
Department of Informatics
University of Fribourg (Switzerland)

A Framework for Interactive
Document Recognition

THESIS

submitted to the Faculty of Science of the
University of Fribourg (Switzerland)

in conformity with the requirements for the degree of
Doctor scientiarum informaticarum

submitted by

Oliver HITZ

of Untersiggenthal (AG)

Thesis no. 1488
Printed at Mécanographie, University of Fribourg

2005

Accepted by the Faculty of Science of the University of Fribourg (Switzerland)
following the proposal of:

• Prof. Rolf INGOLD, Université de Fribourg, Switzerland, Thesis Director;

• Prof. Rémy MULLOT, Laboratoire PSI, Université de Rouen, France, Ex-
aminator;

• Prof. Béat HIRSBRUNNER, Université de Fribourg, Switzerland, Exami-
nator.

October 6, 2005

The Thesis Director: The Dean:

Prof. Rolf INGOLD Prof. Marco CELIO

i

ii

Abstract

Document recognition is a research domain that doesn’t lose its relevance even
in a world where documents are increasingly often available in an electronic
form. Whereas some years ago, the goal of document recognition was to con-
vert documents from paper into an electronic form, the problem is shifted more
and more from pure recognition towards document understanding.

This requires much more context knowledge—knowledge, that cannot be
easily specified. The problem can be approached by considering the user as
an important component of the recognition system. The user knows what
he expects from the recognition system, why shouldn’t this information be
used? This is what interactive document recognition does. Interactive doc-
ument recognition systems cooperate with the user and try to learn from him.

This thesis addresses the problem of interactivity in interactive document
recognition systems. By using technology around the XML standards, and
starting from an idea that is typically used for publishing content for the World
Wide Web, a model for structuring interactive document recognition applica-
tions is developed. This model ensures a high reusability of program modules.

The feasibility of this model is demonstrated with a prototype that allows
to graphically visualize document recognition data available in XML format.
With a little bit more effort, the same data can be edited interactively.

The fact that the prototype has already been used in other research projects
shows that the approach is very promising.

iii

Zusammenfassung

Die Dokumenterkennung ist ein Forschungsgebiet, das auch mit der zunehm-
enden Verlagerung von Inhalten in elektronische Formate nicht an Bedeutung
verliert. Ging es vor einigen Jahren noch in erster Linie darum, Dokumente in
Papierform in eine elektronische Form zu bringen, verlagert sich das Problem
immer mehr vom reinen Erkennen des Dokumentes hin zu einem Verstehen
des Inhaltes.

Dazu wird immer mehr Kontextwissen benötigt—Wissen, das sich schlecht
ein für allemal festlegen lässt. Dieses Problem kann angegangen werden, in-
dem der Benutzer als wichtiger Bestandteil des Dokumenterkennungssystem
gesehen wird. Der Benutzer weiss, was er vom Erkennungssystem erwartet,
warum also kann nicht diese Information verwendet werden? Genau dies
geschieht bei der interaktiven Dokumenterkennung. Interaktive Dokument-
erkennungssysteme kooperieren mit dem Benutzer und versuchen, von ihm
zu lernen.

Diese Dissertation behandelt das Problem der Interaktivität in solchen in-
teraktiven Dokumenterkennungssystemen. Mit Hilfe von Technologie rund
um den XML Standard und ausgehend von einer Idee, wie sie typischerweise
bei der Publikation von Inhalten für das World Wide Web angewandt wird,
wird ein Modell zur Strukturierung von Applikationen für die interaktive Do-
kumenterkennung entwickelt, welches eine hohe Wiederverwendbarkeit von
Programmmodulen gewährleistet.

Die Machbarkeit dieses Modells wird mit einem Prototyp aufgezeigt, mit
welchem beliebige, im XML-Format vorliegende Dokumenterkennungsdaten
mit wenig Aufwand grafisch visualisiert, und—mit etwas mehr Aufwand—
interaktiv bearbeitet werden können.

Die Tatsache, dass der Prototyp bereits in anderen Forschungsprojekten
zum Einsatz gekommen ist, zeigt, dass der Ansatz sehr vielversprechend ist.

iv

Acknowledgements

This work would not have been possible without the help of many people...

• My parents, who have always provided support for me during all the
years of school and education. Vielen Dank!

• Rolf Ingold, my thesis advisor, who let me lead my work freely and with-
out unnecessary constraints. He also did have a great deal of patience
and confidence. Merci beaucoup!

• Rémy Mullot and Béat Hirsbrunner, who have accepted to participate in
the jury for my thesis and comment on the work. Merci beaucoup!

• My research group colleagues Lyse Robadey and Maurizio Rigamonti.
Lyse has been the first beta-tester of the xmillum prototype and has pro-
vided me with lots of useful feedback. Maurizio has extended the proto-
type and has with his input contributed to the third generation xmillum
model described in this thesis. Merci! Grazie mille!

• All other colleagues and friends at the DIUF who were always available
for profound technical discussions, non-technical chats and other crazy
projects. At the risk of forgetting somebody (apologies), in no particular
order: Simon, Sergio, Olivier, Darie, Daniel, Rolf, Folco, Lukas, Houda,
Karim, Nicolas, Dijana, Alessio, Amine, Soraya, Anthony, Yvette, Marie-
Claire, Marianne, Eliane... Danke! Merci!

• Last but not least, Caroline, for her tolerance and support during the final
steps of this work. Thank you very much!

v

vi

Contents

Contents vii

1 Introduction 1
1.1 Document Production and Recognition 2
1.2 Logical and Physical Document Structure 4
1.3 Electronic Documents . 5

1.3.1 Paper Documents vs. Electronic Documents 6
1.3.2 From Document Recognition to Document Restructuring 8

1.4 Document Recognition Application Domains 9
1.4.1 Office Applications . 9
1.4.2 Postal Address Recognition 10
1.4.3 Check Reading . 10
1.4.4 Document Archiving . 11
1.4.5 Web Document Analysis 11
1.4.6 Personal Use . 12

1.5 Document Models . 12
1.6 Automatic vs. Interactive Document Recognition 13
1.7 Web Based Document Recognition 14
1.8 Goal of this Thesis . 14

2 State of the Art in Document Recognition 17
2.1 Document Recognition Phases 17

2.1.1 Image Preprocessing . 17
2.1.2 Image Segmentation . 18
2.1.3 Zone Classification . 19
2.1.4 Optical Character Recognition 20
2.1.5 Optical Font Recognition 21
2.1.6 Logical Structure Recognition 22

2.2 Related Systems . 22

vii

viii CONTENTS

2.2.1 CIDRE . 22
2.2.2 Handwriting Understanding Environment (HUE) 23
2.2.3 TrueViz . 23
2.2.4 WISDOM++ . 24
2.2.5 Illuminator . 25
2.2.6 Style-Directed Document Recognition 26
2.2.7 Generalized n-Grams . 26
2.2.8 2(CREM) . 27
2.2.9 OfficeMAID . 28
2.2.10 smartFIX . 28
2.2.11 Qgar . 29
2.2.12 ACTI_VA . 29
2.2.13 UIML . 30

3 Technology 31
3.1 Data Representation Formats . 31

3.1.1 Ad-hoc formats . 33
3.1.2 Document Recognition Oriented Formats 33
3.1.3 General Data Representation Formats 34
3.1.4 Presentation Oriented Formats 36
3.1.5 Logical Structure Oriented Formats 38

3.2 The XML Family of Technologies 39
3.2.1 The XML Language . 40
3.2.2 DOM vs. SAX . 41
3.2.3 XSL: Presentation of Data using XSLT and XSL-FO . . . 42
3.2.4 XPath . 44
3.2.5 XML Namespaces . 44

3.3 Java . 46

4 Requirements and Goals of xmillum 47
4.1 Requirements . 47

4.1.1 End User . 47
4.1.2 System Integrator . 49
4.1.3 Researcher . 49

4.2 Goals of xmillum . 50
4.2.1 Visualization . 50
4.2.2 Validation . 51
4.2.3 Correction . 52
4.2.4 Learning . 52

CONTENTS ix

5 The Design of xmillum 55
5.1 Generation 1: The Fundamental Idea 55

5.1.1 Advantages . 56
5.1.2 First Feasibility Tests and Results 57

5.2 Generation 2: A Custom Application 58
5.2.1 Meta Data . 59
5.2.2 Plugins in xmillum . 60
5.2.3 A Simple Visualization Scenario 60
5.2.4 From Visualization to Active Interaction 63
5.2.5 Bundling xmillum Document Recognition Applications 65
5.2.6 The xmillum Prototype 66
5.2.7 Benefits and Drawbacks 67

5.3 Generation 3: Generalizing the xmillum Idea 68
5.3.1 Concepts . 69
5.3.2 Data Repositories . 70
5.3.3 Data Types . 71
5.3.4 Views . 71
5.3.5 A Markup Language for Applications 72
5.3.6 Too General? . 76

6 The xmillum Prototype 79
6.1 Two Real-World xmillum Applications 79

6.1.1 Data Visualization . 81
6.1.2 Correction of Under-segmented Regions 83

6.2 Components of the xmillum Prototype 85
6.2.1 Layers . 86
6.2.2 Objects . 87
6.2.3 Styles . 88
6.2.4 Flag Sets . 90
6.2.5 Handlers . 91
6.2.6 Tools . 94

6.3 Plugins Implemented in the Prototype 94
6.3.1 Graphical Objects . 95
6.3.2 Event Handlers . 99
6.3.3 Tools . 104

7 Conclusion and Perspective 109
7.1 xmillum in other Projects . 109

7.1.1 2(CREM) . 109
7.1.2 Edelweiss . 110
7.1.3 DocMining . 111

x CONTENTS

7.1.4 PLANET . 112
7.2 Future Work . 112

7.2.1 XML Schemas and Plugins Exporting Their Interfaces . . 112
7.2.2 Generalizing xmillum . 113
7.2.3 Hierarchical Nature of XSLT 113
7.2.4 Code, Code, Code . 114

7.3 Accomplished Work . 114

Bibliography 115

A Visualizing Segmentation Data 123

B Correcting Undersegmentation 127

Curriculum Vitae 131

Chapter 1

Introduction

The document recognition problem—the task of reading a paper document
using a computer in order to process it by further—has many different facets
that have occupied the document recognition community for many years.

As some of the problems get solved, new challenges turn up. The better the
recognition results get, the more people expect from them and the further they
want to go. While in the beginning document recognition research was mainly
focused on identifying printed characters in order to reduce the cost of typists,
document recognition is used today to extract much more information than
simply text. The structure of a document can be as important as the text itself,
and also components such as images, figures or tables contain much useful
information. Ideally, we would like to go as far as to understand the text in
question to get an idea about its meaning.

The further we move towards recognizing the semantics, the more knowl-
edge about the context is required. For recognizing printed characters, we
might need to know the used font. For recognizing the structure of a docu-
ment, however, we need to know much more information related to layout
rules, to the document type and maybe even to the culture of the document’s
target audience. This knowledge is very difficult to express, and it cannot be
done once and for all.

We believe that this difficulty can be overcome with interactive systems
with the users as substantial components. The users know what results they
expect from a document recognition process. The system provides to its users
the knowledge they need to make informed and intelligent decisions, which
can be used to generate the context knowledge necessary to make such deci-
sions independently of the user at a later time.

This thesis presents a software framework that helps to create interactive

1

2 CHAPTER 1. INTRODUCTION

systems for document recognition. It allows researchers and developers to re-
frain from some of the tasks connected to visualization and user interaction in
order to concentrate on the more important issues related to document recog-
nition.

1.1 Document Production and Recognition

The purpose of a document is to store information so that it can be exchanged
between users. During the document production process, this information is
put into the document so that a user can conveniently extract it at a later time.
The traditional document production process involves four steps as illustrated
in figure 1.1:

P
ap

er
D

oc
um

en
t

Im
ag

e

P
hy

si
ca

l
S

tr
uc

tu
re

Lo
gi

ca
l

S
tr

uc
tu

re

In
fo

rm
at

io
n

Physical
Recognition

Scanning
Recognition

LogicalInformation
Extraction

Information
Preparation Formatting Rendering Printing

Document Production

Document Recognition

Figure 1.1: Document production and document recognition are two opposing
processes.

Information Preparation The information is transformed to be used in a doc-
ument. This transformation includes writing and editing text, drawing
images etc. The result of this step is the logical document structure, a struc-
ture of information prepared for use in a document.

1.1. DOCUMENT PRODUCTION AND RECOGNITION 3

Formatting The formatting phase maps the logical structure onto a specific
media type, resulting in a physical structure. This structure is constrained
by the characteristics of the final media such as the two-dimensionality
and the page size for paper documents.

Rendering During the rendering phase, the physical structure is transformed
to an image consisting of pixels. This phase takes into account the reso-
lution and the color space of the output device.

Printing The printing phase, finally, prints the image produced so far onto the
final media.

Document recognition is the opposite process. Its goal is to restore the elec-
tronic form of a printed document so that information can be extracted or that
the document can be reused again. The whole document recognition process
comprises the following four steps:

Scanning The paper document is scanned. This step produces a document im-
age, which is a simple matrix of pixels. Noise may be introduced in this
step, due to dirt on the paper documents, dust on the scanner, irregulari-
ties in the scanner’s optics or skew because of inaccurate paper handling.
The scanned image therefore differs from the rendered image.

Physical Recognition The physical structure recognition phase basically com-
bines individual pixels and regions to groups belonging together and at-
taches additional semantics in the form of labels to these groups. Imme-
diate results of this step are regions of the image containing individual
characters, words or text lines, or regions containing images, logos, rules
etc. Data attached to the regions might be the text contained in textual re-
gions (the result of an optical character recognition algorithm), the names
and properties of the fonts in which the text is written or formatting prop-
erties such as the text justification. The result of the physical recognition
is typically of hierarchical nature, often representing the top-down de-
composition of a document.

Logical Recognition During the logical structure recognition, the individual
building blocks of the physical structure are labeled and aggregated in a
higher level structure that reflects the logical structure of the document.
The actual form of the logical structure depends on the type of document
and contains information on how the different building blocks of the doc-
ument are related.

Information Extraction The information extraction phase consists in extract-
ing useful information from the logical document structure. For many

4 CHAPTER 1. INTRODUCTION

document recognition tasks, this step is straightforward provided that
the logical structure allows to address the objects of interest directly. For
other applications, however, the information extraction phase is much
more complex. Examples of such applications are information indexing,
building of knowledge bases or natural language processing.

Not all of these steps are always necessary. For example, if the goal of the
document recognition application is to restore the electronic form of a docu-
ment in order to reuse it, the information extraction can be skipped. The result
of such an application is the logical structure.

