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A model to describe the self-assembly properties of aqueous blends of nonionic lipids is developed
in the framework of self-consistent field theory �SCFT�. Thermally reversible hydrogen bonding
between lipid heads and water turns out to be a key factor in describing the lyotropic and
thermotropic phase behavior of such systems. Our model includes reversible hydrogen bonding
imposed in the context of the grand canonical ensemble and exact conditions of binding equilibrium.
The lipid molecules are modeled as a rigid head and a flexible Gaussian tail, and the water
molecules are treated explicitly. Here, we focus on systems where the lipid molecule has a relatively
small hydrophilic head compared to the hydrophobic tail, such as monoolein in water.
Experimentally, this system has both normal phase sequences �inverted hexagonal to inverted
double gyroid cubic phase� and reverse phase sequences �lamellar to inverted double gyroid cubic
phase� as the water volume fraction increases. From SCFT simulations of the model, two phase
diagrams corresponding to temperature independent or dependent interaction parameters � are
constructed, which qualitatively capture the phase behavior of the monoolein-water mixture. The
lattice parameters of the simulated mesophases are compared with the experimental values and are
found to be in semiquantitative agreement. The role of various structural and solution parameters on
the phase diagrams is also discussed.

I. INTRODUCTION

The mesophases found in lipid-water mixtures have re-
ceived attention in a number of areas such as cosmetic, food,
and pharmaceutical formulations for the delivery of flavors,
drugs, and aromas.1–4 In order to understand the various
structures and the phase behavior of the lipid-water mixtures,
a series of experiments has been performed in the past that
explore both thermal and concentration effects. Of particular
interest is the placement and stability of cubic bicontinuous
phases, as these provide continuous pathways for transport of
flavors and fragrances in both hydrophobic and hydrophilic
domains. Such phases have been observed and studied via
small angle x-ray scattering and transmission electron
microscopy.5,6 One system that has been particularly well
studied is the mixture of monoolein with water. As shown in
Fig. 1�a�, monoolein has a monounsaturated lipid tail and a
head group that can hydrogen bond with up to ten water
molecules. The monoolein-water system has been shown to
exhibit two different �triply periodic� bicontinuous cubic

phases:7,8 The “double gyroid” cubic phase �Ia3̄d space

group� and the “double diamond” cubic phase �Pn3̄m space
group�. Both of these structures are so-called “inverted”

phases in the sense that water fills the percolating network of
cylindrical struts, while the oily tails fill the connected space
outside the struts. The first phase diagram of the monoolein-
water system was produced by Hyde et al.,9 and a more
complete phase diagram was constructed by Caffrey and
co-workers.10,11 Several other closely related nonionic lipid
systems, such as monovaccenin and monononadecenoin,
have also been studied.12,13

In spite of these experimental studies, there is limited
understanding of how molecular-level factors in the mo-
noolein class of lipid-water mixtures influence mesoscale
self-assembly and phase behavior. An outstanding puzzle is
that these systems have both a normal phase sequence from
the inverted hexagonal phase �HII� to the inverted gyroid

phase �Ia3̄dII� and a reverse phase sequence from the lamel-

lar phase �L�� to the gyroid phase �Ia3̄dII� as the water vol-
ume fraction is increased. Prior to our work, there has been
no molecular-based theoretical model that even qualitatively
describes both of these lyotropic sequences while simulta-
neously capturing the thermotropic phase behavior of the
monoolein class of water-lipid mixtures. Evidently, there are
a number of physical ingredients that should be considered in
building such a model. These include hydrogen bonding be-
tween the lipid head and surrounding water, the hydrophobic
effect, the length of the hydrocarbon tail, the dependence of
the flexibility of the tail on the degree of unsaturation, and

a�Authors to whom correspondence should be addressed.
b�Electronic mail: raffaele.mezzenga@unifr.ch.
c�Electronic mail: ghf@mrl.ucsb.edu.

1

ht
tp

://
do

c.
re

ro
.c

h
Published in "The Journal of Chemical Physics 128(7): 074504, 2008"
which should be cited to refer to this work.



among others. In the present paper, we show that a success-
ful model can be constructed by focusing on the hydrogen
bonding effect with concomitant changes in head group vol-
ume and interactions with the surrounding environment.

Previous theoretical work in the field provides some in-
sights on how to proceed. A simple and useful tool for un-
derstanding membrane curvature and the stability of various
lipid and surfactant phases in solution is based on the con-
cept of a critical packing parameter �CCP�,14 which is de-
fined as the ratio of the volume of a lipid tail to the product
of the cross-sectional area of a lipid head and the length of a
lipid molecule. The CCP approach is widely used to explain
the normal phase sequences observed in a variety of surfac-
tant water systems. However, it does not provide any expla-

nation for a reverse phase sequence such as the L�→ Ia3̄dII

transition observed in the monoolein-water system.
An elasticity model initiated by Canham,15 and

Helfrich16 is another type of phenomenological model that
describes the membranes formed by lipid bilayers as thin
elastic sheets characterized by material parameters such as
spontaneous curvature, bending rigidity, and saddle splay
modulus. In this curvature model, all molecular details are
subsumed in the phenomenological material parameters.
While the model does produce a rich set of morphologies
including lamellar and various cubic phases,17 it is based on
a weak curvature expansion and is of limited utility for typi-
cal lyotropic mesophases where the membrane curvature is
large. Moreover, the model does not provide any insights
into the relationship between the membrane parameters and
the molecular details of a lipid-water system.

