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Relation between directed polymers in random media and random-bond dimer models
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We reassess the relation between classical lattice dimer models and the continuum elastic description of a
lattice of fluctuating polymers. In the absence of randomness, we determine the density and line tension of the
polymers in terms of the bond weights of hard-core dimers on the square and the honeycomb lattice. For the
latter, we demonstrate the equivalence of the set of complete dimer coverings and the grand-canonical descrip-
tion of polymers by performing explicitly the continuum limit. Using this equivalence for the random-bond
dimer model on a square lattice, we resolve a previously observed discrepancy between numerical results for
the random dimer model and a replica approach for polymers in random media. Further potential applications
of the equivalence are briefly discussed.

PACS number�s�: 75.10.Nr, 05.50.�q, 05.20.�y

I. INTRODUCTION

Dimer coverings of different lattice types have been em-
ployed recently as a starting point to study more complex
physical systems such as quantum dimer models,1,2 geo-
metrically frustrated Ising magnets with simple quantum dy-
namics induced by a transverse magnetic field,3,4 and elastic
strings pinned by quenched disorder.5,6 The common concept
of these approaches is to add to a classical dimer model with
a hard-core interaction a perturbation in form of simple
quantum dynamics, quenched disorder �random bonds�, or
additional �classical� dimer interactions. For bipartite lat-
tices, there exists a representation of the dimer model in
terms of a height profile of a two-dimensional surface.7,8

When a fixed height profile with maximally allowed constant
tilt is subtracted from the original height profile, one obtains
a tilted height profile with terraces of equal height. The steps
which separate these terraces form a lattice of directed and
noncrossing polymers.6 Although the height and the polymer
representations of dimer models are, on a microscopic level,
equivalent descriptions of all dimer states, they allow for
different physical interpretations. In the height profile ap-
proach, the theory7 considers Gaussian fluctuations of a
coarse-grained height field and, according to its construction,
favors states with small tilts, i.e., states with small winding
number. In contrast, the polymer description employed in
this paper �see Eq. �3� below� is more suitable in the opposite
limit where tilted states are actually favored. This can be
seen by considering a small polymer density which implies
broad terraces in the height profile resulting from the super-
position with a fixed maximally tilted reference profile. By
construction, across these terraces the original height profile
has maximal tilt and hence is strongly tilted if the polymer
density is small. It depends on the physical situation de-
scribed by the dimer model which representation is more
useful.

The polymer description has been shown to be a particu-
larly useful physical picture in understanding the effect of
quantum fluctuations for an Ising antiferromagnet on a trian-
gular lattice in a transverse field.3,4,9 Moreover, whereas the
“clean” dimer models can be exactly solved on the lattice

by Pfaffian methods10,11 or by free fermion lattice field
theories,12 dimer models with quenched bond disorder are
much more difficult to study. Existing studies of lattice dimer
models with random-bond weights are all based on numeri-
cal approaches. However, a �1+1�-dimensional continuum
polymer lattice with uncorrelated Gaussian distributed point
disorder is one of the very few systems containing quenched
randomness and interactions that can be investigated by
“exact” methods such as replica theory in combination with
Bethe Ansatz.13,14 It is important to check the validity of this
approach which involves some assumptions related to the
analytic continuation in the replica number and an inter-
change of the thermodynamic and the zero replica number
limit. Since powerful numerical approaches have been em-
ployed to study random dimer models, the polymer represen-
tation of dimer models provides an independent test of the
replica theory. To enable a reliable comparison of the lattice
dimer model and the continuum replica theory for polymers,
it is important to formulate a continuum description of lattice
polymers resulting from the dimer model and to relate the
parameters of the two models.

