
DECREASED INFARCT SIZE AFTER FOCAL CEREBRAL ISCHEMIA IN
MICE CHRONICALLY INFECTED WITH TOXOPLASMA GONDII

D. ARSENIJEVIC,a1* F. DE BILBAO,b1 P. VALLET,b

A. HEMPHILL,c B. GOTTSTEIN,c D. RICHARD,d

P. GIANNAKOPOULOSb AND W. LANGHANSe

aDepartment of Medicine, Division of Physiology, University of

Fribourg, Chemin Du Musée 5, 1700 Fribourg, Switzerland

bDivision of Geriatric Psychiatry, University Hospitals of Geneva,

Belle-Idée, 1225 Geneva and Division of Old Age Psychiatry, Univer-

sity of Lausanne, 1008 Prilly, Switzerland

cInstitute of Parasitology, University of Bern, 3012, Bern, Switzerland

dInstitut Universitaire de Cardiologie et de Pneumologie, Hopital Laval,

Quebec, Canada

eInstitute of Animal Sciences, ETH Zurich, Schorenstrasse 16, Zurich

8603 Schwerzenbach, Switzerland

Abstract—To determine whether Toxoplasma gondii infec-

tion could modify biological phenomena associated with

brain ischemia, we investigated the effect of permanent mid-

dle cerebral artery occlusion (MCAO) on neuronal survival,

inflammation and redox state in chronically infected mice.

Infected animals showed a 40% to 50% decrease of infarct

size compared with non-infected littermates 1, 4 and 14 days

after MCAO. The resistance of infected mice may be associ-

ated with increased basal levels of anti-inflammatory cyto-

kines and/or a marked reduction of the MCAO-related brain

induction of two pro-inflammatory cytokines, tumor necrosis

factor-alpha and interferon-gamma (IFN�). In addition, poten-

tial anti-inflammatory/neuroprotective factors such as

nerve growth factor, suppressor of cytokine signaling-3, su-

peroxide dismutase activity, uncoupling protein-2 and gluta-

thione (GSH) were upregulated in the brain of infected mice.

Consistent with a role of GSH in central cytokine regulation,

GSH depletion by diethyl maleate inhibited Toxoplasma gon-

dii lesion resistance by increasing the proinflammatory cyto-

kine IFN� brain levels. Overall, these findings indicate that

chronic toxoplasmosis decisively influences both the inflam-

matory molecular events and outcome of cerebral ischemia.

Key words: toxoplasmosis, cerebral ischemia, cytokines,

redox factors, rodent.

One of the possible biological consequences of infection is

a change of the redox status in both CNS and peripheral

tissues (Arsenijevic et al., 2001). Although both animal

models and clinical studies showed that infections promote

neuronal death following cerebral ischemic injury (Sacco,

2001; Emsley and Tyrrell, 2002), activation of the immune

system can also result in neuroprotection (Bordet et al.,

2000). In fact, the effect of infection on ischemic damage

may largely depend on the regulation of reactive oxygen

species by pro-inflammatory and anti-inflammatory cyto-

kines as well as by the main antioxidant state regulators,

namely superoxide dismutase (SOD) (Guegan et al., 1998;

Murakami et al., 1998), glutathione (GSH) (Nicholls and

Budd, 2000; Schulz et al., 2000; Droge, 2002), uncoupling

protein-2 (UCP2) (Arsenijevic et al., 2000b; Mattiasson et

al., 2003) and nerve growth factor (NGF) (Brodie, 1996;

Guegan et al., 1999; Villoslada et al., 2000). In addition,

the newly described suppressor of cytokine signaling

(SOCS) proteins are induced in peripheral and central

models of inflammation (Lebel et al., 2000; Bates et al.,

2001; Larsen and Ropke, 2002; Wang and Campbell,

2002; Huang et al., 2003; Park et al., 2003; Jo et al., 2005).

SOCS possibly interact with cellular redox determinants

(Park et al., 2003) and transgenic SOCS expression has

been shown to inhibit inflammation and apoptosis following

lipopolysaccharide (LPS) injection (Jo et al., 2005).

Chronic murine toxoplasmosis may be of particular

interest in the study of infection-related effects on brain

ischemia since it is associated with a tissue-specific regu-

lation of the oxidative state (Arsenijevic et al., 2001) as well

as activation of pro-inflammatory cytokines such as tumor

necrosis factor-alpha (TNF�), interferon-gamma (IFN�)

and interleukin-2 (IL-2), but also anti-inflammatory cyto-

kines such as interleukin-10 (IL-10) (Arsenijevic et al.,

1997, 1998). Some of these cytokines are known to en-

hance neurodegeneration following ischemia (Arsenijevic

et al., 2006). In order to determine how chronic infection

influences the main biological phenomena associated with

acute cerebral ischemia, the present study explores the

impact of chronic Toxoplasma gondii infection on brain

ischemic injury and inflammatory/antioxidant processes in-

duced by permanent middle cerebral artery occlusion

(MCAO).

EXPERIMENTAL PROCEDURES

All procedures were approved by the Veterinary Office of the

Canton of Zurich Health Directorate and the Veterinary Office of

Geneva in accordance with the Swiss Animal Care Guidelines. All

efforts were made to minimize the number of animals used in this

study and every effort was taken to reduce any suffering.

