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Reliable confidence intervals in quantitative genetics:
narrow-sense heritability

Thomas Fabbro Æ Anthony C. Davison Æ
Thomas Steinger

Abstract Many quantitative genetic statistics are func-

tions of variance components, for which a large number of

replicates is needed for precise estimates and reliable

measures of uncertainty, on which sound interpretation

depends. Moreover, in large experiments the deaths of

some individuals can occur, so methods for analysing such

data need to be robust to missing values. We show how

confidence intervals for narrow-sense heritability can be

calculated in a nested full-sib/half-sib breeding design

(males crossed with several females) in the presence of

missing values. Simulations indicate that the method pro-

vides accurate results, and that estimator uncertainty is

lowest for sampling designs with many males relative to

the number of females per male, and with more females per

male than progenies per female. Missing data generally had

little influence on estimator accuracy, thus suggesting that

the overall number of observations should be increased

even if this results in unbalanced data. We also suggest the

use of parametrically simulated data for prior investigation

of the accuracy of planned experiments. Together with the

proposed confidence intervals an informed decision on the

optimal sampling design is possible, which allows efficient

allocation of resources.

Introduction

Quantitative genetics, one of the most promising frame-

works for the unification of the fields of macroevolution

and microevolution (Steppan et al. 2002), allows for the

study of inheritance at the phenotypic level. The quanti-

tative genetic approach is especially useful if genetic

details are of intermediate importance and if random

genetic drift, fluctuating adaptive landscapes, and genetic

mechanisms do not have large impact. Then the patterns of

genetic and phenotypic variation among individuals can be

used to study the evolutionary origin or possible future

trajectories of quantitative traits. If quantitative genetic

parameters fluctuate over short periods of evolutionary

time, meaningful predictions are difficult, though ‘‘no one

expects genetic variances and covariances to remain

unchanged for millennia’’ (Ayers and Arnold 1983). The

rate of quantitative genetic parameter change has therefore

to be compared to the rate of speciation, population dif-

ferentiation, and changes in the adaptive landscape.

Furthermore, quantitative genetic parameters might not

only change over time but might also vary randomly

among populations. Evolutionary arguments from one

particular population would then not be valid for the spe-

cies as a whole (Stearns 1982).

To investigate empirically changes in quantitative

genetic parameters over time and the variation among

populations we need to compare different parameter esti-

mates. Therefore we need not only precise estimators but

also reliable methods to assess their accuracy.
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Assessment of estimator uncertainty is usually made

using confidence intervals. Most quantitative genetic text-

books report only methods to estimate the variance of

estimators (Roff 1997; Lynch and Walsh 1998), but these

can only be transformed into statements about uncertainty,

such as confidence intervals, if the distribution of the

estimator is known, at least approximately (Davison 2003).

Quantitative genetic parameters are often functions of

variance components, for which the exact distributions of

estimators are difficult to derive, especially in the presence

of missing values. To achieve the same accuracy, variance

estimation requires many more replicates than does the

estimation of means, and our intuition concerning the

accuracy of variances and related quantities can be strik-

ingly wrong. This has consequences for the sampling

design for experiments and especially for the sample size.

Using parametrically simulated data sets we can determine

a priori the expected accuracy of the estimator.

Standard analysis of variance methods (ANOVA) rely

on the assumption that the available data are balanced, that

is, the numbers of classes and subclasses do not vary. In

empirical studies, however, death of some individuals

during the experiment often occurs and so balance is more

the exception than the rule. For variance estimation with

unbalanced data, restricted maximum likelihood estimation

(REML) or analysis of variance with unweighted sums of

squares (ANOVAuw) are recommended (Searle et al.

1992; Burdick and Graybill 1992). However, analytical

calculations of the influence of missing values on variance

estimators and their uncertainty can easily become very

tedious. Studying simulated data sets with randomly

missing individuals provides important information on how

missing values influence the uncertainty of REML and

ANOVAuw estimators.

Here we investigate the accuracy of one of the most

frequently estimated quantitative genetic statistics, herita-

bility. The classic breeder’s equation,

Response ¼ h2 � Selection differential; ð1Þ
relates the response, the across-generation change in trait

mean, to heritability, h2; times the selection differential,

the within-generation change in trait mean. Heritability

measures how efficiently a trait can respond to selection,

and this is important for natural and artificial selection. It

can be calculated as the ratio of the heritable variation

divided by the phenotypic variation of a trait (Lynch and

Walsh 1998).

We show how to assess the uncertainty of heritability

estimators by calculating confidence intervals following a

method developed by Sen et al. (1992), and we use simu-

lation to evaluate the reliability of confidence intervals

based on balanced and unbalanced data sets. Further we

created an R package called qgen to facilitate parametric

resampling and analysis of quantitative genetic data sets

(Appendix).

Methods

Heritability can be estimated as the proportion of the total

phenotypic variance attributable to heritable effects. In

order to partition the observed phenotypic variance into

heritable and non-heritable components, the relatedness of

the individuals must be known, and this typically entails

use of a mating design.