Here, we show that the set of complete dimer coverings
maps to the grand-canonical ensemble of the polymer sys-
tem. Regarding the polymers as imaginary-time world lines
of free fermions in one dimension, we give a simple deriva-
tion of the continuum free energy of the polymers, which
agrees with the exact result for dimers if the continuum limit
is taken in the way we define it below. Applying the relation
between dimers and polymers to the dimer model with
random-bond energies, we resolve a previously observed dis-
crepancy between numerical simulations of the dimer system
and a replica theory for polymers. We analyze which quan-
tities of the pinned polymers can be probed by simulations of
the random dimer model. More specifically, we study the
dimer model both on the honeycomb and the square lattice,
and discuss the meaning of the different lattice symmetries
for the polymer representation. In the presence of bond dis-
order, we focus on the square lattice since its polymer den-
sity is conserved independently of the disorder configuration,
and hence shows no sample-to-sample variations. Our results
should provide a starting point for other situations where no
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exact solution of the dimer model is possible as, e.g.,
in a recently studied case of nearest-neighbor dimer
interactions.15 The analogy between directed polymers in
two dimensions and Luttinger liquids could be applied to
understand more general interacting dimer models.

The rest of the paper is organized as follows. In Sec. II,
the relation between the dimer model on the square and the
honeycomb lattice and noncrossing directed polymers is re-
viewed. For the clean case, the continuum limit is defined
and the free-energy density of the dimer model and of the
polymer model is compared in Sec. III. It is shown that the
set of complete dimer coverings is equivalent to the grand-
canonical ensemble of polymers. In Sec. IV, the random-
bond dimer model is investigated in detail and a previously
observed discrepancy between numerical results for the
dimer model and the replica theory for pinned polymers is
resolved.

II. MODELS: DIMERS AND POLYMERS

The partition function of the dimer model on the honey-
comb lattice is given by

Z˝ = �
�D�

z1
n1z2

n2, �1�

where the sum runs over all complete hard-core dimer cov-
erings of the lattice, and n1 and n2 are the numbers of dimers
occupying the two types of nonvertical bonds of the honey-
comb lattice �see Fig. 1�, which carry weights z1 and z2,
respectively. The weights on the vertical bonds are assumed
to be unity. Using the same notation, we define for the square
lattice the partition function as

Z� = �
�D�

z1
n1, �2�

where n1 is now the number of dimers covering horizontal
bonds which have a weight of z1, while all vertical bonds
carry unity as weight. For these clean dimer models, the
partition function and correlation functions are known from
exact results.10,11 For random weights, only numerical results
are available �see, e.g., Refs. 5 and 6�. However, there is a
useful connection between the dimer models and noncross-
ing directed polymers in �1+1� dimensions. This relation is
independent of the actual bond energies, and hence applies

also to random dimer models. This is particularly interesting
since the random-bond energies translate to a pinning poten-
tial for the polymers, a problem whose continuum version
can be studied in �1+1� dimensions by a replica Bethe
Ansatz.13,14 Numerical algorithms for the random dimer
model hence provide a unique opportunity to probe the rep-
lica symmetric theory which is commonly used to describe
pinning of elastic media.

The relation between dimers and polymers is established
by superposing every dimer configuration by a fixed refer-
ence dimer configuration. For the honeycomb lattice, the ref-
erence state consists of a covering of all vertical bonds,
whereas for the square lattice a staggered covering of the
vertical bonds is chosen �see Fig. 1�. In the superposition
state, a bond is covered by a dimer �or polymer segment� if it
is covered either only in the original state or only in the
reference state. Because of the hard-core constraints for the
dimers, the polymers are noncrossing. In addition, they are
oriented along the vertical direction due to the choice of the
reference state.

The same mapping between dimers and polymers on the
honeycomb lattice has been used in a recent work.16 The
latter study considers sectors with fixed polymer number. It
is easy to verify that all complete dimer coverings can be
grouped into sectors specified by the number of polymers or,
equivalently, by the number of nonoccupied vertical bonds in
a horizontal row of the dimer model. The configurations
within a given sector can be transformed into each other by
“flipping” those hexagons which have exactly one bond of
each of the three bond directions occupied by a dimer. Flip-
ping means that the three dimers are rotated simultaneously
by 60°. This transformation obviously does not change the
number of polymers but induces a polymer displacement. In
this work, we will consider for the honeycomb lattice a su-
perposition of all sectors, resulting in the grand-canonical
ensemble of polymers with fluctuating polymer density. The
mean polymer density is determined by the weighting of the
sectors and hence can be tuned by changing z1 and z2. The
square lattice, while qualitatively similar to the honeycomb
lattice with respect to the usual height representation, does
not allow for a tuning of the mean polymer density; it is
fixed at 1 /2 independent of z1 �see below�. While for honey-
comb lattice a low polymer density corresponds to a strongly
tilted height profile, for the square lattice with two different
bond weights the height profile cannot acquire different
mean tilts. In this sense, the honeycomb and the square lat-
tice are qualitatively different, which becomes obvious in the
polymer representation.