1 Equal first authors.

*Corresponding author. Tel: �41-79-501-52-83; fax: �41-26-300-97-34.
E-mail address: denis.arsenijevic@unifr.ch (D. Arsenijevic).
Abbreviations: cDNA, complementary DNA; DEM, diethyl maleate;
GAPDH, glyceraldehyde 3-phosphate dehydrogenase; GSH, glutathi-
one; IFN�, interferon-gamma; IL-2, interleukin-2; IL-10, interleukin-10;
LPS, lipopolysaccharide; MCAO, middle cerebral artery occlusion; NGF,
nerve growth factor; SOCS, suppressor of cytokine signaling; SOCS-3,
suppressor of cytokine signaling-3; SOD, superoxide dismutase; TNF�,
tumor necrosis factor-alpha; TUNEL, terminal deoxynucleotidyl trans-
ferase biotin-dUTP nick end labeling; UCP2, uncoupling protein-2.
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Mice and diets

Male Swiss Webster mice of 4 months of age from Charles River
Laboratories (Wilmington, MA, USA) were used. Mice were chron-
ically infected by i.p. injection of 10 cysts of Toxoplasma gondii
(Me49 strain obtained from Dr A. Hemphill, University of Bern,
Switzerland) (Arsenijevic et al., 1997). Less than 5% of mice died
due to infection during weeks 2 and 3. After this time point all
infected mice survived. Acute infection with Toxoplasma gondii
results in anorexia and body weight loss (Arsenijevic et al., 1997).
We followed infected mice body weight and food intake 7 days
before infection and up to 28 days (chronic phase) after infection
(n�10). In the chronic phase of infection, some of these mice may
show a partial weight regain (50%) or no weight regain (50%)
(Arsenijevic et al., 1997). For all experiments, we used only the
latter type of mice since these animals had higher basal brain
cytokine levels and were expected to maximally respond to a new
inflammation (Arsenijevic et al., 1998). A group of non-infected
mice (n�18) was chronically underfed to mimic the food intake
level of infected mice from days 1–28. This group was used to
determine: 1) if the reduced food intake of the infected mice may
influence basal brain GSH levels (n�6); 2) the effect of under-
feeding on brain GSH levels after MCAO (n�6) and 3) the effect
of underfeeding on ischemic lesion size (n�6). All mice were
individually weighed and food intake was measured daily. For the
MCAO study, infected and non-infected mice with and without
MCAO (n�18 mice per group) were monitored daily from 7 days
prior to and up until 3 days after operation. Daily food intake
(g/mouse/day) and body weight changes after MCAO were mea-
sured, and food intake changes after MCAO were calculated as a
percentage of pre-ischemia average food intake for each mouse
group.

Histology of infected brains compared with

non-infected controls

Histological analysis was performed in infected (28 days following
infection) (n�4) and non-infected control brains (n�4) prior to
MCAO. Brain slices (20 �m) were stained with hematoxylin and
eosin for histological identification of Toxoplasma gondii cysts and
infiltrating immune cells (Frenkel and Escajadillo, 1987; Arseni-
jevic et al., 2007a). Detection of apoptosis in the brain of chroni-
cally infected mice was made using terminal deoxynucleotidyl
transferase biotin-dUTP nick end labeling (TUNEL) labeling as
previously described (de Bilbao et al., 2000). The suppressor of
cytokine signaling-3 (SOCS-3) mRNA expression was determined
by in situ hybridization in the brains of these mice (n�6 per group).
Riboprobe preparation and in situ hybridization histochemistry
were kindly performed by Dr S. Rivest (Laval University, Canada).
The rat SOCS-3 complementary DNA (cDNA) fragment that was
initially inserted in a pEF-FLAG-1 vector (provided by Dr. Doug
Hilton, The Walter and Eliza Hall Institute of Medical Research,
Melbourne, Australia) was extracted with XbaI and reinserted into
a pCRII (Invitrogen, Carlsbad, CA, USA). The new construct was
then linearized with XhoI. 35S-UTP was used to label the probe
(for the complete in situ hybridization protocol conditions see
reference by Lebel et al., 2000).

Induction of permanent focal cerebral ischemia

and volume of the infarct

Mice were operated 28 days after infection, when their body
weight and food intake had stabilized (Arsenijevic et al., 1998). We
performed permanent MCAO in infected and non-infected control
mice (n�6 for each group and post-MCAO time) as described in
details elsewhere (de Bilbao et al., 2000). All mice survived and
showed infarction after MCAO. One day, 4 days and 14 days later,
the animals were perfused through the ascending aorta with a
solution of paraformaldehyde 4% in phosphate-buffered saline