A common mating design is the North Carolina I, where

males are crossed with several females to obtain full-sib

families nested within paternal half-sib families. This

allows the estimation of the component of variance due to

additive genetic effects, separate from the components due

to dominance and maternal effects, so estimates of herita-

bility are not inflated by dominance or maternal effects. In

this design all individuals are paternal half-sibs, full-sibs,

or are unrelated. Therefore the variance of a trait can be

partitioned into three components, referred to as male rM
2 ,

female rF
2, and residual rR

2 (in the animal breeding litera-

ture commonly called sire, dam, and residual). Statistical

analysis of such twofold nested data must take all three

variance components into account; methods for computa-

tion of confidence intervals involving just two variance

components such as that of Harville and Fenech (1985) are

not applicable here.

The three observable variance components are assumed

to represent four independent underlying causal sources of

variance (e.g. Falconer and Mackay 1996; Roff 1997;

Lynch and Walsh 1998):

r2M ’ r2Add
4

; ð2Þ

r2F ’ r2Add
4

þ r2Dom
4

þ r2Mat; ð3Þ

r2R ’ r2Add
2

þ 3r2Dom
4

þ r2Env; ð4Þ

with the subscript Add for additive genetic variance, Dom

for dominance genetic variance,Mat for maternal variance,

and Env for (micro-)environmental variance. All other

possible sources of variance are assumed to be negligible

(Lynch and Walsh 1998, p. 87). The male and female

effects are assumed to arise from the joint action of a large

number of genes, each with an individually small contri-

bution to the phenotype, and therefore to be normally

distributed.
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Under the above assumptions, trait measurements taken

on individuals from this particular mating design can be

described by the model

E½y jm; f� ¼ lþmþ f; ð5Þ

M male (m = 1,2, ... , M), m�Nð0; r2MÞ;
F female within male (f = 1,2, ... , Fm), f�Nð0; r2FÞ;
P progeny within female (p = 1,2, ... , Pmf),

varðy jm; fÞ ¼ r2R:

Different methods can be used to partition the variance

into the components for male, rM
2 , female, rF

2, and residual,

rR
2 .

Heritability, h2; is the proportion of the phenotypic

variation attributed to heritable effects and can be esti-

mated as

ch2 ¼ 4br2
Mbr2

M þ br2
F þ br2

R

: ð6Þ

Sen et al. (1992) developed a method to calculate two-

sided (1–a) confidence limits for ratios of variance com-

ponents from unbalanced twofold nested models. The

lower confidence bound for heritability is

where

w1 ¼
P

mð1=FmÞP
Mð1=Fm

�PHmÞ ; w2 ¼ MP
mð1=Fm

�PHmÞ ;

w3 ¼
P

m Fm � 1P
m

Fm�1
�PHm

;

�PHm ¼ FmP
f ð1=Pmf Þ ;

dfM ¼ M � 1; dfF ¼
X
m

Fm �M;

dfR ¼
X
m

X
f

Pmf �
X
m

Fm;

MSM ¼ br2
R þ w1 br2

F þ w2 br2
M;

MSF ¼ br2
R þ w3 br2

F;

MSR ¼ br2
R:

The quantity bLð1�a
2
Þ is defined to be zero if

ðw3MSMÞ=ðw2MSFÞ\F a
2
;dfM;dfF : The upper confidence

limit, bUð1�a
2
Þ; was estimated using equation (7) by replacing

a
2
with 1� a

2
in the F quantile points. The lower bLð1�a

2
Þ and

upper bUð1�a
2
Þ confidence limit together define the two-sided

(1–a) confidence interval cClð1�aÞ: For balanced data and

under model (5) these confidence limits reduce to those of

Graybill and Wang (1979).

We performed parametric simulations to evaluate the

estimator for heritability and its confidence limits. The

population value of h2 is a function of the cumulative

distribution function Kw; which is determined by the model

given in equation (5) and a parameter set w. Equations
(2)–(4) indicate how the causal parameters of the set w are

related to the observable variance components rM
2 , rF

2 and

rR
2 . The sampling design D characterizes the individual

samples drawn from the distribution Kw by indicating the

number of replicates at the different and nested levels of

the model. REML solutions for br2
M; br2

F; and br2
R were

obtained with the lme4-package (Bates 2005) in R
(R Development Core Team 2006) and used to calculatech2 according to equation (6). For comparison, variance

components were also estimated by analysis of variance

based on unweighted sums of squares, ANOVAuw

(Burdick and Graybill 1992) because the confidence

interval estimator in equation (7) was developed for this

method. From R repetitions of the data simulation based on

the distribution Kw and the sampling design D we obtainedch2�1; . . .; ch2�r ; . . .;ch2�R: The quality of the estimator
ch2 for a

particular parameter set w and sampling design D was

evaluated by estimating its bias and variance. The bias was

estimated as

BRðch2Þ ¼ 1

R

XR
r¼1

ch2�r � h2; ð8Þ

and the variance as

VRðch2Þ ¼ 1

R� 1

XR
r¼1

ch2�r � 1

R

XR
r¼1

ch2�r
 !

