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Calculation of the forbidden electric tensor polarizabilities of free Cs atoms
and of Cs atoms trapped in a solid 4He matrix

A. Hofer,* P. Moroshkin, S. Ulzega,† and A. Weis
Département de Physique, Université de Fribourg, Chemin du Musée 3, 1700 Fribourg, Switzerland‡
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We give a detailed account on our semiempirical calculations of the forbidden electric tensor polarizability
�2

�3� of the ground state of free Cs atoms and of Cs atoms implanted in a solid 4He matrix. The results are
compared with measurements of �2

�3� in the free atoms �Europhys. Lett. 76, 1074 �2006�� and in He-trapped
atoms �Phys. Rev. A 75, 042505 �2007��. Features with respect to calculations by other authors are the
inclusion of off-diagonal hyperfine interactions and an analysis of contributions from continuum states, which
turn out to be negligible. For both samples the results of the calculations are in good agreement with the
experimental values, thereby settling a long-standing discrepancy.

PACS number�s�: 31.15.xp, 32.10.Dk, 32.60.�i, 67.25.D�

I. INTRODUCTION

The interaction of an atom with an external static electric
field �Stark effect� is one of the fundamental interactions in
atomic physics. In atoms with degenerate orbital momentum
states of opposite parity the change of level energies induced
by the electric field is linear in the field strength E, the hy-
drogen atom being the most prominent example. In most
atoms, however, the Stark shift is quadratic in the field
strength, and the electric-field-induced shift of a magnetic
hyperfine �hf� sublevel ���= �n LJ ,F ,M� is commonly param-
etrized in terms of the �electrostatic� polarizability ���� as

�E��� = −
1

2
����E2. �1�

In second order perturbation theory, the polarizability of
states nLJ with J�1 can be written as the sum of an F- and
M-independent scalar polarizability �0

�2� and an F- and
M-dependent tensor polarizability �2

�2�, while states with J
�1 have only a scalar polarizability. For spherically sym-
metric states, such as the nS1/2 and nP1/2 states in alkali-
metal atoms, the Stark effect is thus a purely scalar effect,
meaning that all hyperfine sublevels �nL1/2 ,F ,M� experience
the same common shift. However, an F and M dependence
of the Stark shifts in the �nS1/2� alkali-metal ground states
was already found experimentally in the late 1950’s and
early 1960’s �1,2�, and thus indicated the existence of a �for-
bidden� tensor polarizability of those states.

In 1967 Sandars �3� could show that this forbidden polar-
izability can be explained by expanding the perturbation
treatment to third order, considering the Stark and the hyper-
fine interactions as simultaneous perturbations. The corre-
sponding third order polarizability can also be expressed in
terms of an F-dependent third order scalar polarizability
�0

�3��F� and an F- and M-dependent third order tensor polar-

izability �2
�3��F ,M�. The polarizability in Eq. �1� can thus be

written as

���� = �0
�2��nLJ� + �2

�2��nLJ,F,M� + �0
�3��nLJ,F�

+ �2
�3��nLJ,F,M� , �2�

where the superscripts refer to the order of perturbation,
while the subscripts refer to the rotational symmetry �scalar
or second rank tensor� of the interaction.

Sandars’ expressions were evaluated numerically in �2,4�
under simplifying assumptions, and yielded values of
�2

�3��F ,M� for five alkali-metal isotopes whose �absolute�
calculated values were systematically larger than the corre-
sponding experimental values �4–7�. Recently we have re-
measured the third order tensor polarizability �2

�3��F ,M� of
the Cs ground state in an all-optical atomic beam experiment
�7�, yielding good agreement with the measurements from
the 1960’s �4,6�. We have also measured �2

�3��F ,M� of ce-
sium atoms implanted in the cubic phase of a 4He crystal,
yielding a value whose modulus is �10% larger than in the
free atom �8�. In parallel we have reanalyzed and extended
the theoretical expressions of the tensor polarizabilities �5�.
We have further extended the third order perturbation calcu-
lation �3� by including off-diagonal hyperfine interactions,
not considered in the earlier calculations, as well as contri-
butions from higher-lying bound and continuum states. This
has yielded a theoretical value for �2

�3� of Cs�6S1/2�, which is
in good agreement with all existing experimental results.

As discussed in �5� we have uncovered in an earlier cal-
culation �3� an error concerning the relative signs of the po-
larizabilities of the two ground state hyperfine levels. Re-
cently we have given an experimental verification of the sign
of our calculation and discussed its implication for the dy-
namic Stark shift of primary frequency standards by the
blackbody radiation field �8�.

In this paper we present more details of that calculation,
whose results were already outlined in �5,8�. In addition we
present a calculation of �2

�3� for cesium atoms in a cubic 4He
crystal by evaluating the matrix-induced alterations of the
atomic energies and of the electric dipole and hyperfine ma-
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trix elements in the frame of the so-called standard bubble
model �9�. Here too we obtain an excellent agreement with
the experimental values.