(PBS, pH 7.35). Brains were removed and processed for paraffin
embedding. Sections (7 �m) of the whole infarct area were cut on
slides pretreated with 3-aminopropyltriethoxy-silane (Sigma, MO,
USA), counterstained with Cresyl Violet for the histological iden-
tification of the nuclear boundaries and peri-infarct areas and
mounted in Eukitt. For each animal, quantification of the infarcted
area was performed on the Cresyl Violet–stained sections at five
representative levels throughout the rostro-caudal extent of the
lesion (A 0.26, �0.22, �0.40, �0.70 and �1.2–4 mm relative to
Bregma) (Franklin and Paxinos, 1997). The rostro-caudal extent
of the infarct was the same in both groups of mice. The infarcted
area of each section was calculated by the subtraction of healthy
tissue areas of the contralateral to the ipsilateral side of the
section in order to compensate for the effect of brain edema
(Guegan et al., 1998) using a computer-assisted image analyzing
system (Software Morphometry, Samba 2005 TITN, Alcatel). Vol-
umes of infarct (mm3) were calculated for each animal after inte-
gration of areas with the distance between each level (de Bilbao
et al., 2000).

To evaluate whether local alterations in cerebral vascular
anatomy contribute to different susceptibility to injury in infected
mice, an additional series of five non-infected and five infected
mice were killed on day 1 after ischemia. Cerebral vasculature
was studied in non-infected and infected mice (non-operated and
on day 1 after ischemia) after intracardial perfusion of a mixture of
an equal proportion of gelatinous water (5%) and China ink (Sen-
nelier, France) warmed at 40 °C (1 ml). Brains were removed and
immersed for 24 h in 4% paraformaldehyde at 4 °C (Chen et al.,
2005). Cerebral vasculature was observed with a Zeiss stereo
zoom microscope. The absence of cerebral blood flow in the
infarct area was assessed visually and by transcranial measure-
ments of cerebral blood flow that were made using laser Doppler
flowmetry (Oxford Optronix Ltd., UK) just before and after MCAO.
Animals were placed under a stereotactic head frame and then a
fine needle probe (MNP110XP, 0.48 mm diameter) was lowered
onto the temporal bone surface 0.5–1 mm dorsal to the opening
giving access to the MCA and wetted with a small amount of
physiological saline.

Physiological parameters

Physiological parameters including arterial blood pressure (Kent
mouse tail blood pressure system RTBP2000, Kent Scientific
Corporation, Torrington, USA), plasma glucose (using Roche Glu-
cotrend Active, Rotkreuz, Switzerland) and hematocrit were mea-
sured daily (n�5 for each type of mice) before MCAO and on day
1 and day 4 after injury. During surgery, mice were placed on a
warm mat and rectal temperature was measured. During the
operation, all mice had a body temperature of 38 °C.

Northern blot for UCP2 mRNA

Infected and non-infected mice subjected or not to ischemia (1 day
post-MCAO) (n�6 mice per group) were anesthetized i.p. with
xylazine (20 mg/kg)/ketamine (100 mg/kg) in 0.9% NaCl (100 �l/
10 g body weight). They were intracardially perfused without delay
with ice-cold isotonic saline. At the end of the perfusion the whole
brains were quickly dissected out and frozen. Total RNA was
prepared as described before (Arsenijevic et al., 1997). Northern
blot analyses were performed using the mouse UCP2 or glycer-
aldehyde 3-phosphate dehydrogenase (GAPDH) cDNA labeled
with 32P under standard conditions. A similar amount of total RNA
(20 �g) was used in every lane.

Cytokines and NGF levels in brain

We measured TNF�, IFN�, IL-10, IL-2 and NGF in the brain of
infected and non-infected mice subjected or not to ischemia (1 day
post-MCAO; n�6 mice per group). Brains were analyzed 1 day
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after ischemia since it is well established that cytokines return to
basal levels after this time point (Guegan et al., 1998). They were
aseptically removed, immediately placed in dry ice and then put in
CHAPS solution and homogenized (Arsenijevic et al., 2000a). The
supernatant was collected and frozen at �20 °C. TNF�, IFN�,
IL-10, and IL-2 were measured by using immunoassay kits from
Amersham (Switzerland) (Arsenijevic et al., 2006). An immunoas-
say kit was also used to determine NGF (Catalys, Switzerland)
(Arsenijevic et al., 2006).

SOD activity

We investigated SOD activity using a biochemical assay (1 day
post-MCAO; n�6 mice per group) (Ewing and Janero, 1995).
Brains were homogenized in phosphate-buffered saline and fro-
zen immediately in liquid nitrogen. Aliquots of brain supernatants
were processed as previously described (Ewing and Janero,
1995). Brain supernatants were added (25 �l) to a 125 �l solution
containing 50 mM phosphate buffer (pH 7.4, 0.1 mM EDTA, 50 �M
NBT, 78 �M NADH). To start the reaction, 25 �l of 3.3 �M PMS
phenazine methosulfate (Sigma) (final concentration) was added
and the absorbance at 560 nm was measured continuously using
a microplate reader (DynaTech MR5000). The readings were
every minute for 10 min. The first 5 min were used to determine
the rate of superoxide production by the samples.