At the other extreme, fully atomistic simulations have
been attempted for describing membrane and mesophase
structures.18,19 This class of models preserves the full chemi-

cal details of the lipid molecules and includes all types of
interactions such as intramolecular �stretching, bending, and
torsional�, van der Waals, and electrostatic. The potential pa-
rameters are evaluated by ab initio calculations or from ex-
perimental data. Wilson and Pohorille18 studied a lipid-water
bilayer using molecular dynamics with potential parameters
evaluated via ab initio simulations and obtained bilayer
properties, which agree with experimentally measured val-
ues. Recently, there was an initial promising attempt at sta-

bilizing the bicontinuous double diamond cubic �Pn3̄m�
phase for the monoolein-water system.19 However, the state-
of-the-art molecular simulations are restricted to very small
computational cells and of the order of 10 ns of simulated
trajectories. These restrictions effectively limit atomistic
simulation studies to relaxation of seeded initial
configurations20,21 since the time scales of self-assembly in
lipid-water mixtures are many orders of magnitude larger
than the 10 ns simulation window.

Self-consistent field theory �SCFT� is a coarse-grained
field-theoretic model solved within the mean field approxi-
mation. SCFT provides a dramatic computational advantage
compared to fully atomistic approaches,22,23 but still captures
the gross architectural details of molecules and their interac-
tions. It is a powerful and flexible method that has been
successfully applied to study the phase behavior of a wide
variety of inhomogeneous polymer systems such as melts,
blends, and solutions.23–27 Li and Schick28 have shown that
SCFT models of lipids with flexible Gaussian tails and rigid
polar heads can reproduce normal phase sequences �includ-
ing cubic phases� and their dependence on the relative vol-
umes of head and tail for a neutral lipid. They also incorpo-
rated a hydration effect caused by electrostatic interaction
between the charge of lipid head and the dipole of water to

FIG. 1. �a� Chemical structure of a monoolein mol-
ecule. �b� Schematic representation of our �k+1�-state
lipid hydration model. Upon binding with water the
lipid head group grows in volume.
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treat charged lipid systems. The use of flexible Gaussian
chain model for a short lipid tail provides computational ad-
vantage while it approximates the tail entropy. However, it
still provides reasonable approximation for the lipid tail in
the liquid crystalline state,29 although it does not correctly
account for the tail entropy in the solid crystalline state. A
more sophisticated SCFT model proposed by Müller and
Schick uses the rotational isomeric state model to represent
lipid tail conformations.30 However, these SCFT studies,
which did not allow for hydrogen bond formation, did not
reproduce the reverse lyotropic phase sequences that domi-
nate the monoolein-water phase diagram.

In a recent letter, we reported on a field-theoretic model
whose mean field �SCFT� solution captures the salient fea-
tures of the monoolein-water phase diagram.31 Here, we ex-
pand on the details of the model and the computational meth-
ods employed and provide a broader set of simulation
results. We also compare our theoretical predictions for lat-
tice constants of the mesophases with the literature values
obtained from small angle x-ray scattering experiments.

II. MODEL

In the present paper, we introduce a simple field theory
model that we believe captures the essential thermotropic
and lyotropic physics of lipid-water mixtures in the mo-
noolein class. As shown in Fig. 1�a�, monoolein has a mo-
nounsaturated lipid tail and a head group that can hydrogen
bond with up to ten water molecules. In the coarse-grained
description depicted in Fig. 1�b�, we simplify the molecule to
a flexible Gaussian chain tail consisting of N segments, each
of volume vt, and a rigid head that can exist in one of k+1
states: State “0,” which has no bound water and a small head
volume vh0, and state “j” �j=1, . . . ,k�, which has j bound
waters and a larger head volume vhj. The thermally revers-
ible binding of water to the head is one key component of the
model, which also produces changes in the head-water and
the head-tail interactions, as will be described below. The
experimental phase diagrams of monoolein9,11 and
monolinolein32 systems show a phase transition from fluid
isotropic to lamellar phases �FI→L�� at low temperature
��40 °C� and low water concentration ��6% �w /w��.
Therefore, the head-tail interaction in the pure �unbound�
lipids is not strong enough to produce an ordered phase such
as L� phase. As the water concentration is increased at low
temperature, we expect that these systems bind all the avail-
able water and are composed of a mixture of unbound and
bound lipid molecules. Since, experimentally, the L� phase
appears before all the lipid heads are saturated with water
and a significant amount of free water is present, we con-
clude that lipid heads with bound water must interact less
favorably with tail segments than unbound heads. In the con-
text of our model, we thus build in interactions such that the
larger state j�0 hydrated head should interact less favorably
with free �unbound� water and lipid tails than a head in the
dry state 0.