: ð9Þ

The quality of the upper and lower confidence limits and

the two-sided confidence interval (7) was described by the

empirical error rate, EER, which is the proportion of the

bLð1�a
2
Þ ¼

4 w3MSM � w1F a
2
;dfM;dfFMSF � ðw3 � w1ÞF a

2
;dfM;dfRMSR

n o
w3MSM � ðw1 � w2ÞF a

2
;dfM;dfFMSF � ðw3 � w1 þ w2 � w2w3ÞF a

2
;dfM;dfRMSR

; ð7Þ
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estimated confidence intervals not containing the

population parameter h2;

EERRðbLð1�a
2
ÞÞ ¼ 1

R

XR
r¼1

I h2 � bL�
ð1�a

2
Þr

n o
;

EERRðbUð1�a
2
ÞÞ ¼ 1

R

XR
r¼1

I h2 � bU�
ð1�a

2
Þr

n o
;

EERRðcClð1�aÞÞ ¼ EERRðbLð1�a
2
ÞÞ þ EERRðbUð1�a

2
ÞÞ:

ð10Þ

The indicator I{condition} is equal to 1 if the condition is

true and 0 otherwise.

The evaluation was restricted to particular combinations

of sampling designs D (Table 1) and parameter sets w
(Table 2). A sampling design is described by the number of

males, females, progenies, and missing values. The sam-

pling designs were chosen to cover a large range of

different male numbers, M. Although most empirical

studies start with a balanced design, random loss of

observations often leads to unbalanced data. To evaluate

the effect of unbalancedness, in some sampling designs

(Table 1) a fixed proportion of individuals was randomly

deleted from each simulated data set. Therefore the pro-

portion of missing males depends on the number of

progenies per male and the proportion of missing females

on the number of progenies per female. The sampling

designs D ¼ 1; . . . ; 8 can be compared to 1m, ... , 8m to

see the impact of 50% missing values on the estimator and

its accuracy. The sampling designs D ¼ 1m; . . . ; 8m can

be compared to 5, ... , 12, with the same number of indi-

viduals, but in the second group without missing values and

half the number of males in the first group. Within the

group of D ¼ 1; . . . ; 4; 5; . . . ; 8; 9; . . . ; 12; and

13, ... , 16 all but the number of males was kept constant to

study the impact of male number.

The parameter sets w = 1, ... , 15 were chosen to rep-

resent all possible combinations of a high and a low

additive, dominance, maternal, and environmental variance

component. This allows us to evaluate if the estimator for

heritability itself or its confidence limits fail under certain

conditions. The parameter sets w = 15, ... , 20 were cho-

sen to evaluate the influence of the additive genetic variance

on the estimator with all other parameters being constant.

The parameter set, w, can be replaced by empirical

estimates from an experiment bw and the cumulative dis-

tribution function Kw replaced by Kbw : The same statistics

can then be calculated to evaluate the quality of the esti-

mator for these particular parameters.

Table 1 Sampling designs D :
Determined by the number of

males, M the number of females

per male, F and the number of

progenies per male–female

combination, P

Missing indicates the

percentage of randomly missing

individuals. The last column

shows the total number of

individuals (sample size)

Sampling

design D
Male

number M
Female

number F
Progeny

number P
Missing (%) Number of

individuals

1 200 6 4 0 4,800

2 200 6 2 0 2,400

3 200 3 4 0 2,400

4 200 3 2 0 1,200

5 100 6 4 0 2,400

6 100 6 2 0 1,200

7 100 3 4 0 1,200

8 100 3 2 0 600

9 50 6 4 0 1,200

10 50 6 2 0 600

11 50 3 4 0 600

12 50 3 2 0 300

13 25 6 4 0 600

14 25 6 2 0 300

15 25 3 4 0 300

16 25 3 2 0 150

1 m 200 6 4 50 2,400

2 m 200 6 2 50 1,200

3 m 200 3 4 50 1,200

4 m 200 3 2 50 600

5 m 100 6 4 50 1,200

6 m 100 6 2 50 600

7 m 100 3 4 50 600

8 m 100 3 2 50 300

4
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The parametric simulation of data sets as described in

the previous section not only allows us to evaluate different

estimators (e.g.
ch2Þ; but also to calculate the realized

variation of an estimator in a given sample. After para-

metric simulations we know for every observation the size

of the male, female and residual effect, and we can cal-

culate the corresponding realized sampling variances

~r2M; ~r
2
F and ~r2R: The realized sampling variance of the male

effect, ~r2M; is calculated as

~rM ¼ 1

M � 1

XM
m¼1

ðmm � �mÞ2; ð11Þ

and the realized sampling variances of the female and

residual effects can be calculated in the same way. In

empirical investigations only the phenotypic value can be

observed and therefore the phenotypic variance has to be

partitioned into br2
M; br2

F; and br2
R as described for equation

(5). For a given sample the realized heritability, ~h2; can be

calculated from the realized sampling variances, ~r2M; ~r
2
F;

and ~r2R; according to equation (6) in the same way as

estimated heritability
ch2 can be estimated from br2

M; br2
F;

and br2
R: The variance of the realized heritability, Vð~h2Þ;

can be calculated from equation (9) by replacing
ch2 by ~h2:

Whereas Vð~h2Þ represents only the variance due to the

sampling, Vðch2Þ represents the variance due to sampling

plus the variance due to estimation (variance partitioning).

Thus comparing them allows us to assess what proportion

of the estimated variance, Vðch2Þ; is due to sampling and

what proportion is due to estimation.

Results

The difference between the true unobservable value in a

population and an estimate of it, the statistical error, can be

partitioned into a systematic and a random component, the

bias and the variance of an estimator. For all the investi-

gated heritability estimates (Tables 3, 4, 5, 6), the square

root of the variance

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VRðch2Þq

was considerably larger than

the bias BRðch2Þ; so the statistical error of heritability

estimates is mainly due to the random component, as

expected. Consequently, in empirical work we have pri-

marily to decrease the variance of heritability, VRðch2Þ; to
minimise the error.

