvalues.

2. Second, pyVib translates the center of mass to the origin. Then, it
calculates the vectors corresponding to rotations and translations
from the transformation matrix, which diagonalizes the moment
of inertia tensor, leaving 3N −6 or 3N −5 vibrational modes for
further analysis.

3. Third, it transforms the mass weighted Hessian to internal
coordinates and diagonalizes it.

4. At this point, it converts the frequencies, which correspond to
vibrational modes in units of reciprocal centimers.

5. Finally, it calculates the reduced mass, force constants, and
Cartesian displacements.

GCMs and ACPs

The decomposition of Raman and ROA invariants, and dipole and
rotational strengths, into mono- and di-nuclear terms leads to what
Hug called GCMs, which give insight into individual contributions
of particular atoms or group of atoms to the overall absorption and
scattered intensity.2, 4, 6

All reduced Raman and ROA invariants, and reduced dipole and
rotational strengths, noticed J , which do not include integration
over vibrational wavefunctions, can be decomposed into mono- or
di-atomic terms according to

Jp =
∑

Jαβ,p. (3)

2

ht
tp

://
do

c.
re

ro
.c

h



The corresponding invariants I are then obtained as follows:

I = FJp (4)

with F = 〈1|Qp|0〉2 = �/(400πc�νp) for Raman, ROA invariants,
and dipole strength (IR). While F = Im{〈1|Qp|0〉〈1|Pp|0〉} = �/2
for rotational strength (VCD). Qp and Pp are vibrational coordinate
and moment operators. Subscripts α and β are the atoms, p is the
vibrational normal mode, � is the reduced Planck’s constant, c is
the speed of the light, and �νp is the Raman shift.

One has for the explicit form of Jαβ,p:

Jαβ,p = Lx
α,pVαβLx

β,p = Vαβ : Lx
α,p Lx

β,p (5)

where Lx
α,p and Lx

β,p are cartesian displacement vectors and Vαβ is a
dyadic characteristic of the particular invariant one considers. The
elements of these dyadics have the form:2, 4

V(a2)αi,βj = 1

9

∑
μ,ν

(
∂αμμ

∂xα
i

)
0

(
∂ανν

∂xβ

j

)
0

(6)

V(β2)αi,βj = 1

2

∑
μ,ν

[
3

(
∂αμν

∂xα
i

)
0

(
∂αμν

∂xβ

j

)
0

−
(

∂αμμ

∂xα
i

)
0

(
∂ανν

∂xβ

j

)
0

]
(7)

V(aG′)αi,βj = 1

9

∑
μ,ν

(
∂αμμ

∂xα
i

)
0

(
∂G′

νν

∂xβ

j

)
0

(8)

V
(
β2

G

)
αi,βj = 1

2

∑
μ,ν

[
3

(
∂αμν

∂xα
i

)
0

(
∂G′

μν

∂xβ

j

)
0

−
(

∂αμμ

∂xα
i

)
0

(
∂G′

νν

∂xβ

j

)
0

]
(9)

V
(
β2

A

)
αi,βj = ω0

2

∑
μ,ν

(
∂αμν

∂xα
i

)
0

(
∂Aμν

∂xβ

j

)
0

(10)

V(D)αi,βj = Re

{∑
μ

(
∂μ

∂xα
i

)
0

(
∂μμ

∂xβ

j

)
0

}
= Re

{∑
μ

Pα
iμPβ

jμ

}

(11)

V(R)αi,βj = Re

{∑
μ

(
∂−→μμ

∂xα
i

)
0

(
∂−→mμ

∂ ẋβ

j

)
0

}
= Re

{∑
μ

Pα
iμMβ

jμ

}

(12)

The indices i and j refer to the Cartesian coordinates of the nuclei
α and β, and the indices μ and ν to the Cartesian coordinate sys-
tem in which the molecular tensors are defined. The rank-two tensor
A is obtained by contracting the rank-three electric dipole-electric
quadrupole tensor A with the antisymmetric unit tensor of Levi-
Civita. �μ stands for the electric and �m for the magnetic dipole
moment, and Pα

iμ and Mβ

jμ are the components of APTs and AATs,
respectively.