II. THEORY

The Stark effect, i.e., the interaction of an alkali-metal
atom with an external electric field E is described by the

Hamiltonian HSt=−d� ·E� , where d� is the electric dipole opera-
tor of the valence electron. Because of parity conservation,
the Stark interaction vanishes in first order, and the effect of
the electric field on the atomic level structure appears only in
the next higher order�s�, yielding shifts that are quadratic in
the applied field strength.

A. Second order perturbation theory

The second order energy perturbation of the magnetic hy-
perfine sublevel �	�= �6S1/2 ,F ,M� of the ground state is
given by

�E�2��	� = 	
�

�
	�HSt����2

E	 − E�

, �3�

where, according to the selection rule �L= ±1 imposed by
the Stark operator, the sum is to be taken over all excited P
states ���= �nPJ , f ,m�, including continuum states, and where
E� are the unperturbed energies of those states. Following
�10� one can define an effective second order Stark operator

2Heff = �d� · E��2
�d� · E�� , �4�

in which the scalar projection operator 2
 is defined as

2
 = 	
�

���
��
E	 − E�

. �5�

With this definition of 2Heff the second order energy shift
�E�2� of the state �	� is given by the expectation value

�E�2��	� = 
	�2Heff�	� , �6�

similar to the expression from first order perturbation theory.
Note that the superscripts on the right of �E�n� and ��n� and
the subscripts on the left of nHeff and n
 refer to the order of
perturbation.

The interaction Hamiltonian can be factorized �10� into an
electric-field-dependent part and a part which depends only
on atomic properties by defining the components of two
rank-K tensor operators as

EQ
�K� = �E � E�Q

�K� = 	
q,q�


11qq��KQ�Eq
�1�Eq�

�1�, �7�

DQ
�K� = �d�1�

� 2
 � d�1��Q
�K� = 	

q,q�


11qq��KQ�dq
�1�

2
dq�
�1�,

�8�

where the 
11qq� �KQ� are Clebsch-Gordan coefficients and
where dq

�1� and Eq
�1� are the spherical components of the di-

pole operator and the electric field, respectively. The effec-

tive Stark operator can then be written as the sum

2Heff = 	
K=0

2

�− 1�K
2Heff

�K� = 2Heff
�0� + 2Heff

�2� �9�

of its multipole components

2Heff
�K� = 	

Q

�− 1�QEQ
�K�D−Q

�K�. �10�

The vector contribution vanishes since E�1�� �E�E��1��E�

�E� . The scalar term E�0�� �E�E��0��E� ·E� =E2 depends only
on the magnitude of the field, while the rank-2 tensor term

2Heff
�2� depends on its orientation, as can be seen, e.g., from its

Q=0 component E0
�2��3Ez

2−E2=E2�3 cos2 
−1�. With this
notation, the second order Stark effect �E�2��	� can be writ-
ten as the expectation value

�E�2��	� = 
	�2Heff
�0� + 2Heff

�2��	� . �11�

The Wigner-Eckart theorem implies that the matrix ele-
ment 
nLJ � 2Heff

�K� �nLJ� vanishes unless 0�K�2J, so that the
tensor part �K=2� of the interaction vanishes,


	�2Heff
�2��	� � 
6S1/2�2Heff

�2��6S1/2� � 0 �12�

for the spherically symmetric 6S1/2 state. As a consequence,
the Stark effect in the alkali-metal ground state treated in
second order perturbation theory is a purely scalar effect
which is parametrized in terms of the F- and M-independent
second order scalar polarizability �0

�2� as

�E�2��	� = −
1

2
�0

�2�E2. �13�

This energy perturbation results in an overall shift of
the ground state sublevels. The experimental value of
�0

�2��6S1/2� is 9.98�2��103 Hz / �kV /cm�2 �11�, and is theo-
retically well understood at a level of 10−3 �12,13�. The F-
and M-dependent shifts of the ground state sublevels dis-
cussed below are approximately 5 and 7 orders of magnitude
smaller than this global scalar shift.

B. Third order perturbation theory

As already mentioned, Sandars has shown �3� that the
forbidden electric-field-induced lifting of the Zeeman degen-
eracy can be explained by extending the perturbation theory
to third order, including simultaneously the Stark interaction
and the hyperfine interactions in terms of the perturbation
operator W=HSt+Hhf

Fc+Hhf
dd+Hhf

q , which consists of the Stark
�HSt�, the hyperfine Fermi contact �Hhf

Fc�, the hyperfine
dipole-dipole �Hhf

dd�, and the hyperfine quadrupole �Hhf
q � op-

erators. In �5� we have given explicit expressions of the hy-
perfine operators in terms of irreducible tensor operators.

