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Abstract

A consistency criterion for price impact functions in limit order markets is proposed that prohibits chain arbitrage exploitation.

Both the bid-ask spread and the feedback of sequential market orders of the same kind onto both sides of the order book are

essential to ensure consistency at the smallest time scale. All the stocks investigated in Paris Stock Exchange have consistent price

impact functions.
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1. Introduction

Mainstream finance and mathematical finance suppose that the price dynamics follows a random walk

[1,5]. Extreme assumptions are indeed most useful in a theoretical framework. This is why the opposite is worth

considering Ref. [4]: suppose that trader 0 is active at time t ; he buys/sells a given amount of shares n0, leading to

(log-)price change r(t) = r0, where t is in transaction time, t being the t-th transaction. Assume that trader 1 has

perfect information about t and r0 and exploits it accordingly.

A related situation is found in Ref. [6] whose main result is that a arbitrage opportunity, when exploited, does not

disappear but is spread around t . It is a counter-intuitive outcome, that raises two questions: how to accommodate

the never-disappearing arbitrage, and how microscopic arbitrage removal is possible at all at this time scale. This

proceeding, a short version of Ref. [4], suggests that real markets remove arbitrage on a single transaction basis by a

double feedback of the last transactions on the order book.

The price impact function I (n) is by definition the relative price change caused by a transaction of n (integer)

shares (n > 0 for buying, n < 0 for selling); mathematically,

p(t + 1) = p(t) + I (n), (1)

where p(t) is the log-price and t is in transaction time.
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The generic impact function that will be studied is I (|x |) = γ log |x |. The above notation misleadingly suggests

that I does not depend on time. In reality, I is not only subject to random fluctuations (which will be neglected here),

but also, for instance, to feedback from the type of market orders which has a long memory (see e.g. Refs. [3,8,2,

7] for discussions about the dynamic nature of market impact). Neglecting the dynamics of I requires us to consider

specific shapes for I that enforce some properties of price impact for each transaction, whereas in reality they only

hold on average. For example, we should restrict ourselves to the class of functions that makes it impossible to obtain

round-trip positive gains [6]. But the inappropriateness of constant price impact functions is all the more obvious as

soon as we consider how price predictability is removed by speculation, which is intertemporal by nature.

The most intuitive (but wrong) view of market inefficiency is to regard price predictability as a scalar deviation

from the unpredictable case: if there were a relative price deviation r0 caused by a transaction of n0 shares at some

time t , according to this view, we should exchange n1 shares so as to cancel perfectly this anomaly, where n1 is such

that I (n1) = −r0. This view amounts to regarding predictability as something that can be remedied with a single

trade. However, the people that would try to cancel r0 would not gain anything by doing it unless they are market

makers who try to stabilize the price.

It is most instructive to understand how constant price impact functions are paradoxical by considering a simple

example. Trader 1, a perfectly (and possibly illegally) informed speculator, will take advantage of his/her knowledge

by opening a position at time t − 1 and closing it at time t + 1. It is important to be aware that if one places an order

at time t , the transaction takes place at price p(t + 1). Provided that trader 0 buys/sells n0 shares irrespective of the

price that he obtains, the round trip of trader 1 yields a monetary gain of

g1 = n1[ep(t+2) − ep(t)] = n1ep0 [eI (n0) − eI (n1)]
where p0 is the log-price before any trader considered here makes a transaction. Since I (n) generally increases with

n, there is an optimal n∗
1 number of shares that maximizes g1. The discussion so far is a simplification, in real-money

instead of log-money space, of the one found in Ref. [6]. One should note that far from diminishing price predictability,

the intervention of trader 1 increases the fluctuations. Therefore, in the framework of constant price impact functions,

an isolated arbitrage opportunity never vanishes but becomes less and less exploitable because of the fluctuations, thus

the reduction, of signal-to-noise ratio caused by the speculators.

It seems that trader 1 cannot achieve a better gain than by holding n∗
1 shares at time t . Since the actions of trader

1 do not modify in any way the arbitrage opportunity between t − 2 and t + 2, he can inform a fully trusted friend,

trader 2, of the gain opportunity on the condition that the latter opens his position before t − 1 and closes it after t + 1

so as to avoid modifying the relative gain of trader 1.1 For instance, trader 2 informs trader 1 when he/she has opened

his position and trader 1 tells trader 2 when he has closed his/her position. From the point of view of trader 2, this

is very reasonable because the resulting action of trader 1 is to leave the arbitrage opportunity unchanged to r0 since

p(t + 1) − p(t − 1) = r0. Trader 2 will consequently buy n∗
2 = n∗

1 shares at time t − 2 and sell them at time t + 2,

earning the same return as trader 1. This can go on until trader i has no fully trusted friend. Note that the advantage of

trader 1 is that he/she holds a position over a smaller time interval, thereby increasing his return rate; in addition, since

trader 2 increases the opening price of trader 1, the absolute monetary gain of trader 1 actually increases provided that

he/she has enough capital to invest. Before explaining why this situation is paradoxical, it makes sense to emphasize

that the gains of traders i > 0 are, of course, obtained at the expense of trader 0, and that the result of the particular

order of the traders’ actions is to create a bubble which peaks at time t + 1.

