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Abstract

We consider the Hermite trigonometric interpolation problem of order 1 for equidistant nodes, i.e., the problem of finding a
trigonometric polynomial t that interpolates the values of a function and of its derivative at equidistant points. We give a formula
for the Fourier coefficients of t in terms of those of the two classical trigonometric polynomials interpolating the values and those of
the derivative separately. This formula yields the coefficients with a single FFT. It also gives an aliasing formula for the error in the
coefficients which, on its turn, yields error bounds and convergence results for differentiable as well as analytic functions. We then
consider the Lagrangian formula and eliminate the unstable factor by switching to the barycentric formula. We also give simplified
formulae for even and odd functions, as well as consequent formulae for Hermite interpolation between Chebyshev points.

Keywords: Hermite trigonometric interpolation; Discrete Fourier transform; Aliasing formula; Error bounds; Barycentric formula; Chebyshev
points

1. Introduction

We consider the determination of the trigonometric polynomial interpolating given values at equidistant nodes and
such that its derivative also takes prescribed values at those same points. More precisely, the real Hermite trigonomet-
ric interpolation problem of order 1 for equidistant nodes consists in finding a trigonometric polynomial of degree at
most N , say

t (φ) = a0

2
+

N∑
n=1

(an cosnφ + bn sinnφ) =
N∑

n=−N

dne
inφ, an, bn ∈ R, dn ∈ C, (1.1)
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which fulfills the 2N interpolation conditions

t (φk) = fk, t ′(φk) = dt

dφ
(φk) = f ′

k, φk = k
2π

N
, k = 0, . . . ,N − 1, (1.2)

where the fk and f ′
k are given real numbers which may, but need not, be values and derivatives of a function f .

Salzer [21] has already given Lagrangian and barycentric formulae for arbitrary interpolation points and problems
of arbitrarily high order (i.e., problems where higher order derivatives are also prescribed). Kress [16] has derived
Lagrangian as well as remainder formulae and asymptotic convergence results for the most important case of an even
number N of equidistant points. Several other authors have addressed such Hermite problems, even for arbitrary
points; they were however mostly interested in existence questions [7,14], convergence results [15,20] and formulae
other than Lagrange’s [18].

In the present work, we give a formula for the Fourier coefficients of the Hermite trigonometric interpolating poly-
nomial (1.1) with aN = 0 in terms of those of the two polynomials interpolating the fk and the f ′

k separately. At least
when one may choose N as a power of two, this formula yields the coefficients in O(N logN) operations. It also gives
an aliasing formula for the error in the coefficients. As in classical (i.e., “non-Hermite”) trigonometric interpolation,
we deduce from this formula error bounds and convergence results for differentiable as well as analytic f ’s.

We then consider the Lagrangian formula for the interpolating polynomial. As noticed by Henrici [10], a factor in
front of the formula is unstable in the vicinity of multiples of π . To eliminate this factor, we switch to the barycentric
formula. We also give simplified formulae for even and odd functions, as well as consequent formulae for Hermite
interpolation between Chebyshev points on [−1,1]. We conclude with numerical examples.

2. Classical equidistant trigonometric interpolation

Trigonometric interpolation between equidistant nodes is a well-known efficient means of approximating a smooth
real or complex periodic function f . Indeed, in contrast with piecewise interpolants, its speed of convergence with
an increasing number of points is limited only by the degree of smoothness of f , not by that of the approximant (see
Theorem 2.5 below). We will now recall results we shall need and extend to the Hermite case in subsequent sections.
To fix ideas, let f be defined on the whole real line and L-periodic (or defined on the circle R/L). For simplicity of
the formulae we will take L = 2π and the equidistant interpolation points (nodes) as φk = k 2π

N
, k = 0,1, . . . ,N − 1.

We introduce the notation M := [N/2], so that N = 2M or N = 2M + 1.
Upon choosing bM = 0 for N even, there is a unique trigonometric polynomial of least degree

tf (φ) = a0

2
+

M∑
n=1

(an cosnφ + bn sinnφ) (2.1)

interpolating between the φk’s, i.e., with t (φk) = fk := f (φk). Its complex form is

tf (φ) =
M∑

n=−M

′′
cne

inφ, (2.2)

where the double prime means that the terms with |n| = M should be halved when N is even. The formulae for passing
from the complex to the real form (2.1) are

an = cn + c−n, bn = i(cn − c−n) (2.3a)

and

cn = an − ibn

2
, c−n = an + ibn

2
(2.3b)

(b0 = 0; the factor 1
2 in front of a0 in (2.1) is there for the relation (2.3b) to also hold for n = 0). The operator which

to the N -vector of the values fk associates the N -vector of the coefficients [c0, c1, . . . , cN−1]T is the discrete Fourier
transform (DFT) [6]. It is given by the formula [11, p. 335]

cn = 1

N

N−1∑
k=0

fkw
−kn
N , wN := e

2πi
N , (2.4)
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and its inverse by fk = ∑N−1
n=0 cnw

kn
N . The cn are easily seen to be N -periodic, and one usually computes them

as c0, . . . , cN−1. The direct computation of a cn requires O(N) flops, the DFT thus O(N2) flops and so does the
evaluation of t at one φ according to (2.1). In particular when one may choose N as a very composite number,
N = 2�, � ∈ N, for the best, then the fast Fourier transform (FFT) computes all cn asymptotically in O(N logN)

flops. However, that much overhead slows down the practical computation that the FFT becomes faster than direct
evaluation only for N relatively large. For N small or when it cannot be chosen, the Lagrangian approach is often
faster.