Free water in the model is treated as a space-filling
pointlike species. Local incompressibility of the solution is
imposed, so that the volume-weighted sum of all species

densities is constrained to a constant value throughout the
system. The total system volume is denoted by V. The non-
bonded interactions among the various species are described
by Flory–Huggins � parameters. The energy change �in units
of the thermal energy kBT� associated with incremental hy-
drogen bonding of the head group �from state j−1 to state j�
is denoted by Fb. Subscripts hj, w, and t will be used
throughout to denote, respectively, lipid heads in hydration
state j, free water, and lipid tails, respectively.

In the continuous Gaussian chain model, conformations
of noninteracting lipids have a probability proportional to a
Gaussian statistical weight e−�U0, where �U0 is the harmonic
stretching energy of lipids,

�U0 =
1

4Rg
2�

j=0

k

�
i=1

nj �
0

1

ds	dr j,i�s�
ds

	2

. �1�

In this expression, k represents the number of bound lipid
states and nj is the number of state j lipid molecules in the
system. Rg=b
N /6 is the unperturbed radius of gyration of a
lipid tail �b is the tail statistical segment length� and r j,i�s� is
a continuous space curve describing the shape of the ith lipid
in state j. Nonbonded interactions are included by analogy
with the Flory–Huggins lattice theory through appropriate �
parameters,

�U1 = �0� dr�
l�m

�l,m�̂l�̂m, �2�

where �0 is a reference constant segment density, which we
fix equal to the pure state density of water, 1 /vw. The quan-
tities �̂l are microscopic reduced densities �volume fractions�
of species l= �hj , t ,w� defined by

�̂hj = �
i=1

nj

vhj��r − r j,i�1�� ,

�̂t = vtN�
j=0

k

�
i=1

nj �
0

1

ds��r − r j,i�s�� , �3�

�̂w = vw�
i=1

nw

��r − rw� .

The objects �̂hj, �̂t, and �̂w are the microscopic volume frac-
tions contributed by head groups in hydration state j, lipid
tails whose heads are in any hydration state, and free �un-
bound� water, respectively. The total head group microscopic
volume fraction �irrespective of hydration state� is �̂h

=� j=0
k �̂hj.
Based on earlier studies of supramolecular polymer

assembly,33,34 we have found that field theory models with
reversible binding �or other chemical reaction equilibria� are
most conveniently formulated in the grand canonical en-
semble. The relevant grand canonical partition function for
the lipid-water model just described is given by
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	 = �
n0=0




¯ �
nk=0




�
nw=0



�zw�nw

nw! �
j=0

k
1

nj!
� k!zj

�k − j�!j!

nj

� �
j=0

k

�
i=1

nj � Dr j,i�
l=1

nw � drle
−�U0−�U1

����̂h + �̂t + �̂w − 1� , �4�

where �Dr j,i denotes a path integral over the tail conforma-
tions of the ith lipid that is in hydration state j and �drl

denotes a volume integral over the position of the lth water
molecule. The object ���̂h+ �̂t+ �̂w−1� is a Dirac delta func-
tional that imposes a local incompressibility constraint on the
fluid, namely, that the sum of all microscopic segment vol-
ume fractions must equal to unity at all positions within the
volume V. The free water activity is denoted of zw, while zj is
the activity of lipids that are in hydration state j. For the free
water species, a factor of 1 /nw! accounts for the indistin-
guishability of the nw molecules, while a factor of

1

nj!
� k!

�k − j�!j!

nj

simultaneously accounts for the indistinguishability of the
lipids in hydration state j and for the number of ways of
binding j water molecules at a total of k identical head sites
on each lipid.

Obviously, this “particle-based” partition function can-
not be solved analytically. However, the partition function
can be transformed into the form of a statistical field theory
by means of some well known steps. Specifically, we invoke
the identity

1 =� D���� − �̂�

=� D�� Dw exp�� driw�r����r� − �̂�r��
 , �5�

where �D� and �Dw denote functional integrals over a vol-
ume fraction field ��r� and an auxiliary potential field w�r�,
respectively. The incompressibility constraint in Eq. �4� can
be similarly expressed as

���̂h + �̂t + �̂w − 1�

=� Dp exp�� drip��̂h + �̂t + �̂w − 1�
 , �6�

where p�r� is a fluctuating pressure field. By inserting the
above expressions into Eq. �4� and rescaling fields according
to Wj = iNwj and P= iNp �i=
−1�, the grand canonical parti-
tion function can be written in the following field-theoretic
form:23,24