The sign and the size of the contribution of each atom to the
intensity is revealed by the sums of elements over its corresponding
row and column, according to

Jα,p =
∑
β

Jαβ,p (13)

Unfortunately, for medium and large molecules, a numerical matrix
and even, a graphical representation of the scalar components of this
matrix, will be too detailed a description for allowing intuitive grasp
on the size and sign of scattering for a particular mode. Therefore,
it might be preferable to lump together contributions from individ-
ual atoms into chemical groups (e.g., CH3, CH2, COOH, etc). This
approach leads to GCMs, which have extensively been described
in literature.2 GCMs are obtained by adding up intragroup (group
of atoms) mono- and di-nuclear terms, and by representing them
graphically. The contributions of defined groups are represented as
circles in two-dimensional upper triangular matrices. To account
for the nonsymmetry of GCM matrices corresponding to invari-
ants aG′, β2

G, and β2
A, all off-diagonal GCM matrix elements are

the sums of cross terms Jαβ,p + Jβα,p. The surface area of the cir-
cles is chosen proportional to the size of the molecular properties
that are scalars; signs being indicated by dark and light shadings,
respectively (Figs. 3 and 4).

ACPs that are derived from GCMs by further splitting of din-
uclear terms would appear preferable when quantities attributable
to individual atoms are needed. To this end, an allocation of frac-
tions of dinuclear terms, through using weighting coefficients7 is
done:

J(α)p =
∑
β

[Jαβ,pr(α)αβ,p + Jβα,pr(α)βα,p]. (14)

The weighting coefficients r(α)αβ,p and r(α)βα,p are calculated
using the following expressions

r(α)αβ,p =
∣∣Lx

α,p Vαβ

∣∣ + ∣∣Lx
α,p Vαα

∣∣∣∣Lx
α,p Vαβ

∣∣ + ∣∣Lx
α,p Vαα

∣∣ + ∣∣Vαβ Lx
β,p

∣∣ + ∣∣Vββ Lx
β,p

∣∣
(15)

and

r(α)βα,p =
∣∣Vβα Lx

α,p

∣∣ + ∣∣Vαα Lx
α,p

∣∣∣∣Vβα Lx
α,p

∣∣ + ∣∣Vαα Lx
α,p

∣∣ + ∣∣Lx
β,p Vβα

∣∣ + ∣∣Lx
β,p Vββ

∣∣ .

(16)

With cross sections representing areas, and considering the fact
that they represent quantities for an isotropic sample and thus rota-
tional averages, the logical choice is to draw spheres with a surface
proportional to the computed cross sections (Fig. 4).

Cross Sections

The theoretical expressions for circular difference scattering (ROA)8

and circular difference absorption (VCD)9 are well established
for isotropic samples such as liquids (both methods) as well as
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Figure 2. Left: The main interface of pyVib consists of one window from which it is possible to choose
between different vibrational spectroscopies. Then one might select one of the two kinds of tasks, which
can be performed; calculation of the spectra or GCP and ACP analysis. Right: Sphere representation used
for the symmetric deformation (umbrella) mode in methyloxirane molecule. [Color figure can be viewed
in the online issue, which is available at www.interscience.wiley.com.]

Figure 3. Interface dedicated to group selection and definition process. Then GCMs and ACPs can be
visualized for different Raman/ROA and IR/VCD methods. [Color figure can be viewed in the online issue,
which is available at www.interscience.wiley.com.]
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Figure 4. ROA GCM (left) and ROA ACP for mode 17 of methyloxirane (antisymmetric deformation of
methyl). In this example, groups are CH3, CH2, CH, and O. [Color figure can be viewed in the online issue,
which is available at www.interscience.wiley.com.]

randomly oriented crystallites embedded in a viscous solvent (only
VCD to date). In vibrational absorption, intensities are commonly
represented by the molar decadic extinction coefficient

εp(ν) = 8π3NA

3000hc ln(10)
νp〈1p|Qp|0p〉2Dpf (νp, ν) (17)

Vibrational circular dichroism intensity is given as the difference
of the extinction coefficients for left and right circularly polarized
light

�εp(ν) = 32π3NA

3000hc ln(10)
νpIm{〈1p|Qp|0p〉〈1p|Pp|0p〉}Rpf (νp, ν).

(18)

NA is Avogadro’s number, and νp the vibrational frequency of mode
vibrational p. f is the function, which describes the band shape while
Dp and Rp are respectively called the reduced dipole strength and
the reduced rotational strength obtained by double contraction of
second rank tensors describing respectively the dipole and rotational
strength.4 In pyVib, these quantities are decomposed according to
eq. (5).