What about the approximation error t (φ) − f (φ)? One way of studying it is to first consider the error when
approximating Cn, the true nth Fourier coefficient of f , with cn, and then to use results about that error for estimating
t − f . When f ∈ L2[0,2π] it may be written as its Fourier series

f =
∞∑

n=−∞
Cne

inφ, Cn = 1

2π

2π∫
0

f (φ)e−inφ dφ. (2.5)

If f is real, C−n = C̄n and c−n = c̄n. When the Fourier series of f converges at all φk , the error in cn is given in terms
of the Cm by the remarkable aliasing formula ([11, p. 354], [17])

cn − Cn =
∞∑

�=−∞
��=0

Cn+�N , (2.6)

which expresses that the error is the smaller the faster the decay of the Cn as n → ∞. This decay is correlated with the
smoothness of f , as recalled in the following two theorems. Since we work with periodic functions, we shall assume
that, whenever f (�) is considered, f as well as its � − 1 first derivatives are continuous on R. The most natural class
of functions to consider seems to be those (with a derivative) of bounded variation [19, p. 7].

Theorem 2.1. Let f (p), p ∈ N ∪ {0}, be of bounded variation on [0,2π] and let Vp(a, b) denote the variation of f (p)

on [a, b]. Then

|Cn| � Vp(0,2π)

|n|p+1
. (2.7)

Proof. Integrating Cn from (2.5) p times by parts and using the continuity of f (�) on R, � = 0, . . . , p −1, one obtains
Cn = 1

2π
1

(in)p

∫ 2π

0 f (p)(φ)e−inφ dφ. Then consider the equidistant abscissae φk := k 2π
|n| and the step function g defined

as g(φ) := f (p)(φk) on [φk−1, φk). One easily checks that
∫ 2π

0 g(φ)e−inφ dφ = 0 and consequently

|Cn| � 1

2π

1

|n|p
n∑

k=1

φk∫
φk−1

∣∣f (p)(φ) − f (p)(φk)
∣∣dφ.

But |f (p)(φ) − f (p)(φk)| � Vp(φk−1, φk) ∀φ ∈ [φk−1, φk) and therefore |Cn| � 1
2π

1
|n|p

∑n
k=1 Vp(φk−1, φk)

2π
|n| . The

theorem follows from the additivity of the variation over intervals. �
Theorem 2.2. Let f be analytic in the strip | Im z| � θ , where θ > 0. Then

|Cn| � μe−|n|θ .

Proof. See [12, p. 20], where the period 1 adds a factor 2π to the exponent. �
Inserting into the aliasing formula and summing over � as in [11, p. 356], [6], one obtains estimates for the error

committed when replacing Cn by cn.

Theorem 2.3. Let f (p), p ∈ N, be of bounded variation and N = 2M or N = 2M + 1. Then

|cn − Cn| =O(
M−(p+1)

)
, |n| � M.
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Theorem 2.4. Let f be analytic in the strip | Im z| � θ , where θ > 0. Then

|cn − Cn| � 2μ cosh(nθ)
e−Nθ

1 − e−Nθ
, |n| � M.

Also the error tf − f may be expressed by means of the aliasing formula

tf (φ) − f (φ) =
∞∑

�=−∞

[(
1 − ei�Nφ

) M∑
n=−M

′′
Cn+�Neinτ

]
.

Estimating the sums yields the following results.

Theorem 2.5. If the Fourier series of f converges absolutely and if N = 2M or N = 2M + 1 then∣∣tf (φ) − f (φ)
∣∣ � 2

∑
|n|�M

′′|Cn|.

Theorem 2.6. Let f (p), p ∈ N, be of bounded variation Vp := Vp(0,2π) and let N = 2M or N = 2M + 1. Then

∣∣tf (φ) − f (φ)
∣∣ � 2Vp

Mp

(
1

M
+ 2

p

)
=O(

M−p
)
.

Theorem 2.7. Let f be analytic in the strip | Im z| � θ , where θ > 0. Then∣∣tf (φ) − f (φ)
∣∣ � 4μ

1 − e−θ
e−Mθ .

The convergence is therefore algebraic—i.e., the error decreases polynomially as a function of N—for differen-
tiable f ’s and is even exponential for analytic f ’s. Theorem 2.5 may be found in [12, p. 46], Theorems 2.6 and 2.7
essentially in [11, p. 365].