Following the general rules of perturbation theory the
third order energy perturbation of the ground state level �	�
is given by

2
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��	,��	


	�W���
��W���
��W�	�
�E	 − E���E	 − E��

− 
	�W�	� 	
��	

�
��W�	��2

�E	 − E��2 , �14�

where E� and E� are the unperturbed state energies.
The two terms of Eq. �14� are trilinear forms of the per-

turbation operator W, of which only terms proportional to E2

give nonzero contributions to the Stark interaction. As dis-
cussed by Ulzega et al. �5� the ground state hyperfine inter-
action Ehf�6S� is factored out from the sum over pure Stark
matrix elements in the second term of Eq. �14�. This leads to
M-independent, but F-dependent shifts of the ground state
levels which can be parametrized, according to Eqs. �1� and
�2�, by a third order scalar polarizability �0

�3��F�. The second
term thus does not contribute to the tensor polarizability, but
gives the leading contribution �type A interactions in the no-
tation of �5�� to the Stark shift of the hyperfine �clock tran-
sition� frequency �14,15�. The contribution from this term is
thus suppressed by a factor on the order of Ehf�6S� /
�E6P-6S�10−5 with respect to the second order scalar polar-
izability �0

�2�.
As discussed by Ulzega et al. �5� the first term of Eq. �14�

has contributions from both diagonal and off-diagonal hyper-
fine matrix elements. The diagonal contributions �type B in-
teractions in the notation of �5�� dominate �see Fig. 1� and
are suppressed by a factor on the order of Ehf�6P� /�E6P-6S

�10−7 with respect to the second order scalar shift �0
�2�. The

Zeeman splitting of the ground state levels by the electric
field is thus approximately 100 times smaller than the shift of
the clock transition frequency.

The third order perturbation can again be expressed in
terms of an effective Hamiltonian

3Heff = �d� · E� �3
�d� · E� � , �15�

in which the projection operator 3
 is given by

3
 = 	
�

���
��Hhf���
��
�E	 − E��2 . �16�

The effective Hamiltonian can be expressed as the sum of a
scalar and a rank-2 tensor, yielding the third order energy
perturbation

�E�3��	� = 
	�2Heff
�0� + 2Heff

�2��	� , �17�

in a form equivalent to Eq. �11�. The scalar part turns out to
have the same F dependence as the third order scalar polar-
izability �0

�3��F� from the second term of Eq. �14� and gives
a correction to the latter on the order of 1%.

By applying the Wigner-Eckart theorem, the contribution
of the second rank tensor part can be written as


	�2Heff
�2��	� � �3M2 − F�F + 1���3Ez

2 − E2� � 
F��d�1�
� 3


� d�1���2��F� . �18�

The electronic and nuclear angular momenta in this equation
cannot be decoupled since the operator �d�1� � 3
 � d�1���2�

depends explicitly on the hyperfine interaction term J ·I and
one can state in general that 
F � �d�1� � 3
 � d�1���2� �F��0
for states with F�1. The tensor part has therefore an explicit
F and M dependence, which can be parametrized in terms of
a third order tensor polarizability �2

�3��6S1/2 ,F ,M�.
We can summarize the above results by parametrizing the

two terms of the third order interaction �Eq. �14�� by a total
third order polarizability as

�E�3� = −
1

2
��3��F,M�E2, �19�

with

��3��F,M� = �0
�3��F� + �2

�3��F�
3M2 − F�F + 1�

2I�2I + 1�
f�
� . �20�

The function f�
�=3 cos2 
−1 expresses the dependence of
��3� on the angle 
 between the electric field and the quanti-
zation axis.

III. THIRD ORDER POLARIZABILITY
OF THE FREE CESIUM ATOM

A. Earlier calculation revisited

The leading term in the perturbation sum �14� is given by

�E�3��6S1/2,F,M� = 	
n,J,F,m


nPJ,F�Hhf�nPJ,F�

�
�
nPJ,F,m�HSt�6S1/2,F,M��2

�EnPJ,F,m − E6S1/2,F,M�2 ,

�21�

where we have used the fact that Hhf does not mix F values,
and where we have allowed for M mixing by HSt in case the
electric field is not along the quantization axis. This term is
diagrammatically represented as diagram B in �5�, and we
shall refer to it below as type B interaction. The correspond-
ing tensor polarizability of the F=4 state of Cs was evalu-

FIG. 1. �Color online� Dependence of the different contributions
to the perturbation sum �14� leading to the tensor polarizability on
nmax, the maximum principal quantum number considered in the
sum. Note that previous calculations took only diagonal �type B�
hyperfine interactions into account.
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ated in �4� considering—among other simplifying assump-
tions discussed in �5�—only diagonal hyperfine matrix
elements in the 6P1/2 and 6P3/2 states. The result of that
calculation is shown as point �f� in Fig. 4 and is in disagree-
ment with the experimental results. We have redone this cal-
culation after dropping all simplifying assumptions of �4�,
while still considering only diagonal matrix elements. We
also used recent more precise experimental values �16� for
the reduced dipole matrix elements 
6S1/2 �d �6PJ�, which
yield the leading contribution. Point �g� in Fig. 4 represents
the result of this reanalysis. As a result, the gap between
theoretical and experimental values of the Cs tensor polariz-
ability increases. Extending the perturbation sum to nPJ
states with n�6 does not affect the discrepancy at a signifi-
cant level �line B in Table 5 and Fig. 1�.

