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Fructose ingestion acutely elevates blood pressure in healthy young humans
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Overconsumption of fructose, particularly in the form of soft drinks,
is increasingly recognized as a public health concern. The acute
cardiovascular responses to ingesting fructose have not, however,
been well-studied in humans. In this randomized crossover study, we
compared cardiovascular autonomic regulation after ingesting water
and drinks containing either glucose or fructose in 15 healthy volun-
teers (aged 21–33 yr). The total volume of each drink was 500 ml, and
the sugar content 60 g. For 30 min before and 2 h after each drink, we
recorded beat-to-beat heart rate, arterial blood pressure, and cardiac
output. Energy expenditure was determined on a minute-by-minute
basis. Ingesting the fructose drink significantly increased blood pres-
sure, heart rate, and cardiac output but not total peripheral resistance.
Glucose ingestion resulted in a significantly greater increase in cardiac
output than fructose but no change in blood pressure and a concom-
itant decrease in total peripheral resistance. Ingesting glucose and
fructose, but not water, significantly increased blood pressure vari-
ability and decreased cardiovagal baroreflex sensitivity. Energy ex-
penditure increased by a similar amount after glucose and fructose
ingestion, but fructose elicited a significantly greater increase in
respiratory quotient. These results show that ingestion of glucose and
fructose drinks is characterized by specific hemodynamic responses.
In particular, fructose ingestion elicits an increase in blood pressure
that is probably mediated by an increase in cardiac output without
compensatory peripheral vasodilatation.

cardiac output; autonomic nervous system; thermogenesis; heart rate
variability

THE LAST 30 YEARS have seen a tremendous increase in the
consumption of refined sugars in Western diets (27). Carbon-
ated soft drinks supply about one-third of the total daily sugar
intake, with fruit drinks contributing a further 10% (23).
Fructose comprises about one-half of the sugar in soft drinks,
either bound to glucose as the disaccharide sucrose or as a
component of high-fructose corn syrup, which is increasingly
used as the sweetener in soft drinks (4). Studies in animals
have shown a clear association between sugar intake and the
development of hypertension and tachycardia (9). The fructose
component seems to be particularly damaging because, in
dogs, a diet that is high in fructose, but not one that is high in
glucose, leads to hypertension, elevated plasma triglycerides,
insulin resistance, and hyperinsulinemia (20). High-fructose
diets have also been linked with the development of cardiac
hypertrophy (16), reduced baroreflex sensitivity (21), and renal
damage (29) in rats. However, the acute effects of fructose
ingestion on blood pressure and hemodynamics are unclear.

In humans, ingestion and metabolism of different nutrients
elicit hemodynamic responses that are determined to some

extent by the type of nutrient (14). The monosaccharides
glucose and fructose have contrasting effects on blood flow and
sympathetic activity. Infusion of glucose acutely increases
muscle nerve sympathetic activity and causes vasodilatation in
calf skeletal muscle (37), and oral ingestion of glucose in-
creases splanchnic blood flow (7). In contrast to glucose,
fructose does not acutely increase muscle nerve sympathetic
nerve activity or cause vasodilatation in skeletal muscle (37) or
in the splanchnic circulation (8). There is, however, evidence
that fructose ingestion results in increased plasma norepineph-
rine levels (15). Moreover, fructose seems to stimulate cardiac
sympathetic activity because infusion of fructose causes an
increase in heart rate that is suppressed during �-adrenergic
blockade (31).

Based on the above findings, we hypothesized that fructose
would exert an acute increase in blood pressure via increased
sympathetic activity to the heart and subsequent elevation in
cardiac output without a peripheral vasodilatory response.
Despite the evidence that infusion of glucose and fructose
elicits different hemodynamic responses, integrated cardiovas-
cular responses to oral ingestion of these simple sugars have
not been well-studied, particularly in the context of soft drinks.

The aim of the present study was to determine, in a random-
ized crossover study, the cardiovascular and thermogenic re-
sponses to oral ingestion of glucose and fructose. We therefore
measured oxygen consumption and beat-to-beat heart rate,
blood pressure, and cardiac output in response to drinks con-
taining water, glucose, and fructose in a series of healthy,
young humans.