1.2 Logical and Physical Document Structure

Two fundamental data structures used during the document recognition pro-
cess have been mentioned: the logical and the physical document structure.

The logical document structure contains objects independent of formatting
aspects. For example, consider the document image of a scientific article shown
in figure 1.2. The corresponding logical structure is sketched in figure 1.3.
This structure shows the objects the document is composed of, their role in
the document (title, paragraph etc.) and how they are related (relations are hi-
erarchical in this example, but they can be much more complex graphs in the
general case). The logical structure does not specify any properties related to
formatting. For example, there is no mention of font attributes, or of para-
graph widths. Also the fact that the document title is printed on two lines is
not reflected in the logical strucutre. This depends only on the page size.

The physical document structure contains descriptions of objects that can be
found in the document image. Figure 1.4 shows part of the physical structure
of the document image mentioned previously. The physical structure includes
generic objects such as text blocks, images, rules including all their respective
content and so on without any hints about the role of the objects in the docu-
ment. However, it may include additional information:

• font attributes: font family, size, style

• text justification: left, right, centered etc.

• location on the document image: absolute bounding box coordinates (or
relative coordinates for nested boxes) for rectangular objects or polygon
vertices for free-form objects

Sometimes objects in the physical structure are grouped together to form
higher level objects. For example, consecutive text lines written with the same
font attributes may be grouped together as text blocks.

1.3. ELECTRONIC DOCUMENTS 5

Figure 1.2: A document image of a scientific article.

1.3 Electronic Documents

Documents are not always printed, some remain in electronic form throughout
their lifetime. The reason for this is that the electronic form offers possibili-
ties a printed document does not. It is for example possible to quickly search
even huge electronic documents or document collections for specific words or
phrases. With paper documents, this is infeasible even for small documents.
Electronic documents can also facilitate the navigation between parts of the
document or between different documents, for example with hyper links.

It might seem that for such documents, the whole document recognition
problem is solved. If documents are available electronically, why would we
need to recognize them? And, as more and more documents get published in

6 CHAPTER 1. INTRODUCTION

Title

An Architecture ...

Scientific Article

Authorship Abstract References

Paragraph

For a cooperative...

Author

Oliver Hitz

Author

Lyse Robadey

Affiliation

IIUF, University ...

Body

Author

Rolf Ingold

Section

Paragraph

In the CIDRE ...

Section

Title

Introduction

Paragraph

In the past ...

Figure 1.3: Logical structure of the document image of figure 1.2.

Page

BlockBlock Block

Textline Textline

Word

Region (...)

Text (An)
Font (Times...)

Word

Region (...)
Font (Times...)
Text (Architecture)

Word

Region (...)
Font (Times...)
Text (for)

Figure 1.4: Physical structure of the document image of figure 1.2.

their electronic form, what will the use of document recognition be in future?
The following two sections will give answers to these questions.

1.3.1 Paper Documents vs. Electronic Documents

There are many different types of electronic documents, each with advantages
and disadvantages with respect to document recognition.

The lowest form of electronic document is the document image. It does not
contain any symbolic information for facilitating the recognition process. Doc-

1.3. ELECTRONIC DOCUMENTS 7

ument images that have not been produced by scanning but by rendering are
called synthetic document images. Compared to scanned document images,
such images are special because they do not contain the typical noise that usu-
ally gets added during the scanning process. Recognizing synthetic document
images will produce more accurate results than scanned document images.

Due to the lack of advantages over paper documents and their size, elec-
tronic documents are rarely made available in image form. Some document
formats represent a formatted physical structure. The rendering is delayed to
the instant when the user wishes to consult the document. This type of doc-
uments require a special program to be installed on the user’s computer to
interpret the document and render its content depending on the physical char-
acteristics of the user’s output device. This results in different rendering results
for different users. A very widespread example of such a format is Adobe’s
Portable Document Format (PDF) [37].

At least since the invention of the World Wide Web, also the document for-
matting phase is shifted towards the moment when the user wishes to consult
the document. The language of the World Wide Web, HTML [74], was origi-
nally designed to hold the logical structure of documents so that the content
could be formatted by the user agent (i.e. the web browser) depending on the
capabilities of the user’s equipment. However, many people and organizations
publishing documents on the Web were not satisfied with the level of control
they had on the appearance of their documents. This is why HTML has been
subject to comprehensive modifications and extensions and offers many fea-
tures for specifying the exact appearance of documents, making it a language
for representing the physical document structure rather than the logical struc-
ture.

To remedy this mistake, Cascading Style Sheets [71] (CSS) were introduced.
CSS allow to keep information related to the appearance of documents outside
the document in question and thus separate content from presentation. This
is a very important addition, but until today, many web authors still do not
use them to their full extent, probably also because not all features of CSS are
supported by all of today’s browsers (not to speak of compatibility problems).

But the trend towards representing the logical structure of electronic doc-
uments continues. The XML family of technologies is a huge step forward
into this direction. Without doubt, XML will replace HTML more and more.
It allows to separate content and presentation, and therefore offers the best of
the two worlds. The appearance of documents can be fully controlled while
at the same time the content is described in a logical structure that has all the
advantages of a high level structure (e.g. indexing, archiving).

8 CHAPTER 1. INTRODUCTION

1.3.2 From Document Recognition to Document Restructuring

With electronic documents, individual recognition steps can be replaced by
simpler programs that extract the wanted information from the document files
in question. However, the document recognition problem is far from going to
be solved by electronic documents as new problems are introduced.

The numerous different formats of electronic documents is becoming a se-
rious problem. Already now there are dozens of document file formats, all of
them with different versions. It is easy to find documents that are a few years
old on the Internet - the real challenge is to find the programs that are able to
visualize them. Or, even worse, programs that converts documents into useful
formats.

Such conversion problems might get solved by using document recognition
techniques in future. If we assume that there exists a program for visualizing
a given document, there is, on the one hand, a way to produce a document
image. On the other hand, we have document recognition technology know-
ing how to deal with document images. The document image thus becomes a
pivotal format to build a higher level structure (see 1.5).

Rendering

Rendering

Rendering

Rendering

Rendering

Rendering

html

rtf

wml

ps

txt

pdf

Production

Production

Production

Production

Production

Production

html

rtf

wml

ps

txt

pdf

Figure 1.5: A document recognition engine used for document conversion: The
document image is the pivotal form common to all document formats.

It is not necessary to go as far as to the document image in order to benefit
from document recognition. Even if documents are described in a format such

1.4. DOCUMENT RECOGNITION APPLICATION DOMAINS 9

as XML, data sometimes needs to be transformed to fit into another structure.
This leads us to the problem of document restructuring, which is something
that is regularly done during the document recognition process. The same
techniques that have been used for restructuring paper documents into elec-
tronic documents can be adapted and used for restructuring already structured
documents.

1.4 Document Recognition Application Domains

Contrary to traditional document recognition systems, interactive recognition
systems are designed to be more versatile and have therefore more application
fields. In order for the reader to better understand what kind of document
recognition system we mean by interactive document recognition system, the
following sections present possible applications where such systems could be
used.

1.4.1 Office Applications

In offices there are numerous possible application fields for document recogni-
tion systems. Some applications aim at the recovery of the electronic format of
printed documents in order to be able to edit them, others target at the indexing
and archiving of documents or the support of workflows [52] by automatically
routing documents (e.g. incoming faxes or email) to the responsible officials.
Common points among these applications are:

• variable physical structure

• variable logical structure

• variable document formats (paper, electronic formats)

• low rather than bulk volumes

Tuning document recognition systems is a task involving a lot of expert
and domain-specific knowledge. Tuning an automatic document recognition
system for office applications is therefore only profitable if a significant num-
ber of documents of the same type and format are to be recognized and if the
document types can be clearly specified beforehand.

An interactive document recognition system could lower the cost of tun-
ing by letting the end users show the system how to recognize an unknown
document. The performance of the system should so gradually improve.

10 CHAPTER 1. INTRODUCTION

1.4.2 Postal Address Recognition

Postal address recognition [68, 70] has always been one of the main applica-
tions for document recognition systems. Some of the main characteristics of
this application are:

• strict logical structure

• highly variable physical structure

• handwriting as well as machine print

• bulk volume, very high throughput (real-time)

• contextual constraints that can simplify the recognition

Since high throughput is required, fully automatic recognition is indispens-
able. However, an interactive system could be used in order to train the system
off-line whenever addresses with yet unknown physical formats are met. An
operator could show the system how to correctly recognize such addresses so
that the system improves with use.

1.4.3 Check Reading

Check reading [44] is an application where the accuracy is critical. Because
checks are dealing with money directly, errors are not acceptable. Other char-
acteristics are:

• strict logical structure

• accuracy is very critical

• bulk volume, very high throughput (real-time)

• contextual constraints (amounts are typically written as numerals as well
as written words and can thus be cross-checked)

• handwriting as well as machine print

The accuracy requirement is enforced by the fact that amounts are written
as numerals as well as written words. If these two numbers differ, the check is
rejected and needs to be processed manually by an operator.

1.4. DOCUMENT RECOGNITION APPLICATION DOMAINS 11

1.4.4 Document Archiving

With the advent of the Internet, document archiving has gained a new mean-
ing. The Internet makes huge archives of indexed documents at everybody’s
disposal. Documents that were previously only available as paper documents
are being analyzed with document recognition techniques [9] and indexed.
There are search engines for specific types of documents whose analysis goes
far beyond simple text indexing (e.g. CiteSeer 1 [30] analyzes the citations of
electronically accessible scientific literature). Typical characteristics of docu-
ment archiving applications are as follows:

• variable logical structure

• variable physical structure

• bulk volume, but throughput not very important

• accuracy not critical

1.4.5 Web Document Analysis

The vast amount of information readily available in the Internet offers many
possibilities not only for the average user. Questions such as: “What online
shop offers product x at the best price?” can be answered by consolidating
data from different online shops.

The predominant format for presenting information on the Internet is the
Hypertext Markup Language, HTML. While the fact that is a textual format
suggests that analyzing it should be easier than doing so with image formats,
reality looks different. Even though HTML may contain text that does not
need to be recognized with OCR techniques, the average web page is much
more complex: HTML is a multimedia format combining text with images,
which often contain important parts of the text. Moreover, much of the really
useful information is often arranged in complex tabular structures. This makes
it hard to distinguish real tables from tables that are used for reasons of design
only [36].

Common characteristics of Web Document Analysis applications are:

• variable physical structure

• variable logical structure

1http://citeseer.org

http://citeseer.org

12 CHAPTER 1. INTRODUCTION

1.4.6 Personal Use

Personal use of document recognition systems is restricted to few applications:
recovery of the electronic format, archiving and indexing (e.g. invoices). The
key characteristics are:

• variable physical structure

• variable logical structure

• variable document formats

• very low volume

Commercial OCR systems can solve most of the demand for commonly
used document types. As soon as the documents get non-standard or more
complex, document recognition systems need to be fine-tuned what makes
them no longer feasible for personal use anymore.

1.5 Document Models

There are many different application domains for document recognition. The
applications range from postal address reading, over the indexing of old pa-
per documents to the recognition of complex technical documents containing
heavily cross-referenced text as well as graphical elements. The requirements
for these applications are also very varied. While some applications require ex-
tremely high throughput, others necessitate very high accuracy or high adapt-
ability to varying document types.

All document recognition applications require knowledge about the types
of document that they need to recognize. This knowledge is called document
model. Document models are not always expressed explicitly. Algorithms that
only work with one given type of documents have their document model em-
bedded in the algorithm. Other algorithms have hard coded parameters (e.g.
thresholds) that represent part of the document model. Some algorithms ex-
press document models explicitly. The document models can either be static
and predefined (e.g. Tao Hu in [35]), or dynamic and evolving. An example of
such an algorithm is 2(CREM) (presented in section 2.2.8).

Document models have the very unpleasant property to never be complete.
No matter how much time has been invested for tuning an algorithm to a cer-
tain kind of documents, sooner or later a document that does not fit into the
frame turns up and the document model needs to be adapted in order to also
recognize this new document.

1.6. AUTOMATIC VS. INTERACTIVE DOCUMENT RECOGNITION 13

The creation and maintenance of document models is a very tedious and
costly process. In traditional recognition systems, maintenance modifications
of the document models have a big impact on the overall system and they
generally require not only knowledge of the documents to recognize, but also
knowledge of the specificities of the underlying algorithms. The goal of inter-
active document recognition system is to integrate the maintenance of docu-
ment models directly into the document recognition system and by making it
accessible to the non-expert user. Instead of creating a document model once
and for all, the model evolves depending on the processed documents and the
system improves with use.

Interactive document recognition does not fully exclude automatic recog-
nition. When a document can be recognized by a system, there is no need for
the user to step in. User intervention is only required when the system cannot
decide, when it is uncertain (i.e. because of too low confidence values) or when
detects contradictory results.

1.6 Automatic vs. Interactive Document Recogni-
tion

Every application domain where document recognition is used, has a special
set of requirements. In some domains, high throughput or high accuracy is
important, whereas in other domains the ability to adapt to variable documents
is crucial.

For some of these domains, the recognition does not need to be fully auto-
matic. If a document has to be recognized only to save somebody a few min-
utes of typing for example, this person can as well assist the system in finding
the correct result instead of having it done completely automatically. These
helping hints from the user can then be integrated into the system to be reused
at a later time.

Systems working like this adapt to changing documents and are thus able
to learn, as opposed to automatic systems in which the parameters of the in-
dividual recognition parameters are tuned by experts prior to operation. This
tuning consists in adapting the system to the kind of documents that should
be recognized. This is a very tedious and expensive task which, in order to
yield useful results, requires many example documents covering all the differ-
ent possibilities the system might encounter.

14 CHAPTER 1. INTRODUCTION

1.7 Web Based Document Recognition

Web based document recognition [63] is a future application inspired by the
interactive document recognition idea. It lets users access remote document
recognition services through the World Wide Web. In addition to the basic
functionality offered by interactive document recognition systems, it provides
means for sharing document models among different users.

If a document model for a given document type does not yet exist, a new
model can be created by the user. Likewise, if a document model is not com-
plete enough for a specific document, the user can extend it and give the result
back to the other users, improving the system. Like this, users cooperate not
only with the system, but also with the other users.

A web based document recognition system can be characterized primarily
with the following properties:

• highly variable physical structure

• highly variable logical structure

• variable document formats

A web based document recognition system opens new questions unknown
in traditional systems. First of all, since people work remotely, there is the
problem of privacy. This problem can probably be solved with standard Web
techniques (Secure Socket Layer SSL [28], or, the more recent Transport Layer
Security, TLS [21]). Another, important problem is the security of models. Since
users can extend models, there needs to be a mechanism that ensures that
models converge towards something useful so that users cannot in some way
pollute models with erroneous data or pull a model towards an unintended
document type while degrading the recognition performance for the original
document type. Such interesting questions will need to be addressed by fu-
ture research in order for web based document recognition systems to become
reality.

