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Abstract Pennsylvanian phylloid algal reefs are wide-
spread and well exposed in south Guizhou, China. Here we
report on reefs ranging from 2 to 8 m thickness and 30—
50 m lateral extension. Algae, the main components, dis-
play a wide spectrum of growth forms, but are commonly
cyathiform (cup-shaped) and leaf-like (undulate plates).
The algal reef facies is dominated by boundstone. Algal
thalli form a dense carpet whose framework pores are filled
with marine cement and peloidal micrite. The peloidal
matrix is dense, partly laminated or clotted with irregular
surfaces and often gravity defying. Algal reefs in Guizhou
differ from examples reported to date by the high biodiver-
sity of organisms other than phylloids: e.g., the intergrowth
of algae with corals (some of which are twice the size of
algal thalli) and numerous large brachiopods. This contrasts
to previous views that phylloid algal “meadows” dominated
the actual seafloor, excluding other biota. Also, the perva-
sive marine cements (up to 50%) including botryoidal
cement are noteworthy. Algal reefs developed at platform
margins, a depositional environment similar to that of mod-
ern Halimeda mounds in Java, Australia and off Bahamas,
and to that of time-equivalent examples reported from the
Canadian Arctic Archipelago. Whereas nutrients appear
decisive in the growth of Halimeda reefs, algal reefs
reported herein seemingly grew under conditions of low
nutrient levels. Overall, algal reefs in Guizhou challenge
previous views on growth forms, diversity patterns, and
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depositional environments and add to the spectrum of these
partly puzzling biogenic structures.
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Introduction

Although numerous studies dealt with Pennsylvanian and
Permian sequences in southern China (GGMRB 1987), Penn-
sylvanian algal buildups so widespread elsewhere—e.g., in
Northern America (Pray and Wray 1963; Heckel and Cocke
1969; Toomey 1976, 1983; among others), the Arctic Cana-
dian Archipelago (Beauchamp etal. 1989; Davies etal.
1989), the Carnic Alps in Austria and Italy (Fliigel 1979;
Samankassou 2003), and North Africa (Toomey 1991)—were
surprisingly rarely reported from China, which is among the
largest province for Late Paleozoic carbonate rocks (see
Wahlman 2002). The short report of phylloid algal reefs by
Fan and Rigby (1994) is the unique description to date.

The present study focuses on well-exposed phylloid
algal reefs in south China, including those previously stud-
ied by Fan and Rigby (1994). The excellent exposure con-
ditions and preservation allow the study of growth
structures, internal features, accessory fossils associated
with phylloid algae, and possible relationships between
phylloid algae and these associated organisms.

The habit, growth mode, and ecology of phylloid algae
have experienced new reports and models (e.g., Forsythe
2003; Samankassou and West 2002, 2003). The Chinese
case thus represents a significant test for the extension of
these emerging models. Field observation, and petrography
of polished slabs and thin sections furnish the database for
the interpretation and discussion in the present paper.
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Setting and stratigraphy

Extended outcrops of Carboniferous and Permian carbonate
rocks characterize the south Guizhou region, southern
China. Due to the abundant fossils occurring in these rocks,
the region has been a focus of research on Carboniferous
stratigraphy. The Carboniferous sequences consist of the
fossiliferous Weining and Maping Formations that include
numerous carbonate buildups (GGMRB 1987).

Reefs crop out extensively close to the village Bianping,
about 4 km west to the town Houchang, Ziyun County in
the Guizhou province (Fig. 1). Reefs occur in a thick, cyclic
appearing sequence of bedded and massive Pennsylvanian
and Permian limestones. Stratigraphically, the algal reefs
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Fig. 1 a Location of the studied area west of Houchang, South Guiz-
hou Province. b C,, P,, P,, and T, represent the Upper Pennsylvanian,
Lower Permian, Upper Permian, and Lower Triassic rock series,
respectively
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belong to the Maping Formation (the Tricitites Zone, Gzh-
elian, uppermost Pennsylvanian) that overlies the Wining
Formation (Fig. 2). The Maping Formation is part of the
shallow-water carbonate record that filled the Ziyun-Yadu
basin. The rock record of this basin can be traced back to
Mid-Devonian (Qin et al. 1996). However, the basin is
shallower and smaller during the deposition of the Maping
Formation compared to that of the Weining Formation
(Feng et al. 1998).

Reef description
Shape and size of reefs

Reefs vary in their size, ranging from 2 to 8 m thickness
and 30-50 m lateral extension. They are isolated, lens-like
(mound-shape) or, locally, superposed on each another to
form composite bodies. Due to vegetation cover and agri-
culture, the size and forms are, however, partly difficult to
trace accurately in the field.