Besides the Fourier approach there is also the Lagrangian, “physical” space approach to the same interpolant.
Indeed, tf may be written directly in terms of the fk as

tf (φ) = 1

N
sin

Nφ

2

N−1∑
k=0

(−1)k cst
φ − φk

2
fk, (2.8)

where we have used the notation

cstφ :=
{

cotφ = [tanφ]−1, N even,

cstφ = [sinφ]−1, N odd,

introduced in [3]. Equation (2.8) is attributed to de la Vallée Poussin in [24, p. 55]; a Lagrangian proof is given in [10].
Equation (2.8) is efficient in terms of complexity, but the factor sin Nφ

2 is ill-conditioned in the vicinity of the nodes for
large N . Gautschi has recently suggested to cure the problem in the more general case of sinc-interpolation by making
the factor in front of the sum depend on φ [9]. This dependence is often unpractical; moreover, in the trigonometric
case the cst in (2.8) is the most expensive part of the computation and so the barycentric formula, which eliminates
the factor without introducing a parameter depending on φ, seems preferable. It consists in writing (2.8) also for the
function 1 and dividing the two formulae to get [10]

tf (φ) =
∑N−1

k=0 (−1)k cst φ−φk

2 fk∑N−1
k=0 (−1)k cst φ−φk

2

. (2.9)

Functions that are even with respect to the center of the interval of interpolation are important in practice. For them
c−n = cn, an = cn, bn = 0, Cn ∈ R and

tf (φ) = a0

2
+

M∑
n=1

an cosnφ;

4
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the barycentric formula reads [2]

tf (φ) =
∑M

k=0
(−1)kδkηk

cosφ−cosφk
fk∑M

k=0
(−1)kδkηk

cosφ−cosφk

, δk :=
{

1/2, φk = 0 or φk = π,

1, otherwise,
ηk :=

{
1, N even,

cos φk

2 , N odd.

A very important use of even trigonometric interpolation is classical polynomial interpolation between Chebyshev
points. Its barycentric formulae are obtained from those just shown by replacing cosφ by x, which transforms the
cosnφ into Chebyshev polynomials and the equidistant points φk on the circle into Chebyshev points xk = cosφk .
The case of the Chebyshev points of the second kind is the basic tool of the chebfun-system [1].

3. A formula for the coefficients of the Hermite interpolant

The conditions (1.2) form 2N equations, while a polynomial of degree at most N as in (1.1) contains 2N + 1
parameters. For a reason that will become clear later on, we now write it as

t (φ) =
N∑

n=−N

′′
dne

inφ = a0

2
+

N−1∑
n=1

(an cosnφ + bn sinnφ) + 1

2
(aN cosNφ + bN sinNφ) (3.1)

with the relations (2.3) between the dk and the ak and bk . The double prime means that the terms with |n| = N are to
be halved. The conditions (1.2) read

N∑
j=−N

′′
djw

jk
N w

jk
N = fk,

N∑
j=−N

′′
indnw

nk
N = f ′

k,

with wN as in (2.4). Changing the summation index to j and taking linear combinations with coefficients 1
N

w−kn
N , we

obtain
N∑

j=−N

′′
dj

(
1

N

N−1∑
k=0

w
k(j−n)
N

)
= cn,

N∑
j=−N

′′
ijdj

(
1

N

N−1∑
k=0

w
k(j−n)
N

)
= c′

n, (3.2)

where we have used (2.4) to introduce the coefficients cn, respectively c′
n, of the classical trigonometric polynomials

tf and tf ′ interpolating the fk , respectively f ′
k . Taking into account that

N−1∑
k=0

wk�
N =

{
N, � ≡ 0 mod N,

0, otherwise,

one obtains from (3.2) for n = 0 or n = N

d−N

2
+ d0 + dN

2
= c0, (3.3a)

−iN
d−N

2
+ iN

dN

2
= c′

0 (3.3b)

and for n = 1, . . . ,N − 1

dn−N + dn = cn, (3.3c)

i(n − N)dn−N + indn = c′
n. (3.3d)

At this point one may distinguish two cases, depending on c′
0. In the generic case c′

0 �= 0, (3.3b) implies d−N �= dN

and bN �= 0 by (2.3). In order to have 2N coefficients in (3.1), we will choose aN = 0.
In the special case c′

0 = 0 (which applies when tf ′ = t ′f ), (3.3b) implies d−N = dN and bN = 0. Then, by (3.3a),
d0 − c0 = −dN , and it seems natural in view of the decay of the coefficients to restrict ourselves to d0 = c0, thus
d−N = dN = 0 and aN = 0 as in the generic case. So we finally consider in all cases

t (φ) = a0

2
+

N−1∑
n=1

(an cosnφ + bn sinnφ) + bN

2
sinNφ (3.4)
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with bN = 0 iff c′
0 = 0. (This corresponds to Kress’s choice in [16].) In analogy with the classical case [11], we will

call (3.4) a balanced Hermite trigonometric polynomial of degree at most N . Solving (3.3) for the dn, we obtain the
following formulae for the coefficients of t as functions of those of tf and tf ′ :

d0 = c0,

dn = (1 − n
N

)cn − i
N

c′
n

dn−N = n
N

cn + i
N

c′
n

}
n = 1, . . . ,N − 1,

dN = − i

N
c′

0, d−N = i

N
c′

0 (= −dN). (3.5)

These formulae hold if (3.4) is the interpolant, which is therefore unique if it exists. And it is easily shown that (3.4)
with dn as in (3.5) satisfies the interpolation conditions (1.2).