The variance of heritability estimates, VRðch2Þ; was

influenced by several factors. The comparison of different

sampling designs, D; showed that the number of males had

Table 2 Parameter sets, w,
used for parametric simulations

Determined by the additive

genetic variance, the dominance

genetic variance, the maternal

variance, and the

microenvironmental variance.

The corresponding narrow-

sense heritability is given in the

last column

Parameter

set, w
Variance components Heritability

h2
Additive,

rAdd
2

Dominance,

rDom
2

Maternal,

rMat
2

Environmental,

rEnv
2

1 100 100 100 100 0.25

2 10 100 100 100 0.032

3 100 10 100 100 0.323

4 100 100 10 100 0.323

5 100 100 100 10 0.323

6 10 10 100 100 0.045

7 10 100 10 100 0.045

8 10 100 100 10 0.045

9 100 10 10 100 0.455

10 100 10 100 10 0.455

11 100 100 10 10 0.455

12 10 10 10 100 0.077

13 10 10 100 10 0.077

14 10 100 10 10 0.077

15 100 10 10 10 0.769

16 33 100 100 100 0.1

17 129 100 100 100 0.3

18 300 100 100 100 0.5

19 700 100 100 100 0.7

20 2700 100 100 100 0.9

5
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a strong influence on VRðch2Þ (Tables 3, 4). For example

doubling the number of males approximately halved

VRðch2Þ: In designs with a constant number of individuals

and a constant number of males but a different number of

females and progenies (e.g. D ¼ 2; 3ÞVRðch2Þ was smaller

when the number of females was higher and the number of

progenies low. The variance of realized heritability,

VRð~h2Þ; was for a given parameter set only determined by

the number of males (Table 3, 4). Therefore, VRð~h2Þ was

the same up to the third digit for sampling designs within

the groups D ¼ 1; . . . ; 4; 5; . . . ; 8; 9; . . . ; 12; and

13, ... , 16. As one would anticipate on general grounds,

one can conclude that the number of males determined the

variance of realized heritability, VRð~h2Þ; whereas the

number of replicates within a male determined the

difference between variance of estimated heritability,

VRðch2Þ; and variance of realized heritability, VRð~h2Þ:
Therefore replications within a male can only improve

estimation up to a certain point, beyond which the number

of males becomes limiting.

The influence of the parameter set, w, on the variance of

heritability was small compared to the influence of the

design (Tables 5, 6). To compare the variance of herita-

bility among different parameter sets one also needs to take

into account that heritability can only take values between

zero and one. Heritabilities that are close to zero or one can

essentially only vary in one direction, making the variance

less useful as a measure of uncertainty.

The influence of the variance partitioning method on the

variance of estimated heritability, VRðch2Þ; was rather

small. As expected, for balanced data there was no

Table 3 Heritability, h2; variance partitioning with REML

Design,

Parameter

set

Heritability 95% confidence interval, cCl95%
Bias

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Variance

p
Expectation Empirical error ratea

D;w h2 BRðh2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VRðch2Þq ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