Growth mode of algae

Algae in the studied reefs display a wide spectrum of
growth forms. However, cyathiform (cup-shaped) and leaf-
like (undulate plates) interpreted by Samankassou and West
(2003) as constructional or accumulational growth forms,
respectively, dominate (see also Baars and Torres 1991;
Baars 1992; Torres et al. 1992; Torres 1995).

The often curled or undulating leaves are 0.8 mm thick
and 10cm long in average (Fig.3). Thalli are overall
obliterated by the pervasive recrystallization, precluding
description of their internal structure. The rarely better-
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Fig. 2 Stratigraphic scheme of Upper Pennsylvanian and Lower
Permian rocks in the studied area, based on fusulinid and coral assem-
blages. The dark bar indicates the stratigraphic position of algal reefs
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Fig. 3 Photographs of polished slabs of the reef facies. a Boundstone
of large, curled phylloid algal thalli (arrows), botryoidal cement (BC),
radiaxial fibrous cement (RFC), inhomogeneous peloidal micrite
(PM), and voids filled with mosaic cement (MC). b Boundstone of
phylloid algal thalli and multiple generations of cements (cements as

preserved specimens showing cortical pores (Fig. 5c) sug-
gest that some might belong to Neoanchicodium and Eug-
onophyllum (Konishi and Wray 1961; Kirkland et al. 1993).
Some of the thalli are broken, but obviously not transported
far from the life habitat because of their size (Fig. 3b, ¢) and
the collapse brecciation indicated by thalli that are only
slightly offset.

Reef substrate

The substrate of reefs consists of packstone and grain-
stone, passing over into clotted wackestone toward the
reefs. Brachiopods, crinoids, fragments of algal thalli,
fusulinids, and smaller foraminifers (calcitornellids,
Tuberitina sp., Bradyina sp.) and peloids are common.
Further components include bryozoan fragments and rare
gastropods (Fig. 5a, b). Coating and micritization of algal
thalli occur.

in a). Note that the algal thalli were encrusted prior to marine cemen-
tation (arrow). ¢ Cementstone including fragments of algal thalli. The
latter are partly encrusted prior to precipitation of marine cements (see
Figs. 5d, 7b)

Reef composition

The algal reef facies is dominated by boundstone. Algal
thalli form a dense carpet whose framework pores are filled
with marine cement and peloidal micrite (Fig. 5a, b). The
peloidal matrix is dense, partly laminated or clotted with
irregular surfaces and often gravity defying. Individual
peloids, some of which are surrounded by thin marine
fibrous cements, are in average 0.1 mm in diameter. The
peloidal matrix includes foraminifers, bryozoan fragments,
Tubiphytes/Shamovella, and undefined tubes (0.2-0.3 mm
long and 0.1 mm in diameter).

In distinct layers, algal thalli are draped by conspicuous
marine cements (Fig. 3c) or encrusted prior to the precipita-
tion of marine cements in interstitial space (Fig. 3b).

Secondary encrusters including Tubiphytes and smaller
foraminifers (Tuberitina and endothyrids) commonly
occur.
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Fig. 4 Photographs of polished slabs of coral-dominated facies. a
Section through a large solitary coral. Such corals, not confined to
framework cavities of phylloid algal boundstone, are larger than the

Fusulinids (Fusulinella sp., Pseudostaffella sp., Fusu-
lina sp., and Triticites sp.), solitary and colonial corals
(Nephelophyllum sp., Pseudotimania sp., Streptophylli-
dium sp., Diversiphyllum sp., and auloporid corals)
(Fig. 4), and brachiopods (Choristes sp., Neospirifer ori-
entalis, and Orthotichia marmerea) are commonly associ-
ated with the phylloid algal facies. The high-diversity
assemblages are not confined to cavities as commonly
seen in similar reefs elsewhere (Toomey 1976, 1980;
Samankassou and West 2002; Forsythe 2003): e.g., the
co-occurring auloporid corals locally form patches con-
sisting of boundstone (Fig. 4b). Furthermore, the size of
many organisms exceeds twice that of the phylloid algal
thalli (Figs. 4a and 5). Some layers or pockets within the
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co-occurring phylloid algal thalli (PH). b Boundstone composed of au-
loporid coral colonies (arrows) and phylloid algal thalli (upper part).
Framework pores are filled by cements (Ce)

Fig. 5 Photomicrographs of reef substrate and core. a—b Reef-sub-
strate facies composed of bioclastic packstone. Bioclasts include frag-
ments of phylloid algae (PH), fusulinids (arrow), crinoids (Cr) and
brachiopods (Br). Peloids are common. Some grains show micritic
envelopes. c—d Phylloid algal boundstone facies typically composed of
large algal thalli (PH) enclosing framework voids variously filled with
peloids (Pe), peloidal crusts (arrow), and cements (Ce). e Auloporid
(Au) coral boundstone. Dense corallite enclose framework voids as in
phylloid algal boundstone. f Bryozoans (arrow) are major components
in the boundstone facies. As for phylloid algal-dominated facies, pe-
loids and early marine cements are ubiquitous. g Well-preserved cri-
noid (Cr) stem along with phylloid algal thalli (PH) in boundstone
facies. The evidence of framework is demonstrated by cement-filled
voids (arrow) and the irregular surface of peloidal-clotted areas sepa-
rated from bioclasts. h Enlargement of peloidal area from ¢, showing
different-sized, early cemented peloids (arrow). Scale bar is 0.5 mm
for all figures