	 �� DW� D�� DPe−�HG�W,�,P�, �7�

where � and W are �k+3�-component vector fields repre-
senting the volume fractions and auxiliary potentials of the
hj, w, and t species, respectively. The “effective Hamil-
tonian” appearing in the above field theory can be expressed
as

hG �
�NHG

�0V
= − zwQw − �

j=0

k

gj,kzhjQhj

+
1

V
� dr��

j=0

k

��hj,tN�hj�t

+ �hj,wN�hj�w� + �t,wN�t�w

− ��
j=0

k

Whj�hj + Wt�t + Ww�w�
+ P��

j=0

k

�hj + �t + �w − 1�� , �8�

where gj,k�k! / ��k− j�!j!� is the binding site degeneracy fac-
tor noted above. The objects Qw and Qhj are the partition
functions for a single water molecule and a single state j
lipid experiencing potential fields, which are linear combina-
tions of W and P. Explicit expressions for these objects,
which are evidently functionals of W and P, will be given
below.

A few comments are in order with regard to the form of
Eq. �8�. First, all activities have been expressed in dimen-
sionless form by normalizing them by a reference density
�0 /N=1 / �vwN�. Furthermore, due to the incompressibility
constraint, one of the species’ activities can be freely speci-
fied. We have therefore arbitrarily set zw=1. The equilibrium
constraints associated with the water binding reactions have
also not yet been imposed. The conditions of reaction equi-
libria for our �k+1�-state model of hydrogen bonding corre-
sponds to the following k constraints on the activities:33,34

zhj+1

zwzhj
= exp�− Fb�/N, j = 0,1, . . . ,k − 1. �9�

Even after transformation to a field-theoretic form, the
partition function of Eq. �7� still cannot be solved analyti-
cally in closed form, so numerical methods and/or analytical
approximations are required. In this paper, we report only on
mean-field, or SCFT, solutions of the field theory. The mean-
field equations result from demanding that hG be stationary
with respect to variations of the 2k+7 field components
��hG /�W=�hG /��=�hG /�P=0�,

�hj = − gj,kzhj
�Qhj

�Whj
, �10�

�t = − �
j=0

k

gj,kzhj
�Qhj

�Wt
, �11�

�w = −
�Qw

�Ww
, �12�

0 = �
j=0

k

�hj + �t + �w − 1, �13�

Whj = �hj,tN�t + �hj,wN�w + P , �14�
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Wt = �
j=0

k

�hj,tN�hj + �t,wN�w + P , �15�

Ww = �
j=0

k

�hj,wN�hj + �t,wN�t + P . �16�

The functional derivatives in the first three equations can be
made explicit through the formulas23,25

�hj�r� = gj,kzhj
vhj

Nvw
qhj�r,0�qt�r,1� , �17�

�t�r� =
vt

vw
�

0

1

ds�
j=0

k

gj,kzhjqhj�r,s�qt�r,1 − s� , �18�

and

�w�r� = �1/N�e−Ww�r�/N. �19�

The objects qhj�r ,s� and qt�r ,s� denote forward �starting
from the head� and backward �starting from the free tail end�
propagators for the conformations of a lipid in state j. The
forward propagator qhj satisfies the diffusion equation

�qhj�r,s�
�s

= Rg
2�2qhj�r,s� −

vt

vw
Wt�r�qhj�r,s� �20�

subject to the initial condition qhj�r ,0�=e−vhj/NvwWhj�r�. The
reverse propagator qt �from the end of the lipid tail� satisfies
the same diffusion equation, but with initial condition
qt�r ,0�=1. Having the propagators introduced, the single-
molecule partition functions can be straightforwardly ex-
pressed as

Qhj =
1

V
� dre−vhj/NvwWhj�r�qt�r,1� , �21�

Qw =
1

V
� dre−Ww�r�/N. �22�

The total water volume fraction �w,tot is defined as the
sum of the volume fractions of free and bound water mol-
ecules and is calculated by the following formula:

�w,tot = �w + �
j=1

k
jvw

vhj
�hj . �23�

The above SCFT equations, �Eqs. �10�–�16�� represent a
formidable set of nonlocal and nonlinear field equations.
Nonetheless, powerful techniques have been devised to solve
such equations in both a unit cell and large cell context.23,24

In the present work, initial field configurations are seeded in
order to produce a unit cell of a desired mesophase, and the
diffusion equations �Eq. �20�� �corresponding to j
=0,1 , . . . ,k and the additional equation for qt� are solved
pseudospectrally with an operator splitting scheme.35,36 From
the calculated propagators, the volume fraction fields and
single-molecule partition functions are evaluated using ap-
propriate quadrature routines. The W and P fields are subse-
quently relaxed using various convergence schemes23,37,38 in
order to satisfy the remaining SCFT equations, �Eqs.