1.8 Goal of this Thesis

The goal of this thesis is to present xmillum, an approach and framework for
structuring interactive document recognition systems. The approach is heavily
focused on the use of XML as data representation format. This allows to use
existing XML technology in a very advantageous way. The claims made in this
thesis are backed with a complete working prototype.

The remainder of this thesis is structured as follows:

1.8. GOAL OF THIS THESIS 15

• Chapter 2 gives an overview of the state of the art in document recogni-
tion. The document recognition process is decomposed into basic recog-
nition steps. Furthermore, the chapter presents several projects that are
somehow related to this thesis.

• Chapter 3 presents the technology that was used to create our software
framework as well as some technical design issues.

• Chapter 4 presents the requirements and goals that have driven the de-
sign and development of xmillum.

• Chapter 5 presents the idea behind the xmillum framework and shows
how this idea has grown into a complete prototype for creating interac-
tive document recognition applications. Furthermore, a generalization of
the xmillum idea is proposed.

• Chapter 6 presents the xmillum prototype implemented. It shows what
has been implemented and how it can be used to created interactive doc-
ument recognition applications.

• Chapter 7 summarizes and concludes the thesis and gives directions for
future developments.

16 CHAPTER 1. INTRODUCTION

Chapter 2

State of the Art in Document
Recognition

2.1 Document Recognition Phases

We have seen that document recognition is the opposite process of the docu-
ment production process. However, the document production process cannot
be easily reversed. The recognition process is much more complex than the
production process.

During the document production process, the information per elementary
object decreases gradually. It starts from a very high level information repre-
sentation and ends with pixels as elementary objects, where every pixel simply
holds a value of black or white for binary documents, or a grayscale or color
value for color documents. Reversing this process is non-trivial and involves
many different techniques.

This section gives an overview of some of the most important methods,
along with references to the corresponding research papers.

2.1.1 Image Preprocessing

The goal of the preprocessing phase is to get rid of all kinds of noise introduced
in the scanning phase. Different types of noise may have been introduced into
the image. There are various sources of noise: dust in the scanner, irregularities
in the scanner’s optics/mechanics/lighting, skewed documents or bent pages
(typically when scanning book pages). A very complete analysis of different
document degradation models is available in the thesis of Tapas Kanungo [42].

17

18 CHAPTER 2. STATE OF THE ART IN DOCUMENT RECOGNITION

In order to improve the further recognition steps, this noise needs to be
dealt with. Various image processing filters are normally applied to reduce the
impact of noise. The exact filter that need to be applied depends entirely on
the nature of the noise:

Image Despeckling removes unwanted black (or white) pixels from the doc-
ument image and renders it smoother. Many filters, every one with its
own advantages and disadvantages, exist for this purpose (blur filters,
median filters etc.).

Image Deskewing is done using an estimation of the skew angle. Common
estimation techniques are based on the hypothesis that text is aligned on
straight, parallel lines. Henry Baird [6] and Wolfgang Postl [59] analyze
projection profiles to exploit this hypothesis and Sargur Srihari and Venu
Govindaraju [69] use the Hough transform [33].

A very thorough review of 23 papers related to document image deskew-
ing has been written by Rolando Cattoni et al. [12].

Binarizing images is often necessary required because many of the document
recognition algorithms work on binary images only. Because this process
reduces information present in the image, it needs to be done carefully
not to reduce too much information. The algorithms for binarizing range
from thresholding with globally fixed thresholds (global to a whole page)
to more sophisticated locally fixed thresholds. A survey of thresholding
techniques has been written by Prasanna Sahoo [64].

2.1.2 Image Segmentation

A document image is a simple two-dimensional pixel matrix. The size of this
matrix depends on the page size of the document and the scanning resolu-
tion. A problem when working with images is complexity. Since images are
two-dimensional, algorithms working on images have in general a complexity
that depends on the number of pixels (something such as O(f (width× height))
where f (N) = N or worse). Because of the tradeoff between computation cost
and accuracy, we need to reduce computation cost in order to increase the ac-
curacy. The goal of the image segmentation phase is to identify smaller regions
of interest for the succeeding recognition steps. There are bottom-up as well as
top-down approaches to solve this problem.

Connected Components Analysis groups neighboring black pixels together
to form higher-level objects. The idea behind this method is that touching

2.1. DOCUMENT RECOGNITION PHASES 19

pixels belong to the same object. Unfortunately, some characters are com-
posed of multiple connected components (e.g. the lowercase i), so that the
connected components analysis results in an over-segmented image. On
the other hand, characters may touch each other (especially with small
print on scanned documents), resulting to under-segmentation. Con-
nected components analysis is for example used by Lyse Robadey in [62]
to segment newspaper document images according to predefined rules
or by Antoine Azokly in [4].

Run Length Smoothing Algorithm (RLSA) presented by Kwan Wong et al.
[84] smears closely located pixels. Combined with the connected compo-
nents analysis, RLSA reduces the number of resulting regions. It is used
to detect words, text lines and other objects. For instance, using a smear-
ing distance (i.e. the minimum distance for two pixels to be connected
together) smaller than the distance between words, but greater than the
distance between characters of the same word, a word segmentation can
be achieved.

Projection Profiles allow to find separations between objects by analyzing the
regularity of peaks and valleys. This method is for example used by Sar-
gur Srihari and Venu Govindaraju [69].

X-Y Cut described in George Nagy’s paper [56] is a typical top-down method
that cuts the document image recursively along separations between ob-
jects (as obtained by projection profiles for example). A multi-column
document for example is first cut into individual columns which are then
cut into single text lines.

Document Spectrum (docstrum) by Lawrence O’Gorman [58] characterizes
the relative locations between neighboring connected components on the
document image. This information is then used to cluster connected com-
ponents to higher level objects.

2.1.3 Zone Classification

In the succeeding document recognition steps, the image zones resulting from
the image segmentation phase are processed individually according to their
type. The goal of the zone classification step is to classify the zone into different
types: text blocks, tables, graphics, photographs etc.

Numerous approaches for classifying zones exist. From features extracted
from the image zones, standard pattern recognition techniques are applied.
Feature extraction consists in “extracting from the raw data the information
which is most relevant for classification purposes” (Devijver and Kittler [20]).

20 CHAPTER 2. STATE OF THE ART IN DOCUMENT RECOGNITION

Nearest Neighbors Classification is an ancient classification method first ana-
lyzed by Cover and Hart [14]. This classification technique is very simple,
yet effective. It labels an object with the class that is most often repre-
sented among the k nearest neighbors of the object in the reference set.

Bayesian Classification as presented in Duda and Hart [24] assumes that the
classifiction problem is posed in probabilistic terms and that the relevant
parameters such as the a-priori distribution are known. Under these cir-
cumstances Bayesian classification is proved to be optimal.

Decision Trees are hierarchically structured decision rules. In [66], Sivara-
makrishnan et al. classify zones into one of nine different classes using
a decision tree.

Neural Network is an information-processing paradigm inspired by the way
the parallel structure of the mammalian brain works. A neural network
is composed of a large number of simple interconnected processing ele-
ments that tied together with weighted connections. A learning phase is
required to adjust these weights systematically in order to get a working
neural network.

Le et al. [49] compare four different neural network models for classifying
zones into text and non-text.

2.1.4 Optical Character Recognition

OCR is without doubt the best investigated and also best resolved document
recognition task. The goal of OCR is to recognize the characters on the docu-
ment image. In other words, OCR converts an image to ASCII or UNICODE.

Good overviews of OCR have been written by George Nagy [55] and by
Shunji Mori et al. [54].

Template Matching is probably the most obvious character classification ap-
proach. The classification features are the pixels themselves. Characters
to classify are matched to known prototype templates, which may or may
not be weighted. This technique is easy to understand, but is very sen-
sitive already to minor differences between the templates and the char-
acters to recognize. Examples of systems using template matching are
presented by Rolf Ingold [40] and Gary Kopec [46]. George Nagy and
Yihong Xu [57] present a system for extracting prototypes from unseg-
mented text images.

2.1. DOCUMENT RECOGNITION PHASES 21

Statistical Classification works by extracting numeric features from the char-
acter bitmaps or from transformed versions of the bitmaps. These fea-
tures are then classified using standard classification techniques (nearest
neighbors, neural networks etc.). By selecting the features carefully, clas-
sifiers can be made invariant with respect to deformations, character size,
font style or to the font family.

Structural Classification techniques work on structural character features, de-
fined in terms of the topology of strokes, holes, concavities, stroke junc-
tions etc. For example, the character “A” is composed of three straight
strokes with three junction points. At the heart of structural classifica-
tion systems is a rule base which does the actual classification. Because
the construction of a good rule-base can be very time-consuming, sev-
eral people have tried to use structural features together with statistical
methods (Henry Baird [5]).

Linguistic Information such as n-grams, language or writing style can be in-
troduced to improve recognition accuracy, often as a post processing step.
Such information extends the perception from local properties to con-
textual features, but requires additional knowledge about the content.
Linguistic information is generally used in conjunction with other tech-
niques to enhance the recognition accuracy. In [18], Andreas Dengel et al.
present various techniques for improving OCR results.

Multiple Classifiers are frequently applied to overcome limitations of single
classifiers. By comparing the results of different classification methods,
possible problems can eliminated to improve the recognition accuracy
(Louisa Lam et al. [47]).

2.1.5 Optical Font Recognition

Font attributes are a useful hint to determine the role of a text object. When
the font attributes are detected prior to character recognition, i.e. a priori font
recognition in contrast to a posteriori font recognition, this knowledge can even
be helpful for the character classification. Knowing the font attributes of a text
object allows to choose the set of features that best matches this font.

Statistical Approaches are used for a priori font recognition systems. Various
features extracted from the bitmaps of a text line or text block can be used
along with classification algorithms. The ApOFIS system by Abdelwahab
Zramdini [85] uses a Bayesian classifier to recognize the fonts, Min-Chul
Jung et al.’s [41] system works with a neural network.

22 CHAPTER 2. STATE OF THE ART IN DOCUMENT RECOGNITION

Template Matching can be applied when the text is known. This approach is
very similar to character recognition by template matching. By compar-
ing the text image with a rendered version of the text in all available fonts
(or better: in the most probable fonts), the correct font can be detected.
This has been proposed by Frédéric Bapst in [7].

2.1.6 Logical Structure Recognition

By combining the results of the preceding recognition steps, the logical struc-
ture recognition can be done. The logical structure depends strongly on the
type of document. The structure of a scientific article, for example, is com-
pletely different of the structure of a newspaper. Whereas the former is basi-
cally a sequence of paragraphs, the later is a set of different kinds of articles.
There is not a universal logical structure, it is therefore not possible to create a
logical structure recognition system that works for all kinds of documents.

Rule-Based Systems contain precise descriptions of the mapping between the
physical and the logical structure of documents. Manual creation of rules
requires a lot of expert knowledge and is a very costly process (Tao Hu
and Rolf Ingold [34]). Ideally, rules should be generated interactively and
iteratively, as presented by Lyse Robadey [61].

Statistical Methods create rules from statistics gathered from example docu-
ments. Statistical methods are more flexible than purely rule-based sys-
tems since they allow easier modification of the rules. By presenting new
example documents to the system, the statistics can be modified and the
rules change. Because statistical methods work with probabilities, they
are not well suited for situations where many special cases and excep-
tions need to be handled. A logical structure recognition system using
probabilities is presented by Rolf Brugger [11].

2.2 Related Systems

The following sections present projects that are somehow related to this thesis,
namely interactive environments and interactive document recognition sys-
tems.

2.2.1 CIDRE

The Cooperative and Interactive Document Reverse Engineering project (CIDRE),
which is best described in Frédéric Bapst’s thesis [7] tries to revaluate the role

2.2. RELATED SYSTEMS 23

of the user in the document recognition process.
Bapst shows several aspects of the interactive document recognition prob-

lem: mechanisms to drive the dialog between human and machine, data man-
agement issues, a system design, and a cost model to measure the performance
of interactive document recognition systems.

Thanks to an approach based on the multi-agent paradigm, the designed
system is both modular and decentralized. But since this work dates from a
time where standardization (for example XML) was not as advanced as today,
the Web did not offer the same possibilities as it does nowadays and platform-
independent languages like Java were not yet as widespread as today, the effort
for create a test framework was much more low-level at that time. For creating
a prototype, much work was invested for coupling low-level libraries handling
communication between processes distributed on different machines and high-
level programming languages for quick creation of graphical user interfaces.

2.2.2 Handwriting Understanding Environment (HUE)

Chris Cracknell’s Handwriting Understanding Environment (HUE) [16] is a
Tcl/Tk framework supporting the rapid development and reuse of handwrit-
ing and document analysis systems. It is open source and free software and
runs on Unix as well as on Windows platforms.

HUE provides an extensive collection of components and data types pro-
grammed in C++ that can be combined with the Tcl/Tk scripting language for
rapid development. This two-level programming model where a low-level lan-
guage is coupled with a high-level scripting language yields fast and flexible
programs.

The HUE component library contains a full palette of low-level image pro-
cessing components. There are components for image input/output, image
filtering, color mapping and common operations such as rotation, cropping,
resizing and so on. Other components feature histogram operations to with
projection profiles or color histograms. Binary connected components can be
extracted and processed further. An OCR engine based on an n-tuple classifier
is included as well.

HUE can be extended with additional components and data types.

2.2.3 TrueViz

Tapas Kanungo’s TrueViz [43] is a ground-truth and metadata editing and vi-
sualization tool. It is mainly directed towards multilingual OCR. As such, it
addresses two issues:

24 CHAPTER 2. STATE OF THE ART IN DOCUMENT RECOGNITION

• it provides a public domain annotation tool that can be used by every-
body

• it defines an XML-based format for representing groundtruth.

TrueViz manages groundtruth for the physical document structure mainly
and offers the basic entities page, zone, line, word and character along with all
the necessary attributes for further characterizing these objects (location on the
document image, font, language, text alignment etc.).

TrueViz is developed in Java and therefore platform independent. Its user
interface shows two views: a WYSIWYG view where the document entities
are laid over the document image, and a tree view that shows the hierarchical
structure of the data shown in the WYSIWYG view. A nice feature of TrueViz is
the representation of the logical reading order. Arrows between the individual
entities show the reading order.

The textual groundtruth is represented in Unicode and is therefore multilin-
gual. In addition to visualizing this groundtruth correctly, TrueViz allows the
user to edit multilingual groundtruth using alternative keyboard mappings. It
also features a search facility that is helpful for correcting groundtruth.