MATERIALS AND METHODS

Fifteen healthy normal-weight volunteers (9 male, 6 female), aged
21–33 (mean 24 � 1) yr, were recruited by advertisement and paid.
The mean height of the males was 176 � 2 cm, their weight was 71 �
3 kg, and their body mass index was 22.9 � 0.8 kg/m2. The mean
height of the females was 171 � 2 cm, their weight was 59 � 2 kg,
and their body mass index was 20.1 � 0.2 kg/m2. None of the subjects
had any diseases or were taking any medication affecting cardiovas-
cular or autonomic regulation. The participants were requested to
avoid alcohol or caffeine for 24 h and were studied in the morning
after an overnight (12-h) fast. Subjects were also asked to empty their
bladders immediately before the experiment. Written informed con-
sent was obtained from each participant. The study protocol complied
with the Declaration of Helsinki and received local ethics committee
approval.

Protocol. All measurements were performed in a temperature-
controlled (22 � 1°C) quiet laboratory. Every subject attended three
separate experimental sessions (each session separated by at least 3
days) according to a randomized crossover design. At each experi-
mental session, the responses to one of three test drinks were mea-
sured. The drinks tested were: 1) water, 2) water containing 60 g
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glucose, and 3) water containing 60 g fructose. Each drink contained
10 ml lemon juice (to provide a more uniform taste) and was made up
to a total of 500 ml by addition of distilled water. The subjects were
not told the order of the drinks.

Each subject was studied while sitting in a comfortable armchair.
Instruments for cardiovascular monitoring and indirect calorimetry
were attached, and the recording started 30–40 min later when the
signals had stabilized. After a 30-min baseline period, the subject was
given a test drink to consume over a period of 4 min. Cardiovascular
and metabolic monitoring was continued for a further 120 min after
the drink.

Noninvasive cardiovascular recordings were performed using a
Task Force Monitor (CNSystems, Medizintechnik, Graz, Austria)
with data sampled at a rate of 1,000 Hz (5). Cardiac intervals (and
their reciprocal, heart rate) were recorded by electrocardiography.
Continuous blood pressure was recorded from the middle finger of the
right hand using the vascular unloading technique and was calibrated
to oscillometric brachial blood pressure measurements on the con-
tralateral arm. Thoracic impedance was recorded using band elec-
trodes, one placed on the back of the neck and two parallel electrodes
placed on the lateral sides of the thorax at the level of the xiphoid
process. Cardiac stroke volume was derived on a beat-to-beat basis
from the impedance cardiogram.

Respiratory gas exchange was measured by indirect calorimetery
using an open-circuit ventilated hood system (Deltatrac monitor,
Datex, Helsinki, Finland). Resting energy expenditure and respiratory
quotient were derived from the rates of oxygen consumption and
carbon dioxide production using the Weir equation (38).

Data analysis. Values of cardiac interval, blood pressure (systolic,
mean, and diastolic), cardiac stroke volume, and gaseous exchange
parameters were averaged every 15 min during the baseline period
and the 2-h postdrink period. The pressure-rate double product was
calculated as the product of systolic blood pressure and heart rate,
whereas cardiac output was computed as the product of stroke volume
and heart rate. Total peripheral resistance was calculated as mean
blood pressure divided by cardiac output.

Cardiovagal baroreflex sensitivity was determined from spontane-
ous fluctuations in systolic blood pressure and cardiac interval using
the sequence technique (3), which has been shown to give similar
results to the gold-standard phenylephrine method (26). Sequences
were identified where systolic blood pressure spontaneously increased
or decreased by at least 1 mmHg/beat over at least three consecutive
heart beats, and, at the same time, cardiac interval changed by at least
4 ms/beat in the same direction. For each sequence, linear regression
was applied to the values of systolic pressure and the subsequent
cardiac interval (zero beat delay), and the baroreceptor sensitivity was
taken as the average regression slope for all sequences with a suffi-
ciently high r2 value (�0.85).