�13�–�16��. Simultaneously, hG is minimized with respect to
the size and the shape of the unit cell by a variable cell shape
method23,39 to eliminate any residual stress in the computa-
tional cell. The implementation of the variable cell shape
method to the present model is outlined in the Appendix.
Phase boundaries are determined by comparing the SCFT
free energy densities, hG, among phases at the same value of
the activity of a 0-state lipid, zh0.

For the general �k+1�-state model, the SCFT equations
constitute 2k+7 equations for 2k+7 coupled fields. In the
remainder of this paper, we consider only the simplest non-
trivial two-state model corresponding to the particular choice
of k=1. This choice retains what we believe to be the essen-
tial physics at play in the monoolein phase diagram, yet still
leaves a formidable set of nine SCFT equations.

III. RESULTS AND DISCUSSION

A. Mean-field phase diagrams

Figure 2�a� shows the mean-field phase diagram of the
two-state model with vh0 /vw=1.8, vt /vw=1.0, N=5, and the
fixed � parameter values indicated in the caption. The ordi-
nate of Fig. 2�a�, −1 /Fb, can be interpreted as a dimension-
less temperature �assuming that hydrogen bonding is purely
enthalpic�, while the abscissa �w,tot is the total volume frac-
tion of water �bound and free�. �More accurately, the hydro-
gen bond interaction, −Fb, has an entropic contribution due
to the directionality of the bond,40 which reduces the effec-
tive bonding strength.� The figure can thus be viewed as a
first theoretical approximation to an experimental tempera-
ture versus water composition phase diagram.

A more realistic phase diagram can be constructed by
taking into account the expected temperature dependence of
the Flory � parameters. In Fig. 2�b�, we have generated a
second mean-field phase diagram, in which we have assumed
a conventional temperature dependence of the tail-water and
hydrogen bond interactions, �t,wN=A+B /T, −Fb=C /T, and
fixed the ratio of bonding to interaction energy C /B=0.5. A
is determined by the choice of a reference set of interaction
and bonding parameters specified in the figure caption, and
the other �i,j are determined away from the reference point
by maintaining constant values of the ratio �i,j /�t,w. To cap-
ture the gross topology of the monoolein-water phase dia-
gram, it is important to choose the reference point � param-
eters such that they have a large unfavorable “hydrophobic”
interaction between tail and solvent �t,w and a head-solvent
interaction that is initially small and becomes less favorable
upon binding with water, i.e., �h0,w��h1,w
�t,w.

The SCFT phase diagrams �Figs. 2�a� and 2�b�� repro-
duce important qualitative features seen in the experimental

diagram.11 For instance, they provide for a L�→ Ia3̄dII

→HII phase sequence upon increasing temperature and a

FI→L�→ Ia3̄dII phase sequence upon increasing water vol-
ume fraction. The first sequence can be understood by refer-
ring to Figs. 3�a� and 4�a�, which show how the composition
of the fluid mixture changes along thermotropic trajectories
in Figs. 2�a� and 2�b� at �w,tot=0.150 and �w,tot=0.175, re-
spectively. As the temperature increases, the volume fraction
of lipids with bound water decreases, and the effective size

5

ht
tp

://
do

c.
re

ro
.c

h



of the lipid heads also decreases. A smaller lipid head stabi-
lizes mesophases that curve toward water, e.g., the HII phase,
in order to maximize the conformational entropy of the lipid
tails. The second sequence shows the “reverse” lyotropic be-
havior present in the monoolein/water system. The volume
fractions of the various species at a fixed value of −Fb are
shown in Figs. 3�b� �corresponding to the phase diagram in
Fig. 2�a�� and 4�a� �corresponding to the phase diagram in

Fig. 2�b��. In particular, the L�→ Ia3̄dII phase transition oc-
curs with increasing water volume fraction. As shown in
Figs. 3�b� and 4�b�, the L� phase is stable when the lipids
with bound water are saturated and the free water fraction is
low, which is also consistent with the experimental phase
diagrams.11,32 However, as more free water is present, the
strong hydrophobic interaction between lipid tails and free

water is more pronounced and drives a morphological tran-

sition to Ia3̄dII, wherein the interfacial area between hydro-
philic and hydrophobic segments is reduced. The transition is
further assisted by an increase in tail entropy.41

For the parameters chosen, the stability region of the HII

phase in Fig. 2�a�, is exaggerated relative to the experimental
phase diagram. However, as shown in Fig. 2�b�, varying the
� parameters inversely with temperature rather than keeping
them as fixed parameters, reduces the size of the HII region.
This procedure also transforms the negative slope of the
phase boundary between FI and HII in Fig. 2�a� to a positive
slope in Fig. 2�b�, which is more consistent with the experi-
mental phase diagram.11 The change in slope occurs in Fig.
2�b� because the incompatibility increases as temperature de-
creases, hence, stabilizing structured mesophases at lower
temperature.