VRð ~h2Þ
q

Lower

ERðL̂Þ
Upper

ERðÛÞ
Length

ERðÛ� L̂Þ
Lower EERRðL̂Þ Upper

EERRðÛÞ
Two-sided

EERRðcClÞ
1, 1 25.0 0.0 6.3 3.2 14.3 38.2 23.9 2.5 2.6 5.1

2, 1 25.0 0.0 7.1 3.2 12.6 40.4 27.8 2.6 2.8 5.3

3, 1 25.0 –0.3 10.5 3.2 7.1 47.0 40.0 1.8 2.9 4.7

4, 1 25.0 0.0 12.2 3.2 5.3 52.0 46.7 1.9 1.3 3.2

5, 1 25.0 0.0 8.4 3.2 10.7 44.6 33.9 2.1 2.5 4.6

6, 1 25.0 0.0 10.0 3.2 8.7 47.9 39.2 2.3 2.4 4.7

7, 1 25.0 0.2 13.8 3.2 4.3 57.9 53.6 2.1 0.0 2.1

8, 1 25.0 –0.3 16.7 3.2 3.1 63.7 60.6 2.0 0.0 2.0

9, 1 25.0 –0.4 11.8 4.5 6.8 54.4 47.6 2.1 2.3 4.4

10, 1 25.0 –0.1 13.8 4.5 5.4 59.5 54.1 2.2 0.2 2.4

11, 1 25.0 0.6 18.7 4.5 2.6 72.6 70.0 1.9 0.0 1.9

12, 1 25.0 1.6 21.7 4.5 2.1 80.1 77.9 2.0 0.0 2.0

13, 1 25.0 0.1 16.4 7.1 4.4 70.7 66.2 2.2 0.0 2.2

14, 1 25.0 0.5 19.0 7.1 3.5 75.9 72.4 2.5 0.0 2.5

15, 1 25.0 2.8 24.9 7.1 2.1 88.7 86.6 2.8 0.0 2.8

16, 1 25.0 3.7 27.7 7.1 1.6 94.2 92.6 2.0 0.0 2.0

1m, 1 25.0 –0.3 7.1 3.2 10.9 41.6 30.7 2.0 2.0 4.0

2m, 1 25.0 0.0 10.0 3.2 6.0 50.0 44.0 1.7 1.3 3.0

3m, 1 25.0 –0.1 13.0 3.2 3.6 56.3 52.7 1.5 0.0 1.5

4m, 1 25.0 1.5 18.4 3.2 1.3 76.3 75.0 0.9 0.0 0.9

5m, 1 25.0 –0.2 10.5 3.2 7.2 49.9 42.7 2.0 1.9 3.8

6m, 1 25.0 0.1 14.1 3.2 3.5 61.7 58.3 1.5 0.0 1.5

7m, 1 25.0 1.3 17.6 3.2 2.3 71.2 68.9 1.7 0.0 1.7

8m, 1 25.0 2.1 23.9 3.2 0.8 90.4 89.5 0.9 0.0 0.9

Characteristics of the estimator and its 95% confidence intervals based on parametrically simulated data sets, R = 3,332, according to sampling

designs D ¼ 1; . . . ; 8m (Table 1) and parameter set w = 1 (Table 2). The nominal error rate is a = 5% for the two-sided confidence interval

and a = 2.5% for the lower and upper limits. All values are given as percentages
a Confidence intervals for empirical error rates are always shorter than EER ± 1.5

6
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difference and for highly unbalanced data (50% missing

values, D ¼ 1m; . . . ; 8mÞ the estimates from restricted

maximum likelihood (REML) variance partitioning tended

to be slightly smaller than from unweighted analysis of

variance (ANOVAuw) (Tables 3, 4).

The confidence interval estimators of of Sen et al.

(1992) give very reliable results for heritability estimates,

as shown by our parametric simulations (Tables 3, 4, 5, 6).

Over a wide range of different sampling designs,

D ¼ 1; . . . ; 16; 1m; . . . ; 8m; (Table 1) and a wide range

of different parameter sets, w = 1, ... , 20, (Table 2) the

empirical error rate was close to the nominal error rate,

even for the strongly unbalanced data sets,

D ¼ 1m; . . . ; 8m:

The method used to partition the variance components

had large consequences for the confidence intervals. If

REML methods were used to partition the variance, the

upper confidence limits tended to be conservative

(Tables 3, 4, 5) and hence also the two-sided empirical

error rate was rather conservative. In contrast ANOVAuw

estimators provided empirical error rates closer to the

nominal error rates and the average length of the confi-

dence intervals was shorter (Tables 4, 5, 6). This would

suggest ANOVAuw to be superior to partition the variance,

but a closer look at the distribution of confidence interval

lengths showed the opposite (Figs. 1, 2). The median and

the inter-quartile range, the length of the box, was almost

identical for both methods, but the ANOVAuw method

produced many confidence intervals that were much too

short and therefore unreliable. Our simulations showed

that the confidence intervals from REML solutions vary

less. Especially for small sampling designs, the REML

method should be preferred for partitioning the variance

components, although the confidence intervals tended to

Table 4 Heritability, h2; variance partitioning with ANOVA of unweighted sums of squares

Design,

Parameter

set

Heritability 95% confidence interval, cCl95%
Bias

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Variance

p
Expectation Empirical error ratea

D;w h2 BRðh2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VRðch2Þq ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