GSH levels

Tissues were collected from infected (1, 3, 7, 14 and 28 days
post-infection) and non-infected control mice (n�6 mice per
group). The consequences of MCAO for brain GSH levels were
also determined in both types of mice 1 day post-ischemia (n�6
for each group). Tissues were homogenized in phosphate buffer
(50 mM, pH 7.4). Total GSH levels were measured using a
method based on the formation of a chromophoric product result-
ing from the reaction of 5,5=-dithiobis-(2-nitrobenzoic acid) (DTNB,
Sigma) and GSH (Sigma) (de Bilbao et al., 2004). The absorbance
was immediately measured at 412 nm. GSH contents were cal-
culated by using a calibration curve established with standard
samples.

To test whether elevated brain GSH levels in infected mice
1) were involved in the lack of cytokine induction 1 day after
MCAO and 2) may influence lesion size response after ischemia,
GSH was depleted by a s.c. injection of diethyl maleate (DEM)
(24 �l/ 30 g body weight and was made up to 300 �l with saline)
(Pileblad and Magnusson, 1990). To determine if DEM depleted
brain GSH, non-infected (n�3) and infected mice (n�3) were
treated with DEM and killed 2 h later and GSH in brain was
measured as described above. To determine whether GSH de-
pletion may alter TNF� and IFN� levels 1 day after MCAO, in-
fected (n�4) and non-infected mice (n�4) were treated with DEM,
underwent MCAO 2 h later and were killed 1 day post-ischemia.
Estimates of brain cytokine levels were obtained as described
above. For all experiments, mice treated with saline were used as
controls for the DEM groups.

Brains of 28-day infected mice (see Histology section) were
stained for GSH with the fluorescent histochemical dye phthaldi-
aldehyde (10 mM) and then processed for microglia immunohis-
tochemistry using the anti-Iba-1 antibody (1 mg/ml, from Dr. Y.
Imai, National Center of Neurology and Psychiatry, Japan) which
was detected by the fluorescent goat-anti-rabbit immunoglobulin
Alexa Fluor 568 (Molecular Probes) (de Bilbao et al., 2004). Since
we have previously shown that chronic toxoplasmosis results in an
increased brain expression of UCP2 mRNA which is specific for
microglia associated with inflammatory loci (Arsenijevic et al.,
2007), we also explored whether there was an association be-
tween GSH and UCP2 in this cell type. Mounted brain sections
were immunostained for GSH using rabbit polyclonal anti-GSH
(1/10 dilution provided by Prof. Ottersen, University of Oslo, Nor-

way) which was revealed by ABC kit peroxidase and subsequently
processed for in situ hybridization using a rat UCP2 probe (de
Bilbao et al., 2004).

Data analyses

All data are presented as means�S.E. Statistical analyses were
performed using Kruskal-Wallis non-parametric test. P values of
less than 0.05 were considered significant.

RESULTS

Physiological parameters before and after MCAO

Arterial pressure, plasma glucose and hematocrit levels

before and after MCAO on day 1 and day 4 were not

significantly different between non-infected and infected

mice at a given time point as shown in Table 1. After

MCAO, both non-infected and infected mice showed an

absence of cerebral blood flow in the infarct area.

Brain histology and SOCS-3 mRNA induction

in infected mice

Unlike non-infected mice, the brains of the infected mice

showed many randomly located inflammatory loci (includ-

ing neutrophils, macrophages/monocytes and lympho-

cytes) 28 days after infection. These loci were not colocal-

ized with intact Toxoplasma gondii cysts (Fig. 1A, B) and

also occurred around blood vessels, but not within the

vessels’ walls (Fig. 1C). There was no evidence of neuro-

nal apoptosis as determined by TUNEL labeling in these

mice (data not shown). In situ hybridization showed

SOCS-3 basal expression mainly in the hypothalamic re-

gion (Fig. 1D) (Lebel et al., 2000). Following infection,

SOCS-3 mRNA labeling was randomly induced throughout

the cerebral cortex as well as in areas associated with

brain immune cell infiltration and blood vessels (Fig. 1D).

This expression was associated with neurons, microglia

and infiltrating phagocytes as previously described (data

not shown) (Lebel et al., 2000).

Ischemic brain injury is reduced in Toxoplasma

gondii infected mice

One day, 4 days and 14 days after MCAO, infarct volume

was decreased by 42%, 50% and 48% respectively in

Table 1. Physiological parameters before and after MCAO in non-

infected and infected mice

Group and treatment 1 Day
before MCAO

D1 after
MCAO

D4 after
MCAO

Hematocrit (%)

Non-infected 42�4 44�5 45�5

Infected 48�4 50�4 51�4

Plasma glucose (mmol/L)

Non-infected 8.2�0.2 7.9�0.3 8.1�5

Infected 7.7�0.3 7.6�0.2 7.8�4

Arterial pressure (mm Hg)

Non-infected 94�8 96�8 95�5

Infected 105�12 98�9 101�6

Data are means�S.E.M. of 5 animals per group. See text for details.
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Toxoplasma gondii infected mice when compared with

non-infected control mice (P�0.01) (Fig. 1E, F), suggest-

ing that chronic infection with Toxoplasma gondii may

protect neocortical areas from ischemic damage.