We note that the inverted double diamond cubic phase

�Pn3̄mII� is always metastable in the two phase diagrams for
the parameters that we employed, although it most closely
competes with the other mesophases just to the right �in wa-

FIG. 2. �a� Mean-field phase diagram for the two-state model with vh0 /vw

=1.8, vt /vw=1.0, N=5, �h0,t=1.0, �h1,t=1.45, �h0,w=0.1, �h1,w=0.5, and
�t,w=4.2. The interaction parameters �i,j are independent of temperature.
The labeled phases are FI �lipid-rich “fluid isotropic” homogenous phase�,
HII �inverted hexagonal phase�, L� �lamellar phase�, Ia3̄dII �inverted gyroid
cubic phase�, and two phase �region of coexistence with nearly pure water�.
�b� Mean-field phase diagram for the two-state model with vh0 /vw=1.8,
vt /vw=1.0, N=5, and C /B=0.5, which allows the interaction parameters �i,j

to change according to temperature. The reference point is −Fb=4.5, �h0,t

=1.0, �h1,t=1.45, �h0,w=0.1, �h1,w=0.5, and �t,w=4.2. The ratio �i,j /�t,w is
maintained constant over all values of −Fb.

FIG. 3. �a� Volume fractions of free water ��w�, unbound lipids ��l0�, and
bound lipids ��l1� vs −1 /Fb at the fixed total water content of �w,tot

=0.150�0.0003 and using the model parameters of Fig. 2�a�. �b� Volume
fractions vs �w,tot at fixed −Fb=4.0 and using the model parameters of Fig.
2�a�.
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ter volume fraction� of the gyroid phase stability region

�Ia3̄dII�. Thus, while we were unable to find a region of
stability for the double diamond phase in our mean-field cal-

culations, the sequence Ia3̄dII→Pn3̄mII with increasing wa-
ter fraction found experimentally is at least partially sup-

ported by our model. Examples of the simulated HII, Ia3̄dII,

and Pn3̄mII structures are shown in Fig. 5.

B. Lattice parameters and radii of water channels

Another experimental data set, which can be compared
with results from our model, is the lattice parameters for the
various structured mesophases. In Fig. 6�a�, we show SCFT
lattice constants for the inverted hexagonal, gyroid, and
double diamond phases, di, expressed in units of a reference
lamellar spacing, dL1. The reference point was a lamellar
spacing computed for the model system shown in Fig. 2�b�
using parameters of −Fb=4.2 and �w,tot=0.1353. These pa-
rameters approximately correspond to the experimental con-
ditions under which the lattice constant of the L� phase was
determined by x-ray diffraction �45 °C and �w,tot�0.135�.10

FIG. 4. �a� Volume fractions of free water ��w�, unbound lipids ��l0�, and
bound lipids ��l1� vs −1 /Fb at the fixed total water content of �w,tot

=0.1750�0.0003 and using the model parameters of Fig. 2�b�. �b� Volume
fractions versus �w,tot at fixed −Fb=4.2 and using the model parameters of
Fig. 2�b�.

FIG. 5. �Color� �a� Two-dimensional �2D� contour plot for the volume frac-
tion of a HII phase. �b� Three-dimensional �3D� isosurface plot for the vol-

ume fraction of a Ia3̄dII phase. �c� 3D isosurface plot for the volume fraction

of a Pn3̄mII phase. The radii of the water channels for each phases, high-
lighted by the arrows, are estimated as in Refs. 32 and 42 and shown in Figs.
6 and 7. Excellent agreement is found between topological models and
SCFT density profiles.
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We see from the figure that the predicted lattice parameters
have a very weak dependence on temperature �or Fb� but a
strong dependence on the symmetry of the mesophase. The
SCFT lattice parameters, averaged over the range of Fb ap-
plied in the simulations, are compared with the experimental
values determined by the groups of Caffrey and
Mezzenga11,32 in Table I. The simulated lattice parameters

fall slightly below the experimental values, although the ab-
solute values of the SCFT predictions for the ratio d /dL and
the predicted trends with space group are remarkably good.
The under prediction of the lattice constants is apparently
related to the total water volume fractions, since the simu-
lated mesophases are somewhat under-hydrated in compari-
son with the experiment.

Figures 6�b� and 7 show our SCFT model predictions for
the radius of the water channels in the hexagonal and cubic
mesophases, relative to the lattice parameter of a reference
L� phase. The reference lamellar spacing applied in Fig. 6�b�,
dL1, is the same as that used in Fig. 6�a�, while the reference
lamellar phase applied in Fig. 7, dL2, was selected as a point
in Fig. 2�b� that most closely matched the corresponding
experimental conditions �35 °C and �w,tot�0.118�.10 The ra-
dii of water channels in the simulated phases were calculated
using the same procedure as in the experiment.32,42 Overall,
the SCFT predictions for the water channel radii shown in
Figs. 6�b� and 7 are in excellent qualitative agreement with
the experiment results. The largest channels are found in the
inverted hexagonal phase, while the water channels in the

Pn3̄mII phase are the narrowest of the two cubic phases. The
channel radii have a very weak temperature dependence, but
a strong dependence on both the symmetry of the structure
and the total water content.