Cardiac interval and blood pressure variabilities were evaluated by
power spectral analysis (33). Five-minute data sets were analyzed by
Fast-Fourier transformation using a Hamming window. For each
dataset, spectral power was obtained in the low-frequency (LF;
0.03–0.15 Hz) and high-frequency (HF; 0.15–0.40 Hz) ranges. Due to
their skewed distributions, powers of cardiac interval and blood
pressure were analyzed after natural logarithmic transformation.

Statistics. All values are reported as means � SE. Statistical
analysis was performed by two-way ANOVA for repeated measures
with time and treatment (drink type) as within-subject factors using
statistical software (Statistix version 8.0; Analytical Software, St.
Paul, MN). Where significant differences were found, the effects of
each drink over time were analyzed by comparing values at each time
point over the postdrink period with the basal values recorded during
the 30 min immediately before drinking using Dunnett’s test for
multiple comparisons. Responses to each drink were then calculated
as the mean change from baseline value over the 2-h postdrink period
and compared using a one-way repeated-measures ANOVA followed

by Newman-Keul’s posttest. The level of statistical significance was
set as P � 0.05.

RESULTS

Cardiovascular responses to the water and sugar drinks.
Resting values of the cardiovascular variables were similar
during the baseline period for all three drinks (Table 1). Every
subject ingested each drink without problems, and none re-
ported nausea or other unpleasant effects.

Figure 1 shows the changes in blood pressure and heart rate
after ingesting water, glucose, and fructose. For systolic and
diastolic blood pressure, as well as heart rate, there were
significant treatment and time effects and treatment � time
interactions (all P � 0.01). After fructose ingestion, systolic
and diastolic blood pressure increased significantly (P � 0.01),
with the response starting within 30 min of consuming the
drink. The fructose-induced elevation in blood pressure was
maintained for the entire duration of the postdrink recording,
with the systolic blood pressure peaking at 6.2 � 0.8 mmHg
above baseline. Although blood pressure increased slightly
after water drinking, the effect was not significant. Ingestion of
the glucose drink also had no significant effects on blood
pressure. Heart rate initially decreased (P � 0.01) in response
to drinking water before returning toward the baseline value. In
contrast, ingesting the glucose and fructose drinks both in-
creased heart rate, which was still significantly (P � 0.01)
elevated at the end of the 2-h postdrink recording period.
Although comparison of the responses to different drinks
showed that the overall heart rate responses did not differ
significantly between ingestion of glucose and fructose, the
increase in heart rate over the second hour compared with
baseline was significantly greater (P � 0.05) after fructose
(�7.2 � 0.9 beats/min) than after glucose (�4.0 � 0.7
beats/min) or water (�0.9 � 1.0 beats/min) drinking.

The responses of the pressure-rate double product, cardiac
output, and total peripheral resistance are shown in Fig. 2.
There were significant treatment and time effects and signifi-
cant treatment � time interactions for the double product and
cardiac output (all P � 0.01). In contrast to water, the double
product increased with both glucose and fructose drinks (P �
0.01). Comparison of the responses to the drinks (mean change
from baseline) showed that the elevation in double product was
significantly greater for fructose than for glucose (P � 0.05).

Table 1. Baseline data recorded in the 30 min immediately
before ingesting each of the drinks

Water Glucose Fructose

Systolic blood pressure, mmHg 113�2 112�2 113�2
Mean blood pressure, mmHg 85�1 84�2 85�2
Diastolic blood pressure, mmHg 73�1 72�2 73�2
Heart rate, beats/min 65�2 63�2 66�2
Double product, mmHg �beat �min�1 7,346�200 7,061�205 7,385�183
Stroke volume, ml 76�4 79�5 76�4
Cardiac output, l/min 4.87�0.17 4.93�0.20 4.91�0.18
Total peripheral resistance,

mmHg � l�1 �min 17.8�0.7 17.4�0.7 17.7�0.8
Baroreflex sensitivity, ms/mmHg 20.6�1.9 24.5�2.9 20.1�2.5
Resting oxygen consumption, ml/min 216�7 214�8 214�6
Resting energy expenditure, kJ/min 4.34�0.13 4.30�0.16 4.37�0.13
Respiratory quotient 0.86�0.02 0.86�0.01 0.85�0.02

Data are presented as means � SE.