The lattice of polymers can be described in the continuum
limit by an elastic theory which is of the form5

Hel =	 d2r
 c11

2
��xu�2 +

c44

2
��yu�2 + ��r�V�r�� , �3�

with compression modulus c11, tilt modulus c44, and local
polymer density ��r�=� j�(x−xj�y�), where xj�y� is the path
of the jth polymer. Here, u denotes the continuous displace-
ment field of the polymers so that polymer positions are
xj�y�= j /�+u�j /� ,y� with � the mean polymer density. The

FIG. 1. Mapping of dimer configurations to directed polymers
by superposition with a fixed reference covering �middle�.
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random-bond energies are accounted for by a random pin-
ning potential V�r� which is uncorrelated, i.e.,

V�r�V�r�� = ���r − r�� , �4�

so that � measures the strength of disorder. In order to com-
pare results for the dimer and the polymer model, we estab-
lish a relation between the dimer weights and the elastic
constants and the mean density of the polymers. Let us first
consider the clean limit with ��0. It is obvious from the
mapping between dimers and polymers that the polymer den-
sity can vary with the dimer covering. For example, if the
dimer state matches exactly the reference state, the polymer
density is zero. However, one can define a mean polymer
density by averaging over all dimer coverings.

For the honeycomb lattice, the mean density is deter-
mined by the mean number of occupied nonvertical bonds
in the original dimer configuration so that �˝= 
n1

+n2� / ��3b˝N�, where N is the total number of dimers, b˝ is
the lattice constant, and 
¯� denotes here an ensemble aver-
age over all complete dimer coverings. This yields9,17

�˝ =
2

��3b˝
arcsin � �z1 + z2�2 − 1

4z1z2
�1/2

�5�

if z1+z2�1 and �˝=0 if z1+z2	1. For the square lattice,
the mean number of polymers is determined by the probabil-
ity that a vertical bond is occupied by a segment of the poly-
mer. This is the case if the bond is covered by a dimer in the
original dimer configuration and not covered in the reference
state, or in the other way around. The probability that a ver-
tical bond is covered by a dimer in the original covering is
pd=1/2−
�z1� with 
�z1�=arctan�z1� /�. For the reference
state, it is simply pr=1/2. Hence, after the superposition of
the two dimer states, the probability that a vertical bond is
covered by a polymer is given by pd�1− pr�+ pr�1− pd�
=1/2 independent of z1. This fixes the mean density at5

�� =
1

2b�

, �6�

where b� is the lattice constant. Notice that the density on
the square lattice does not change with the bond weight z1.

The elastic constants are length scale dependent due to
renormalization effects from the noncrossing constraint.
Since there is no additional interaction between the dimers
other than the hard-core repulsion, the compression modulus
c11 is zero on microscopic scales. A finite macroscopic c11 is
generated by a reduction of entropy due to polymer colli-
sions �see below�. The tilt modulus c44=g� on microscopic
scales �or at very low density� is given by the line tension g
of a single polymer and the mean polymer density. The re-
duced line tension g /T of an individual polymer at tempera-
ture T can be obtained from a simple random walk on the
lattice,9 which performs transverse steps according to the
weights of the dimer model. For the honeycomb lattice, it
reads9

g˝
T

=
2 + � + 1/�

2b˝
, �7�

with �=z1 /z2, and for the square lattice one has

g�

T
=

2z1 + 1

2z1b�

. �8�

From this result, we see that the polymers become stiffer if
one decreases the weights on �one type of� the nonvertical
bonds, hence preventing transverse wandering.