The hierarchical data structure is read from and writtten to XML files. These
files exactly represent the hierarchy of the document along with the attributes.

2.2.4 WISDOM++

WISDOM++ [2] by Oronzo Altamura et al. is a complete document recognition
system encompassing all the steps necessary for transforming a scanned paper
document into a format suitable for viewing with an Internet browser. The
goal of the system is to produce a web-accessible format that is as close to the
initial document as possible.

In WISDOM++, this is done in a five step process:

Document analysis involves preprocessing of the document image in order
to detect the skew angle and to eliminate noise. The image is then seg-
mented into basic blocks by using the Run Length Smooting Algorithm
(RLSA) with adaptive smooting thresholds. Subsequently, the resulting
blocks are classified using built decision trees automatically built from a
set of training samples. The decision trees can be modified interactively
at classification-time, allow thus incremental learning. WISDOM++ dis-
tinguishes the following types of blocks: text block, horizontal and verti-
cal line, picture and graphics. In a further layout analysis step, the blocks
are arranged in a hierarchy using a bottom-up algorithm.

2.2. RELATED SYSTEMS 25

Document classification consists in associating a document class to the doc-
ument. This mapping is done with a rule base built automatically from
training samples. The rule base is created by the administrator of the
system and out of the control of the actual user.

Document understanding is similar to document classification, with the dif-
ference that the mapping is done with all the individual page layout com-
ponents instead of the page itself. In other words, the basic building
blocks of the document are associated to logical objects.

Text recognition is then applied to selected objects resulting from the docu-
ment understanding process. Depending on the type of document and
the kind of application, it is not necessary to extract the text from all
objects. If the user wants to recognize scientific articles, he may not be
interested in the page headers and footers, for example.

Text transformation is the last step performed by WISDOM++. The data re-
sulting from the previous steps are now transformed to XML. All ele-
ments in this XML structure have no style-related attributes (i.e. no font,
alignment or position information), such information is entirely stored in
external Cascading Stylesheets (CSS) which are only used for presenting
the documents. The CSS files are not created automatically, but WIS-
DOM++ assists the user in defining CSS files for every class of docu-
ments. The XML files can then be transformed to HTML or other view-
able formats relatively easy using XSLT stylesheets.

WISDOM++ is targeted towards an end user. It has multiuser capability,
with a per-user rule base. A special privileged user is the administrator who
is responsible for initially training the system. WISDOM++ runs on Windows
platforms only and it requires a special version of the MS-Access database in-
stalled, as well as an external OCR. The system is freely available for research,
but without source code what makes it not possible to be extended.

2.2.5 Illuminator

Illuminator is an application for viewing and editing files in DAFS format (see
section 3.1.2). It offers access to all of the features of the DAFS format through
a graphical user interface. It is an X11 application and runs on Unix systems
only.

Illuminator has different modes for visualizing data:

Image mode is a WYSIWYG-style visualization mode. It shows the document
image with overlaid entities. New entities can be created and existing
entities can be modified.

26 CHAPTER 2. STATE OF THE ART IN DOCUMENT RECOGNITION

Out of context is a view that extracts all objects of a given type from the docu-
ment puts them onto a separate page. This allows the rapid generation of
reference sets by putting for example all a’s on one page, b’s on another
etc.

Flagged objects is a variation of the out of context view that extracts all flagged
objects and puts them onto a separate page. One application of this view
is the correction of OCR results. All objects with a confidence value be-
low a specific threshold are put onto a separate page where they can be
corrected.

Text is a simple view showing only the concatenated textual content of all
objects in a document. This visualization mode is useful when the docu-
ment image is no longer of interest but only the recognized content.

Illuminator is not a document recognition system itself, but it could be part
of an interactive recognition system. With the proper configuration, it could be
used to visualize and edit specific stages in the document recognition process.
However, since Illuminator relies on a non-standard format, it is not an ideal
candidate.

2.2.6 Style-Directed Document Recognition

Lawrence Spitz’s style-directed document recognition [67] system is an end-
user oriented system. Document models are constructed interactively and are
called styles in this system. Styles are stored in XML files.

A style is a graph of rectangular zones. This graph is constructed manu-
ally by the user. He selects the regions of interest on a document image and
labels then with logical names. The coordinates of the resulting zones are at-
tributed with three values: absolute for coordinates that are constant values for
the corresponding document class, relative for coordinates that are relative to
the coordinates of some other objects (e.g. a paragraph that follows a title) and
variable for coordinates whose values are unpredictable. Using graph isomor-
phism, the resulting graph is then used for mapping a segmented document to
a specific document class and to recognize the logical names of the individual
segments.

2.2.7 Generalized n-Grams

Rolf Brugger’s Generalized n-Grams [11] is an technique for recognizing docu-
ment structures using probabilities. It is based on n-grams, a natural language
model that assumes that only the previous n − 1 words in a sentence affect

2.2. RELATED SYSTEMS 27

the probability of the next word. The generalized n-grams model extends this
idea from the linear structure of sentences to the hierarchical structures of doc-
uments.

In the generalized n-grams model, a document structure is represented us-
ing probabilities of local tree node patterns. The model supports interactive in-
cremental learning and is therefore well suited for interactive document recog-
nition systems.

2.2.8 2(CREM)

Lyse Robadey’s 2(CREM) [61] (Configuration REcognition Model for Complex
Reverse Engingeering Methods), is a typical classification technique for use in
interactive document recognition systems. It allows the user to incrementally
and interactively build document models.

2(CREM) is very flexible and can be used for different classification tasks.
In the project described in [61], it has been used for recognizing newspapers,
which are documents of very high complexity. 2(CREM) has been used for
classifying line segments, classifying frames, merging text lines to blocks and
for logical labeling of blocks.

The technique uses a two-part model:

Static Model describes the characteristics that are of interest for the classifica-
tion. Characteristics include object attributes (size, typographic informa-
tion etc.), attributes of the neighbors and relations between objects. This
information is used during the feature extraction phase which produces
so called configurations.

Dynamic Model contains reference configurations also called patterns with a
subset of the characteristics defined in the static model.

The static model depends on the nature of the objects to be classified and
is built prior to classifying anything. For the two applications logical labeling
of blocks and merging of text lines into blocks, the static model is completely
different. The logical labeling application has blocks as its central object of
interest, whereas for the lines merging problem the object of interest is a couple
of neighboring text lines. In this case the system does not classify the text lines
themselves but rather classifies the relation between the text lines into the two
classes join or separated. It is then up to an additional program to actually join
the text lines.

The dynamic model is constructed by the user. At the beginning, it is
completely empty and the system is unable to classify anything. The user
then starts to classify objects manually. The corresponding configurations are

28 CHAPTER 2. STATE OF THE ART IN DOCUMENT RECOGNITION

recorded in the dynamic model, making them patterns of the model and in-
creasing the knowledge of the system. Instead of plainly storing new config-
urations, the system re-evaluates the model with every new addition in order
to make it general enough so that it is able to cope with configurations that do
not exactly correspond to patterns, but that are only similar. This is done by
not taking into account all characteristics of a configuration but only a subset
of them. In the case of conflicts, that is, when a configuration can be associated
to multiple classes, user interaction is required and the model is re-evaluated
with the new data.

At the moment, 2(CREM) does not use any statistical information. That is,
it does not count how often a specific configuration occurs or how often it is a
specific characteristic that decides between two classes.

2.2.9 OfficeMAID

The OfficeMAID system, developed by Andreas Dengel’s research group and
described in [17], is designed for processing business documents (letters, or-
ders, invoices etc.). It supports automatic mail delivery and can be integrated
into a workflow management system.

OfficeMAID processes incoming documents in several steps. After extract-
ing the physical document objects, a geometric decision tree is used to generate
hypotheses concerning the location of logical objects. The hypotheses are then
evaluated according to a statistical database for office mail and their validity
regarding manually fixed global consistency rules is checked.

The method allows to incrementally modify the geometric decision tree and
therefore to adapt to changing situations or environments.

2.2.10 smartFIX

Made by the same research group as OfficeMAID, smartFIX [19]—short for
smart For Information eXtraction—is an ambitious interactive system. It is a
commercial end-user oriented system designed towards assisting users in ex-
tracting data from paper documents.

smartFIX is a general system which was at the origin designed for German
health insurance companies to extract billing information from medical bills.
Since every medical bill needs to be inspected by a human operator, the goal
of smartFIX is not to completely replace the operator, but to assist him. It can-
not cope with all the different medial bill formats and bill types, but allows to
recognize parts of these bills what can substantially reduce the human opera-
tor’s workload. Even with no recognition results at all, its user interface can
facilitate the processing of bills.

2.2. RELATED SYSTEMS 29

Besides standard low-level document recognition components, smartFIX
uses specific high-level domain knowledge in order to achieve its goal. This
knowledge can include for example the format of product codes (or diagnose
codes in the health insurance domain), layout information (bills from certain
domains may have special characteristics), customer databases or other exter-
nal data sources that can give hints for the recognition process.

2.2.11 Qgar

Qgar, a free software reincarnation1 of the ISADORA platform [23] by Philippe
Dosch et al., is dedicated to the analysis of technical drawings. It is composed
of three components:

QgarLib is the core of the Qgar platform. A comprehensive library of C++
classes with basic processing methods and utilities that are the building
blocks of document analysis applications. It contains class hierarchies
for the following facilities: graphical objects (segments, arcs, rectangles
etc), histograms, images (binary, gray level, float etc.), Qgar-specific data
structures and file formats, convolution masks.

QgarApps is a collection of basic applications built using the QgarLib classes.

QgarGui is a graphical user interface that allows to control all the QgarApps
applications interactively and to visualize and modify the results.

Applications inside QgarApps are “batch” processing modules that take
several input parameters and generate output. In the current version, they do
not allow interaction with the user during processing, but this might get added
in a future version. When invoked with a special command line parameter,
QgarApps applications display the required parameters in a machine-readable
form. This output is used by QgarGui to create a user interface where the user
can conveniently set all the parameters.

2.2.12 ACTI_VA

In his ACTI_VA project [65], Youssouf Saidali studies knowledge modeling and
acquisition in the document image analysis domain. The project aims at mak-
ing document image analysis knowledge easier accessible to the non-expert
user.

1available at http://www.qgar.org

http://www.qgar.org

30 CHAPTER 2. STATE OF THE ART IN DOCUMENT RECOGNITION

The ACTI_VA prototype is a Java application composed of a dynamic in-
teraction module, a graphical user interface and a library of document recog-
nition processing modules. Knowledge is represented in the form of scenarios
that are constructed interactively by experts using a Wizard-like user interface.
These scenarios can then be exploited by non-experts.

2.2.13 UIML

UIML [1] stands for User Interface Markup Language and is an XML language
for defining user interfaces. This language is not directly related to document
recognition, but nonetheless this thesis shares some of its ideas.

The goal of UIML is to provide an appliance-independent user interface
language, i.e. a language that allows to simultaneously describe user inter-
faces for use on computers, mobile phones, handhelds and possibly other ap-
pliances. It should clearly separate a program’s internal logic from the user
interface, which is not always the case in today’s programs.

A user interface described in UIML is a set of user interface elements, each
with appliance-independent data and links to other interface elements with
which it exchanges data. Depending on the appliance in question and the user
category, these elements may be organized differently.

Appliance-dependent features of the user interface can be found in a sepa-
rate section of the description. This section represents a sort of stylesheet that
maps the appliance-independent elements to the appliance in question. An
application running on a personal computer supporting Java may for example
map button objects to the Java class implementing the buttons.

The interface communicates with the backend through events. Another sec-
tion in the user interface description details the different events that the inter-
face generates. These events may not only be sent to the backend, but they can
also be used for communication between interface elements. For example, the
backend may not be interested in events generated by a scrollbar that moves
the items of a list. Such events can be handled by the user interface indepen-
dently.

Chapter 3

Technology

The goal of the present chapter is to show technological aspects and design
decisions that have been considered for this thesis.

The chapter starts with a study of different formats for the representation
of document recognition data. Several well-known formats are presented and
their advantages and disadvantages are compared. Then, a brief introduction
to one of the cornerstones of this thesis, the XML family of technologies, is
given. Finally, the chapter concludes with a short presentation of Java, the
programming language that has not only been used for implementing the pro-
totype but whose properties have also influenced significant design decisions.

3.1 Data Representation Formats

The data representation format is an important issue for a reusable and mod-
ular document recognition framework. Reuse takes not only place at the level
of software components but also at the level of the produced data. Results pro-
duced by a recognition system need to be reused by other parts of the system.

In order to decide on a data representation format, a trade-off between a
number of decision criteria needs to be found:

Complexity: A format that is too simple is not able to represent the data we
would like to store. On the other hand, a very complex format may in-
volve a non-negligible overhead, not in the performance sense but more
in the sense of the ease of implementation and maintenance of the pro-
grams that are supposed to work with the data.

31

32 CHAPTER 3. TECHNOLOGY

Software Support: The software support of a given format consists of pro-
gramming languages, libraries, APIs and tools that support it. The more
programming languages exist that support the format, the more flexible
is the developer to choose the language that best suits his needs. Equally,
the more tools that exist, the easier it is to work with the format without
having to develop these tools every time some special processing of the
data in question is required.

Extensibility: In order to guarantee that the format best suits the current and
the future needs of its users, it has to be extensible. Data that is not of
importance at the moment and is therefore not integrated in the format,
may become more important in a future generation of the system, what
causes an extension of the format. A format that is too restricted might
not allow to insert future data items.

Along with the extensibility criterion, versioning becomes inevitable. The
format needs to provide means for discriminating between different con-
current versions.

Compactness: The size of the produced files may not seem very important for
many applications, but as soon as data needs to be archived, this issue
can get more important. Some formats may be more compressible than
others.

Also, some formats refer to image data outside the actual file, what can
be an advantage if multiple files reference the same image. On the other
hand, it can get more difficult if the data from one recognition task is
distributed among different files (i.e. data files and image file).

Legal Issues: Last but not least, legal issues can influence the choice of a repre-
sentation format. Although mostly incomprehensible from a purely tech-
nical standpoint, some algorithms might be patented by companies. This
was shown by the legal dispute concerning the GIF format and, more re-
cently, concerning the JPEG format. Choosing a 100% open format can
help to avoid future problems.

A document recognition system produces various kinds of data: document
image, physical and logical document structure, document models, statistical
data etc. Whereas there are many standard file formats for image data (e.g.
TIFF or JBIG), there are not agreed upon standards for the representation of
the other types of data.

Our goal is to find a data representation format for the various sorts of non-
image data. It may allow the representation of the document image also, but

3.1. DATA REPRESENTATION FORMATS 33

this is not our main concern. The following sections introduce several data for-
mats commonly used with documents or in the document recognition domain.