The situtation for Raman and especially ROA is far more com-
plicated as one has the possibility to measure them with different

scattering geometries. The three polarization schemes by which
ROA scattering can be mesured, are called incident circular polariza-
tion (ICP), scattered circular polarization (SCP), and dual circular
polarization (DCP). In ICP, the incident light is modulated between
right and left polarizations while the scattered light is analyzed with
respect to either one of the polarization (perpendicular and parallel)
or natural polarization. In SCP, the incident light is either linearly or
naturally polarized while the circular content of the scattered light
is measured. In DCPI , one of the two variants of DCP, the circular-
ities of the incident light and of the scattered light are of the same
kind. DCPII differs from DCPI , in that the circularities of incident
and scattered lights are opposite. However, the differential Raman
scattering cross sections can be described by the general formulae,
regardless of the experimental configurations

dσp = Kp〈1p|Qp|0p〉2 [
C1a2

p + C2β
2
p

]
d� (19)

with d� being the infinitesimally small element of the solid angle.
For instance, C1 = 90 and C2 = 14 for forward and backward
scattering SCP.

For ROA, the differential scattering cross sections take the form

−�dσp = 4Kp

c
〈1p|Qp|0p〉2 [

C3aGp + C4β
2
Gp + C5β

2
Ap

]
d� (20)

Table 1. Linear Combinations of Invariants Corresponding to Theoretical Differential and Integral Cross
Sections for the Experimental Methods Implemented in pyVib Program.

Scatt. angle (◦) Configuration C1 C2 C3 C4 C5

0 SCP unpolarized 90 14 90 2 −2
180 SCP unpolarized 90 14 12 4
90 ICP polarized 90 14 90 14 2

ICP depolarized 24 12 −4
Integral SCP 180 × 4π/3 40 × 4π/3 180 × 2π/3 40 × 2π/3
Integral ICP 180 × 8π/3 40 × 8π/3 180 × 4π/3 40 × 4π/3

Coefficients Ci are used in eqs. (19) and (20).
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Table 2. Parameters of the six Gaussian used to approximate the Lorentz band shape.

1 2 3 4 5 6

ci 2.41 × 10−1 4.32 × 10−1 2.34 × 10−1 7.37 × 10−2 1.60 × 10−2 2.1 × 10−3

ai 2.26 × 10−1 4.04 × 10−1 7.69 × 10−1 1.61 × 10+0 3.97 × 10+0 1.38 × 10+1

Parameters ai: standard deviations for each of the six Gauss curves.
Parameters ci: coefficients of each Gauss function in the linear combination.

where Kp = 107π2μ2
0c4ν3

pν0 is a constant, which depends on the
frequency ν0 of the exciting light and the frequency νp of the scat-
tered light, while μ0 is the permeability of the vacuum. The minus
sign is due to the sign convention in ROA, which is opposite to
the one used in optical activity in general.3, 10, 11 Table 1 shows the
values of coefficients Ci for most used experimental configurations.
In addition to the differential cross sections, Table 1 presents the
coefficients for integral SCP and ICP as also implemented in pyVib.
These coefficients are obtained by double integration of eqs. 19 and
20 over �. In pyVib, these theoretical differential and integral cross
sections are multiplied by the Boltzman factor

1

1 − exp(−100hc�νp/kT)
(21)

with k being the Boltzman’s constant and h the Planck’s con-
stant. The temperature is fixed at 293◦ K in pyVib as almost all
Raman/ROA spectra are measured at room temperature. Then, con-
volution of the discrete intensities and frequencies are cross sections
per steradian and per cm−1 (differential) and cross sections per
cm−1 (integral).

Convolution

Discrete frequencies and intensities calculated by pyVib from Gaus-
sian fchk outputs are then convoluted to produce realistic spectra.
The voigt profile one expects for IR/VCD and Raman/ROA bands
is calculated according to an elegant and efficient approach, which
exploits the advantage that a convolution of two gaussian functions
is still a gaussian function. In this approach, the Lorentz function
is approximated by a linear combination of six Gaussian func-
tions whose coefficients are available in the literature.4 Finally, the
shape function for voigt profile, which is the convolution of the
approximate Lorentz function with a Gaussian line shape, takes the
form:

V(x) = 2

π

6∑
i=1

(
4k2 +

(
a2

2

a2
i

))−1/2

exp

(
−x2

2
[
(2ka2

i ) + a2
2

]
)

(22)

where 2k is the FWHM of the approximated Lorentz function and ai

and ci are the fitted coefficients and exponents for the six Gaussian
functions (see Table 2).

Summary

In conclusion, the main features of pyVib program are noted in brief.
The program processes fchk ascii output files from GAUSSIAN
applications, reading the Hessian, the gradients of polarizabilities
α, G′, and A, as well as APTs and AATs. Then, vibrational analysis
is performed and cross sections are calculated. Additionally, one can
visualize GCMs and ACPs as 2D and 3D representations, respec-
tively. It can also write text output files allowing one to visualize
computed intensities with other programs.
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