While the overall trends of water channel radius with
topology and water concentration are in agreement with ex-

periment, a discrepancy arises when crossing the Ia3̄dII to

Pn3̄mII phase boundary by increasing the water volume frac-
tion. Experimentally, no discontinuity in the channel radius is
detectable, even though a discontinuity in the lattice constant
and channel radius at such a first-order �order-order� phase
transition might be expected. However, Fig. 7 suggests such
a discontinuity in radius based on the comparison of SCFT

FIG. 6. �a� SCFT predictions for the relative lattice parameters of the hex-
agonal and cubic mesophases di /dL1 vs −1 /Fb at �w,tot=0.1750�0.0003.

The dotted line represents the metastable Pn3̄mII phase. The reference lattice
parameter of the lamellar phase dL1 was computed using model parameters
�−Fb=4.2,�w,tot=0.1353� in the phase diagram of Fig. 2�b� that best corre-
spond to experimental conditions. �b� SCFT predictions for the relative wa-
ter channel radii of the hexagonal and cubic mesophases ri /dL1 vs −1 /Fb at

�w,tot=0.1750�0.0003. The dotted line represents the metastable Pn3̄mII

phase. The reference lamellar spacing dL1 was determined as in �a�.

TABLE I. Comparison of the lattice parameters of the hexagonal and cubic
mesophases normalized by the L� lamellar phase spacing, di /dL, from ex-
periment �Refs. 32 and 42� and from SCFT simulations �cf. Fig. 6�a��.

di /dL HII Ia3̄dII Pn3̄mII

Expt. 1.36 3.11 1.89
Simulations 1.28 2.74 1.65

FIG. 7. SCFT predictions for the relative water channel radii ri /dL2 vs �w,tot

at −Fb=4.2 for the cubic mesophases �Ia3̄dII and Pn3̄mII� and at −Fb=3.4

for the HII phase. The dotted line represents the metastable Pn3̄mII phase.
The model was parametrized as in Fig. 2�b�, and the reference lamellar
spacing dL2 was obtained from simulations at −Fb=4.7 and �w,tot=0.1245.

8

ht
tp

://
do

c.
re

ro
.c

h



predictions of the Ia3̄dII and Pn3̄mII phases. We attribute this
discrepancy between theory and experiment to the metasta-

bility of our simulated Pn3̄mII structure.

C. Parametric sensitivity of the phase diagrams

The SCFT calculations reported here are very computa-
tionally demanding, so a comprehensive exploration of the
�large� parameter space of the model would be an expensive
undertaking. Nonetheless, we have conducted a preliminary
investigation on the sensitivity of the SCFT phase diagram
shown in Fig. 2�b� to the selected parameters. Firstly, if the
ratio of bonding to interaction energy C /B is decreased in
the model, which increases the rate at which the �i,j interac-
tion parameters change with temperature relative to the
bonding strength Fb, the slopes of the phase boundaries be-
tween FI and HII and between FI and L� is diminished. This
arises from the increased incompatibility �and concomitant
stabilization of ordered mesophases� associated with the in-
crease of �i,j upon lowering the temperature. The number of
tail segments N is another important parameter. As N is in-
creased at fixed vt /vw=1.0, which corresponds to a smaller
water molecule relative to the lipid volume of Nvt+vh0, the
envelope of mesophases widens. This is due to an increase in
the translational entropy of the water relative to the lipid,
which favors mesophase swelling.

Another important parameter is the ratio of the volume
of an unbound lipid head to the volume of a water molecule,
vh0 /vw. If the value of vh0 /vw is too small, such as vh0 /vw

=1.4 with N=6, the lyotropic FI to L� phase transition dis-
appears. Instead, the system has only a FI to HII phase tran-
sition. Evidently, when the head group is too small, the tail
entropy destabilizes the lamellar phase in favor of a phase
where the curvature is favorably to the hydrocarbon tails.
The nonbonded hydrophobic interaction parameter between
the lipid tail and water �t,w is also a key parameter. A large

value of �t,w gives more stability to the Ia3̄dII phase since it
increases hydrophobicity, although it also shifts all the me-
sophases to lower water content. Conversely, if we decrease

the value of �t,w by 6.4% at −Fb=4.2, the Ia3̄dII phase is
destabilized relative to L� at all water concentrations. Fi-
nally, the value of the hydrated lipid head-water interaction is
also important to achieving the topology of the phase dia-
gram shown in Fig. 2�b�. When �h1,w is increased, there is
diminished contact between free water and the hydrated head
groups and correspondingly increased contact between free
water and the bare head groups. This promotes head group
water binding and drives down the concentration of free wa-
ter. Therefore, increasing �h1,w decreases the free water con-
tent, which decreases the tendency for curvature of bilayers
toward water to form cubic and hexagonal phases. Indeed, if
we increase the value of �h1,w by 19.5% at −Fb=4.2, only the
L� phase is stable across all water concentrations.