3.1.1 Ad-hoc formats

Ad-hoc formats are formats that are created out of an immediate need. A
freshly implemented algorithms produces a new kind of data that needs to
be represented somehow. Such formats are in general not very complex, but
they do not have strong software support since data is not shared between
many tools. They often require converters in order to convert data into more
standard formats that can be used by other parts of the system. Also, ad-hoc
formats are mostly poorly structured and not easily extensible.

3.1.2 Document Recognition Oriented Formats

DAFS

The Document Attribute Format Specification [60] (DAFS) is a format specif-
ically developed for document recognition systems. It is a result of the Doc-
ument Image Understanding (DIMUND) project funded by ARPA and it is
intended to be a standard for the representation of document images and the
corresponding intermediate and final recognition results. More on the design
of DAFS can be read in the paper from Dori et al.[22].

A DAFS document is composed of entities such as “document”, “chap-
ter”, “block”. These entities can be fit into hierarchical relationships. For in-
stance, a “document” can contain “chapter” entities and a “chapter” can con-
tain “block” entities. Associated to entities are properties that describe their
characteristics. Users can extend DAFS by defining their own entities and
properties.

A special characteristic of DAFS is the fact that an entity can be a child
of multiple parent entities. Such shared entities allow several concurrent hi-
erarchies to be represented in the same data structure. DAFS is therefore not
limited to the physical document structure, but can at the same time also rep-
resent the logical structure. Another use of these shared entities is the spe-
cial OR-type relationship that can be used to represent alternative possibilities
of results originating from different recognition algorithms or results where a
recognition system is not 100% sure (e.g. an OCR algorithm that is not sure if a
given character is “l” or “1”).

DAFS is implemented as a link library usable from C or C++ programs
without further work. In order to use the format from other programming
languages, much more work needs to be done.

34 CHAPTER 3. TECHNOLOGY

Since DAFS stores the image and the recognition data in one data file, DAFS
is a binary format. A textual ASCII or UNICODE version of the format is men-
tioned in the documentation, but it does not seem to be implemented in the
current version.

Further software support is provided with the Illuminator (see 2.2.5) appli-
cation, as well as some small utilities that mainly extract text nodes from DAFS
documents. Illuminator is a powerful viewer/editor for DAFS.

3.1.3 General Data Representation Formats

SGML

The Standard Generalized Markup Language [25] (SGML) is a standard for
creating structured, interchangeable documents. It allows to specify the struc-
ture of documents using a special grammar called a Document Type Definition
(DTD). Documents can then be verified to check if they conform to a given
grammar.

SGML has a strong software support. There are public domain parsers that
facilitate the integration of SGML into many programming languages and tools
that allow you to do further processing with SGML data.

Of particular interest is the Document Style Semantics and Specification
Language [27] (DSSSL), which is a stylesheet language for transforming and
formatting SGML data. DSSSL is composed of two languages: a transforma-
tion language that transforms SGML data conforming to one DTD into SGML
data conforming to another DTD, and a style language controlling aspects of
the formatting process. Figure 3.1 illustrates this idea which will be exploited
further in this thesis.

SGML is flexible and extensible. New versions of a given data structure can
be created by modifying the DTD. The example that best illustrates this is the
language that has driven the development of the World Wide Web, the Hyper-
text Markup Language (HTML), an instance of an SGML language. Since its
first version, HTML has evolved significantly in order to satisfy the require-
ments of the World Wide Web.

Despite all these positive points, SGML is a complex language. Designing
new document types requires a profound knowledge of SGML and developing
SGML applications is even more complicated. This is one of the main reasons
why there has never been a real breakthrough. Nowadays, SGML gets largely
replaced by XML, because XML is much simpler and more intuitive, a conse-
quence of which is that there are much more tools available that support XML
than SGML.

As far as document recognition is concerned, SGML has been used in the

3.1. DATA REPRESENTATION FORMATS 35

SGML
Document

Transformation
Process

SGML
Document

Formatting
Process

Formatted
Output

SGML SGML

Transformation Style

DSSSL Specification

Figure 3.1: DSSSL, the Document Style Semantics and Stylesheet Language

PRASAD system [50] by Lefèvre et al. The Office Document Image description
Language [51] (ODIL) used in this system is an SGML language to represent
the physical format of documents.

XML

The Extensible Markup Language [73] (XML) is not just another markup lan-
guage. It is the language that is supposed to replace SGML and become the
standard format for data representation and exchange. Looking at the vast
number of applications using XML and the quantity of implementations, it
seems that this goal is not too ambitious. At the origin, the notion XML meant
the language itself, but more and more XML is used to address the family of
technologies around it.

The software support for XML is enormous:

Standards for Specific Domains facilitate the exchange of data between ap-
plications, organizations or services of the common domain by defining
common languages. For example XHTML, an HTML variant with XML
constraints (i.e. parseable by an XML parser), SVG (see section 3.1.4) for
representing scalable vector graphics, MathML for representing mathe-
matical formulae, SMIL for multimedia documents, DocBook for book
content etc.

General Standards around XML define how common tasks and problems are
solved. For instance, XSLT defines a language for transforming one XML
structure into another structure, XPath specifies a language to address

36 CHAPTER 3. TECHNOLOGY

specific parts of an XML structure with simple expressions and Names-
paces define how documents can be included in documents even if they
follow other grammars.

Programming Standards define how programs can interact with XML docu-
ments. The Document Object Model (DOM), for example, defines an ob-
ject oriented API for accessing an XML structure. It defines the names
and types of the objects as well as all the methods available. A program-
mer familiar with DOM programming in C++ can fully re-use his knowl-
edge of the API in another object oriented programming language.

General Tools are of course also available. Implementations of parsers are
available for all major programming languages, there are XML editors,
XML presentation tools, converters from and to many proprietary for-
mats etc. In short, there is a lot of software available to make the life of
not only developers, but also of users easier.

3.1.4 Presentation Oriented Formats

Rich Text Format

The goal of the Rich Text Format (RTF) is the exchange of formatted text be-
tween different applications. It is a simple textual format that can be generated
by most popular desktop word processors. RTF has a limited number of fea-
tures, is not extensible, but sufficient for daily use.

PostScript/PDF

PostScript [38] is not simply a document format, but a full featured program-
ming language. It is optimized for printing graphics and text, making it a page
description language. The main purpose of PostScript was to provide a lan-
guage for describing pages in an output device independent manner. In order
to render a PostScript document, the PostScript program needs to be executed.

The Portable Document Format [39] (PDF) is inspired by PostScript. It is no
longer a programming language, but a real descriptive page layout language.
The goal of PDF is to provide a format which can be used for online viewing as
well as for printing. Online viewing and navigating inside PDF documents is
facilitated by hyperlinks (internal and external), bookmarks, page thumbnails,
forms and annotations.

3.1. DATA REPRESENTATION FORMATS 37

SVG

Scalable Vector Graphics [79] (SVG) is an XML language for describing two-
dimensional vector and mixed vector/raster graphics. The fact that SVG is
an XML language means that it is XML format, but with a special, predefined
grammar called SVG. SVG files can therefore be parsed and processed just like
any other XML file.

SVG is a relatively low-level presentation language. It is closely inspired by
the PostScript and PDF formats and offers similar rendering possibilities.

SVG also supports an event model and the notion of scripts, what makes
it possible to introduce interaction. Both the event and scripting model are
similar to the models used in HTML. To every SVG object, attributes can be
attached that describe the behaviour of the object when a given event occurs.
The event action itself is implemented using a scripting language such as EC-
MAScript [3] (the standardized version of the JavaScript language).

Since a document recognition system tries to reverse the document format-
ting process, the data will be closely related to SVG data at some stage during
the recognition. Using SVG to represent such data allows to benefit from all
the existing software for working with SVG (editors and renderers). However,
since SVG is low-level, it is not suited for representing high-level results. Also,
the huge number of visual attributes makes SVG not a suitable format for rep-
resenting intermediate data. Otherwise, every program that further processes
the intermediate data needs to handle the full range of SVG attributes, what
renders the task much more complex. Instead, a subset of SVG or even a com-
pletely different language inspired by SVG (that can be transformed to SVG
easily for visualization) should be used in order to keep things simple.

XSL-FO

The Formatting Objects [78] (XSL-FO) is an XML language for describing pag-
inated documents. Being an XML language, it benefits from the same advan-
tages as SVG.

XSL-FO is a very robust and rigorous specification covering all aspects of
paginated documents. However, this makes it also a very lenghty specification,
which is why there are not many software packages that fully implement it.
For instance, the Apache project’s quite advanced FOP (Formatting Objects
Processor)1 does still not implement all aspects of XSL-FO.

1http://xml.apache.org/fop/index.html

http://xml.apache.org/fop/index.html

38 CHAPTER 3. TECHNOLOGY

3.1.5 Logical Structure Oriented Formats

ODA

The Office Document Architecture [26] (ODA) is an ISO standard designed to
facilitate the exchange of office documents. The following is a very simplified
description of ODA (the official standard comprises 14 volumes!).

ODA documents may contain both a logical as well as a physical structure.
The logical structure, in ODA terms called the specific logical structure, is a hier-
archical object model. The root node is called the document logical root, and its
descendants are either composite logical objects or basic logical objects, optionally
labeled with a name (the equivalent of tag names in markup languages). The
composite logical objects themselves contain other composite logical objects or
basic logical objects. The basic logical objects may contain zero or more con-
tent portions, which are the parts where the actual information is stored. This
information may contain text, graphics (raster and vector formats).

The physical structure is called the specific layout structure. It contains the
following physical objects: page set, composite page, basic page, frame and
block. Content portions already seen in the logical structure are associated to
these physical objects.

Depending on how an ODA document is described, it belongs to one of
three document classes:

Formatted Document Class for documents that are described in terms of the
physical structure only,

Processable Document Class for documents that are described in terms of the
logical structure only,

Formatted-Processable Document Class for documents that are described in
terms of both structures.

The grammar of an ODA document can also be described. This structure is
called the generic logical structure, a mechanism which is much like the DTDs of
markup languages.

ODA is without doubt very complete for office documents. However, it is
a very heavy standard, making it difficult to have applications supporting it.

DocBook

DocBook [83] is a language for describing the structure of books, papers and
technical documentation in particular using SGML or XML (there exist two
versions of DocBook). The DocBook DTD defines about 300 tags, making it a

3.2. THE XML FAMILY OF TECHNOLOGIES 39

complete and robust specification. The DocBook DTD can be easily extended
for new kinds of document types not supported. DocBook documents can be
formatted using freely available DSSSL and XSLT stylesheets in order to pro-
duce HTML, PDF or RTF documents.

Because DocBook documents are XML or SGML documents, they benefit
from all the general XML/SGML tools available. Reading or writing Doc-
Book documents from programs is not more difficult than reading or writing
XML/SGML and requires no other software.

LATEX

Leslie Lamport’s LATEX [48] is a structured, high-level language for preparing
documents. It is based on TEX, Donald E. Knuth’s typesetting system “for the
creation of beautiful books–and especially for books that contain a lot of math-
ematics” [45]. LATEXis used by many scientists around the world for writing
scientific publications2.

The LATEXapproach to typesetting is logical design. The goal of this language
is to relieve writers from having to visually design their documents with WYSI-
WYG systems. Rather than concentrating on the visual appearance of their text,
writers should concentrate on the content. The visual design is done entirely
by the LATEXcompiler.

LATEXis used for writing documents only. It is in not used as an exchange
format nor as a format processed by programs other than the LATEXcompiler.
Only very specialized software exists for working with LATEXfiles.

One such very popular program is BIBTEX. It allows authors to manage
their bibliographical references in separate files and to reference them in a va-
riety of styles if needed. This encourages authors to create a database of refer-
ences that can then be used without the hassle of copying and pasting text and
risking to introduce errors.

3.2 The XML Family of Technologies

XML is the most promising data format of the formats presented in the previ-
ous sections. Its use is one of the key design decisions for the software frame-
work presented in this thesis.

The term XML has different facets. At the beginning, XML was simply con-
sidered a markup language for documents containing structured information.
However, since XML defines neither semantics nor a specific tag set, it is in
reality a meta-language for describing markup languages. In other words, it

2This thesis is written in LATEXas well.

40 CHAPTER 3. TECHNOLOGY

allows to define tags and the structural relationships between them. Nowa-
days, the term XML more and more denotes the whole family of emerging
technologies that are related to XML.

The following couple of sections present the technologies that were used
for this thesis.

3.2.1 The XML Language

The XML language is inspired by SGML, but it is stricter and therefore easier
to understand than SGML. Roughly speaking, an XML document consists of
a prolog and an element. Every element may contain other nested elements,
forming a hierarchical structure.

To illustrate the simplicity of XML, consider the XML document in list-
ing 3.1, a note sent from Jane to John. The prolog is on the first two lines. It
simply specifies that this is an XML 1.0 file and that the text contained is coded
in UNICODE (UTF-8). Furthermore, it defines that the <note> tag respects the
grammar described in the Document Type Definition (DTD) note.dtd.

1 <?xml version="1.0" encoding="UTF-8"?>
2 <!DOCTYPE note SYSTEM "note.dtd">
3 <note priority="high">
4 <from>Jane</from>
5 <to>John</to>
6 <subject>Reminder</subject>
7 <body>Do not forget this weekend.</body>
8 </note>

Listing 3.1: A sample XML document.

On line 3, the actual data starts. The top element is the <note> element. It
is further characterized by the attribute priority, stating that this is urgent. The
note contains everything on lines 4 to 7, until the closing tag </note> on line 8.
The closing tag is one of the main characteristics of XML making it more strict
and easier to parse than SGML or HTML. Every element needs to be closed
with a closing tag. Empty elements such as an empty note <note></note>
may be abbreviated as <note/>.

The XML document in listing 3.1 is a valid document. The reference to the
DTD on line 2 allows the parser to verify the grammar while parsing the doc-
ument. An application can so ensure that the data it is about to read conforms
to the desired grammar. Further validations inside the application are so no
longer necessary.

3.2. THE XML FAMILY OF TECHNOLOGIES 41

Without line 2, the document would still count as an XML file. However,
it would be just a well-formed document rather than a valid one, because it re-
spects the basic XML grammar.

A Document Type Definition (DTD) is formalized similar to SGML. List-
ing 3.2 presents the DTD for our <note> document. As can be seen, a DTD
is not an XML document itself. In addition, the DTD mechanism is very lim-
ited and only offers very basic grammar descriptions. The XML Schema stan-
dards [80, 81, 82] try to overcome these often critizised shortcomings with a
much more powerful and complete language for describing grammars. XML
Schema offers support for data types, namespaces and subclassing—features
that are missing in the DTD mechanism.