Theorem 3.1. Let {cn} and {c′
n} be the DFT of the values {fk}N−1

k=0 , respectively {f ′
k}N−1

k=0 . Then there exists a unique
trigonometric polynomial (3.4) satisfying the interpolation conditions (1.2) and its coefficients are given by (3.5). One
has bN = 0 iff c′

0 = 0.

The operator which to f ∈ C1[0,2π] associates its equidistant Hermite trigonometric interpolant (3.4) is therefore
a projection.

Obtaining the Fourier coefficients requires two DFTs of size N to get {cn} and {c′
n}, plus about two flops per

coefficient dn. As the fk and f ′
k are real, one may compute both {cn} and {c′

n} with a single complex FFT of size N ,
which is more efficient than the double call of a real DFT of length N , each calculated by means of a complex DFT
of length N/2 and some overhead ([11, p. 337], [6, p. 129]).

Replacing n − N by k in the third equation of (3.5), one obtains

dk =
(

1 + k

N

)
ck+N + i

N
c′
k+N, k = −N + 1, . . . ,−1,

which in view of the N -periodicity of the sequences {cn} and {c′
n} reads

dn =
(

1 + n

N

)
cn + i

N
c′
n.

For the same reason, c′
0 = c′

N and (3.5) may be written for all n as

dn =
(

1 − sign(n)
n

N

)
cn − i sign(n)

c′
n

N
, n = −N, . . . ,N, (3.6)

with

sign(n) =
{1, n > 0,

0, n = 0,

−1, n < 0.

It is to be able to write this global formula that we equipped bN with a factor 1
2 in (3.1).

One of the referees has kindly noticed that (3.6) may be considered as a replacement for the non-existing discrete
Fourier transform for Hermite interpolation.

Equation (3.6) shows that d−n = d̄n. Moreover, as N → ∞, dn → cn and, since cn → Cn under suitable conditions
on f (e.g., f of bounded variation), the Fourier coefficients (FC) of t tend toward the true FC of f . On the other hand,
the dn are not periodic in general, so that we will not assign them a value for |n| > N .

The presence of sign(n) as a factor of the FC in (3.6) brings the conjugation operator or Hilbert transform (on
the circle) into play. This operator maps the function f ∈ L2 with FC {cn} to the function Kf ∈ L2 with coefficients
{−i sign(n)cn} [12]. Rewriting (3.6) as

dn = cn − i sign(n)

N
[c′

n − incn], n = −N, . . . ,N, (3.7)

and noticing that {incn} are the FC of the derivative of the trigonometric polynomial with the extended coefficients
{cn}Nn=−N ∈ R2N+1, we obtain the following result.
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Theorem 3.2. The balanced Hermite trigonometric polynomial t of degree at most N (3.4) satisfying the interpolation
conditions (1.2) is given by

t = t̃f + 1

N
K[t̃f ′ − t̃ ′f ], (3.8)

where t̃f and t̃f ′ are the trigonometric polynomials

t̃f =
N∑

n=−N

′′
cne

inτ = tf (φ) +
M∑

n=0

′′{
cne

i(n−N)φ + c−ne
−i(n−N)φ

}
,

t̃f ′ =
N∑

n=−N

′′
c′
ne

inτ = tf ′(φ) +
M∑

n=0

′′{
c′
ne

i(n−N)φ + c′−ne
−i(n−N)φ

}
and where K is the conjugation operator in L2.

Since Kg = 0 iff g is a constant, (3.8) shows that t = tf iff t̃f ′ − t̃ ′f = c for some additive constant c. This is e.g. the
case when the fk are the values of a classical balanced trigonometric polynomial of degree at most M (cn = c′

n = 0
for |n| > M). One thus cannot improve upon tf by computing the f ′

k as the values of its derivatives.

4. The aliasing formula

We will now assume that {fk} and {f ′
k} are the values of a function f ∈ H 1

p , the Sobolev space of all 2π -periodic
functions whose derivative also belongs to L2[0,2π], so that its Fourier series (2.5) converges uniformly [22, p. 82]
and that of f ′ is given by termwise differentiation, i.e.,

f ′ =
∞∑

n=−∞
inCne

inτ .

If the series converges at the φk , then the aliasing formula (2.6) also holds for f ′

c′
n =

∞∑
�=−∞

i(n + �N)Cn+�N .

Inserting with (2.6) into (3.7), we obtain

dn =
∞∑

�=−∞
Cn+�N − i

sign(n)

N

[ ∞∑
�=−∞

i(n + �N)Cn+�N − in

∞∑
�=−∞

Cn+�N

]

which gives the following result.

Theorem 4.1. Let {fk}N−1
k=0 and {f ′

k}N−1
k=0 be the values of f , respectively f ′, at the equidistant nodes φk in (1.2) and let

f = ∑∞
n=−∞ Cne

inφ ∈ H 1
p . If the Fourier series of f ′ converges at the φk , then the nth coefficient dn in the equidistant

Hermite trigonometric interpolating polynomial (3.4) satisfies the aliasing formula

dn =
∞∑

�=−∞

(
1 + sign(n)�

)
Cn+�N , n = −N, . . . ,N. (4.1)

One has in particular the simple cases

d0 =
∞∑

�=−∞
C�N, dN =

∞∑
�=−∞

(1 + �)C(1+�)N =
∞∑

�=−∞
�C�N, d−N = −dN .