2



ht
tp

://
do

c.
re

ro
.c

h

Cardiac output remained stable after the water drink but in-
creased significantly after the glucose and fructose drinks (both
P � 0.01). Comparison of the responses to the drinks showed
that the increase in cardiac output after fructose ingestion was
only about one-half of that measured after ingesting glucose
(P � 0.05). For total peripheral resistance, there was a signif-
icant treatment effect (P � 0.01) and treatment � time inter-
action (P � 0.01). Total peripheral resistance decreased sig-
nificantly after ingesting the glucose drink (P � 0.01) but
showed no significant change after the water or fructose drinks.

Baroreflex sensitivity and cardiovascular variability. For
baroreflex sensitivity, there were significant treatment (P �
0.01) and time (P � 0.01) effects and a significant treatment �
time interaction (P � 0.01). Baroreflex sensitivity (Fig. 3)

increased significantly over time after ingesting water (P �
0.01) but decreased following ingestion of the glucose (P �
0.05) and fructose (P � 0.01) drinks. However, comparison
of the mean postdrink changes in baroreflex sensitivity
showed no significant differences between ingesting glucose
and fructose.

Changes in cardiac interval HF and LF power are shown in
Fig. 4. There were significant treatment (P � 0.01) and time
(P � 0.01) effects and a treatment � time interaction (P �
0.01) for cardiac interval HF power. Water drinking induced an
immediate increase in cardiac interval HF power (P � 0.01)
that slowly returned toward the basal value. After ingesting
glucose, cardiac interval HF power initially increased (P �
0.01) and returned to a level that was slightly, but not signif-

Fig. 1. Time course of the systolic blood pressure
(SBP; A), diastolic blood pressure (DBP; B), and heart
rate (HR; C) changes (left) and mean responses (right)
to drinking water (E), glucose (Œ), and fructose (■).
*P � 0.05 and **P � 0.01, statistically significant
differences over time from baseline values (left) and
differences between responses to the drinks (right).
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icantly, below the baseline. Fructose ingestion also caused an
initial increase in cardiac interval HF power (P � 0.01), but at
1-h after the drink there was a sustained fall in HF power to
significantly below the baseline value (P � 0.05). For cardiac
interval LF power, there was a significant time (P � 0.05)
effect. Cardiac interval LF power increased significantly after
ingesting the glucose and fructose drinks (both P � 0.01) but
not after ingesting water.

Figure 5 shows changes in mean arterial blood pressure
variability. There were significant time effects (P � 0.01) for
both LF and HF blood pressure variability. Ingestion of the
glucose and fructose drinks resulted in significant increases in HF
and LF blood pressure variability (all P � 0.05), but drinking
water had no consistent effects on blood pressure variability.

Gaseous exchange and thermogenic responses. Resting val-
ues of oxygen consumption, energy expenditure, and respira-
tory quotient are shown in Table 1. Changes in resting energy
expenditure and respiratory quotient after the drinks are shown
in Fig. 6. There were significant treatment (P � 0.01) and time
(P � 0.01) effects and a treatment � time interaction (P �
0.01) on resting energy expenditure. Ingestion of glucose and
fructose, but not water, significantly increased oxygen con-
sumption (both P � 0.01). When responses to the drinks were
compared, the average postdrink changes in resting energy
expenditure did not differ significantly between glucose and
fructose ingestion.

For respiratory quotient, there were significant treatment
(P � 0.01) and time (P � 0.01) effects and a treatment � time

Fig. 2. Time course of the pressure-rate double
product (DP; A), cardiac output (CO; B), and total
peripheral resistance response (TPR; C) changes
(left) and mean responses (right) to drinking water
(E), glucose (Œ), and fructose (■). *P � 0.05 and
**P � 0.01, statistically significant differences over
time from baseline values (left) and differences be-
tween responses to the drinks (right).
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interaction (P � 0.01). Ingestion of glucose and fructose
significantly increased respiratory quotient (P � 0.01), but
water had no effect. Comparison of the responses to the drinks
showed that the average increase in respiratory quotient after
fructose ingestion was more than double that observed after
ingesting the glucose drink (P � 0.01).