B. Inclusion of off-diagonal hf matrix elements

All previous third order calculations have considered only
diagonal hyperfine matrix elements �diagram B in Fig. 1 of
�5��. However, the first term of the general third order ex-
pression �Eq. �14�� contains also off-diagonal hyperfine ma-
trix elements. In �5� we have identified five different types of
off-diagonal hyperfine mixing contributions:

�1� Type 1: n mixing of nS1/2 states.
�2� Type 2: n mixing of nPJ states with given J.
�3� Type 3: J mixing of nPJ states with given n.
�4� Type 4: n and J mixing of nPJ states.
�5� Type 5: mixing of mD3/2 and 6S1/2 states.
Note that the type 1 interactions have an F, but no M

dependence and contribute thus only to the clock frequency
shift. The different mixing types are represented as diagrams
in Fig. 1 of �5� and the labeling used here follows the nota-
tion of that figure. The energy shifts due to interactions of
types 2, 3, and 4 are given by sums of terms with the general
structure


	�HSt��1�
�1�Hhf��2�
�2�HSt�	�
�E	 − E�1

��E	 − E�2
�

, �22�

with �	�= �nS1/2 ,F ,M�, ��2�= �nPJ , f ,m�, and ��1�
= �n�PJ� , f ,m�. The contributions to the interaction of type 5
have the form


	�HSt���
��HSt���
��Hhf�	�
�E	 − E���E	 − E��

, �23�

where ���= �mD3/2 ,F ,M� and ���= �nPJ , f ,m�.
Some of the off-diagonal hyperfine matrix elements were

considered earlier in calculations �14,15,17� of the Stark shift
of the �6S1/2 ,F=3,M =0�→ �6S1/2 ,F=4,M =0� clock transi-
tion, but were never considered in a calculation of the tensor
polarizability. The off-diagonal �type 1� matrix elements of
the Fermi contact interaction between S1/2 states contribute
only to the clock frequency shift and are of no relevance
here.

The �diagonal� matrix elements of the hyperfine quadru-
pole interaction Hhf

q are only relevant for states with L ,J
�1 /2 and their numerical values are two orders of magni-
tude smaller than all other hyperfine matrix elements. The

matrix elements of the quadrupole part of the hyperfine
Hamiltonian can be decomposed in a similar way. However,
since their numerical evaluation yields only a relative contri-
bution of 10−3 to the tensor polarizability we do not repro-
duce the corresponding algebraic expressions here. The only
hyperfine operator contributing to the off-diagonal matrix el-
ements is the dipole-dipole operator Hhf

dd, which can be ex-
pressed in terms of irreducible tensor operators as

Hhf
dd = a�r��L�1� − 
10�C�2�

� S�1���1�� · I�1�, �24�

where L�1�, S�1�, and I�1� are the irreducible vector operators
associated with the orbital angular momentum, the electronic
spin, and the nuclear spin, respectively, and C�k�=
 4�

2k+1Y�k�

are the normalized spherical harmonic operators of rank k.
The radial dependence of the hyperfine operator is given by
a�r�. The two terms in Eq. �24� correspond to the dipolar
magnetic interaction of the nuclear spin I with the orbital
��L�1�� and the electronic spin ��C�2��S�1��, respectively.
The two interactions obey the selection rules �L=0 and
�L=0, ±2, respectively. The relevant �L=0 interactions
�types 2,3,4� have nonvanishing off-diagonal matrix ele-
ments of the form 
�1 �Hhf

dd ��2� where ��i�= �niPJi
, f ,m�. The

explicit reduction of those matrix elements leads to


�1�Hhf
dd��2� = �− 1� f+L1+J2+13
7
�2J1 + 1��2J2 + 1�

� � J1 7/2 f

7/2 J2 1
���orbital + �spin�
a�r�� ,

�25�

where we have separated the contribution of the orbital mag-
netic dipole interaction

�orbital = �− 1�J22
3�L1 J1 1/2
J2 L2 1

��L1,L2
, �26�

from that of the spin dipolar interaction

�spin = �− 1�7/23
10
�2L1 + 1��2L2 + 1��L1 2 L2

0 0 0
�

�� L1 L2 2

1/2 1/2 1

J1 J2 1
� . �27�

The coupling constant is given by


a�r�� = �
0

�

�n1PJ1

* a�r��n2PJ2
r2dr

=
2gI

h

�0

4�
�b

2�
0

�

�n1PJ1

* 1

r3�n2PJ2
r2dr . �28�

Because of the second rank tensor character of the spheri-
cal harmonic operator C�2� in Eq. �24�, the spin dipolar term
can also couple states with �L= ±2 and can thus contribute
to the third order Stark effect with off-diagonal matrix ele-
ments of the form 
� �Hhf

dd �	�, given by Eq. �23�, where ���
= �mD3/2 ,F ,M� with m�5 and �	�= �6S1/2 ,F ,M�. In the lat-
ter case �orbital vanishes and Eq. �25� reduces to

4
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��Hhf
dd�	� =


5 − F
F − 2
F + 3
F + 6

4

a�r�� , �29�

where the corresponding coupling constant is given by


a�r�� =
2gI

h

�0

4�
�b

2�
0

�

�mD3/2
* 1

r3�6S1/2
r2dr . �30�

C. Electric dipole matrix elements

Besides the hyperfine matrix elements the expressions in-
volve matrix elements of the Stark interaction HSt, i.e., of the
electric dipole operator d between S and P states. The latter
can be reduced by applying the Wigner-Eckart theorem and
the standard angular momentum decoupling rules, leading to
the reduced matrix elements


nS1/2�d�mPJ� = �− 1�J−�1/2�
mPJ�d�nS1/2�

= −
2J + 1

3
DnS,mPJ

, �31�

in which the radial integral is given by

DnS,mPJ
= e�

0

�

RmPJ
�r�r3RnS1/2

�r�dr , �32�

where RnLJ
are the radial wave functions.