>
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reefs are particularly rich in foraminifers (predominantly
fusulinids) (Fig. 6a). The top of the reef is rich in fusuli-
nids and includes fragments of the algae Epimastopora
and Beresella (Fig. 6b, c).

Botryoidal, acicular fibrous, and radiaxial fibrous
cements (Fig. 7) represent 20-30, locally over 50% of the

@ Springer

«qFig. 6 a Fusulinid-rich intervals occur at certain levels during mound

growth. b Other fossils in such intervals include fragments of the alga
Epimastopora (Ep) and c rare fragments of the problematic alga Bere-
sella (arrow). Scale bar is 0.5 mm for all figures

rock volume. Overall, botryoidal cements predate radiaxial
cements. The widespread marine cements and the impor-
tance of their occurrence are the focus of another publica-
tion currently in preparation by the authors and will not be
further developed herein.

Paleoecology: interpretation and discussion

Phylloid algae lack modern representatives. Thus, most of
ecological parameters drawn from any analysis may appear
speculative. However, criteria deduced from fossil assem-
blages coupled with textural analysis of rocks may allow
the pinpointing of some valuable information.

Biodiversity, ecological community

A low-diversity fossil assemblage characterizes time-
equivalent phylloid algal mounds, as reported in many pre-
vious studies (Pray and Wray 1963; Gray 1967; Heckel and
Cocke 1969; Crowley 1969; Toomey and Winland 1973;
Wilson 1975, 1977; Toomey 1976; Fliigel 1979; Toomey
and Babcock 1983; Pol 1985). Toomey (1976) assumed
that phylloid algae colonized the actual sea bottom and
dominated the living space, excluding most other shallow-
water organisms. Thus, biota within algal-dominated mead-
ows were confined to those living in cavities and/or
attached to algal leaves (e.g., brachiopods, fusulinids, and
ostracodes) (Toomey 1976; Forsythe et al. 2002; Saman-
kassou and West 2003).

One can speculate, that like modern algae, phylloid algae
might have produced poisonous substances that kept other
organisms away from the areas that they successfully and
rapidly colonized. Low-diversity algal mounds occurring
throughout Pennsylvanian and Permian deposits strongly
support this assumption (Fliigel 1979; Toomey 1991;
Forsythe et al. 2002; Samankassou 2003; Samankassou and
West 2003). Indeed, chemical defense used by algae is doc-
umented from studies of recent reefs (Hay 1997; Paul 1997)
and other environments (G. Gerdes, personal communica-
tion, 1998). However, the overall high diversity of gregari-
ous sessile organisms, e.g., the intergrowth of algae with
corals (some of which twice the size of algal thalli) and
numerous large brachiopods in the algal-dominated reefs
studied contradicts the “poisoning hypothesis.” Thus, in
terms of biodiversity, the Ziyun example represents a
unique and novel case to date.
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Fig. 7 Early marine cementation is conspicuous throughout the
mound core. Cements include multiple generations of botryoidal ce-
ments separated by thin micritic layers (a, arrows), acicular fibrous (a,
AFC), and radiaxial fibrous (b, RFC) cements. Peloids show rims of
marine cements (¢, arrow). Locally, phylloid algal thalli are encrusted
prior to marine cementation (b, arrow). Scale bar is 0.5 mm for a and
b, and 0.1 mm for ¢

Temperature and water depth

Phylloid algae in south China, assumedly photosynthetic
green algae, are associated with colonial corals and fusuli-
nids: this may point to a shallow-water depositional envi-
ronment within the photic zone. The growth of phylloid
algal reefs is interpreted to have taken place between the
lower limit of the photic zone (the deepest) and the zone
close to the lower limit of the wave activity (the shallowest)
(see Doherty et al. 2002; Samankassou 2003). Considering
the wide depth ranges of modern green algae and algal
mounds (e.g., 20-100 m for Halimeda mounds in the east-
ern Java Sea; Roberts and Phipps 1988), a precise water
depth cannot realistically be deduced. The fact that the
phylloid algal reefs studied were not subaerially exposed
despite eustatic sea-level changes on the order of 100 m
during Pennsylvanian (Heckel 1986, 1994; Soreghan and
Giles 1999; Joachimski et al. 2006) points to important
water depths of several tens of meters during reef growth.
Furthermore, the paleogeographic position of south China
in low-latitudes during Pennsylvanian (Scotese 1997) may
allow for the assumption of light penetration into an impor-
tant water depth.