Using (2.3a), we also obtain aliasing formulae for the an and bn. For instance, for n �= 0,
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an = dn + d−n =
∞∑

�=−∞

[
(1 + �)Cn+�N + (1 − �)C−n+�N

]

=
∞∑

�=−∞

[
(1 + �)Cn+�N + (1 + �)C−n−�N

] =
∞∑

�=−∞
(1 + �)An+�N ,

where the An are the (true) FC in the real form of the Fourier series of f . This yields the simple formulae

a0 =
∞∑

�=−∞
A�N, an =

∞∑
�=−∞

(1 + �)An+�N , n �= 0, aN =
∞∑

�=−∞
�A�N (4.2)

and the same for the bn. These formulae show that the Hermite trigonometric interpolant conserves parity: as the Bn

(An) vanish for f ∈ R even (odd), so do the bn (an).
Notice that (4.2) is also the aliasing formula for the interpolant of even functions and for Hermite Chebyshev

interpolation (see Section 8 below).

5. Convergence results derived from the aliasing formula

We can now insert the decay estimates of Section 2 into (4.1) to obtain upper bounds for the approximation error
t − f .

5.1. Bounds for the coefficients

We start with a bound for the error in the Fourier coefficients dn: (4.1) yields for every n, |n| � N ,

dn − Cn =
∑
� �=0

(
1 + sign(n)�

)
Cn+�N =

∑
�>0

(
1 − sign(n)�

)
Cn−�N +

∑
�>0

(
1 + sign(n)�

)
Cn+�N .

In view of |C−n| = |Cn| ∀n, when the Cn decrease rapidly enough for the series to converge, one obtains by checking
the cases n > 0 and n < 0 separately

|dn − Cn| �
∞∑

�=2

(� − 1)|C�N−|n|| +
∞∑

�=1

(� + 1)|C�N+|n||, |n| � N, (5.1)

a bound that does not depend on the sign of n. It therefore suffices to consider positive n. Notice that no absolute value
of a C-index is less than N , and that the bound holds for all |n| � N , as compared with |n| � M for the classical case.

5.1.1. f smooth
Let us now assume that f (p) is of bounded variation Vp := Vp(0,2π), p � 2. Inserting (2.7) into (5.1) yields

|dn − Cn| � Vp

{ ∞∑
�=2

� − 1

(�N − n)p+1
+

∞∑
�=1

� + 1

(�N + n)p+1

}

= Vp

Np+1

{ ∞∑
�=2

� − 1

(� − n
N

)p+1
+

∞∑
�=1

� + 1

(� + n
N

)p+1

}

� Vp

Np+1

{ ∞∑
�=2

� − n
N

(� − n
N

)p+1
+

∞∑
�=1

� + n
N

+ 1 − n
N

(� + n
N

)p+1

}

� Vp

Np+1

{ ∞∑
�=2

1

(� − n
N

)p
+

∞∑
�=1

1

(� + n
N

)p
+

∞∑
�=1

1

(� + n
N

)p+1

}
.
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As in [11], we may now bound the series by integrals which may be evaluated to yield, for |n| � N ,

|dn − Cn| � Vp

Np+1

{
1

(p − 1)( 3
2 − n

N
)p−1

+ 1

(p − 1)( 1
2 + n

N
)p−1

+ 1

p( 1
2 + n

N
)p

}
.

The quantity in braces is bounded by

1

p − 1

(
2p−1 + 2p−1) + 1

p
2p = 2p

(
1

p
+ 1

p − 1

)
< 2p+1

and we have the following result.

Theorem 5.1. Let f (p) be of bounded variation Vp := Vp(0,2π), p � 2, and let N = 2M or N = 2M + 1. Then

|dn − Cn| � Vp

Mp+1
, |n| � N. (5.2)

A comparison with Theorem 2.3 shows that the bound on the error in dn now holds for |n| � N , not only for
|n| � M as in the classical case.

5.1.2. Functions analytic in a strip
As a second application of the aliasing formula we now assume that f is analytic (holomorphic) in the strip

| Imw| � θ . Then, by Theorem 2.2, |Cn| � μe−|n|θ . Inserting into (5.1) yields

|dn − Cn| � μ

( ∞∑
�=2

(� − 1)e−(�N−|n|)θ +
∞∑

�=1

(� + 1)e−(�N+|n|)θ
)

= μ

(
e|n|θ

∞∑
�=1

�e−(�+1)Nθ + e−|n|θ
∞∑

�=0

(� + 2)e−(�+1)Nθ

)

= μe−Nθ

[
e|n|θ

∞∑
�=0

�e−�Nθ + e−|n|θ
( ∞∑

�=0

�e−�Nθ + 2
∞∑

�=0

e−�Nθ

)]

and, using
∑∞

�=0 e−�Nθ = 1
1−e−Nθ and

∑∞
�=0 �e−�Nθ = (

∑∞
�=0 e−�Nθ )2 = 1

(1−e−Nθ )2 ,

|dn − Cn| � 2μe−Nθ

[
coshnθ

(1 − e−Nθ )2
+ e−|n|θ

1 − e−Nθ

]
, |n| � N. (5.3)

Theorem 5.2. If f (w) is analytic in the strip | Imw| � θ , then the coefficients dn of its balanced Hermite trigonometric
interpolating polynomial tend to those of f as given in (5.3): the convergence is O(e−Nθ ).