Transient hyperphagia occurs early in Toxoplasma

gondii–infected mice in response to MCAO

On the day of lesion, MCAO resulted in a significant re-

duction of food intake in both infected and non-infected

control mice when compared with their pre-MCAO basal

food intakes (�26�0.5% and �39�0.7% respectively,

n�18, P�0.01). The day after ischemia, both non-infected

and infected mice started to regain appetite. From this time

point, infected mice increased food intake more rapidly

than the non-infected group (�3�0.2% and �28�2%,

respectively, n�18, P�0.01). Infected mice showed signif-

icantly enhanced hyperphagia on days 2 and 3 postisch-

emia compared with their non-operated controls (28�1.2%

and 1�0.2% respectively, n�18, P�0.01). Body weight

loss induced by ischemia followed a similar temporal pat-

tern to that of food intake indicating that Toxoplasma

gondii–infected mice had attenuated negative energy bal-

ance in response to MCAO.

Brain specific alterations in GSH levels

due to infection

There was a 45% decrease in brain GSH levels on day 7

postinfection when compared with non-infected control

Fig. 1. Brain histology, in situ hybridization for SOCS-3 mRNA expression and brain infarct size in Toxoplasma gondii infected mice. (A–C) Coronal

cross-sections of a Toxoplasma gondii–infected (for 28 days) mouse brain stained with hematoxylin and eosin (scale bar�15 �m). Note that infection

resulted in inflammatory loci found in brain tissue (A) (thin black arrow) and in association with blood vessels (B, C) (thin black arrows). Note also that

the presence of Toxoplasma cysts was not associated with inflammatory loci (B, thick arrow). (D) Representative in situ hybridization for SOCS-3

mRNA in non-infected control (Cont) and infected mice (Tox) brains (scale bar�120 �m). SOCS-3 mRNA basal expression was found in particular

in hypothalamic region. Twenty-eight days following infection, SOCS-3 mRNA expression was randomly located and induced throughout the brain of

infected mice in particular in the cortical area (Tox) (n�4 for each group). The right column shows a higher magnification of selected areas specific

for SOCS-3 mRNA expression in infected brains. SOCS-3 mRNA was associated with microglia/infiltrated immune cells (thick arrow) and blood

vessels (thin arrow). Cells are visualized with Thionin staining and SOCS-3 silver grains are black (scale bars�15 �m). (E, F) Effect of Toxoplasma

gondii infection on infarct size. (E) Representative coronal sections showing ischemic lesion size 4 days after MCAO in control (Cont MCAO) and

chronically infected mice (Tox MCAO). Sections were stained with Cresyl Violet. The surrounded areas denote the size of the ischemic area (scale

bars�120 �m). (F) Infarct brain volumes were reduced in infected mice (Tox) at 1, 4 and 14 days after MCAO compared with non-infected mice (Cont).
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mice (P�0.05). On day 14, as mice started to regain

appetite, there was a progressive increase in brain GSH

levels in infected mice (P�0.001) up to 28 days after

infection (P�0.001) (Fig. 2A). The increase in GSH in the

brains of 28-day infected mice was associated with a spe-

cific increase in microglia (Fig. 2B, C); only microglia with

elevated UCP2 mRNA levels showed GSH labeling (Fig.

2D, E). In non-infected control mice, MCAO resulted in

a 80% decrease of brain GSH levels (from 0.52�
0.02 nmol/mg tissue to 2.60�0.18 nmol/mg tissue)

(P�0.001) (Fig. 3A). Interestingly, this decrease due to

ischemia was only 11% in infected animals (from 4.60�
0.80–4.11�0.31 nmol/mg tissue) (P�0.01). In addition,

GSH brain content in infected animals having undergone

MCAO was significantly higher compared with non-in-

fected MCAO animals (P�0.001) (Fig. 3A). Chronically

underfed non-infected mice did not show altered brain

GSH levels compared with non-infected controls (2.47�
0.19 versus 2.60�0.07 nmol/mg tissue) (Fig. 3A) suggest-

ing that anorexia does not explain the increased brain GSH

levels in infected mice. Although 1 day after ischemia,

GSH levels were reduced in the chronically underfed non-

infected mice, this decrease was significantly less pro-

nounced compared with the non-infected control group

(P�0.01) (Fig. 3A). This was associated with a reduced

infarct size in the chronically underfed group compared

with the non-infected control group (15.0�0.9 mm3 and

19.3�1.1 mm3, respectively, n�6 mice, P�0.05). Al-

Brain GSH
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Fig. 2. Changes in brain GSH levels from day 1 to day 28 following murine Toxoplasma gondii infection. (A) Toxoplasmosis resulted in a slight

reduction in brain GSH levels on day 7. From day 14 to day 28 after infection, GSH was significantly increased in the brain of infected mice compared

with non-infected control mice (Cont). Values (nmol/mg tissue) are presented as mean�S.E. (* P�0.05, *** P�0.001, comparison to saline control).

Each group represents six mice. (B) GSH (fluorescent staining, white arrow) is specifically increased in microglia in infected mice (red, white arrow)

(C). Only microglia cells that have increased UCP2 mRNA (E, black arrow) show an increase in GSH (immunohistochemical detection, orange, black

arrow) (D). Scale bars�15 �m (B, C, D); 7.5 �m (E). For interpretation of the references to color in this figure legend, the reader is referred to the Web

version of this article.
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though a contributing effect cannot be excluded, the

underfeeding effect on reduced lesion size could not

totally explain the much greater reduction of infarct size

observed in the infected mice (10.2�0.4 mm3) (Fig. 1F)

(P�0.05).