1 <!ELEMENT note from to subject body>
2 <!ATTLIST note priority (low|middle|high) #REQUIRED>
3 <!ELEMENT from (#PCDATA)>
4 <!ELEMENT to (#PCDATA)>
5 <!ELEMENT subject (#PCDATA)>
6 <!ELEMENT body (#PCDATA)>

Listing 3.2: The Document Type Definition (DTD) for the note document.

This was a very brief overview of the XML language. It is sufficient to
illustrate the basic concepts of the format, what is probably one of the main
reasons of the impact of XML.

3.2.2 DOM vs. SAX

The two most commonly used standards for accessing the contents of XML files
are the Document Object Model [72] (DOM) and the Simple API for XML [10]
(SAX).3 Even if xmillum does not use SAX, it is presented here to contrast the
characteristics of DOM.

DOM specifies a platform- and programming-language-independent inter-
face for accessing and navigating through the hierarchical structure of an XML
document from an object oriented programming language. Figure 3.2 illus-
trates the DOM. It operates on a tree representing the XML document in ques-
tion. Using the standardized API, applications can access and modify the con-
tents of the tree. The DOM tree typically remains in memory while it is worked
on and it is only written to an XML file when it is no longer needed.

3In fact, of the two only DOM is a real standard in terms of a standardization organization,
while SAX is a widely adopted de-facto standard.

42 CHAPTER 3. TECHNOLOGY

DOM Application

Parser API
XML

Figure 3.2: DOM provides an API for accessing and navigating through XML
documents.

SAX is event-based rather than tree-based like DOM. An application using
SAX registers call-back functions within the SAX API. These functions are then
called by the parser while the document is parsed, as sketched in figure 3.3.
SAX does not automatically create an object model, this task is up to the appli-
cation.

ApplicationSAX

Parser

Callback

Callback

Callback
XML

Figure 3.3: SAX is an event-based API for accessing XML documents.

SAX is very well suited for accessing data structures sequentially, but not
for navigating in complex data structures. Because the document is not hold in
memory, it requires less memory and has a smaller overhead. Modifications to
a document are not possible with SAX, they are entirely up to the application.

3.2.3 XSL: Presentation of Data using XSLT and XSL-FO

XML documents hold content. In order to present this content on computer
screens, on paper etc., presentation rules are required. Such rules, also known
as stylesheets, describe how data inside the XML documents is presented.

With the Extensible Stylesheet Language (XSL), the presentation of XML

3.2. THE XML FAMILY OF TECHNOLOGIES 43

documents is done in two steps, similar to SGML (see section 3.1.3). In the
first step, the source XML structure to present is transformed to a structure
containing formatting properties. Only in the second step this structure is then
presented.

The transformation of an arbitrary XML structure is done using XSL Trans-
formations [77] (XSLT). Transformation rules in XSLT stylesheets (which are
themselves XML files) are composed of patterns and templates and define how
a source structure is transformed. Figure 3.4 illustrates the XSLT process: pat-
terns are matched recursively against the elements in the source document
whereupon the corresponding templates are instantiated to create parts of the
resulting document.

Source Result

Figure 3.4: XSLT transforms one XML structure into another XML structure
using transformation rules.

XSLT allows very rich transformations to be made. The structure of the re-
sulting document can be completely different from the source document. Pat-
terns can match on element types, on attribute values and on more complex
structures specified by relations between elements and attribute values. In ad-
dition to the pattern-matching mechanism, XSLT also offers the basic control
structures known from imperative programming languages (such as branches,
loops, functions), as well as functions for sorting data or for assigning nu-
meric labels. It is for example possible to create tables of contents using XSLT
stylesheets.

The Formatting Objects [78] (XSL-FO) define the XML vocabulary for spec-
ifying the formatting properties. In other words, they characterize the basic
building blocks for presenting documents. Examples of the concepts defined
by XSL-FO are text blocks, font styles, colors, text formatting attributes etc.
Special characteristics of output devices such as pagination for paper docu-
ments and scrolling for web-style documents are also taken into account.

44 CHAPTER 3. TECHNOLOGY

3.2.4 XPath

The XML Path Language [76] (XPath) is extensively used in XSLT. It allows to
address parts of an XML document using a syntax which is (in its basics) very
similar to the paths in a file system. XPath also offers basic functionality for
manipulating strings.

XPath expressions are represented by non-XML character strings. They can
be relative to a context node, which can be seen as the current node in the hier-
archical document structure, much like the current working directory in a file
system:

• a selects the context node’s <a> children;

• a/b selects the children of the <a> children;

• a[4] selects the fourth <a> element of the context node;

• @n selects the attribute n of the context node.

Along the same lines, XPath allows to address absolute locations:

• /a selects all <a> elements which are direct children of the root node
(i.e. the document);

• //a selects all <a> elements that are descendants of the root node — in
other words this selects all <a> elements in the document.

The whole power of XPath can be demonstrated the the following expres-
sions, where elements are addressed not only by their location in the XML
structure, but also by their content or their own structure:

• a[@n="val"] selects all <a> elements whose n attribute is equal to val;

• a[@n and @m] selects all <a> elements that have both an n attribute and
an m attribute.

3.2.5 XML Namespaces

Some XML documents contain elements from different languages. For exam-
ple, an XSLT stylesheet contains two types of elements, commands for the XSLT
engine and data that is produced. As long as all the element names are distinct,
this is not a problem, but as soon as two element names are identical, we may
run into a problem.

3.2. THE XML FAMILY OF TECHNOLOGIES 45

XML Namespaces [75] solve this problem with a simple method that quali-
fies element and attribute names by associating them with namespaces. These
namespaces are identified by Universal Resource Identifiers [8] (URIs).

For example, the document shown in listing 3.3 contains a note whose body
is expressed in XHTML. Line 2 defines the (fictitious) URI of the default names-
pace. This namespace applies to all elements and attributes that are not pre-
fixed. Line 3 defines that all elements and attributes prefixed by xhtml: are
from the XHTML namespace. The <body> element in line 8 is therefore clearly
distinct from the <body> element in line 13 even though they have the same
element name. Without XML Namespaces, the XML parser would not be able
to distinguish these two elements.

1 <?xml version="1.0" encoding="UTF-8"?>
2 <note xmlns="http://mynotes.com/notes"
3 xmlns:xhtml="http://www.w3.org/1999/xhtml"
4 priority="high">
5 <from>Jane</from>
6 <to>John</to>
7 <subject>Surprise</subject>
8 <body>
9 <xhtml:html>

10 <xhtml:head>
11 <xhtml:title>Happy Birthday!</xhtml:title>
12 </xhtml:head>
13 <xhtml:body>
14 <xhtml:p>Happy Birthday, John!</xhtml:p>
15 </xhtml:body>
16 </xhtml:html>
17 </body>
18 </note>

Listing 3.3: A document with two namespaces.

XML namespaces are very simple, but they offer very interesting possibil-
ities. It is for example possible to create XSLT stylesheets that generate other
XSLT stylesheets or, in other words, XSLT stylesheets that contain XSLT com-
mands that need to be handled as data and XSLT commands that need to be
interpreted. Without the namespace mechanism, this would not be possible.

http://mynotes.com/notes
http://www.w3.org/1999/xhtml

46 CHAPTER 3. TECHNOLOGY

3.3 Java

Apart from general requirements such as efficient performance and a large li-
brary of generic tools and data structures that needs to be available, we have
chosen the programming language with the following requirements in mind:

Dynamic Binding We want to construct our applications at runtime, not at
compile time.

Advanced XML Support The technologies we want to use need to be fully
supported.

Platform Independence Although from the point of view of many computer
users, everything seems to concentrate around Microsoft Windows, we
need a platform independent framework in order to address a public as
broad as possible.

GUI Toolkit In order to create interactive applications, GUI creation needs to
be facilitated.

We have chosen the Java programming language to implement xmillum.
Java is an object oriented programming language. Its machine language is
platform independent, i.e. the binary data produced by a Java compiler runs
on different platforms.

Independence is achieved with a platform dependent virtual machine (the
Java virtual machine, or JVM) that interprets the instructions produced by the
Java compiler (also known as the Java bytecode) on the host platform. Due to
the additional interpretation phase, Java programs are in general slower than
native programs and they require more memory than native programs. How-
ever, thanks to recent advances with just in time compiling (i.e. the translation
of bytecode to native code prior to execution), the performance gap between
native code and bytecode is becoming less important.

Despite the performance and memory drawbacks, Java offers many advan-
tages. With automatic memory allocation and garbage collection, multi-thread
support, as well as a standard library with an extensive selection of useful basic
tools ranging from I/O facilities, distributed computation support and stan-
dard data structures to full GUI toolkits, Java helps to cut down development
time compared to many other languages.

Unlike traditional programming languages, the different parts of a program
are linked together only at runtime. This makes it straightforward to add plu-
gins to programs, a technique that is extensively used in xmillum. In the re-
mainder of this text, plugins are referenced by the fully qualified name of the
Java class implementing a particular functionality, i.e. package.Plugin.

Chapter 4

Requirements and Goals of
xmillum

xmillum—short for XML Illuminator—is the main outcome of this thesis. It is
a framework designed for rapidly visualizing document recognition data and
for creating interactive document recognition applications.

Using a framework is fundamentally different from using a toolkit or soft-
ware library: “When you use a toolkit, you write the main body of the appli-
cation and call the code you want to reuse. When you use a framework, you
reuse the main body and write the code it calls.” Gamma et al. [29]. This chapter
introduces the requirements of interactive document recognition applications
and expresses the goals we would like to satisfy with our framework.

4.1 Requirements

The requirements for an interactive document recognition system depend on
a variety of factors. One of the key factors is the target user. We will analyze
the requirements by separating the users into three classes: end users, system
integrators and researchers.

4.1.1 End User

The end user uses the system to solve an immediate recognition task. He does
not know anything about the underlying algorithms and techniques and is
only interested in the result of the recognition task. Depending on the context,
some end users use the system casually, while others use it more regularly.

47

48 CHAPTER 4. REQUIREMENTS AND GOALS OF XMILLUM

Apart from the requirement that the system has to work and produce a
useful result (this can be seen as the very basic requirement for all document
recognition systems), the casual end user is first of all interested in an easy to
use system. Since he does not know anything about the underlying algorithms
and does not use the system frequently, it is important that the learning time
is very short. The user has a document and wants it recognized. In order
to guarantee this, the complexity of the system needs to be hidden behind a
convenient user interface.

The document image, being generally a two-dimensional area1, is probably
best suited as user interface. The image is enriched with visual features that
allow the user to quickly discriminate the different kinds of information: object
types, confidence values, possible conflicts etc. Visual feature include first of
all colors, drawing style, shapes and borders.

As soon as higher-level recognition tasks are performed, a WYSIWYG 2

view is no longer sufficient. Other views are required. Many documents can be
structured hierarchically. A view to represent this kind of structure is therefore
required.

If there are different views, it is also necessary to take into account the re-
lations between them. Some data can be represented more easily in one view
than in another, but nevertheless the user needs to know the objects that corre-
spond to a given object in the other view. For example, an object that has been
correctly identified in the document image may be at a wrong position in the
hierarchy. Let’s suppose that the WYSIWYG-view does only represent the hier-
archy and that operations such as moving an object around in the tree need to
be done in a specialized tree-view. Now, the system can greatly help the user
by scrolling to the corresponding object in the tree-view as soon as the user
clicks on the object he wants to modify in the WYSIWYG-view. Synchronized
views are therefore important components for creating convenient recognition
systems.

Last but not least, editing operations are required. For the end user, these
operations don’t need be too general, but more tailored to the application in
question. Having in mind that it is the system that needs to cooperate with
the user, and not the user that has to do the work, results in operations that
are much simpler and easier to understand. For instance, instead of asking
the user to correct the result of a segmentation step by moving and resizing
zones on the document image, the system might just ask the user to select the

1“Generally”, because hyper links or other multimedia extensions in electronic documents may
be seen as another dimension added to documents.

2WYSIWYG is an acronym for What you see is what you get and is used for document production
systems (e.g. word processors) where the document appears exactly the same way on the computer
screen as when it is printed on paper.

4.1. REQUIREMENTS 49

blocks that were incorrectly segmented. The system can then try to segment
the corresponding blocks differently or with other parameters. In a second
step, or, if the system is really unable to segment the document properly, the
user could be asked to do the actual work.

4.1.2 System Integrator

The system integrator installs and fine-tunes a system for a recognition appli-
cation. He knows about the type of documents that will be recognized and can
therefore pre-tune the system for this type of documents in order to simplify
the end user’s life. He has limited knowledge of the underlying algorithms, but
knows about the global architecture and the possible parameters of the system.

The most important requirement for the system integrator is modularity.
A modular document recognition system allows him to construct a document
recognition system for a given recognition task by plugging together different
components responsible for the recognition. It also allows him to create sys-
tems for different kinds of end users depending on their level of knowledge.
The power user can be expected to delve much deeper into the recognition pa-
rameters whereas the casual end user does not at all wish to be confronted with
the internals of the system.

4.1.3 Researcher

A researcher uses a document recognition system not in the same way as a user
or an integrator. He does not use it for real recognition tasks, but merely uses
the services the system already offers to verify the feasibility of new ideas, to
monitor the performance and to develop new algorithms. From a researcher’s
point of view, the document recognition system therefore becomes a frame-
work.

The most important requirement for a document recognition framework
from the researcher’s point of view is the capability to rapidly integrate new
algorithms and tools. This allows the verification of new ideas without having
to bother with too many related details.

To guarantee this capability, the framework needs a flexible component sys-
tem. By plugging together components, a researcher working on a specific part
of a document recognition system can create a system that produces the input
to his algorithms. For instance, somebody working on a new algorithm for
high-level logical structure analysis usually needs data from the lower-level
recognition stages in order to verify the new algorithm. By reusing already ex-
isting components, this data can be produced efficiently, resulting in more time
that can be spent for concentrating on the actual algorithm.

50 CHAPTER 4. REQUIREMENTS AND GOALS OF XMILLUM

Another feature that can facilitate the rapid testing of new ideas is a pow-
erful and easy to use visualization. Results from document recognition algo-
rithms are, most of the time, strongly connected to a specific document image
and can therefore be best analyzed visually. By providing a flexible visual-
ization system, results from a new algorithm can be quickly displayed in a
framework in order to check if the produced results are useful or not. If the
visualization is not completely passive and can be augmented with interactive
features as well, the analysis can even be more fruitful.

Components in a framework exchange data. In order to have the greatest
possible compatibility among the components, a standard data representation
format is required. With a format that is too restricted, the system can greatly
assist the individual components by offering implementations of commonly
used functionality, but on the other hand, the format may not be rich enough
to represent all the data items required by the components. With a format,
that is too open, too much work is left for the component developers what
slows down development. A tradeoff between these two extrema is therefore
necessary.