We note that the phases �signs� of the reduced matrix
elements �Eq. �31�� are irrelevant for evaluating contribu-
tions involving diagonal hyperfine interactions, but are of
fundamental importance for the contributions involving off-
diagonal matrix elements.

Although dipole matrix elements between low-lying states
in the Cs atoms can be calculated quite accurately using rela-
tivistic Hartree-Fock calculations �see, e.g., �19,21�� we have
decided to rather use �more precise� experimental values,
whenever they were available. Table I lists �in bold� the re-
duced dipole matrix elements used in the present calculation.
For the matrix elements involving higher-lying states neither
experimental nor theoretical values were available. In that
case we have evaluated the corresponding radial integrals
using nonrelativistic wave functions obtained by solving the
Schrödinger equation as described in the next paragraph. The
values of Table I show that this approach reproduces the
matrix elements to better than 10%. Assuming that the
quoted accuracy also holds for excited states, and consider-
ing that the excited states give only a minor contribution to
the final result �cf. Table I�, we are confident that there is no
significant uncertainty introduced by using our theoretical
values for excited state matrix elements.

D. Wave functions of the free cesium atom

The nonrelativistic wave functions of the states �nL ,J� can
be separated into radial RnL,J�r� and angular YL,m�
 ,�� parts

�nLJ
�r� = 
r�nL,J�� = RnL,J�r�YL,m�
,�� . �33�

The radial wave functions are found as solutions of the
radial Schrödinger equation for u�r�=rRn,J�r�,

−
1

2

d2u�r�
dr

+ �VCs
free�r� +

L�L + 1�
2r2 �u�r� = Eu�r� . �34�

For the potential VCs
free�r� we have used a scaled Thomas-

Fermi model potential VTF�r ,
� �with a scaling parameter 
�
including dipolar and quadrupolar core-polarization correc-
tions Vpol�r� and the spin-orbit interaction Vspin-orbit�r� that
depends on the angular momentum L,

VCs
free�r� = VTF�r,
� + Vpol�r� + Vspin-orbit�r� . �35�

This model follows the work of Gombas �22� and Norcross
�23� and was explained in detail in �9�. Using this approach
we have calculated the electronic wave functions for nSJ,
nPJ, and nDJ states up to n=200.

E. Terms with diagonal hf matrix elements

As stated above terms involving diagonal hyperfine ma-
trix elements �hyperfine coupling constants� in the nPJ states
give the leading contribution to the third order tensor polar-
izability. In the numerical evaluation of the terms we use
again experimental values, when they are available. In Table
II we list the hyperfine coupling constants used �in bold�. A
comparison of experimental coupling constants of low-lying
states with constants calculated using our Schrödinger wave
functions is also made in order to illustrate the accuracy of
the theoretical approach. As for the radial integrals there are

TABLE I. Radial integrals DnS1/2 ,mPJ in atomic units. The val-
ues marked in bold were used in the calculation of the third order
tensor polarizability. The theoretical values calculated from
Schrödinger wave functions were used for matrix elements involv-
ing states with n�7. The theoretical values of the states involving
n=6,7 were not used in the calculation but are shown merely to
illustrate the accuracy of our calculation.

nS1/2 ,mPJ Experiments
Theory

�this work� Deviation

6S1/2 ,6P1/2 ±5.5087�75�a −5.3982 2%

6S1/2 ,6P3/2 ±5.4829�62�a −5.3009 3%

6S1/2 ,7P1/2 ±0.3377�24�b −0.3092 8%

6S1/2 ,7P3/2 ±0.5071�43�b −0.4617 9%

7S1/2 ,6P1/2 ±5.184�27�c +5.245 1%

7S1/2 ,6P3/2 ±5.611�27�c +5.696 2%

7S1/2 ,7P1/2 ±12.625d −13.298 5%

7S1/2 ,7P3/2 ±12.401d −13.015 5%

6S1/2 ,8P1/2 −0.078

6S1/2 ,8P3/2 −0.130

6S1/2 ,9P1/2 −0.045

6S1/2 ,9P3/2 −0.078

6S1/2 ,10P1/2 −0.030

6S1/2 ,10P3/2 −0.054

aExperimental values from Rafac et al. �16�.
bExperimental values from Vasilyev et al. �18�.
cExperimental value quoted in �19�.
dBennett et al. �20�, with signs determined from Eq. �31�.
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no experimental data for the high-lying states and we used
our theoretical values, and, again, our accuracy is sufficient
since it affects only the �very small� contributions from ex-
cited states.