Infection increases brain SOD activity

SOD activity (Fig. 3B) was higher in the brains of in-

fected mice (14.2�1.2 units/mg protein) compared with

non-infected mice (10.2�0.8 units/mg protein)

(P�0.01). This difference did not persist 1 day after

MCAO (Fig. 3B) as SOD activities were similarly in-

creased in both groups (17.2�1.5 and 15.1�1.1

units/mg protein respectively).

Upregulation of brain UCP2 mRNA levels in infected

mice after ischemia

Toxoplasmosis resulted in a 76% increase in brain UCP2/

GAPDH mRNA ratio compared with non-infected mice

(2.3�0.2 versus 1.3�0.1) (P�0.01) (Fig. 3C). One day post-

MCAO, there was a 62% increase in UCP2/GADPH mRNA

ratio in infected mice compared with MCAO non-infected

mice (3.4�0.2 versus 2.1�0.2) (P�0.001) (Fig. 3C).

Infection does not result in enhanced cytokine

levels after MCAO

Basal levels of proinflammatory cytokines (TNF�, IL-2,

IFN�) were increased in Toxoplasma gondii infected mice

on day 28 postinfection compared with non-infected con-

trols (P�0.001) (Table 2). One day post-MCAO, infected

mice had higher TNF�, IL-2 and IFN� levels compared

with MCAO non-infected animals (P�0.001). However,

these higher levels did not significantly differ from those

observed in infected mice not subjected to ischemia. This

sharply contrasts with the results obtained in non-infected

mice which showed a marked induction of cytokine levels

1 day post-MCAO compared with non-operated animals.

Infected mice also had significantly higher brain levels of

IL-10 and NGF compared with non-infected control mice

(P�0.001) (Table 2). NGF and IL-10 significantly in-

creased in non-infected mice that underwent MCAO

(P�0.001); this induction was not observed in infected

mice suggesting an attenuated immune response in the

brains of infected mice (Table 2). Following MCAO, NGF

levels in infected animals were doubled compared with

non-infected controls (P�0.001). This was not the case for

IL-10 suggesting that NGF may be a more important anti-

inflammatory agent in infected mice.

Fig. 3. Brain GSH, brain SOD activity and brain UCP2 mRNA expres-

sion. (A) One day after MCAO, we observed a reduction in brain GSH

levels in non-infected mice (Cont MCAO) compared with their non-

operated controls (Cont). After MCAO, brain levels of GSH in infected

mice were markedly elevated compared with non-infected animals

(Cont MCAO). Underfeeding (Ufc) results in no change in brain GSH

levels compared with control mice (Cont). One day after MCAO, GSH

level in underfed mice (Ufc MCAO) was reduced, however this reduc-

tion was less than that found in Cont MCAO mice. (B) Brain SOD

activity was increased during chronic infection (Tox) when compared

with non-infected animals (Cont). One day post-MCAO, SOD activities

were similarly increased in both groups compared with non-infected

controls (Cont). (C) Brain UCP2 mRNA expression was increased

following infection (Tox) compared with non-infected controls (Cont).

MCAO increased brain UCP2 mRNA levels in both infected and non-

infected mice, but levels were higher in the former group. Values are

presented as mean�S.E. for the various groups. Each group repre-

sents six mice. * Indicates the statistical comparison with non-infected

controls (Cont), a indicates the statistical comparison between Tox and

Ufc mice, b indicates the statistical comparison between Tox MCAO

and Cont MCAO mice, c indicates the statistical comparison between

Tox and Tox MCAO mice, & indicates comparison between Cont

MCAO and Ufc MCAO (* P�0.05, *** P�0.001, ** P�0.01,

*** P�0.001, a P�0.001, b P�0.001, c P�0.05, & P�0.01).

Table 2. Basal and one day post-MCAO levels of brain TNF�, IFN�,

IL-2, IL-10 and NGF in non-infected and infected mice

Cont Cont MCAO Tox Tox MCAO

TNF� pg/ml 100�4 800�12*** 993�51*** 1093�50a

IFN� pg/ml 25�2 175�4*** 330�8*** 358�9a

IL-2 pg/ml 44�2 750�23*** 1622�64*** 1804�61a

IL-10 pg/ml 24�2 492�38*** 504�40*** 560�19

NGF pg/ml 40�3 300�12*** 600�22*** 624�20a

Values (pg/ml tissue) are presented as mean�S.E.

* Indicates statistical comparison with non-infected animals (Cont)

(*** P�0.001). Each group included six mice. See text for details.
a Indicates statistical comparison between Tox MCAO and Cont

MCAO mice (a P � 0.001). Each group included six mice. See text for

details.
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Depletion of brain GSH by DEM reversed neuroprotec-

tion by increasing lesion size and central IFN� levels after

MCAO in infected mice.