4.2 Goals of xmillum

The xmillum framework serves as a user interface to document recognition sys-
tems producing XML data. It has access to the XML data and can communicate
with the recognition process.

The four main goals of xmillum are discussed in the following sections.

4.2.1 Visualization

The well-known saying that “an image is worth 1000 words” also holds in
the document recognition domain. Data produced by a recognition process
contains low-level information that may be useful for the system integrator or
the researcher. A data visualization tool can greatly improve the usefulness of
this data and even make it accessible for the end user.

Our framework provides support for conveniently visualizing data pro-
duced by a document recognition system (figure 4.1). It allows to emphasize
parts that are of particular interest or that meet certain criteria using visual fea-
tures. This allows the user to distinguish between the different data objects.
Different views allow the user to see the information from different points of
view. A WYSIWYG view helps to visually correlate the data with the document
image.

4.2. GOALS OF XMILLUM 51

Recognitionxmillum
Process

Knowledge

XML

Figure 4.1: Visualization of XML data.

4.2.2 Validation

Recognitionxmillum
Process

Knowledge

XML

Figure 4.2: Validation, a simple form of interactivity.

Visualizing data allows users to quickly spot incorrect results and mark
them. Marking these mistakes is a simple interaction scheme that generates
valuable information. This information can be used to evaluate the recogni-
tion performance, to compare different recognition systems or to improve the
recognition performance by tuning the underlying models, as illustrated in fig-
ure 4.2.

52 CHAPTER 4. REQUIREMENTS AND GOALS OF XMILLUM

Validation, the process of labeling objects with correct and wrong labels, is
one possible interactive application that is facilitated with our framework.

4.2.3 Correction

Recognitionxmillum
Process

Knowledge

XML

Figure 4.3: The goal of correction is not only to correct data, but to give the
recognition system hints for improvement.

A more advanced interaction scheme involves manual correction of mis-
takes made by a document recognition system, as sketched in figure 4.3.

Manual correction requires much more complex interaction primitives than
the validation. Whereas the validation can be done using a simple correct—
wrong labeling, the correction depends heavily on the kind of errors to correct.
To correct the result of a segmentation algorithm, a tool to split and merge ob-
jects is required. Likewise, to correct OCR results, a text entry tool is necessary.

The changes made are then stored in the document. Additionally, they can
be reported to the recognition process in question, that can then use this in-
formation to adapt its underlying models in order to improve the recognition
performance of future recognition tasks. This is the topic of the next section.

4.2.4 Learning

In order to produce useful results, a document recognition system needs to be
trained. This training is typically done using initial learning and incremental
learning, as illustrated in figure 4.4.

4.2. GOALS OF XMILLUM 53

Recognitionxmillum
Process

Knowledge

XML

α

Figure 4.4: Facilitating the learning process has a direct impact on the perfor-
mance of recognition systems.

During initial learning, the system is presented learning data, so called
ground truth, that typically consists of objects that have been labeled by an op-
erator and that are expected to be correct. The creation of ground truth is a very
expensive process. A convenient user interface that assists the operator in the
labeling task, or even a semi-automatic system where some of the labeling is
done by the system, can greatly facilitate the process and results in more or bet-
ter ground truth. For many recognition algorithms, it is a known fact that the
more ground truth is available, the better the algorithms perform. Facilitating
the creation of ground truth has therefore a direct influence on the recognition
performance.

Humans are allowed to make mistakes, but we are all expected to learn
from them. The same is also true for a document recognition system. This is
where the incremental learning comes in. As already introduced in the pre-
vious section, the correction information can not only be used to correct the
results at hand but also the results of future recognition tasks. By adapting the
underlying models accordingly, the system improves its recognition accuracy.
In a perfect world, with a non-ambiguous problem and the perfect recogni-
tion algorithm, a document recognition system should so converge towards a
system that makes no more mistakes at all. In practice, however, the system
will converge towards a stable state which minimizes the errors. In pattern
recognition, there is always an unreducible error rate.

54 CHAPTER 4. REQUIREMENTS AND GOALS OF XMILLUM

Chapter 5

The Design of xmillum

The initial motivation for working on xmillum has been the lack of a stan-
dard visualization tool for document recognition data. When this project was
started, the only sufficiently general tool to be used for this purpose was Il-
luminator (see section 2.2.5). Illuminator, however, suffered from the major
disadvantage that it only allowed to visualize data available in the proprietary
DAFS format. Furthermore, extending it was a serious undertaking.

This chapter presents how xmillum has grown from a simple initial idea
for visualizing document recognition results to a full visualization and editing
framework with a working prototype. It also sketches how the idea can be
carried further to make xmillum even better.

5.1 Generation 1: The Fundamental Idea

The design of xmillum is inspired by the basic idea of modern web publishing
frameworks: the separation of content and presentation. In web publishing,
this separation is to take into account the special characteristics of the different
output devices (e.g. the display size, number of colors, available bandwidth,
computation power etc.). The content is transformed using presentation rules
for the various different presentations, suitable for use on output devices with
varying properties, as shown in figure 5.1. With this approach, the same data
is reused in different forms what avoids inconsistencies because of redundant
data.

In the document recognition domain, we are not primarily concerned with
different output devices, but nevertheless our requirements are comparable:

55

56 CHAPTER 5. THE DESIGN OF XMILLUM

Rules Presentation
Presentation

Content

Figure 5.1: xmillum borrows from modern web publishing, where content and
presentation is separated.

Different applications require that the same data is processed in various dif-
ferent ways.

Different classes of users all have their very own requirements on what kind
of data they want to visualize and how they want it presented.

Different types of data need to be handled. The various document recogni-
tion phases in section 2.1 show that there is a great diversity of data that
is processed and that results in a document recognition system.

The very fundamental idea of xmillum is to transform all data with XSLT
transformations prior to processing it. Instead of having one application for ev-
ery type of data, we have one general application and one set of transformation
rules, depending on the actual format of the input data.

5.1.1 Advantages

The only restriction that is imposed by this approach is that the data to be pro-
cessed is available in XML format. Given that this is only a syntactic restriction
rather than a structural one (since there is no predefined XML markup lan-
guage the input data has to satisfy), and given the fact that XML has become a
de-facto standard for representing data, this means that the input data format
is virtually unrestricted.

5.1. GENERATION 1: THE FUNDAMENTAL IDEA 57

The approach has numerous advantages with respect to traditional meth-
ods where a predefined data structure on the data is imposed:

“Natural” data structures Every recognition application produces data struc-
tured in a way that best suits its needs. There is no need for a recog-
nition application to take into account the requirements of a visualiza-
tion/editing framework. Even data produced by legacy applications can
be used this way (supposed that the data exists in XML format or that it
can be easily converted to XML format).

Multiple views By providing different transformation rules, different views
can be created. Rules can emphasize some data items, filter others or
completely rearrange objects.

One single data source All applications and users operate on the same data.
There is no need for converting and re-converting data.

5.1.2 First Feasibility Tests and Results

XSLT

XML HTML Web Browser

Figure 5.2: First tests have been done using standard software.

The initial basic idea has been verified with standard software. A sim-
ple XSLT processor has been used to transform document recognition data to
HTML1, which has then been visualized in a standard web browser (see fig-
ure 5.2).

1Even though HTML is not an XML language, XSLT defines the HTML output format. What
is done in this case is that XSLT produces XHTML and then strips the resulting document down
to HTML. This means that e.g.
 will be stripped to
, what makes it no longer XML
compliant.

58 CHAPTER 5. THE DESIGN OF XMILLUM

This test has been done mainly with document segmentation data. The
goal was to visualize the document image with overlaid transparent regions
representing the different document objects.

Using a very simple input data structure that consisted of simple rectangu-
lar blocks represented by their absolute coordinates, writing an XSLT stylesheet
was a straightforward task.

However, the major flaw of this approach became apparent very quickly: It
is limited to the possibilities of HTML. At the time these tests were done, web
browsers were not as powerful as they are today. For instance, they did not
work very reliably with absolute positions (which was a very critical require-
ment for visualizing bounding boxes on top of some other image). Further-
more, transparent objects were not supported.

In order to overcome this flaw, the xmillum idea has evolved to the next
generation.

5.2 Generation 2: A Custom Application

A straightforward solution to overcome the problems encountered when doing
the first tests was to create a dedicated markup language and a corresponding
viewer that satisfied our requirements.

XSLT

XML XML
Data

Meta−Data

xmillum

Figure 5.3: The XSLT transformation produces data as well as meta data.

In order not to restrict this language too much, we have decided not to
predefine any visualization primitives at all. This may sound odd, but it is
precisely one of the strong points of xmillum. Visualization primitives may be

5.2. GENERATION 2: A CUSTOM APPLICATION 59

added to the system in the form of plugins. This makes xmillum flexible and
extensible.

The general functioning of the second generation xmillum design is compa-
rable to the first generation. As illustrated in figure 5.3, the input data is again
transformed using XSLT. This time, however, an XML data structure satisfying
our own markup language is generated.

This markup language contains two types of information:

Meta data describing how the different components of the xmillum frame-
work are composed to form an application;

Data describing the actual data to be visualized.

5.2.1 Meta Data

The meta data describes how the data we want to be visualized is presented.
The whole visualization is centered around a WYSIWYG-style view in which
the data is rendered. The meta-data concerning this view is specified using the
following three concepts:

Layers allow to group the data to visualize into two-dimensional collections
of visual objects. All layers are stacked and can be switched on and off
independently by the user.

Styles define a set of attributes for drawing an object. Attributes concern color,
transparency settings, font configurations etc. Styles are referenced to by
objects, which are explained next.

Objects specify what plugins to use for visualizing one specific type of data
item using any of the defined styles. Examples for objects are rectangular
blocks, images loaded from a file, text areas and so on.

The WYSIWYG-style view is very useful where we have two-dimensional
data that we would like to lay over a document image. However, sometimes it
is useful to have other, alternative views of the data. This is why we have come
up with a fourth concept:

Tools are plugins that have access to the entire internal data structures of xmil-
lum, and that can implement numerous functionality such as alternative
views of the data, interfaces to other programs, user interaction etc.

A simple example of how these concepts are used more concretely will be
given in section 5.2.3.

60 CHAPTER 5. THE DESIGN OF XMILLUM

5.2.2 Plugins in xmillum

Generally speaking, plugins are program modules that can be used by the xmil-
lum application in order to provide functionality which is missing in xmillum.
The code of plugins is not integrated in xmillum, it just gets called from xmil-
lum whenever the functionality it offers is required.

In order for plugins to work, there needs to be a definition of the interface
between the main program and the plugins. In the object oriented paradigm,
this can be done in a straightforward manner using classes and subclasses. The
base classes define the names of methods along with their arguments and re-
turn types and the subclasses define the actual implementations of these meth-
ods. This provides the main program with a well-defined interface.

The way the second generation xmillum design has been presented, it is
known only what plugins to use once the XSLT transformation has been ap-
plied and the result is known. We therefore need to load the plugins at run-
time.2

Throughout the design of xmillum, we have tried to delegate functionality
into plugins whenever this was making sense. This is for instance true for the
visualization objects (i.e. the object concept from the previous section), which
define how some data item is drawn. Having delegated this functionality into
a plugin means that it is possible to add completely new graphical objects with-
out changing the main application. This is a very important requirement for
an extensible framework.

Listing 5.1 shows an excerpt of how a plugin is registered as an xmillum
tool. The Java code for the plugin is sketched in listing 5.2. In this example,
the interface the plugin has to respect is not specified in a class, but in a Java
interface, a special kind of base class. This interface specifies that a tool needs
to implement the two methods activateTool and deactivateTool. xmillum then
calls these two methods where the tool can do whatever it wishes. The tool
typically installs itself in the internal data structures of xmillum, which are
given in the form of the BrowserContext object.

5.2.3 A Simple Visualization Scenario

In order to see how the concepts from the previous paragraphs interact, let us
suppose that we want to visualize document segmentation data such as shown
in listing 5.3. This listing shows us that we know the file name of the document
image, as well as the bounding boxes of text blocks and text lines.

2In Java, this is easily accomplished using the Reflection API. In traditional (mostly compiled)
languages, functionality can often only be added to a running program in the form of libraries.
This is usually more difficult and trickier than how it is done in Java. Of course, nowadays many

5.2. GENERATION 2: A CUSTOM APPLICATION 61

1 <xmi:document>
2 · · ·
3 <xmi:tool class="my.project.MyTool"/>
4 · · ·
5 </xmi:document>

Listing 5.1: The plugin my.project.MyTool is registered as an xmillumtool.

1 package my.project;
2

3 import org.w3c.dom.Element;
4

5 import iiuf.xmillum.Tool;
6 import iiuf.xmillum.BrowserContext;
7

8 public class MyTool
9 implements Tool

10 {
11 public void activateTool(BrowserContext c, Element e)
12 {
13 · · ·
14 }
15

16 public void deactivateTool()
17 {
18 · · ·
19 }
20 }

Listing 5.2: A tool has to implement the iiuf.xmillum.Tool interface, which
specifies that two methods need to be present.

Our goal is to lay all the data items over the document image in order to
visually verify the validity of the data. This is a very common task for peo-
ple working with segmentation algorithms. While it does not allow for a pre-
cise qualitative measurement of the accuracy of the results, it allows to quickly
check if the calculated segementation data appears correct.

We want text lines and text blocks to be shown in different styles. Listing 5.4

modern programming languages offer functionality such as Java does.

62 CHAPTER 5. THE DESIGN OF XMILLUM

1 <document image="1-4-a-1.tif">
2 · · ·
3 <block x="679" y="154" w="2581" h="324">
4 <line x="679" y="154" w="2530" h="144"/>
5 <line x="682" y="310" w="2181" h="81"/>
6 · · ·
7 </block>
8 · · ·
9 </document>

Listing 5.3: The data structure we want to visualize contains a variety of data.

1 <xmi:style name="textblock-style">
2 <param name="foreground" value="green"/>
3 <param name="transparency" value="0.4"/>
4 <param name="fill" value="true"/>
5 </xmi:style>
6

7 <xmi:style name="textline-style">
8 <param name="foreground" value="red"/>
9 <param name="transparency" value="0.4"/>

10 <param name="fill" value="true"/>
11 </xmi:style>

Listing 5.4: We need two styles for visualizing the text blocks and text lines.

shows the definition of two styles.

Next, we need to define how the different data objects will be visualized.
Since we have three different sorts of objects to visualize, this will give us three
objects, as listing 5.5 shows. Note that text blocks and text lines are visualized
with the same plugin, but using a different style.