III. CLEAN SYSTEM: CONTINUUM LIMIT AND
THERMODYNAMIC ENSEMBLES

Before treating the random system, let us first compare
the free-energy density of the dimer models and the corre-
sponding polymer lattice by taking the continuum limit. It is
important to note that the definition of the continuum limit as
given below is distinct from the usual continuum description
obtained for the height representation of dimer models from
coarse graining. Here, we use the notion “continuum limit”
in a natural form where it describes the transition from a
lattice model to a continuum model by simultaneously send-
ing the lattice constant to zero and decreasing the lattice
polymer density so that the continuum polymer density re-
mains constant. We first note that the free energy of the
dimer model on the honeycomb lattice can be computed
exactly.17 By changing variables from z1, z2 to �=z1 /z2 and
�˝, one can express the free-energy density in terms of the
physical quantities of the polymers on the lattice.9 The result
is

fdimer = −
2�

�3
	

0

�˝
d��

��� sin���3b˝���

1 + �2 + 2� cos���3b˝���
, �9�

where the energy is measured relative to the line z1+z2=1 at
which a Kasteleyn transition to a phase with vanishing lattice
polymer density occurs. We perform the continuum limit ex-
plicitly by sending b˝→0 while keeping the line tension
b˝g˝ /T and the continuum polymer density �˝ fixed. This
can be achieved by adjusting the bond weights z1 and z2 so
that the Kasteleyn transition at z1+z2=1+ is approached from
above along the direction with constant �=z1 /z2. Physically,
this limit means for the dimer lattice model that the energy
on the nonvertical bonds is increased so that it becomes more
favorable to occupy more vertical bonds by dimers. The su-
perposition procedure shown in Fig. 1 then leads to a reduc-
tion of occupied vertical bonds for the corresponding poly-
mer configuration, and hence the lattice polymer density
tends to zero. Since the lattice constant b˝ is sent to zero
simultaneously, a fixed number of polymers per continuum
area is maintained.

This definition of the continuum limit yields the free-
energy density for the continuum version of the dimer model,
expressed in terms of the polymer parameters,

fdimer = −
�2

3

T

g˝
�˝3 , �10�

where we used Eq. �7�.
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An alternative approach to treat a system of interacting

polymers in �1+1� dimensions is to regard each polymer as a
world line of a fermion in imaginary time. Then, the non-
crossing constraint is naturally guaranteed by the Pauli prin-
ciple. If the length Ly of the polymers tends to infinity, their
reduced free energy LyE0 /� is given by the ground-state en-
ergy E0= ��2 /6���2 /m��3Lx of one-dimensional fermions at
density �. Using the mapping m→g and �→T, one gets for
the reduced free-energy density of the polymers at fixed den-
sity

fpoly =
�2

6

T

g
�3. �11�

Although the scaling of this result with the physical param-
eters is the same as for the free energy in the continuum limit
of the dimer model �Eq. �10��, the amplitudes do not agree.
However, as we discussed in the preceding section, while
each sector of dimer configurations corresponds to a fixed
number of polymers, when considering the total set of dimer
configurations the number of polymers is no longer fixed.
Hence, we have to compare the dimer free energy with the
potential of the grand-canonical ensemble of the polymers.
The chemical potential is obtained as 
=�fpoly /��= ��2 /2�
��T /g��2, yielding the grand-canonical potential density

jpoly = fpoly − 
� = −
�2

3

T

g
�3, �12�

which is in full agreement with the continuum limit of the
exact solution of the dimer model of Eq. �10�. This demon-
strates that dimer model can be described on large length
scales as free fermions where their mass is determined in
terms of the bond weights by a random walk of a single
polymer on the lattice.

It is instructive to compare the exact lattice result for the
dimer free energy of Eq. �9� and the potential jpoly with g˝ of
Eq. �7� even for larger b˝�˝. By numerical integration of
Eq. �9�, we obtain the ratio fdimer / jpoly over the entire range
of possible polymer densities shown in Fig. 2. Up to approxi-
mately 1/4 of the maximal density, we find reasonable
agreement between the lattice and continuum results, almost
independent of the anisotropy �=z1 /z2. For larger densities,
the value of � becomes important. There is an optimal value
of � close to 1/3 for which the continuum description gives
accurate results �within a few percent� even for all densities.