Brain GSH levels in both non-infected and infected

mice were markedly decreased 2 h after an s.c. injection of

DEM as seen in Fig. 4A. One day after ischemia (Fig. 4B),

brain GSH levels were further reduced by DEM when

compared with non-treated MCAO groups. This reduction

was associated with an increased lesion size in infected

mice when compared with infected mice not treated with

DEM (22.2�1.7 mm3 versus 12.8�0.5 mm3, n�6 per

group, P�0.01). Non-infected mice also showed an in-

crease in lesion size when treated with DEM (15.8�
1.5 mm3 for saline versus 20.3�1.0 mm3 for DEM, n�6

per group, P�0.05). After ischemia, DEM treatment re-

sulted in induction of central IFN� levels but not TNF� in

both types of mice (Fig. 4C, D). Note that, consistent with

the known transitory effect of DEM on GSH levels (Gupta

et al., 2000), GSH returned to basal levels 24 h after DEM

treatment in the absence of ischemic damage in both

infected and non-infected mice (Fig. 4C, D).

DISCUSSION

This study revealed a marked resistance of Toxoplasma

gondii–infected mice to acute cerebral ischemia character-

ized by a marked decrease of infarct size one, and 4 but

also 14 days post-MCAO. The reverse effect of DEM on

brain infarct size implies that GSH up-regulation may play

a pivotal role in the observed ischemic resistance. Our

results make it also possible to propose additional biolog-

ical mechanisms surrounding this phenomenon, such as

marked differences in pre- and/or post-ischemic cytokine

status as well as pre- and/or post-ischemic GSH, SOCS-3

mRNA and UCP2 mRNA levels in infected compared with

non-infected mice.

Following the acute phase of toxoplasmosis, the ini-

tially produced pro-inflammatory cytokines will subse-

quently induce a counter-regulatory anti-inflammatory re-

sponse (Arsenijevic et al., 1997). During the chronic phase

of infection, apart from the role that the adaptive specific

immune systems (CD4, CD8 T cell activation) could play,

the consequence of a second inflammation caused by

Fig. 4. GSH, TNF� and IFN� were measured in non-infected and infected mice after ischemia; 2 h prior to MCAO, mice were treated with DEM (or

saline). (A) DEM significantly reduced brain GSH in non-infected and infected mice 2 h after treatment. (B) Twenty-four hours after ischemia, DEM

significantly reduced brain GSH levels in infected and non-infected mice. Note that, consistent with the known transitory effect of DEM on GSH levels

(Gupta et al., 2000), GSH returned to basal levels 24 h after DEM treatment in the absence of ischemic damage in both infected and non-infected mice.

(C, D) DEM did not significantly alter brain TNF� (C) but significantly increased brain IFN� levels (D) 24 h after ischemia. Data are means�S.E. of

three to five animals per group. * P�0.001, comparison with saline controls; a P�0.001, comparison with MCAO controls.

7

ht
tp

://
do

c.
re

ro
.c

h



cerebral ischemia may be determined by the balance be-

tween these two antagonistic systems. The basal up-reg-

ulation of antioxidant molecules such as GSH, SOD,

UCP2, SOCS-3 mRNA and anti-inflammatory cytokines

NGF and IL-10 may represent the two first lines of defense

against ischemic damage in infected mice. One could pos-

tulate that the observed changes in redox status may be a

simple epiphenomenon of the underfeeding observed in

the chronically infected mice. In fact, it has been shown

that underfeeding may result in protection from cerebral

injury by modifying redox status (Yu and Mattson, 1999).

Our findings show that both the steady increase of brain

GSH levels by day 7 to day 28 post-infection as well as the

brain resistance to ischemia are specific to Toxoplasma

gondii infection and did not depend on energy intake.

Actually, although we did find that post-ischemic GSH was

partially dependent on energy intake, this component rep-

resented only 13% of the post-ischemic GSH levels of

infected mice. We also show that energy intake does in-

fluence lesion size, but alone cannot account for the de-

gree of resistance observed in infected animals. A possible

causal relationship between redox status and cytokine

production has been previously suggested in that in-

creased basal GSH levels and SOD activity may result

from high NGF levels (Guegan et al., 1998, 1999; de

Bilbao et al., 2004; Arsenijevic et al., 2006). Consistent

with their possible role in neuroprotection (Guegan et al.,

1999; Mattiasson et al., 2003), the differences in GSH,

UCP2 mRNA and NGF levels persisted between infected

and non-infected mice after MCAO. In the absence of a

specific antibody for brain UCP2, it was not possible to

assess the impact of UCP2 mRNA changes on protein

levels. However, previous data using UCP2 transgenic and

UCP2 KO mice have shown that UCP2 plays a central role

in brain neuroprotection following ischemia (Mattiasson et

al., 2003; de Bilbao et al., 2004).

An additional molecular mechanism involved in this

context may involve the absence of pro-inflammatory cy-

tokine induction observed in infected mice after ischemia.