Again, the advantage with respect to classical trigonometric interpolation is that the bound holds for all |n| � N ,
not only for |n| � M .

5.2. Bounds for the approximation error

The aliasing formula (4.1) also yields bounds for t − f as a function of growing N . Equation (3.1) becomes
with (4.1)

t (φ) =
N∑

n=−N

′′
dne

inφ =
N∑

n=−N

′′
einφ

( ∞∑
�=−∞

(
1 + sign(n)�

)
Cn+�N

)
. (5.4)

Now assume that f ∈ H 1
p , so that its Fourier series (2.5) converges absolutely, and reorder the terms of the latter as

in (5.4)

f (φ) =
N∑

n=−N

′′ ∞∑
�=−∞

Cn+2�Nei(n+2�N)φ =
N∑

n=−N

′′
einφ

∞∑
�=−∞

Cn+2�Nei2�Nφ. (5.5)

9

ht
tp

://
do

c.
re

ro
.c

h



(Notice that the terms Cn+2�N are the same for n = −N and n = N , so that they both arise twice and “compensate”
the primes in the sum for N even.) Subtracting (5.4) yields

f (φ) − t (φ) =
N∑

n=−N

′′
einφ

∞∑
�=−∞

[
Cn+2�Nei2�Nφ − (

1 + sign(n)�
)
Cn+�N

]
.

The expression in brackets vanishes for � = 0, and this yields convergence. Taking absolute values, one gets as for (5.1)

∣∣t (φ) − f (φ)
∣∣ �

N∑
n=−N

′′ ∑
� �=0

|Cn+�N | +
N∑

n=−N

′′( ∞∑
�=2

|C�N−|n|| +
∞∑

�=1

(� + 1)|C�N+|n||
)

.

As in the classical case, the first term may be written as a single sum and in the second the terms with positive and
negative n are the same. Putting the indices �N ± |n| on an axis, one sees that

∣∣t (φ) − f (φ)
∣∣ � 2

∑
|n|�N

′′|Cn| + 2
∑

|n|�N

′′( n

N
+ 1

)
|Cn| � 6

∑
|n|�N

′′|Cn|.

Theorem 5.3. Let f ∈ H 1
p and let t be its balanced equidistant Hermite trigonometric interpolating polynomial. Then

∣∣t (φ) − f (φ)
∣∣ � 6

∑
|n|�N

′′|Cn|. (5.6)

Taking the derivatives into account thus moves the lower limit of the sum from M to N , with a moderate increase
of the constant from 2 to 6.

This result will now be used in the same cases as above to estimate the speed of convergence.

5.2.1. f smooth
The same proof as that of Theorem 2.6 yields the following bound.

Theorem 5.4. Let f (p) be of bounded variation Vp := Vp(0,2π), p � 2. Then

∣∣t (φ) − f (φ)
∣∣ � 6Vp

Np

(
1

N
+ 2

p

)
=O(

N−p
)
.

The bound therefore converges 2p

3 times faster to zero than that of classical rational interpolation.

5.2.2. f analytic in a strip
As in the classical case, (5.6) guarantees the exponential convergence of t toward f .

Theorem 5.5. Let f be analytic in the strip | Imw| � θ . Then its balanced equidistant Hermite trigonometric inter-
polating polynomial tends to f as

∣∣t (φ) − f (φ)
∣∣ � 12μ

1 − e−θ
e−Nθ .

Since 0 < e−θ < 1, one has geometric convergence with respect to N . With the sequence N = 2�, � = 1,2, . . . , the
convergence is quadratic with respect to �. Compared with the classical case, the bound has N instead of M in the
exponential, thus requires about half as many points for the same error, up to a factor of 3.
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6. The barycentric formula for t

The Jackson polynomial and the trigonometric polynomial from (6-9) in [24, p. 23] may be obtained by the formu-
lae (3.3). By combining them, we obtain the Lagrangian formula for the balanced Hermite trigonometric polynomial
of degree at most N interpolating between equidistant points

t (φ) = 2

N2
sin2 Nφ

2

N−1∑
k=0

(
f ′

k cot
φ − φk

2
− fk

d

dφ
cot

φ − φk

2

)
. (6.1)

Kress [16] has also given this formula (and corresponding ones for higher-order derivatives) for N even.
In contrast with the polynomial case [13], the factor sin N

2 φ is ill-conditioned in the vicinity of the φk �= 0 for large
N [10]. As mentioned already, one way of coping with this difficulty is to rewrite (6.1) in dependence on the evaluation
point φ by changing in the factor the variable φ = φ − φ0 to φ − φ�, where φ� is the node closest to φ [9]. To avoid
determining this φ� for every φ, one can go over to the barycentric formula [10]. Dividing (6.1) by the corresponding
formula

1 = − 2

N2
sin2 Nφ

2

N−1∑
k=0

d

dφ
cot

φ − φk

2

for the function f ≡ 1, we obtain

t (φ) =
∑N−1

k=0 (fk
d

dφ
cot φ−φk

2 − f ′
k cot φ−φk

2 )∑N−1
k=0

d
dφ

cot φ−φk

2

. (6.2)

This is the barycentric formula for equidistant Hermite trigonometric interpolation when 0 is one of the nodes.