The anisotropy of the dimer model can be tuned by
changing the relative magnitude of the weights z1 and z2. The
exact solution of the dimer model on the honeycomb lattice
yields for the correlation lengths the result17

�x =
�3b˝
2
0

=
1

��˝
, �y =

3b˝
4z1z2
0 sin 2
0

, �13�

with 
0=arcsin���z1+z2�2−1� / �4z1z2�. Hence, the correla-
tion length perpendicular to the direction of the polymers is
set by their mean distance 1/�˝. The length �y should then
be set by the typical scale a polymer can wander freely be-
fore it reaches a transverse displacement of the order of the
mean distance between polymers. In the continuum descrip-

tion of the polymers, the random-walk description of a single
polymer then implies the relation

�x
2 =

T

g˝
�y �14�

between the correlation lengths. Together with the first rela-
tion of Eq. �13�, this yields the anisotropy

�x

�y
= �

T

g˝
�˝. �15�

That this result is consistent with the anisotropy of the elastic
description of the polymer system follows from the macro-
scopic compression modulus which is given by the com-
pressibility, i.e., c11=T�2�2fpoly /��2 in terms of the reduced
free energy of Eq. �11�. This yields c11=�2�T2 /g��3 and
hence together with c44=g�

�x

�y
=�c11

c44
. �16�

In order to connect the lattice and continuum descriptions
further, one would like to know under what conditions the
lattice correlation lengths of Eq. �13� fulfill the continuum
relation of Eq. �14�. To address this question, we change
again variables from z1, z2 to �=z1 /z2 and �˝. If one uses the
result for g˝ of Eq. �7�, one can easily check that Eq. �14� is
indeed fulfilled in the continuum limit b˝→0. The conver-
gence of the anisotropy of the dimer model to that of the
continuum description in terms of polymers is shown in Fig.
3 for different �. Hence, the exact anisotropy factor �c11/c44
of the continuum elastic model is recovered. This is impor-
tant if one compares free-energy densities of systems with
different anisotropies since then the ratio of system sizes

FIG. 2. Comparison of the free energy fdimer of the honeycomb
lattice dimer model �Eq. �9�� and the grand-canonical potential jpoly

of the continuum polymer system �Eq. �12�� with the expression of
Eq. �7� for g /T substituted. The curves extend to �˝=2/ �33/2b˝�,
which is the maximal polymer density on the lattice for �=1. How-
ever, in the lattice model, the density cannot become larger than
�˝=2/ ���3�arcsin��2+� /2� by tuning the weights at a fixed ratio
�.
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must be chosen as to match the ratio of their anisotropies.
For the dimer model on the square lattice, there is no

direct analog of the previous analysis since the mean poly-
mer density cannot be tuned by changing the weight z1 but is
fixed �see Eq. �6��. Hence, one cannot take the continuum
limit explicitly. Nevertheless, the square lattice is particularly
useful if one wants to study the effect of random bonds since
the polymer density is robust against variations of the
weights and thus shows no disorder induced fluctuations. For
the clean square lattice dimer model, we can use the insight
we gained from the previous analysis of the honeycomb lat-
tice to compare the free energies of the square lattice and the
continuum model. The exact reduced free-energy density of
the lattice model is known to be10

fdimer = −
1

�b�
2 	

0

z1

dv
arctan v

v
. �17�

The continuum free fermion result of Eq. �12� yields, in
combination with the random-walk result of Eq. �8� for the
line tension on the square lattice, the estimate for the reduced
free-energy density,

fdimer = −
�2

3

z1b�

z1 + 1/2
��

3 . �18�

Below, we will study the square lattice with bond energies
that are randomly distributed with mean zero so that the
clean limit corresponds to the isotropic case z1=1. For this
case, Eq. �17� yields the exact result fdimerb�

2 =−G /�=
−0.2916, which is close to the continuum approximation of
Eq. �18� which predicts fdimerb�

2 =−�2 /36=−0.2742 at the
fixed density ��=1/ �2b��.