This phenomenon could be partly due to the already ele-

vated basal levels of these cytokines in the brains of these

mice (i.e. counter-regulatory mechanisms). Although one

could argue that this finding might reflect the presence of a

threshold in cytokine levels reached in Toxoplasma-in-

fected mice, this is an unlikely scenario since we have

previously demonstrated that an i.p. injection of LPS led to

a marked upregulation of pro-inflammatory cytokines in

these mice (Arsenijevic et al., 1998). Importantly, infected

mice showed feeding behavior concordant with the relative

stunting of brain cytokine response after ischemia. In fact,

transient hyperphagia started earlier in infected mice com-

pared with non-infected mice after MCAO. This is consis-

tent with the attenuated post-ischemic induction of anorec-

tic cytokines (TNF�, IFN�) in the brain.

In agreement with previous contributions, our data sug-

gest that both SOCS-3 and GSH are plausible candidate

molecules for the regulation of secondary inflammatory

response and cytokine production in Toxoplasma gondii–

infected mice (Bjorkbaek et al., 1999; Auerhammer and

Melmed, 2001; Park et al., 2003). The absence of pro-

inflammatory cytokine induction could be partly due to the

parallel elevation of the SOCS-3 mRNA after infection. The

SOCS-3 is a potent inhibitor of cytokine signaling and its

transgenic over-expression may inhibit inflammation and

associated apoptosis in vivo (Auerhammer and Melmed,

2001; Jo et al., 2005). Accordingly, although infected mice

had elevated basal pro-inflammatory cytokine levels (i.e.

TNF�, IFN� and IL-2) (Eizenberg et al., 1995; Bate et al.,

2006; Lee et al., 2006; Yu et al., 2006), there was no

evidence of neuronal apoptosis in their brain tissue. A key

role for GSH is suggested by the fact that the decreased

infarct size in MCAO mice chronically infected is no longer

observed when brain GSH levels have been depleted by

DEM treatment. This phenomenon was specifically asso-

ciated with the central up-regulation of pro-inflammatory

IFN� but not TNF� in response to MCAO. Previous studies

have also shown that DEM may not have a marked effect

on TNF induction in response to an inflammatory response

(Kang et al., 1999; Wang et al., 1999). Further work is

needed to get a better understanding of the complex inter-

actions of molecules regulating the inflammatory response

in this context. As recently proposed, the observed ele-

vated basal SOCS-3 and GSH levels could act synergisti-

cally as GSH can interact in SOCS-3 pathways to inhibit

cytokines (Cisowski et al., 2002).

Besides its direct effect against oxidative stress, GSH

may also act via the suppression of glia-mediated inflam-

mation (Wang et al., 2006). In the same line with this idea,

our contributions have shown that both UCP2 and SOCS-3

mRNA levels in brains infected with Toxoplasma gondii

were elevated in microglia (Arsenijevic et al., 2007a). Al-

though we cannot exclude a possible participation of infil-

trated leukocytes, our evidence suggests that GSH, UCP2

and SOCS-3 may attenuate ischemic injury in infected

mice by modifying microglia activity.

Despite a widely disseminated idea, only rare stud-

ies have shown that pre-existing infections can enhance

brain pathology in response to a subsequent new inflam-

matory process (Arsenijevic et al., 1998). In contrast,

several studies have shown that chronic infection can

attenuate some peripheral and central pathological pro-

cesses: complete Freund’s adjuvant prevents the onset

of experimental allergic encephalomyelitis (Bach, 2001),

schistosomiasis can protect against asthma (Yang et al.,

2007), coxsackievirus B3 can inhibit cardiomyopathy (Hu-

ber et al., 2006) and various infections can attenuate mu-

rine models of multiple sclerosis (Sewell et al., 2002). In

some conditions, a pre-existing inflammation can induce

brain neurodegeneration. This is the case for the acute

peripheral and/or central injection of LPS (Nguyen et al.,

2004; Cunningham et al., 2005; McColl et al., 2007; Qin et

al., 2007; Spencer et al., 2007). However, it appears that

the LPS dose used in these models may be a determinant

in the observed degeneration. In fact, although high LPS

doses may increase cytokines and oxidative stress, low

doses of peripheral LPS have a neuroprotective effect

(Bordet et al., 2000). This is consistent with our recent

study in which we observed an increase in brain NGF and
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GSH levels 3 days after peripheral LPS treatment (Ar-

senijevic et al., 2007b; Hernadfalvi et al., 2007). In this

context, the present study provides a new model to

explore the effect of a pre-existing chronic inflammatory

status on the outcome of brain ischemic insult. Since

each bacterium or parasite produces different cytokine

and leukocyte activation profiles and, ultimately, pat-

terns of neurodegeneration, it is crucial to investigate

the molecular mechanisms surrounding the beneficial or

deleterious effect of various models of chronic inflam-

mation on cerebral ischemia.

CONCLUSION

This study revealed a marked resistance of Toxoplasma

gondii–infected mice to acute cerebral ischemia that is

characterized by a decreased lesion size 1 day, 4 days and

14 days post-MCAO. Marked differences in pre- and/or

post-ischemic cytokines and antioxidant molecules could

explain this phenomenon. In addition, our findings imply

that GSH may play a pivotal role in these processes since

pharmacological depletion of GSH resulted in increased

lesion size and increased brain IFN� levels. Functional

neurological data could be useful to confirm further the

protective effect of Toxoplasma gondii infection on the

outcome of cerebral ischemia.
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