7. Interpolating even and odd functions

In practice the functions to be interpolated are often even or odd, as in the case of Chebyshev interpolation on the
interval (see below); it is then preferable to limit oneself to the interval [0,π] and to interpolate with a cosine or a
sine polynomial. There are four ways of distributing N equispaced nodes on the circle symmetrically with respect to
0 (and π ) [2]. Considering only the points in [0,π], these are the cases when

(1) none of 0 and π is a node;
(2) 0 is a node, π is not;
(3) π is a node, 0 is not;
(4) both 0 and π are nodes.

The cases (2) and (4) are covered by (6.2). The others can be handled by a simple change of variable in the same
formula.

7.1. Interpolation of an even function with a cosine polynomial

Let f ∈ H 1
p with f ′ defined at the nodes be even. We wish to find the balanced Hermite trigonometric polynomial

(6.1) with all bn = 0 that interpolates equidistant data obtained from even functions. Let first N = 2M . Then fN−k =
fk (in particular fN = f0), f ′ is odd, f ′

N−k = −f ′
k , k = 0(1)M , which implies f ′

0 = 0 and f ′
M = 0. Inserting into (6.1),

summing separately over k = 0, k = 1, . . . ,M − 1, k = M and k = M + 1, . . . ,N − 1 and using that φN−k = 2π −φk ,

cot φ−φk

2 ± cot φ+φk

2 = −2 sinφ(k)

cosφ−cosφk
, (2 sin2 φ

2 )−1 = 1−cosφ cosφ0
(cosφ−cosφ0)

2 and (2 cos2 φ
2 )−1 = 1−cosφ cosφN/2

(cosφ−cosφN/2)
2 , one obtains

t (φ) = 4

N2
sin2 Nφ

2

M∑
k=0

(
δk(1 − cosφ cosφk)

(cosφ − cosφk)2
fk − sinφk

cosφ − cosφk

f ′
k

)
(7.1)
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with the δk as defined at the end of Section 2. When interpolating f ≡ 1 the second term disappears and we obtain the
barycentric formula for N even as

t (φ) =
∑M

k=0(
δk(1−cosφ cosφk)

(cosφ−cosφk)
2 fk − sinφk

cosφ−cosφk
f ′

k)∑M
k=0

δk(1−cosφ cosφk)

(cosφ−cosφk)
2

. (7.2)

Equation (7.2) halves the number of operations as compared with (6.2).
Similar calculations show that formula (7.1) and thus formula (7.2) also hold when N is odd, N = 2M + 1. We

have thus treated the cases (2) and (4). Notice that, since the information always consists of an even number of values,
the formulae are simpler than those of the classical case given in [2].

Case (3) may be addressed from case (2) by means of the change of variable φ̃ := π − φ, φ̃k := π − φk , f̃ (φ̃) :=
f (φ), where the φk’s are the nodes of case (2). Short calculations with trigonometric identities show that (7.1) and
(7.2) hold in this case too (with δk moving the factor 1/2 from 0 to π ).

The 2M points on the full circle in case (1) are just points of the general case (1.2) rotated (in the positive sense) by
the angle φ0 = π

N
. Then formula (6.1) is still valid with sin2 N

2 (φ − φ0) instead of sin2 N
2 φ (since sin2 N

2 (φ − φ0) =
sin2 N

2 (φ −π) = cos2 N
2 φ, the parity is maintained and t still has aN = 0—see the proof of Lemma 1.1 in [16]). Going

barycentric shows that (6.2) holds in this case too and specializing to even functions as above yields (7.2) again (with
all δk = 1).

7.2. Hermite polynomial interpolation between Chebyshev points

Interpolation between Chebyshev points xk = cosφk on the interval [−1,1] is but a special case of even trigono-
metric interpolation at the equidistant nodes φk : roughly speaking, the change of variable x = cosφ transplants any
function F(x) defined on [−1,1] into an even 2π -periodic function f (φ) := F(cosφ) with the same differentiability
properties as f (they are conserved at 0 and π because of the vanishing inner derivatives in the chain rule). Hence the
barycentric formula for Chebyshev points is given by (7.2).

Most important in practical applications is case (4), i.e., the Chebyshev points of the second kind xk = cosk π
M

,
k = 0, . . . ,M , which encompass the extremities −1 and 1 [8,23]. Specializing (7.2) for these points and replacing
cosφ and cosφk with x, respectively xk yields

P(x) =
∑M

k=0
′′
(

1−xxk

(x−xk)
2 F(xk) − sinφk

x−xk
F ′(xk))∑M

k=0
′′ 1−xxk

(x−xk)
2

since sinφk = 0 for k = 0 and k = M . This formula does not seem to have been written down before. The correspond-
ing formula for the Chebyshev points of the first kind is given in [11, p. 257].