It can be easily seen that the off-diagonal contributions
are sensitive to the sign of the radial matrix elements. When-
ever we extracted such matrix elements from experimental
data—which all determined squared matrix elements—we
have used the sign of the dipole matrix elements given by
Eq. �31�.

F. Terms with off-diagonal hf matrix elements

S-mixing off-diagonal hyperfine matrix elements have
played an important role in the measurement of parity viola-

tion in the Cs atom and they were measured and calculated
with a high accuracy. However, such matrix elements inter-
vene only in type 1 interactions, and do thus not contribute to
the present calculation, in which the relevant terms come
from nPJ−n�PJ� mixing �types 2, 3, and 4� and 6S1/2-mD3/2
mixing �type 5�. We have evaluated all relevant diagonal and
off-diagonal hyperfine matrix elements using Schrödinger
wave functions and the expressions given above. A selection
of numerical values of those matrix elements for the lowest-
lying states is shown in Tables III and IV.

G. Contribution of continuum states

In principle, the summation in Eq. �14� has to be carried
out over continuum states as well as over bound states. It
was shown in �14,15� that the continuum states contribute
significantly ��15% � to type 1 interactions, which them-
selves do not contribute to the tensor polarizability. In order
to estimate the influence of the continuum on the tensor po-
larizability we calculated the �positive energy� continuum
wave functions using our Schrödinger approach and used
them to evaluate bound-continuum and continuum-
continuum matrix elements of the electric dipole and hyper-
fine interactions.

For the numerical evaluation of transition matrix elements

p ,LJ�

� �W �nLJ� between bound �n ,LJ� and continuum states
�p ,LJ�

� � as well as between continuum states we use the ex-
pressions �32� and �28�. We extended the perturbation sums
�integrals� of all relevant interactions �types B, 2–5� over
bound and continuum states.

TABLE II. Hyperfine coupling constants Ahf�nLJ� in MHz. The
values marked in bold were used in the calculation of the third order
tensor polarizability, where they contribute as diagonal matrix ele-
ments of Hhf to type B interactions. The theoretical values calcu-
lated from Schrödinger wave functions were used for states with
n�8. The theoretical values of the states n=6, . . . ,8 were not used
in the calculation but are shown to illustrate the accuracy of our
calculation. The hyperfine constants AnLJ

are related to the coupling

constants a�r� defined in the text by the relation 
a�r��=
J�J+1�

L�L+1�AnLJ
.

nLJ Experiments Theory Deviation

6P1/2 291.920�19�b 317.9 8%

6P3/2 50.275�3�c 48.3 4%

7P1/2 94.35�4�a 99.9 6%

7P3/2 16.605�6�a 15.4 7%

8P1/2 42.97�10�a 45.0 5%

8P3/2 7.58�1�a 7.0 7%

9P1/2 24.2

9P3/2 3.8

10P1/2 14.5

10P3/2 2.3

11P1/2 9.4

11P3/2 1.5

aExperimental value taken from Arimondo et al. �24�.
bExperimental value taken from Rafac et al. �25�.
cExperimental value taken from Tanner et al. �26�.

TABLE III. Off-diagonal hyperfine coupling constants 
a�r�� �in MHz� representing interactions of types
2, 3, and 4. The numerical evaluation is based on Schrödinger wave functions as described in the text.

6P1/2 7P1/2 8P1/2 9P1/2 6P3/2 7P3/2 8P3/2 9P3/2

6P1/2 785.3 827.1 386.4 187.7 106.1 71.5 52.5

7P1/2 422.2 309.4 105.2 85.0 57.3 42.1

8P1/2 290.7 70.6 57.1 53.8 39.5

9P1/2 51.8 41.8 39.4 41.3

6P3/2 187.7 105.2 70.6 51.8 14.3 9.6 7.1

7P3/2 106.1 85.0 57.1 41.8 7.8 5.7

8P3/2 71.5 57.3 53.8 39.4 5.4

9P3/2 52.5 42.1 39.5 41.3

TABLE IV. Off-diagonal hyperfine coupling constants 
a�r�� �in
MHz� of type 5 interactions. The numerical evaluation is based on
Schrödinger wave functions as described in the text.

n 
mD3/2 �a�r� �6S1/2�

5 74.4

6 42.9

7 28.4

8 21.2

9 16.4
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The calculation poses no convergence problems, except
for the type 5 interaction, which is the only one that involves
dipole matrix elements between continuum states. Such ma-
trix elements also occur, e.g., in the calculation of brems-
strahlung transitions, and pose some technical difficulty. For
their evaluation we have used the method of exterior com-
plex scaling introduced in �27,28� with a numerical imple-
mentation on a grid. The regular and outgoing waves in the
complex plane were obtained through a step-by-step propa-
gation using recursive relations �27�. As a result we find a
total contribution from continuum states to the final value of
�2

�3� on the order of 0.2%.