The paradox is the following: if trader 1 is alone, the best return that can be extracted from his/her perfect

knowledge is ĝ1(n∗
1) according to the above reasoning. When there are N traders in the ring of trust, the total return

extracted is N times the optimal gain of a single trader. Now, assume that trader 1 has two brokering accounts; he/she

can use each account, respecting the order in which to open and close his/her positions, effectively earning the optimal

return on each account. The paradox is that his/her actions would be completely equivalent to investing n∗
1 and then n∗

1
from the same account. In particular, in the case of I (n) = n, this seems a priori exactly similar to grouping the two

transactions into 2n∗
1, but this results of course in a return smaller than the optimal return for a doubled investment.

Hence, in this framework, trader 1 can earn as much as he/she pleases provided that he/she splits the investment into

subparts of n∗
1 shares whatever I is, as long as it is constant.

1 If trader 2 were not a good friend, trader 1 could in principle ask trader 2 to open his/her position after him/her and to close it afterwards, thus
earning more. But relationships with real friends are supposed to be egalitarian in this paper.
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This paradox seems too good to be present in real markets. As a consequence, we should rather consider its

impossibility as an a contrario consistency criterion for price impact functions. Let us introduce the two relevant

mechanisms that are at work in real markets. Half of the solution lies in the dynamics of the order book, particularly

the reaction of the order book to a sequence of market orders of the same kind. Generically, the impact of a second

market order of the same kind and size is smaller by a factor κ1 than that of the first one, and similarly by a factor

κ2 for a third one, etc. [9,7]. To this contraction of market impact on one side also corresponds an increase of market

impact on the other side for the next market order of opposite type [9]; therefore, we shall assume that the impact

function on the other side is divided by θ1 after the first market order, by θ2θ1 after the second, etc. As shown in the

next section, κ1 � κ2 is a very good approximation when κ1 and κ2 are averaged over all the stocks, hence we shall

only use κ; for the same reason, we assume that θ1 = θ2 = θ .

2. Feedback

In order to investigate whether the feedback restricted on the side on which the first sequential market orders are

placed is enough to make price impact consistent, one sets θ = 1. In the case of log price impact functions, the optimal

number of shares and gain of trader 1 are

n∗
1 = nκ

0

(γ + 1)1/γ
(2)

and

g∗
1 = ep0 nκ(γ+1)

0

γ

(γ + 1)1+1/γ
. (3)

These two equations already show that the reaction of the limit order book reduces the gain opportunity of player 1.

Adding trader 2 will reduce further the impact of trader 0, hence the gain of trader 1, and, as before, trader 2 should

pay for it. In this case, the reduction of gain of trader 1 is

Δg1

ep0
= [g∗

1 − g1(n
∗
1, n2)]e−p0 = nκ(γ+1)

0

γ

(γ + 1)1+1/γ
− nγ

2

nγ (1+κγ )

0

(γ + 1)1/γ+κ
[n−γ κ(1−κ)

0 (γ + 1) − 1], (4)

while the gain that trader 2 optimizes is

G2

ep0
= nγ+1

2

[
1

nκγ

2

nκγ (2κ−1)

0

(1 + γ )κ−1
− 1

]
− Δg1

ep0
. (5)

Trader 1’s impact functions are κ I when he opens his/her position and I when he/she closes it: this is an additional

cause of loss for trader 1 which must be also compensated for by trader 2. Fortunately for the latter, impact functions

are I when opening and κ I when closing his/her position. Therefore, provided that κ is large enough so as not to make

κ2 I (n0) too small, trader 2 can earn more than trader 1 in some circumstances. Impact functions are inconsistent when

G∗
2 > 0, n∗

1 > 1 and n∗
2 > 1 for log impact functions. It turns out that the regions in which G∗

2 > 0 while n∗
1 > 1 are

disjoint if κ < κc � 0.5 for log impact functions.

As previously mentioned, the feedback acts on both order book sides. Assuming that θ1 = θ2 = κ in order to be

able to use available market measurements, one finds a critical value of κ of about 0.83 for log price impact functions.

For this value, only a small area of inconsistent impact functions, corresponding to n0 � 1.5, still exists in the (n0, γ )

plane, but cannot be reached since both n0 = 1 and 2 are outside of the inconsistent region. Therefore, even double

feedback does not guarantee consistency.

3. Empirical data

The values of κ1 and κ2 can be measured in real markets. The response function R(δt, V ) = 〈(p(t + δt)
− p(t))ε(t)〉|V (t)=V is the average price change after δt trades, conditional on the sign of the trade ε(t) and on

volume V ; similarly, one defines the response function conditional on two trades of the same sign R+(δt, V ) =
〈(p(t + δt) − p(t))ε(t)〉|ε(t)=ε(t−1),V (t)=V , and R++(δt) = 〈(p(t + δt) − p(t))ε(t)〉|ε(t)=ε(t−1)=ε(t−2), V (t) = V .
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Fig. 1. Average daily volume versus n0,min (Paris Stock Exchange, 2006).