7.3. Interpolation of an odd function with a sine polynomial

Let again f ∈ H 1
p with f ′ defined at the nodes, but now let it be odd and let N = 2M . We now aim at finding

barycentric formulae for the balanced Hermite trigonometric polynomial (6.1) with an = 0, all n, that interpolates odd
data. Here f ′ is even, so that fN−k = −fk , f ′

N−k = f ′
k and in particular f0 = 0, fN

2
= 0. Using the same relations for

sines and cosines as in Section 7.1, as well as cot φ
2 = − sinφ

cosφ−cosφ0
and tan φ

2 = sinφ
cosφ−cosφN/2

, one obtains

t (φ) = 4

N2
sin2 N

2
φ sinφ

M∑
k=0

(
sinφk

(cosφ − cosφk)2
fk − δk

cosφ − cosφk

f ′
k

)
. (7.3)

To go barycentric, we interpolate the odd function sinφ [2], use the fact that sin2 φk = 0 and cos2 φk = 1 whenever
φk = 0 or π and divide (7.3) by the result to get

t (φ) = sinφ ·
∑M

k=0(
sinφk

(cosφ−cosφk)
2 fk − δk

cosφ−cosφk
f ′

k)∑M
k=0

δk(1−cosφ cosφk)

(cosφ−cosφk)
2

(7.4)
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Table 1
Convergence of c2 and d2 toward C2 in Example 1

N c2 − C2 Order est. d2 − C2 Order est.

4 −0.24767604552648 0.00232395447352
8 0.00232395447352 6.736 0.00042832410540 2.440

16 0.00007614729831 4.932 0.00004007323086 3.418
32 0.00000412894457 4.205 0.00000311075045 3.687
64 0.00000024926361 4.050 0.00000021821258 3.833

128 0.00000001544524 4.012 0.00000001448074 3.914
256 0.00000000096325 4.003 0.00000000093316 3.956
512 0.00000000006017 4.001 0.00000000005923 3.978

1024 0.00000000000376 4.000 0.00000000000373 3.989
2048 0.00000000000024 3.991 0.00000000000024 3.985

Table 2
Convergence of cM−2 and dM−2 toward CM−2 in Example 2

N CM−2 cM−2 − CM−2 dM−2 − CM−2

8 −0.13180542594924 0.10857918943538 −0.05705642379224
16 −0.05953511746105 −0.03064518542934 −0.00406522809637
32 −0.01214655347676 −0.00551707528260 −0.00003266258596
64 −0.00050560664143 −0.00022837937825 −0.00000000235023

128 −0.00000087605662 −0.00000039570552 −0.00000000000000
256 −0.00000000000263 −0.00000000000119 −0.00000000000000

with, again, the δk as defined at the end of Section 2. Similar considerations as in the former paragraph show the
validity of this formula in all four cases (with the δk putting the factors 1/2 at the right places).

8. Numerical illustration

The convergence results of Section 5 describe how completing the data at equidistant nodes with the values of the
derivative improves the approximation. We shall now demonstrate this in two practical cases.

Example 1. Let

f (φ) :=
{

sinp φ, 0 � φ < π,

sinp+1 φ, π � φ < 2π,
p ∈ N;

f ∈ Cp−1, with f (p) of bounded variation. f does not display obvious symmetries. To test Theorem 5.1, we have
computed the errors for n = 2 (fixed) and increasing N . Table 1 displays the results for p = 3. The first column
gives N , the second and fourth cn − Cn and dn − Cn, respectively, and the third and fifth the experimental orders of
convergence of the two approximations, as described in [4,5]. Here and in Table 2 the exact coefficients Cn, which are
real, were computed with Maple; this yields C2 = 0.25232395447352. The results show that dn is significantly better
than cn merely for relatively small N and that the advantage diminishes with growing N . Both orders of convergence
are p + 1, as anticipated in Theorems 2.3 and 5.1.

Example 2. Here we consider f (φ) = 1
1+a2 cos2 φ

, which is analytic in the strip of halfwidth θ = 1
a

about R. First
we have approximated CM−2 (computed with the trapezoidal rule and a number of nodes large enough for machine
precision) for a = 5, i.e., the periodized Runge function, and increasing N . In view of the aliasing formula and the
rapid decay of the cn, cM−2 is of the order of the discretization error in the DFT. It thus has an error close to 100% and
is useless as an approximation to CM−2, as documented in the third column of Table 2 which displays cM−2 − CM−2.
The fourth column shows how taking the information about the derivatives into account massively improves the
coefficients: dM−2 − CM−2 is much smaller.
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Table 3
Convergence of the classical and Hermite interpolants in Example 2

n ‖tf − f ‖∞ ‖t − f ‖∞
4 0.81061320792792 0.81061320792792
8 0.69162214692591 0.61506609005530

16 0.47854965956575 0.34035709769107
32 0.20898140000595 0.09808600222645
64 0.03681191244580 0.00535748377324

128 0.00141519367568 0.00001064663187
256 0.00000270457899 0.00000000002652
512 0.00000000000786 0.00000000000000

Finally we have compared the errors ‖tf −f ‖∞ and ‖t −f ‖∞, with a larger a (a = 10) to slow down convergence.
tf and t have been evaluated by means of the barycentric formulae (2.9) and (6.2), respectively. Table 3 shows how
doubling N squares the error and that the Hermite interpolant t requires about half as many points to yield the same
accuracy as tf , up to a factor of 3, as explained by Theorems 5.5 and 2.6.
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