H. Numerical evaluation of the third order tensor
polarizability for the free Cs atom

We have done a numerical evaluation of all diagonal �type
B� and off-diagonal �types 2–5� contributions to the tensor
polarizability summing over bound states up to n=200. For
the F=4 state we find

�2
�3��F = 4� = − 3.72�25� � 10−2 Hz/�kV/cm�2, �36�

in which the contribution from the quadrupole hyperfine in-
teraction is 2�10−5 Hz / �kV /cm�2. This result is shown as a
dotted line in the left part of Fig. 4, together with previous
theoretical and experimental results, described in the figure
caption.

Table V shows the relative contributions of the different
diagonal �type B� and off-diagonal �types 2–5� hyperfine in-
teractions to the third order tensor polarizability. One notes
that the diagonal �type B� contributions which were the only
ones used in previous calculations overestimate the modulus
of the third order tensor polarizability by approximately
50%. Of all the off-diagonal contributions the interactions of
type 2 and 5 �n-mixing of nPJ states with given J and
6S1/2-nD3/2 mixing� give large contributions with opposite
signs which cancel each other to a large extent.

We estimate the uncertainty of the final result to be �7%.
This estimation is based on the precision �2–9 % � with
which our wave functions reproduce measured hyperfine
constants �Table II� and dipole matrix elements �Table I�, and
considers that we have used �more precise� experimental val-
ues for the leading terms. As shown in the previous para-
graph the relative contribution of the continuum states to the
tensor polarizability is on the order of 10−3 and is thus neg-

ligible in the final result. Figure 1 shows the relative contri-
butions from the different interactions in a cumulative way.

Our theoretical value for �2
�3��F=4� of the free Cs atom is

in good agreement with all experimental values �Fig. 4�.

IV. THIRD ORDER POLARIZABILITY OF CESIUM
IN SOLID HELIUM

A. Experiment

In connection with a proposed search for an electric di-
pole moment of Cs atoms in solid helium we were led to
study the tensor Stark shifts in that unusual sample. The
exceptionally long longitudinal and transverse spin relax-
ation times of Cs in the body-centered cubic �bcc� phase of
4He crystals form the basis for high resolution magnetic
resonance experiments. Recently we have measured the
Stark shift of magnetic resonance lines in the ground state
of Cs atoms implanted in bcc 4He by two different tech-
niques �8�. The experimental values of the corresponding
tensor polarizabilities −4.07�20��10−2 Hz / �kV /cm�2 and
−4.36�28��10−2 Hz / �kV /cm�2 for �2

�3��F=4� are shown as
points �d� and �e� in Fig. 4.

B. Wave function of Cs in solid 4He

For calculating the tensor polarizability of Cs in solid he-
lium one has to include the influence of the He matrix on the
atomic energies and wave functions. Because of the Pauli
repulsion Cs atoms form spherical bubbles, which are de-
scribed by a spherically symmetric continuous He density
distribution

��R,R0,�� = �0, R � R0

�0�1 − �1 + ��R − R0��e−��R−R0�� R, � R0,

�37�

where R0 is the bubble radius. � describes the steepness of
the interface �density changes from zero to the bulk density�
and �0 is the bulk density which depends on the He tempera-
ture and pressure. In Eq. �37� we have assumed that solid
helium is an incompressible fluid, an assumption well justi-
fied by the quantum nature of condensed 4He. Our calcula-
tion of the Cs wave functions relies on an extension of the
so-called bubble model �9�, which was shown in the past to
be well suited for describing energies, absorption or emission

TABLE V. Relative contributions �in %� to �2
�3��F=4� from diagonal, type B, Eq. �21� and off-diagonal,

types 2–5, Eqs. �22� and �23�, hyperfine interactions of excited states nLJ.

n
Type 6 7 8 9 10–200 Total

B 146.8 �0 �0 �0 �0 146.8

2 73.4 10.2 4.3 6.4 94.3

3 −37.0 −0.1 �0 �0 �0 −37.1

4 −2.1 −0.4 �0 −0.2 −2.7

5 −116.7 −3.7 12.6 2.2 4.3 −101.3

Total −6.9 67.5 22.4 6.5 10.5 100.0

7
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line shapes, hyperfine structure, and lifetimes of alkali metals
in solid helium �9,29�.

The total interaction potential experienced by the Cs va-
lence electron is given by

VCs
bub�r,R0,�� = VCs

free�r� +� d3R��R,R0,��

� �VHe�r,R� + Vcross�r,R� + Vcc�R�� ,

�38�

where VCs
free�r� is the potential of the valence electron with the

Cs+ core introduced in Eq. �35�. The ionic core and the He
atoms are assumed to have fixed spatial positions �Born-
Oppenheimer approximation�. In Eq. �38� VHe�r ,R� and
Vcc�R� represent the interactions of the valence electron and
the Cs+ ion with a He atom. The potential Vcross�r ,R� de-
scribes the three-body interaction resulting in the simulta-
neous polarization of the He atom by the Cs core and the
valence electron. r and R point from the core to the electron
and to each He atom, respectively. Explicit forms for all the
potentials as well as numerical parameter values are given in
�9�. The potentials seen by the valence electron in the free Cs
atom VCs

free and in the Cs atom trapped in solid He VCs
bub are

shown, together with the energies of the lowest states in Fig.
3.