VRð ~h2Þ
q

Lower

ERðL̂Þ
Upper

ERðÛÞ
Length ERðÛ� L̂Þ Lower

EERRðL̂Þ
Upper

EERRðÛÞ
Two-sided

EERRðcClÞ
1, 1 25.0 0.0 6.3 3.2 14.3 38.2 23.9 2.5 2.6 5.1

2, 1 25.0 0.0 7.1 3.2 12.6 40.4 27.8 2.6 2.8 5.3

3, 1 25.0 –0.3 10.5 3.2 7.1 47.0 39.9 1.8 2.9 4.7

4, 1 25.0 0.0 12.2 3.2 5.3 51.9 46.6 1.9 2.2 4.1

5, 1 25.0 0.0 8.4 3.2 10.7 44.6 33.9 2.1 2.5 4.6

6, 1 25.0 0.0 10.0 3.2 8.7 47.9 39.2 2.3 2.4 4.7

7, 1 25.0 0.2 13.8 3.2 4.3 57.7 53.3 2.1 2.0 4.1

8, 1 25.0 –0.3 16.7 3.2 3.1 63.0 59.9 2.0 2.5 4.4

9, 1 25.0 –0.4 11.8 4.5 6.8 54.4 47.5 2.1 2.3 4.4

10, 1 25.0 –0.1 13.8 4.5 5.4 59.3 53.9 2.2 2.7 5.0

11, 1 25.0 0.6 18.7 4.5 2.6 71.3 68.7 1.9 2.5 4.4

12, 1 25.0 1.6 21.7 4.5 2.1 77.5 75.4 2.0 2.3 4.3

13, 1 25.0 0.1 16.4 7.1 4.4 70.0 65.6 2.2 2.9 5.1

14, 1 25.0 0.5 19.0 7.1 3.5 74.8 71.2 2.5 2.5 5.0

15, 1 25.0 2.8 24.9 7.1 2.1 84.8 82.7 2.8 2.2 5.0

16, 1 25.0 3.7 27.7 7.1 1.6 87.7 86.1 2.0 2.4 4.4

1m, 1 25.0 –1.9 7.7 3.2 9.6 39.9 30.3 1.6 3.7 5.3

2m, 1 25.0 –2.1 11.4 3.2 5.2 47.7 42.4 1.6 3.1 4.7

3m, 1 25.0 –6.3 13.4 3.2 2.0 49.3 47.3 0.6 5.8 6.4

4m, 1 25.0 –3.1 20.2 3.2 1.4 68.4 67.0 1.4 4.1 5.5

5m, 1 25.0 –1.9 11.0 3.2 6.3 48.0 41.7 1.5 4.1 5.6

6m, 1 25.0 –2.0 15.2 3.2 3.2 58.7 55.6 1.9 2.6 4.5

7m, 1 25.0 –4.1 17.9 3.2 1.6 63.8 62.1 1.1 4.1 5.2

8m, 1 25.0 –0.4 26.3 3.2 1.3 81.0 79.6 2.0 2.8 4.7

Characteristics of the estimator and its 95%-confidence intervals based on parametrically simulated data sets, R = 3,332, according to sampling

designs D ¼ 1; . . . ; 8m (Table 1) and parameter set w = 1 (Table 2). The nominal error rate is a = 5% for the two-sided confidence interval and

a = 2.5% for the lower and upper limits. All values are given as percentages
a Confidence intervals for empirical error rates are always shorter than EER ± 1.5
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be slightly conservative compared to those from

ANOVAuw.

As outlined in the introduction all methods for parti-

tioning the variance have deficiencies if data are

unbalanced. Because exact results on the influence of

unbalanced data on the estimators of heritability and their

confidence intervals are unavailable, parametric simulations

are a valuable alternative. Our simulations showed that even

for highly unbalanced data sets the resulting estimates are

accurate. By comparing the sampling designs,

D ¼ 5; . . . ; 12 to D ¼ 1m; . . . ; 8m; with the same number

of individuals, unbalanced data did not provide less accu-

rate estimates than balanced data. Considering the variance

of estimated heritability and the length of the confidence

interval, we found that the designsD ¼ 1m; 3m; 5m; and 7m

with 50% missing values provided even more accurate

estimates of heritability than sampling designs D ¼ 5; 7; 9;

and 11. The four progenies per female made these designs

very robust to randomly missing values and the high num-

ber of males allowed an accurate estimation of heritability.

Comparing designs with only two progenies per female,

balanced data, D ¼ 6; 8; 10; 12; provided slightly better

results than unbalanced data, D ¼ 2m; 4m; 6m; 8m:

Discussion

Our study has shown that heritability estimates are gener-

ally highly uncertain. Even in large experiments, 95%-

confidence intervals for narrow-sense heritability cover

large parts of the possible range between zero and one. For

example, a sample size of more than 4,800 individuals is

needed to estimate heritability with a 95%-confidence

interval of length 0.25. Because our samples were gener-

ated under the assumptions of independent and normally

distributed effects, empirical investigations may need even

more replicates. If biological assumptions are violated, e.g.

through selection during the experiment, further uncer-

tainty will be added to the estimates. Our investigation

furthermore showed that the high variability of heritability

Table 5 Heritability, h2; variance partitioning with REML

Design,

Parameter

set

Heritability 95% confidence interval, cCl95%
Bias

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Variance

p
Expectation Empirical error ratea

D;w h2 BRðh2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VRðch2Þq ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

VRð ~h2Þ
q

Lower

ERðL̂Þ
Upper

ERðÛÞ
Length

ERðÛ� L̂Þ
Lower

EERRðL̂Þ
Upper

EERRðÛÞ
Two-sided

EERRðcClÞ
6, 1 25.0 0.0 10.0 3.2 8.7 47.9 39.2 2.3 2.4 4.7

6, 2 3.2 1.7 5.5 0.0 0.2 23.3 23.1 2.1 0.0 2.1

6, 3 32.3 0.1 10.5 4.5 14.0 57.2 43.3 2.1 1.7 3.8

6, 4 32.3 0.1 9.5 4.5 15.6 55.0 39.3 2.2 1.8 4.1

6, 5 32.3 0.2 11.0 4.5 13.4 58.0 44.6 2.2 1.7 3.9

6, 6 4.5 1.5 6.3 0.0 0.3 25.4 25.1 2.2 0.0 2.2

6, 7 4.5 1.0 5.5 0.0 0.3 21.3 20.9 2.8 0.0 2.8

6, 8 4.5 1.6 6.3 0.0 0.3 26.7 26.4 2.4 0.0 2.4

6, 9 45.5 –0.1 11.0 5.5 26.5 70.3 43.9 2.0 2.1 4.1

6, 10 45.5 –0.1 12.6 6.3 23.1 74.1 51.0 2.3 2.2 4.5

6, 11 45.5 0.1 11.0 6.3 25.8 71.6 45.8 1.9 2.0 3.9

6, 12 7.7 0.4 6.3 0.0 0.8 23.9 23.1 2.0 0.0 2.0

6, 13 7.7 1.2 8.4 0.0 0.6 32.6 32.1 2.5 0.0 2.5

6, 14 7.7 0.5 6.3 0.0 0.7 26.0 25.3 2.2 0.0 2.2

6, 15 76.9 –0.4 13.0 8.9 52.1 97.0 44.8 2.6 2.2 4.7

6, 16 10.0 0.3 7.7 0.0 1.2 29.9 28.7 2.5 0.0 2.5

6, 17 30.0 0.1 10.5 4.5 12.6 54.1 41.5 2.5 2.0 4.5

6, 18 50.0 –0.2 11.8 6.3 28.8 76.9 48.1 2.0 2.0 4.0

6, 19 70.0 –0.3 13.0 8.4 46.0 94.1 48.1 2.1 2.2 4.3

6, 20 90.0 –2.9 11.4 8.4 63.1 99.4 36.3 2.5 2.4 4.9

Characteristics of the estimator and its 95%-confidence intervals based on parametrically simulated data sets, R = 3,332, according to sampling

designs D ¼ 6 (Table 1) and parameter set w = 1 (Table 2). The nominal error rate is a = 5% for the two-sided confidence interval and a =