IV. RANDOM BONDS AND PINNED POLYMERS

In this section, we will consider exclusively the square
lattice but with random energies �ij assigned to all vertical
bonds so that zij =exp�−�ij /Td�, where zij now denotes the
weight on the bond �ij�. The dimer temperature Td measures

the strength of disorder. The energies �ij are drawn for each
bond independently from a Gaussian distribution with zero
mean and unit variance. On all horizontal bonds, we set �ij
=0 so that for Td→� the isotropic clean dimer model is
recovered. The partition function can be written as

Z� = �
�D�

exp�− �
�ij��D

�ij/Td� , �19�

where the second sum runs over all occupied bonds. The
disorder averaged free energy and correlations of this model
have been computed by a polynomial algorithm18,19 for sys-
tem sizes up to 512�512 lattice sites and typically 6000
disorder samples.5,18

On the analytical side, progress has been made for the
polymer system with random pinning by applying the replica
method. Regarding again each polymer of the replicated
theory as a fermion in imaginary time, and applying the Pauli
principle for all particles within the same replica, the replica
free energy can be obtained again as the ground-state energy
of a one-dimensional system of fermions. Due to the repli-
cation, the fermions now carry n spin components and inter-
act via an attractive �-function potential arising from the
short-ranged disorder correlations. This SU�n� Fermi gas can
be studied by a series of nested Bethe Ansätze.13 In the limit
n→0, the Bethe Ansatz equations can be solved exactly for
arbitrary disorder strength �, yielding the disordered aver-
aged reduced free-energy density of the polymers,20

f̄poly = f̄0���� +
�2

6

T

g
�3 +

�

2T2�2, �20�

where f̄0��� represents the disorder dependent free energy of
a single polymer. Notice the simple form of the disorder
contribution to the free energy of the pure system �cf. Eq.
�11��. Interestingly, in the limit of strong interactions �disor-
der�, the SU�n� Fermi gas in the limit n→0 becomes iden-
tical to the �pure� interacting Bose gas studied by Lieb and
Liniger.21 Since it was shown that the interaction strength
scales as n2, perturbation theory for the ground-state energy
of the Bose gas yields a series expansion in n of the replica
free energy for large disorder. The coefficients of this expan-
sion correspond to the disorder averaged cumulants of the
free energy, which hence are known exactly from the replica
Bethe Ansatz.14

The prediction of the replica approach can be compared to
the numerical evaluation of the free energy and its cumulant
averages for the random-bond dimer model. This has been
done in Ref. 5, neglecting, however, fluctuations in the poly-
mer density induced by the statistics of the pure dimer
model. While nice agreement was found for the second and
third cumulants of the free energy, the averaged free energies
were only consistent if a term ��2 of the single polymer

contribution f̄0 was dropped by hand. However, contributions
�n3�2 from the replica free energy of a single polymer were
found to be crucial for the agreement of the third cumulant of
the total free energy. A similar observation was made5 for the
data obtained previously for a single pinned polymer.22 This
is, in particular, unsatisfying due to the model character of
the directed polymer in a random potential for the theory of

FIG. 3. Comparison of the anisotropy ��x /�y�dimer of the lattice
dimer model, taken from Eq. �13�, and the anisotropy ��x /�y�poly of
the continuum polymer system, Eq. �15�.
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disordered systems. Below, we show that the differences be-
tween the replica approach for polymers and the numerical
results on the dimer model can be fully reconciled when
polymer density fluctuations are included. As demonstrated
for the clean system, this can be done by comparing the set
of complete dimer coverings to the grand-canonical en-
semble of polymers. It follows from Eq. �20� that the disor-

der averaged chemical potential 
̄=� f̄poly /�� since disorder
induces no �additional� fluctuations in �. Thus, the averaged
grand-canonical potential density is

j̄poly = −
�2

3

T

g
�3 −

�

2T2�2, �21�

so that the single polymer term f̄0 cancels. Notice that f̄0 is
exactly the term which was in disagreement with numerical
results for the random-bond dimer model. Hence, the disor-
der averaged free energy of a single directed polymer cannot
be determined from numerical computations of the free en-
ergy of the dimer model. However, it is the disorder induced
effective interaction of the polymers which determines the
dimer free energy. To obtain the latter, we substitute the
dimer parameters �=��=1/ �2b�� and g /T from Eq. �8� into
Eq. �21�. The disorder strength � /T2 must be related to the
dimer temperature Td, which measures the variance of the
bond energies. As was shown in Ref. 5, the relation is