The energy needed to from a bubble consists of a pressure
volume term, a surface energy �with surface tension param-
eter ��, and the kinetic energy Ekin, which arises from the
localization of the He atoms at the bubble interface

Ebub�Rb,�� =
4

3
�Rb

3p + 4�Rb
2� + Ekin, �39�

where Rb= f�R0� is the center of gravity of the interface. The
total energy of the bubble defect is thus Vtot

bub�r ,R0 ,��
=VCs

bub�r ,R0 ,��+Ebub�R0 ,��, and the average bubble radius Rb

is found by numerically minimizing the total energy with
respect to the two parameters R0 and �. Using the known
bubble parameters and the interaction potential one can then
solve the radial Schrödinger equation as for the valence elec-
tron of the free Cs atom. In order to illustrate the effect of the
He bubble we compare in Fig. 2 the wave function of the
9P1/2 state of the free Cs atom with the corresponding wave
function in the bubble. As expected, the wave function in the
bubble is compressed due to the repulsive interaction with
the surrounding helium atoms.

Using the solutions �wave functions� one can then evalu-
ate the matrix elements required for the numerical calcula-
tion of the third order polarizability, in analogy to the free
atomic case.

C. Numerical evaluation of the third order tensor
polarizability of Cs in solid He

The numerical evaluation of the tensor polarizability �2
�3�

for Cs in solid He was done in analogy to the case of the free
atom, with wave functions and energy levels calculated using
the bubble model introduced in Sec. IV B. While in the case
of the free Cs atom we have considered bound states up to

the principal quantum number n=200 we need only to con-
sider states up to 9P in the He matrix, since higher-lying
states are not bound �see Fig. 3�. Moreover, the energy levels
of the higher-lying states are strongly shifted to higher ener-
gies. For example, the energies of the 8P1/2 and 9P1/2 state
are displaced by 5580 cm−1 �22%� and 5830 cm−1 �21%�,
respectively, with respect to the free atom. Since the pertur-
bation sum involves squared energy denominators these ex-
cited states give smaller contributions than in the free atomic
case. In Table VI we analyze the dependence of the relative
contributions from the different diagrams on the number of
states included in the perturbation sum, which qualitatively
reflects the same features as in the free atomic case. Our final
theoretical value of the tensor polarizability of Cs in solid
4He is

�2
�3��F = 4� = − 4.11 � 10−2 Hz/�kV/cm�2. �40�

On the right of Fig. 4 we compare this theoretical value with
the experimental values of �2

�3� of Cs atoms trapped in a
body-centered cubic solid 4He matrix �8� and find an excel-
lent agreement.

r (a.u.)(a.u.)

en
er

gy
(a

.u
.)

FIG. 3. �Color online� Energies of the lowest nS1/2 �left� and
nP1/2 �right� states of the free Cs atom �dashed lines� and of Cs in
the bcc solid 4He �solid lines, R0=10.2, �=2.45 atomic units�. The
corresponding potentials for the valence electron of the free Cs
atom �Eq. �35�� and of the Cs atom in solid He �Eq. �38�� are shown
as dotted and solid lines, respectively. The n=9 states are the high-
est bound states in the bubble. The bump in the potential VCs

bub is due
to the repulsion by the bubble interface. The arrows between the
graphs indicate the ionization limits.

r (a.u.)

FIG. 2. �Color online� Comparison of the 9P1/2 wave function
of the free Cs atom �black solid line� with the same wave function
of a Cs atom in a spherical helium bubble �red dotted line�. The
bubble parameters correspond to the equilibrium bubble shape of a
ground state Cs atom �R0=10.2, indicated by the vertical dotted line
and �=2.45 in atomic units�.
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V. SUMMARY

We have presented calculational details of our semiempir-
ical evaluation of the cesium ground state tensor polarizabil-
ity �2

�3�. This F- and M-dependent polarizability is forbidden
in second order perturbation theory and arises only when
considering the Stark effect and hyperfine interactions in a
third order perturbation calculation. The tensor polarizability
is suppressed by seven orders of magnitude with respect to
the usual scalar polarizability of the atom.

We have evaluated �2
�3� both for the free cesium atom and

for Cs embedded in a cubic solid 4He matrix using solutions
of the Schrödinger equation with appropriate potentials for
evaluating the relevant matrix elements in both cases. We
have found that off-diagonal hyperfine matrix elements,
which were not considered in previous treatments give sub-
stantial contributions �of different signs� to �2

�3�. As a result
we obtain theoretical values for the tensor polarizabilities
that are in excellent agreement with previous and recent

measurements. The modulus of the experimental tensor po-
larizability of Cs in the He matrix is found to be 8–10 %
larger than the one of the free Cs atom.

It thus seems that the 40 year old discrepancy between
experimental and theoretical tensor polarizabilities has now
found a satisfying final solution.
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