DISCUSSION

Studies in animals have linked diets that are high in fructose
with the onset of hypertension, tachycardia, cardiac hypertro-
phy, and renal damage (16, 20, 29). The current study was
designed to investigate, in healthy young humans, the acute
cardiovascular responses to ingesting drinks containing simple

sugars. Although some studies have investigated certain as-
pects of cardiovascular regulation and regional blood flows in
response to glucose and fructose (8, 15, 37), a particular
strength of our study is that we noninvasively and comprehen-
sively determined responses of beat-to-beat blood pressure and
cardiac output, as well as autonomic regulation and gaseous
exchange in the same set of subjects. A further advantage of
our study was that we utilized a crossover design in which
every subject was exposed to each of the test drinks.

Our main finding was that oral ingestion of a fructose drink
initiated a significant elevation in blood pressure for at least 2 h
after the drink. In contrast, no blood pressure increase was
observed after ingesting water or a glucose drink. Compared

Fig. 3. Time course of the changes (left) in baroreflex
sensitivity (BRS) and mean responses (right) after
drinking water (E), glucose (Œ), and fructose (■). *P �
0.05 and **P � 0.01, statistically significant differ-
ences over time from baseline values (left) and differ-
ences between responses to the drinks (right).

Fig. 4. Time course of the changes in high-frequency
(HF) power (A) and low-frequency (LF) power (B) of
cardiac interval variability (left) and mean responses
(right) after drinking water (E), glucose (Œ), and
fructose (■). *P � 0.05 and **P � 0.01, statistically
significant differences over time from baseline
values.
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with glucose, ingestion of fructose also resulted in greater
increases in heart rate and pressure-rate double product, an
index of myocardial oxygen demand (1, 17). These results
support the concept that ingestion and metabolism of different
sugars elicit specific patterns of hemodynamic responses. In
particular, the elevated blood pressure and myocardial oxygen
demand in response to fructose suggests that oral ingestion of
this monosaccharide elicits a moderate cardiovascular load for
at least 2 h after the drink.

The increase in blood pressure in response to ingesting a
fructose drink was characterized by gradual increases in heart
rate and cardiac output but no compensatory reduction in total
peripheral resistance. There was a decrease in the high-fre-
quency component of cardiac interval variability �1 h after
fructose ingestion, suggesting withdrawal of cardiovagal tone
(33). Although interpretation of the low-frequency component
of heart rate variability is controversial (19), the augmented
low-frequency power that we observed after fructose ingestion
is consistent with an elevation in sympathetic tone to the heart
(18). Cardiac sympathetic stimulation by fructose is further
supported by evidence that the rise in heart rate during fructose
infusion is attenuated by �-adrenoceptor blockade with pro-
pranolol (31). Although cardiac output was increased after
fructose ingestion, the response was much lower than after
glucose ingestion. However, unlike fructose, ingestion of
a glucose drink lowered total peripheral resistance. Therefore,
glucose ingestion had no net effect on blood pressure, a result
that is in line with previous findings (24, 37).

The mechanism of the cardiac sympathetic stimulation fol-
lowing ingestion of glucose and fructose remains to be estab-
lished. Although insulin has a role in elevating cardiac con-
tractility and heart rate (22), this is unlikely to be a factor in the
response to fructose ingestion, since, compared with glucose,
fructose has negligible effects on insulin secretion (8, 11, 12,
15, 28, 32, 37). The cardiac stimulation after ingesting glucose
and fructose might be due to factors within the gastrointestinal
tract or portal circulation. For example, the liver has a rich
autonomic neural innervation, and some evidence suggests the
possible existence of hepatic glucose and fructose receptors (30).