IV. SUMMARY AND CONCLUSION

A model of nonionic lipid-water mixtures has been de-
veloped in the framework of SCFT, which allows for ther-
mally reversible hydrogen bonding between the lipid head

and the surrounding water molecules. Using this model in a
two-state approximation for head group hydration, we inves-
tigated phase diagrams for two different parametrizations. In
the first case, all nonbonded interaction parameters �Flory �
parameters� were fixed, while the bonding strength in units
of the thermal energy kBT was varied. In the second param-
etrization, we fixed the ratio of bonding to interaction energy
C /B, while varying the temperature-like variable −1 /Fb. The
second phase diagram more realistically describes tempera-
ture effects, and the simulated diagram qualitatively repro-
duces both the lyotropic and thermotropic phase behaviors
observed in the experiments by the groups of Caffrey and
Mezzenga. Our conclusions are summarized below.

• The anomalous “reverse” lyotropic phase sequence �L�

to Ia3̄dII� observed in the monoolein-water class of sys-
tems results from a competition between hydrogen bond
formation, changes in head volume and interactions,
lipid tail entropy, and the hydrophobic effect. This tran-
sition is initiated by the strong hydrophobic interaction
between lipid tails and free water. As the water volume

fraction is increased, the L� to Ia3̄dII transition serves to
reduce the interfacial area between hydrophilic and hy-
drophobic domains while also increasing the conforma-
tional entropy of the lipid tails. The interactions be-
tween the hydrated lipid heads and water are also key to
obtaining the reverse phase sequence since these serve
to mediate the hydrophobic effect.

• The mesophase lattice parameters and the water channel
radii calculated by numerical SCFT are in semiquanti-
tative agreement with the experimental values based on
x-ray diffraction. Trends with mesophase symmetry and
water content are remarkably well reproduced. The
SCFT-derived lattice parameters and radii are slightly
smaller than their experimental counterparts since the
model under predicts the water content of the me-
sophases.

• The hydrophobic interaction plays a primary role in sta-
bilizing the inverted gyroid phase according to our sen-
sitivity analysis of the model parameters. In addition,
the value of the hydrated lipid head volume relative to
the tail volume and the molecular volume of water is
important in order to obtain the experimentally ob-
served FI to L� transition with increasing water concen-
tration.

• The thermotropic transitions in the monoolein class of
lipid-water systems can be explained by thermally in-
duced changes in lipid head volume associated with the
binding or unbinding of water, acting in concert with
the familiar competition between entropy �translational
and conformational� and various nonbonded
interactions.

Finally, we point out that SCFT is a field-theoretic model
which is solved within the mean-field approximation. The
mean field approximation is based on the assumption that
one specific configuration of fields dominates the partition
function and all other configurations of fields �thermal fluc-
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tuations� are neglected. Therefore, the phase diagrams are
supposed to depend on ignored fluctuation effects. For in-
stance, the order-disorder boundaries in the phase diagrams
will be shifted to the right since fluctuations stabilize disor-
dered phase.43 Fortunately, more advanced field theoretic
simulation �FTS� is available,23,26 which provides numerical
method for the exact field theory although this computation-
ally demanding method has not yet been applied to our
model for lipid/water mixtures.
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APPENDIX: VARIABLE CELL SHAPE METHOD

The variable cell shape method for SCFT is designed in
order to obtain stress-free structures in a n�T ensemble,39

where the thermodynamic tension tensor � can be related to
an external stress. One variant of the method restricts
changes in cell shape to a constant volume manifold in order
to preserve the constraint of incompressibility. A second pro-
cedure, adopted here in the grand canonical ensemble, in-
volves the minimization of an intensive energy density with
respect to the size and shape of a unit cell while maintaining
a constant segment density.23 Following Refs. 23 and 39, a
cell shape tensor h is introduced, whose components are the
three vectors that define the edges of a parallelepiped simu-
lation box. The box shape is relaxed by the following ficti-
tious dynamics scheme:

d

dt
h = − �hh��

j=0

k

� j�W,g�� , �A1�

where g is a metric tensor defined as g�hTh and �h is a
relaxation parameter. The internal stresses produced by lipids
in hydration state j are denoted by � j. These internal stresses
vanish at equilibrium and can be evaluated in terms of propa-
gators in the grand canonical ensemble by invoking a factor-
ization of the single chain path integrals23,39

� j�W,g� = 2gj,kzhj

�� dX�
0

1

dsqhj�X,s�g−1�X�Xg−1qt�X,1 − s� .

�A2�

In these expressions, X=h−1 ·r is a cell-scaled position vec-
tor whose components lie in �0,1�.
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