Salinity

The high-diversity biotic association including brachio-
pods, foraminifers, bryozoans, and corals points to open,
normal-marine conditions (Wilson 1975), in agreement
with the overall depositional environment (see below). Fur-
thermore, carbon and oxygen isotopic composition of bra-
chiopod shells and marine cement indicate marine value
(author’s unpublished data).

Nutrients

Although non-conclusive, attempts were made to compare
phylloid algae with Halimeda (see Martin etal. 1997,
Davies et al. 2004). If phylloid algal reefs, to some extent,
compare to modern Halimeda mounds, then some assump-
tions concerning nutrients can be made. Indeed, some
occurrences of Halimeda mounds were related to upwelling
of deep, nutrient-rich waters; e.g., in the Java Sea, Indone-
sia (Roberts et al. 1987, 1988) and the Great Barrier Reef
Province, Australia (Drew and Abel 1988; Marshall and
Davies 1988).

Settings of phylloid algal might be linked to zones of
upwelling and, thus, to high levels of nutrients. Current
paleogeographic reconstructions do not allow the precise
identification of such zones. However, the high-diversity
fossils described above (especially the presence of corals) do
not point to eutrophic conditions during the growth of algal
reefs in Guizhou. Subsequently, nutrients were obviously not
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decisive for the occurrence and extensive growth of phylloid
algae in Guizhou. Also, phylloid algal reefs studied are not
ideal fossil analogs for the upwelling-driven modern Hali-
meda reefs.

Depositional environment

A depositional environment at the shelf margin was assumed
for the area studied (GGMRB 1987). The ubiquitous synse-
dimentary marine cementation that requires intense seawater
circulation in open, normal-marine conditions represents a
solid argument in support of this interpretation, as does the
widespread occurrence of botryoidal cements, in analogy to
modern seaward platform margins (e.g., off Belize; James
et al. 1976; James and Ginsburg 1979).

Furthermore, the depositional environment assumed
agrees well with that inferred for phylloid algal mounds in
the Canadian Arctic Archipelago, in which marine cements
(including botryoidal cement) represent a major component
in volume and importance in stabilizing the reef structure
(Davies 1977; Beauchamp et al. 1989). Such resemblance
led Davies et al. (2004) to draw some analogies between
modern algal buildups occurring off Australia and Late
Paleozoic phylloid algal mounds. Carbon and oxygen isoto-
pic compositions of marine cements originating from the
studied reefs point to “normal” marine values assumed for
the Pennsylvanian seawater (author’s unpublished data)
and compare well with the values obtained from the Cana-
dian examples (Davies 1977).

Conclusion

Phylloid algal reefs are parts of the sedimentary record of
Pennsylvanian deposits in south China, like in contempora-
neous deposits nearly worldwide. Along the same line,
algal mounds occur in cyclic sequences that reflect the per-
vasive Late Paleozoic glacio-eustatic sea-level fluctuations
(Heckel 1994). However, no horizon exhibiting subaerial
exposure was identified, pointing to overall high rates of
subsidence and/or important water depth for the deposi-
tional environment that kept the actual seafloor in a subtidal
position despite of glacio-eustatic sea-level fluctuations.

Algal reefs grew on stabilized shoals, as observed in
other examples (e.g., Samankassou 2001; see also Chis-
holm and Kelley 2001). As for most of their counterparts
elsewhere, shallowing commonly interrupts reef growth
(Wilson 1972, 1975), as evidenced by accumulation of
foraminifers in distinct layers interpreted as result of high-
energy levels.

Algal reefs in Guizhou differ from examples reported to
date by the high biodiversity of organisms other than phyl-
loids. This contrasts to previous views that phylloid algal
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“meadows” dominated the actual seafloor, excluding other
biota (Toomey 1976, 1980). Also, the pervasive marine
cements (up to 50%) including botryoidal cement are note-
worthy.

Algal reefs developed at platform margins, a deposi-
tional environment similar to that of modern Halimeda
mounds in Java, off Bahamas, and Australia (Roberts et al.
1987, 1988; Freile et al. 1995; Marshall and Davies 1988;
Davies et al. 2004). Whereas nutrients were decisive in the
growth of Halimeda reefs (Marshall and Davies 1988),
algal reefs reported herein seemingly grew in depositional
environments of low nutrient levels.

Further detailed studies are needed to recognize and
understand the spectrum of algal-dominated reefs wide-
spread in the investigated area and to sort out the triggering
factors. Furthermore, the extensive marine cementation and
the high-diversity biota co-occurring with phylloid algae
need to be put into a wider perspective.
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