A key finding of Refs. [3,2] is that R factorizes into R(δt)F(V ). Thus we will be interested in R(δt), R+(δt) and

R++(δt).
Using measures kindly provided by J.-Ph. Bouchaud and J. Kockelkoren, we find that the estimate of this ratio

κ̂ = 〈R+(1)〉/〈R(1)〉 ∈ [0.86, 1.02], while the averages over all the stocks of the Paris Stock Exchange in 2006 was

κ̂1 = 0.97 ± 0.04 and κ̂2 = 〈R++(1)〉/〈R+(1)〉 ∈ [0.87, 1.01], while κ̂2 = 0.97 ± 0.03. ; for a given stock, there is

some correlation between κ1 and κ2; the data presented here do not contain error bars for the measures of R, R+ and

R++. The approximation κ1 � κ2 is reasonable, and we shall from now on call κ = (κ1 + κ2)/2 and replace κ1 and

κ2 by κ everywhere. In other words, there is some variation between the stocks, some of them being less sensitive to

successive market orders of the same kind. The values of estimated κ start at 0.86. Therefore, even feedback on both

book sides does not yield consistent log impact functions. We conclude that the feedback of the order book considered

here is not enough to make price impact functions consistent.

4. Spread

The above discussion neglects the bid-ask spread s. It is of great importance in practice, as the impact of one

trade is on average of the same order of magnitude as the spread [9]. This means that n0 must be large enough in

order to make the knowledge of trader 1 valuable. It is easy to convince oneself that it is enough to replace n0 by

n′
0 = I −1[I (n0)+〈s〉] in the relevant equations, and multiply all the gains by e〈s〉/2. For example, the optimal number

of shares that trader 1 invests if trader 0 has infinite capital is

n∗
1,s = e−〈s〉/γ n0

(1 + γ )1/γ
. (6)

From this equation we see that n′
0 = n0 exp(−〈s〉/γ ). Since 〈s〉/γ ∼ 10 in practice, the minimal amount of shares

needed to create an arbitrage, denoted by n0,min is increased about 20,000 folds by the spread. The respective values

of γ and 〈s〉 are not independent, and can be measured in real markets for a given stock. In the language of Ref. [3],

γ = 〈log(n)〉/R(1) where 〈log(n)〉 is the average of the logarithm of transaction size and R(1) is the response function

after one time step. Using γ and 〈s〉 measured in Paris Stock Exchange one finds that n0,min ∈ [1.2104, 2.0108], with

median of 1.2105 (Fig. 1), which is not unrealistic for very liquid stocks. Indeed, the fraction of n0,min with respect to

the average daily volume of each stock ranges from �2% to more than 100%, with a median of about 42%. Therefore,

for most of the stocks, trader 0 needs to trade less than two fifths of the daily average volume in one transaction in order

to leave an exploitable arbitrage; for 12 stocks (18%), trading less than 10% of the average daily volume suffices. It

is unlikely that a single trade is larger than the average daily volume, hence, 29 stocks (43%) do not allow on average
a single large trade to be exploitable by a simple round trip. Interestingly, stocks with average daily volumes smaller

than about 105 are all consistent from that point of view (Fig. 1). In addition, the stocks for which n0,min < 〈V 〉 all

have a κ > 0.945.
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Fig. 2. Fraction of daily volume needed to inject an exploitable arbitrage versus κ (same data set).

Therefore, the role of the spread is to increase considerably the minimum size of the trade, which in some cases

remain within reasonable bounds. The mathematical discussions of the previous sections on log price impact functions

are therefore still valid, provided that we replace n0 with n′
0 = I −1[I (n0) + s], which is equivalent to rescaling n0

by exp(〈s〉/γ ). Therefore, the spread must be taken into account, but does not yield systematically consistent impact

functions for some stocks with a high enough daily volume.

5. Spread and feedback

The question is whether the feedback and the spread combined make real market impact functions systematically

consistent. The stocks that are the most likely to become consistent are those whose n0,min/〈V 〉 < 1 is large while

having a strong feedback. According to Fig. 2, these properties are compatible. Using for each stock 〈s〉, κ , and γ

from the data, we find that three additional stocks are made consistent by feedback on trader 0’s market order side

alone: the feedback limited to one side of the order book, even when the spread is taken into account, is insufficient.

However, adding finally the feedback on both book sides makes consistent all the stocks, even in the case of infinite

capital. Therefore, both the spread and the feedback are crucial ingredients of consistency at the smallest time scale.

6. Conclusion

The paradox proposed in this paper provides an a contrario simple and necessary condition of consistency for price

impact functions. Indeed, financial markets ensure consistent market price impact functions at the most microscopic

dynamic level by two essential ingredients: the spread and the dynamics of the order book.
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