2.5% for the lower and upper limits. All values are given as percentages
a Confidence intervals for empirical error rates are always shorter than EER ± 1.5
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estimators is mainly the result of sampling and of esti-

mating variance components. It is not caused by biological

factors, and should not be confused with variability among

populations or environments. Although it is well known

that the estimation of the variance needs more replicates

than the estimation of the arithmetic mean, the required

increase in replication is often underestimated.

Given this large variation it is clear that reliable confi-

dence intervals are needed to interpret heritability

estimates. A confidence interval is usually called reliable if

it covers the true, unobservable value in the population

with the stated probability. Several methods for calculating

confidence intervals for heritability estimators have been

proposed. The sampling variance of broad-sense or family-

mean heritability, both calculated from two variance

components, has received considerable attention, espe-

cially for balanced data (Osborne and Paterson 1952;

Knapp et al. 1985, 1989; Knapp and Bridges 1987; Koots

and Gibson 1996; Visscher 1998; Burch and Harris 2005).

For unbalanced data and under normality assumptions,

Harville and Fenech (1985) developed a method to calcu-

late exact confidence intervals on a ratio of two variance

components, which allows one to give exact confidence

intervals for broad-sense heritability. Graybill and Wang

(1979) described a method for calculating confidence

intervals for a ratio involving three variance components,

based on balanced data, but it has been used only rarely to

calculate confidence intervals for narrow-sense heritability

(but see Collaku and Harrison 2005). Sen et al. (1992)

extended the method of Graybill and Wang (1979) to

unbalanced data, but their method has not been used for

calculating confidence intervals for heritability. In this

study we showed that the proposed confidence intervals for

heritability are very reliable over a large range of biolog-

ically relevant combinations of parameters. Even for

strongly unbalanced data, e.g. with 50% randomly gener-

ated missing values, the method presented provides reliable

results, whereas other methods (e.g. Graybill and Wang

1979) fail completely (data not presented). This result is

especially useful in practice because it shows that resources

Table 6 Heritability, h2; variance partitioning with ANOVA based on unweighted sums of squares

Design,

Parameter

set

Heritability 95% confidence interval, cCl95%
Bias

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Variance

p
Expectation Empirical error ratea

D;w h2 BRðh2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VRðch2Þq ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

VRð ~h2Þ
q

Lower
ERðL̂Þ

Upper
ERðÛÞ

Length
ERðÛ� L̂Þ

Lower
EERRðL̂Þ

Upper
EERRðÛÞ

Two-sided
EERRðcClÞ

6, 1 25.0 0.0 10.0 3.2 8.7 47.9 39.2 2.3 2.4 4.7

6, 2 3.2 1.7 5.5 0.0 0.2 21.4 21.2 2.1 1.8 3.9

6, 3 32.3 0.1 10.5 4.5 14.0 57.2 43.3 2.1 1.7 3.8

6, 4 32.3 0.1 9.5 4.5 15.6 55.0 39.3 2.2 1.8 4.1

6, 5 32.3 0.2 11.0 4.5 13.4 58.0 44.6 2.2 1.7 3.9

6, 6 4.5 1.5 6.3 0.0 0.3 23.8 23.5 2.2 1.8 4.0

6, 7 4.5 1.0 5.5 0.0 0.3 20.2 19.9 2.8 2.0 4.7

6, 8 4.5 1.6 6.3 0.0 0.3 25.0 24.7 2.4 2.0 4.4

6, 9 45.5 –0.1 11.0 5.5 26.5 70.3 43.9 2.0 2.1 4.1

6, 10 45.5 –0.1 12.6 6.3 23.1 74.1 51.0 2.3 2.2 4.5

6, 11 45.5 0.1 11.0 6.3 25.8 71.6 45.8 1.9 2.0 3.9

6, 12 7.7 0.4 6.3 0.0 0.8 23.5 22.7 2.0 2.5 4.4

6, 13 7.7 1.2 8.4 0.0 0.6 31.2 30.6 2.5 1.9 4.4

6, 14 7.7 0.5 6.3 0.0 0.7 25.3 24.6 2.2 2.5 4.7

6, 15 76.9 –0.4 13.0 8.9 52.1 97.0 44.8 2.6 2.2 4.7

6, 16 10.0 0.3 7.7 0.0 1.2 29.4 28.2 2.5 2.2 4.7

6, 17 30.0 0.1 10.5 4.5 12.6 54.1 41.5 2.5 2.0 4.5

6, 18 50.0 –0.2 11.8 6.3 28.8 76.9 48.1 2.0 2.0 4.0

6, 19 70.0 –0.3 13.0 8.4 46.0 94.1 48.1 2.1 2.2 4.3

6, 20 90.0 –2.9 11.4 8.4 63.1 99.4 36.3 2.5 2.4 4.9

Characteristics of the estimator and its 95% confidence intervals based on parametrically simulated data sets, R = 3,332, according to the design