The contrasting vascular responses to fructose and glucose
ingestion might be explained, at least in part, by the hemody-
namic actions of insulin. Physiological elevations of plasma
insulin concentration provoke a rise in cardiac output and a
reduction in muscle and systemic vascular resistance (2). The
relative lack of an insulin response after fructose (8, 11, 12, 15,
28, 32, 37) might, at least in part, explain the absence of
peripheral vasodilatation. In our study, we did not actually
measure insulin concentrations, since we wanted to avoid
taking blood samples, which would influence the subtle auto-
nomic responses and possibly interfere with blood pressure
regulation after the drinks. However, the insulin responses to
ingesting drinks containing glucose and fructose have been
well-defined by other studies (8, 11, 12, 15, 28, 32, 37).

Some previous studies have also determined blood pressure
responses to ingestion of simple sugars. For example, Vis-
vanathan et al. (35) reported that, in elderly individuals (who

Fig. 5. Time course of the changes in HF power (A)
and (B) LF power (B) of mean arterial pressure
variability (left) and mean responses (right) after
drinking water (E), glucose (Œ), and fructose (■).
*P � 0.05 and **P � 0.01, statistically significant
differences over time from baseline values.
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are susceptible to postprandial hypotension), blood pressure
decreased after ingesting 50-g loads of sucrose and glucose,
whereas fructose ingestion had no effect. A study performed in
young subjects showed no change in blood pressure in re-
sponse to glucose or fructose ingestion (15). However, in that
study, there were some methodological differences compared
with ours. We recorded continuous (beat-to-beat) blood pres-
sure, whereas, in the previous study (15), an intermittent
method was used. Another difference is that our subjects were
studied while in a seated position, but, in the previous study
(15), the subjects were supine. Our study was also entirely
noninvasive to avoid the potential influence of blood sampling
on autonomic regulation. Another study demonstrated that
intravenous infusion of glucose and fructose had no effects on
blood pressure (37). There is, however, evidence that the route
of administration (oral vs. intravenous) can influence the phys-
iological responses to monosaccharides (7).

Although ingestion of the glucose drink did not cause an
elevation in the mean level of blood pressure, there was a
significant increase in blood pressure variability that was also
observed in response to the fructose drink. In clinical studies,
augmented blood pressure variability has been linked to target
organ damage and subsequent development of hypertension,
even without changes in the mean level of blood pressure (25).
The mechanism for the increase in blood pressure variability
after ingesting sugar drinks is unclear but might be related to
either an acute vascular endothelial dysfunction, which has
previously been reported after glucose ingestion (10), or to the

reduced baroreflex sensitivity that we observed in response to
the sugar drinks.

Indirect calorimetry confirmed our previous finding that
water ingestion has no effect on resting energy expenditure (6).
Although the glucose and fructose drinks elevated resting
energy expenditure by similar amounts, the increase in respi-
ratory quotient was much greater for the fructose drink than it
was for the glucose drink. The higher respiratory quotient after
fructose ingestion is consistent with an increased conversion of
carbohydrate to fat (13). There is some evidence that acute
fructose ingestion favors lipogenesis, detectable within 2–4 h
(11), and that consuming fructose-sweetened beverages with
meals potentiates the postprandial elevation in plasma triglyc-
erides in humans (34). The subjects in our study had undergone
a 12-h fast before the measurements to avoid potential effects
of previous meals. Considering the acute endothelial dysfunc-
tion caused by high plasma levels of blood triglycerides (36),
it is possible that a prior meal would augment the cardiovas-
cular responses to consuming a drink containing fructose.

Perspectives and Significance

Our findings demonstrate that, in young healthy individuals,
consuming glucose and fructose drinks results in markedly
different hemodynamic responses, with fructose stimulating a
sustained increase in blood pressure. Although it is difficult to
extrapolate acute responses to long-term effects, our results
support the concept that diets that include repeated fructose

Fig. 6. Time course of the changes in resting energy
expenditure (REE; A) and respiratory quotient (RQ; B)
(left) and mean responses (right panels) after drinking
water (E), glucose (Œ), and fructose (■). *P � 0.05 and
**P � 0.01, statistically significant differences over
time from baseline values (left) and differences be-
tween responses to the drinks (right).
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loads might contribute, over time, to increased cardiovas-
cular risk.
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