�

T2 =
�d

b�

1

Td
2 , �22�

where the length �d acts as a cutoff in the continuum model
over which the � function of Eq. �4� is smeared out. The ratio
�d /b� must be considered as a fitting parameter which
should turn out to be of order unity. As we are comparing
energy densities, the disorder dependent anisotropy �c11/c44
of the polymer system must be included.5 This yields for the
disorder averaged free-energy density of the dimers

f̄dimer = b�
2 �c44

c11
j̄poly. �23�

The compression modulus can be obtained again from the
�averaged� polymer free energy of Eq. �20�, c11

=T�2�2 f̄poly /��2, yielding for the anisotropy

�c44

c11
=

1

��

g

T
�1 +

g�

�2T3�
�−1/2

. �24�

In order to correct for a �small� difference between lattice
and continuum models, we match with the exact result
fdimer=−G /� of Eq. �17� with z1=1 in the clean limit Td
→�. Then, we obtain in terms of the dimer parameters the
final result

f̄dimer = −

G +
3

8

�d

b
Td

−2

��2 + 3��d/b�Td
−2

, �25�

which has to be compared to the result for ln Zl /L2=− f̄dimer
of Eq. �32� in Ref. 5, where the single polymer contributions
had been included, resulting in an additional term �Td

−4 in

the numerator of Eq. �25�. Exactly, the latter term was found
to be in disagreement with simulation data. The expression
of Eq. �25� is plotted in Fig. 4 together with the original
simulation data for the random dimer model, demonstrating
indeed nice agreement for �d /b�=1.33.

Finally, we comment on higher cumulant averages of the
dimer free energy. They were also measured in simulations
and were shown to agree with the free-energy fluctuations of
the polymer system.5 This can be easily understood from the
fact that on the square lattice, there are no sample-to-sample
variations of the mean polymer density. Hence, the shift of
the polymer free energy by −
� in Eq. �12� is independent of
disorder so that one has identical disorder averaged cumu-
lants in the canonical and grand-canonical ensembles, �jp�c

= �fp�c for p�2, where �¯�c denotes a cumulant average
over disorder. Because of that, fluctuations of the single
polymer free energy f0 are important for the dimer model.
This explains why contributions �n3�2 from a single poly-
mer to the replica free energy had to be included in Ref. 5 to
obtain agreement for the third cumulant of the free energy
between polymer and dimer models.

V. OUTLOOK

We have shown that a continuum polymer model can pro-
vide a good approximation to dimer models on bipartite lat-
tices. Although the polymer description yields, in general,
not the exact result, it provides a more physical picture of the
dimer model as its exact solution which, moreover, is avail-
able only in the clean limit. Lattice Ising spin models with
geometric frustration can exactly be mapped at zero tempera-
ture to classical dimer models on the dual lattice.8 The effect
of thermal fluctuations and/or a transverse magnetic field can
be understood in terms of topological defects in the polymer
representation of the dimer model.9 Here, we have shown
that the influence of random bonds in the dimer model can be
described as pinning of polymers. This implies that the
glassy state of certain spin models with random couplings

FIG. 4. Disorder averaged free-energy density for the random-
bond dimer model �Eq. �25� with �d /b�=1.33� and corresponding
simulation data, taken from Ref. 5.
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could be related to the glass phase of polymers in a random
environment. For example, it can be easily checked that ran-
dom dilution of the triangular Ising antiferromagnet leads to
a pinning of the polymers at the nonmagnetic lattice sites.
Another potential application of our results is the study of
classical dimers which, in addition to the hard-core repul-
sion, interact in a more general way. Since the mapping to
polymers is independent of the dimer interaction, one can
use the analogy between directed polymers and world lines
of bosons in imaginary time to explore dimer interactions in
terms of interacting bosons in one dimension. Recently, the
classical limit �without a kinetic term� of the quantum dimer
model on the square lattice has been shown to have a phase
transition between a critical and a columnar phase due to the

aligning interaction.15 The correlations in the critical phase
are found to decay with an exponent that varies continuously
with the interaction amplitude. Using the mapping to world
lines of bosons, that exponent is determined by the com-
pressibility of the Bose gas which presumably can be mod-
eled by a tight-binding Hamiltonian with an infinite on-site
repulsion and a nearest neighbor interaction.23
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