D ¼ 6 (Table 1) and parameter set w = 1, ... , 20 (Table 2). The nominal error rate is a = 5% for the two-sided confidence interval and a =

2.5% for the lower and upper limits. All values are given as percentages
a Confidence intervals for empirical error rates are always shorter than EER ± 1.5
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instead of aiming to keep the overall survival of individuals

high, and thereby the data balanced. Furthermore, para-

metric simulations using a planned sampling design

together with a plausible parameter set allow us to opti-

mize the design a priori by taking into account the expected

rate of randomly dying individuals. This makes the range

of application for the proposed method very broad, and it is

clearly preferable to alternatives with rather restrictive

assumptions. Parametric simulation allows us to find the

optimal experimental design that directly minimises the

variance of heritability. Therefore they are preferable to the

oft-cited suggestions of Robertson (1959), which are based

on the assumption that the variance of the female and male

variance components should be minimised to the same

extent. Our simulations for the given parameter set show

that the number of males should be considerably larger

than the number of females per male and progenies per

female. Contrary to what is often observed in the literature,

our simulations also showed that without missing values

the number of females per male should always be larger

than the number of progenies per female.

Unfortunately, empirical studies rarely report reliable

confidence intervals for heritability, making it difficult to
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Fig. 2 Length of confidence

intervals: The box plots show

the 95%-confidence interval

lengths of 3,332 parametrically

simulated data sets according to

design D ¼ 6 (Table 1) and

parameter set w = 1, ... , 20

(Table 2). Variance components

were estimated using restricted

maximum likelihood, REML

(above), and analysis of

variance with unweighted sums

of squares, ANOVAuw (below)
(The length of the box shows

the interquartile range and the

maximum length of each

whisker is 1.5 times the

interquartile range.)
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Fig. 1 Length of confidence

intervals: The box plots show

the 95%-confidence interval

lengths of 3,332 parametrically

simulated data sets according to

design D ¼ 1; . . . ; 8m
(Table 1) and parameter set

w = 1 (Table 2). Variance

components were estimated

using restricted maximum

likelihood, REML (above), and
analysis of variance with

unweighted sums of squares,

ANOVAuw (below) (The length
of the box shows the

interquartile range and the

maximum length of each

whisker is 1.5 times the

interquartile range.)
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determine their accurateness and impossible to interpret

their magnitude. In the quantitative genetic literature very

often statistical tests are used to determine if the additive

genetic variance is significantly larger than zero. If an

estimate is ‘‘significant’’ it is interpreted without consid-

ering its uncertainty. Often studies are reported where

heritability estimates are compared differing in values of

only 0.2 but having confidence intervals longer than 0.9

(see e.g. studies cited by Mousseau and Roff 1987; Roff

and Mousseau 1987). We obtained these confidence inter-

vals using the method proposed here applied to the

sampling design and parameters reported in the respective

studies. This shows clearly the need to report confidence

intervals in order to interpret the estimates.

Even larger numbers of replicates will be needed to

estimate differences among environments or populations,

or to estimate the rate at which quantitative genetic

parameters evolve. However, to empirically investigate the

validity of the quantitative approach, these are unfortu-

nately the critical quantities.

In practice, the large number of replicates needed to get

accurate estimates limits the use of quantitative genetic

methods to organisms that can be bred at high numbers.

Surprisingly the quantitative genetic approach is rarely

directly criticised for inaccurate estimates (but see Mitch-

ell-Olds and Rutledge 1986). Discussions are focused

much more on the question whether the biological

assumptions of the approach (e.g. no epistatic effects) are

accurate (Barton and Turelli 1989; Roff 2003). Hence more

and more complex breeding designs are applied that allow

one to estimate additional parameters (Lynch and Walsh

1998; Wolf et al. 2000). From a biological point of view

this is very promising. On the other hand, our study has

shown that even for rather simple models the sample size

for accurate estimation needs to be high. Thus, the general

tendency in quantitative genetics to increase model com-

plexity (e.g. from broad-sense heritability, to narrow-sense

heritability, and to models with epistasis) makes sense only

if the sample size of the experiments is also increased.

Thus, for a given sample size, the balance between model

complexity and the accuracy of the estimates must be of

central importance.

We have shown that the presented method is not only a

useful tool to calculate reliable confidence intervals for

empirical data with missing values but is also valuable to

determine the number of replicates in experimental

designs. It will help to improve the accuracy of estimates

and thus to decide on the appropriate degree of model

complexity.
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Appendix

Quantitative Genetics in R: The R-package qgen is a

collection of functions to analyse quantitative genetic data.

It is especially helpful to perform parametric resampling of

quantitative genetic data sets. Resampling allows first to

determine a priori the expected variance of an estimator,

second for a given empirical data set to calculate bootstrap

confidence intervals, and third to evaluate different esti-

mators and confidence intervals. The structure of the

functions was kept very simple which easily allows users to

extend it with functions that calculate the statistics of their

interest. The organisation of the functions together with

some examples is described in the documentation and help

pages accompanying the package. The package is available

at http://www.r-project.org/.
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