Finally, we need to put create an XSLT transformation that transforms our
input document structure into a structure xmillum can handle. This can be
accomplished with listing 5.6. Our three types of data objects are put in three
layers the user can switch on and off individually in order to verify the validity
of every layer of information with respect to the document image.

5.2. GENERATION 2: A CUSTOM APPLICATION 63

1 <xmi:object name="image"
2 class="iiuf.xmillum.displayable.Image"/>
3

4 <xmi:object name="textblock"
5 class="iiuf.xmillum.displayable.Block">
6 <param name="style" value="textblock-style"/>
7 </xmi:object>
8

9 <xmi:object name="textline"
10 class="iiuf.xmillum.displayable.Block">
11 <param name="style" value="textline-style"/>
12 </xmi:object>

Listing 5.5: These three objects are used for visualizing the three types of data
objects.

5.2.4 From Visualization to Active Interaction

Now that we have a simple way to visualize data, we would like to interact
with it actively, rather than just looking at it. Several modes of interaction can
be imagined, as already mentioned in sections 4.2.2 to 4.2.4.

The separation of content and presentation, the basic concept of the xmil-
lum idea, is very useful for visualization. However, the fact that the user in-
terface operates primarily with a transformed version of the data, introduces
an important new challenge when it comes to modifying the data. The goal of
data modification is generally to modify the original data, not the transformed
one, so the two data structures need to be connected somehow.

To illustrate this, consider a user who wants to modify the attributes of an
object. He selects this object and modifies the attributes. The selection of the
object and the modification have taken place at the user-interface level, in the
transformed data structure, but they need to be propagated back to the original
XML data (see figure 5.4).

The ideal solution to this problem would be to reverse the transformation
and to transform the modified data back to its original form. Unfortunately,
this approach is not as straightforward as it might seem. Reversing an XSLT
transformation is only possible if the transformation which converted the orig-
inal structure into the internal structure is a bijection. In reality, this is rarely
the case3 and imposing such a constraint would be too restricting.

3A very common scenario for such transformations is to filter some information because it is
not relevant to the application at hand. Such a transformation is not a bijection.

64 CHAPTER 5. THE DESIGN OF XMILLUM

1 <xsl:stylesheet version="1.0">
2 <xsl:template match="document">
3 <xmi:document>
4 · · ·
5 Styles
6 · · ·
7 Objects
8 · · ·
9 <xmi:layer name="Document Image">

10 <image src="{@image}"/>
11 </xmi:layer>
12

13 <xmi:layer name="Text Blocks">
14 <xsl:for-each select=".//block">
15 <textblock x="{@x}" y="{@y}" w="{@w}" h="{@h}"/>
16 </xsl:for-each>
17 </xmi:layer>
18

19 <xmi:layer name="Text Lines">
20 <xsl:for-each select=".//line">
21 <textline x="{@x}" y="{@y}" w="{@w}" h="{@h}"/>
22 </xsl:for-each>
23 </xmi:layer>
24 </xmi:document>
25 </xsl:template>
26 </xsl:stylesheet>

Listing 5.6: This XSLT transformation excerpt transforms the input structure
into an xmillum structure with three layers.

Another elegant solution is the definition of a language to describe the mod-
ifications to the original structure. This information is included directly into the
internal data structure using the XSLT transformation. This approach can also
be seen as some sort of “incremental reverse transformations”, where the indi-
vidual modifications are back-propagated to the original XML structure. The
modified XML structure is then re-transformed according the XSLT stylesheet.

Our prototype uses the latter solution, but it does not define an own lan-
guage. Rather, the programs performing the modifications to the original XML
structure are encapsulated in plugins which get called whenever a modifica-
tion takes place. These plugins are called Handlers. Handler perform a modifi-
cation and then trigger a re-transformation if this is necessary.

5.2. GENERATION 2: A CUSTOM APPLICATION 65

XML

XSLT

User Interface

xmillum

Modification

Figure 5.4: Modifications take place at the user-interface level. They need to be
propagated to the original XML data.

Listing 5.7 shows how a handler for deleting text blocks can be registered. It
specifies that whenever the user clicks on an object of type textblock, this object
should be deleted. Listing 5.8 finally shows the code of the handler itself.

Note the use of the ref attribute. When xmillum loads the original data
structure, it inserts a unique attribute tmp:refvalue in every element. The value
of this attribute is then placed in the ref attribute of every generated textblock
and serves so as a pointer to the original data structure. This is how xmillum
knows what element belongs to the object on which the user has clicked. List-
ing 5.8 also shows the call to retransform(), where the original data structure is
retransformed using the XSLT transformation.

5.2.5 Bundling xmillum Document Recognition Applications

The term application has already been mentioned before when we have intro-
duced meta data. In the context of xmillum, an application is a particular con-
figuration of xmillum and associated plugins. It consists of an XSLT transfor-
mation (i.e. a stylesheet) and a set of plugins that are referenced in the meta
data produced by the transformation. An application can be used to solve one
particular type of problem with one particular type of data structure.

Since plugins can be arbitrarily complex, there can be quite a lot of indi-
vidual components forming an application. This is especially true for the Java
programming language. There are quickly hundreds of files forming an appli-
cation since every class is stored in one file.

Bundling all components together can be very helpful for keeping things

66 CHAPTER 5. THE DESIGN OF XMILLUM

1 <xmi:document>
2 · · ·
3 <xmi:handler name="delete" class="my.project.Delete"/>
4 · · ·
5 <xmi:object name="textblock" class="my.project.Block">
6 <param name="style" value="default-style"/>
7 <param name="click" value="delete"/>
8 </xmi:object>
9 · · ·

10 <xmi:layer name="My Layer">
11 <xsl:for-each select=".//block">
12 <textblock · · · ref="{@tmp:refvalue}"/>
13 </xsl:for-each>
14 </xmi:layer>
15 </xmi:document>

Listing 5.7: Upon a click on an object of type block, the handler my.project.Delete
is called.

tidy and well organized. In addition, it also facilitates and even encourages
the exchange of such applications. Instead of having users share hundreds or
thousands of files along with a documentation on how and where to install,
one file containing the whole lot can be shared.

In Java, such packaging can be done analogous to the Web Application
Archives (WAR) [15], where web services are bundled together in JAR files
(Java ARchive) in order to facilitate application deployment.

Although exactly the same mechanism could be used for xmillum, this is
not implemented in our prototype.

5.2.6 The xmillum Prototype

Using the concepts of the second generation xmillum design a prototype has
been implemented. The prototype has been programmed in the Java program-
ming language, mainly because of the powerful dynamic binding feature that
allows plugins to be created very easily.

The prototype has shown that the model is feasible. An in-depth presenta-
tion will be given in chapter 6.

5.2. GENERATION 2: A CUSTOM APPLICATION 67

1 package my.project;
2 · · ·
3 import iiuf.xmillum.ActionHandler;
4 · · ·
5 public class Delete
6 extends ActionHandler
7 {
8 public void init(BrowserContext c, Element e)
9 {

10 }
11

12 public void handle(ActionHandlerParam param)
13 {
14 BrowserContext context = param.getContext();
15

16 String ref = param.getElement().getAttribute("ref");
17 Element source = context.getSourceElementByReference(ref);
18 source.getParentNode().removeChild(source);
19

20 // Now, retransform the original data structure
21 context.retransform();
22 }
23 }

Listing 5.8: The Delete handler removes an entire subtree from the original
data structure.

5.2.7 Benefits and Drawbacks

The second generation xmillum design solves the problems presented in sec-
tion 5.1.2, while retaining all the advantages of the original idea.

Using xmillum, it is possible to quickly and easily visualize document vari-
ous kinds of document recognition data. For most applications, the stylesheets
necessary to transform the document recognition data into xmillum’s internal
format are not very complex (as long as the input data is not complex). The re-
sulting visualizations are quite comfortable, thanks to the graphical attributes
that can be specified as styles.

In addition to solving the visualization problem, the second generation
xmillum design generalizes the idea and makes it possible to actively interact
with the data by modifying it. This broadens the horizon for xmillum consid-
erably. It is no longer simply a visualization tool, but can be used as a fully-
fledged customizable framework for interactive document recognition.

68 CHAPTER 5. THE DESIGN OF XMILLUM

However, nothing is perfect. The active interaction extension has revealed
several design flaws that ought to be improved. These drawbacks of the second
generation design are as follows:

Meta data produced by transformation As shown in figure 5.3, there is only
one XSLT transformation that produces both the meta data as well as the
document data. The meta data is thus only known once the transforma-
tion has been applied. More important, once data is modified by the user
and the transformation is reapplied, nothing guarantees that the meta
data stays the same; the whole application can change. From an imple-
mentation’s point of view, this renders matters much more complex than
if meta data was static.

Centered around a WYSIWYG view The entire design of xmillum is centered
around a browser-style WYSIWYG view. This influenced all design de-
cisions and made the whole implementation heavily biased towards this
view. Among others, aspects concerning the user interface are deeply
nested in the program. Similarly, all possible events the user can trigger
in the WYSIWYG view (in order to get interactivity), are predefined. It
is not possible to add new types of events without changing the xmil-
lum source code, something that we wanted to avoid by using plugins. It
would have been better if there was a general backend and several views,
the browser-style being view one of them. Views could then be espe-
cially tailored to specific applications whenever special requirements are
requested.

To summarize, the xmillum idea has resulted in a quite powerful prototype
that is actively used by different people. However, at the same time it also
showed the possibility to develop the idea further.

The next section sketches the third generation of the xmillum design that
generalizes the framework and solves the discussed problems.

5.3 Generation 3: Generalizing the xmillum Idea

The goal of this section is to provide the next generation of the xmillum design
that takes into account the lessons learned so far. It does not abandon the orig-
inal ideas of xmillum, the use of XML and XSLT, and the rule that functionality
is to be delegated into external plugins whenever possible.

In fact, the main design principle of the third generation xmillum design is
that the framework should only define the most important concepts and leave
the rest up to the plugins. xmillum should only provide the glue that holds

5.3. GENERATION 3: GENERALIZING THE XMILLUM IDEA 69

all together, but the actual work should be done entirely in the plugins. This
design ensures a very really general model that can be used for a wide range
of applications.

A
pp

lic
at

io
n

references

defines

XML

XML XML XSLT XSLT

Data

Meta−Data

xmillum

Figure 5.5: Only data is transformed, meta data is statically defined in an ap-
plication description.

An illustration of the third generation xmillum model is shown in figure 5.5.
It shows the most obvious changes with respect to the second generation xmil-
lum design: The whole application is now described in an application descrip-
tion structure. This structure defines the meta data statically—it is no longer
transformed using XSLT. What is transformed is the actual data. There can be
multiple data sources, each one with its own transformation. It is also possible
to use data as-is, without any transformation.

5.3.1 Concepts

Third generation xmillum applications are created with the three following
concepts:

Data repositories allow the system to access XML data. This data typically
comes from a file or another data repository and can be processed with
an XSLT transformation.

Types define the elementary data objects processed by this application and the
operations that can be applied to these objects.

70 CHAPTER 5. THE DESIGN OF XMILLUM

Views implement the user interfaces. A view fetches the data to represent
from a data repository, visualizes it and gives users access to the opera-
tions defined in the types. Every view defines its own language for the
data to represent. It is up to the data repository in question to deliver the
data in the requested structure.

These concepts are presented more thoroughly in the next couple of sec-
tions.

5.3.2 Data Repositories

All XML data processed by the system is accessed through data repositories.
The data repository defines where the data it offers comes from and what can
be done with it.

There are different types of data repositories that can be classified according
to the following criteria:

Direct vs. indirect data source Data repositories with direct access to the data
source typically operate directly on the file containing the XML data.
Data repositories with indirect access to the data source, on the other
hand, take their input from other data repositories.

Transformation vs. pass-through One of the fundamental ideas of xmillum
is that data can be transformed using XSLT transformations in order to
convert it into a structure suitable for xmillum. This is where transform-
ing data repositories enter into play. Such data repositories are indirect
data source repositories that convert data from other data repositories
into another format. This transformation is typically done using XSLT
transformations.

Read-only vs. read-write Some data repositories may offer read-only access
whereas others allow data to be modified. Such read-write data reposito-
ries are always repositories with a direct data source, because only direct
data source repositories have a direct link to the location where the mod-
ified data is ultimately stored.

Every data repository keeps a list of other objects that depend upon it. Such
objects can be other data repositories that transform the data, or views that
require the data for visualizing it. As soon as data changes, all the dependent
objects are notified so that they can be updated.

5.3. GENERATION 3: GENERALIZING THE XMILLUM IDEA 71

5.3.3 Data Types

The data types define the elementary objects an application processes. This
information is needed as soon as data modification is needed. All modification
operations take place through plugins that are defined here.

A modification plugin itself does not know anything about the user inter-
face that invokes the modification. It only knows how the document structure
is changed once the operation is invoked. It is then up to the view invoking the
modification to provide the user with an appropriate user interface to make the
operation as convenient as possible.

Of course, data objects can only be modified if the data repositories allow
read-write access. As per our definition, such data repositories always have a
direct data source. This ensures that the changes can actually be stored some-
where. It also helps to solve the problem stated in section 5.2.4 (i.e. how are
changes carried back to the original data structure?) by excluding such cases
altogether. Modification always take place at the original data structure. Using
the dependencies between the different data repositories, all dependent objects
can then be notified that data has changed and views can be updated accord-
ingly.

5.3.4 Views

Contrary to the second generation xmillum design, there is no central prede-
fined WYSIWYG view. Similarly, the xmillum model does not define the notion
of user interface details such as styles, graphical objects or user interaction fa-
cilities.

All such details are delegated to view plugins. In order to define a view, the
following three types of information are required:

Configuration data defines in a plugin-specific way what the view looks like.
This is where matters such as styles and graphical objects, as seen in the
second generation xmillum design are described. The structure of this
definition depends entirely on the plugin in question and is in no way
predefined by the xmillum model.

Data repository references define what data the plugin visualizes. The plu-
gin fetches this data from the respective data repositories and reacts if
the data contained in a data repository changes (e.g. after data has been
modified by the user).

When the system is started up, a view subscribes to all the data reposito-
ries it requires access to and subsequently receives all the data contained

72 CHAPTER 5. THE DESIGN OF XMILLUM

in these repositories. If data is changed, all views subscribed to it will be
notified accordingly.

Operation mappings map the facilities provided by the user interface to the
operations defined in the data types. These user interface facilities can be
arbitrarily complex, ranging from simple mouse clicks to complex split
and merge functions. All depends on the functionality the user interface
wants to provide to the user. A general view may provide simple, not so
convenient functions, whereas a view with a very specific goal may offer
the same facilities much more conveniently, but less general.

Using these ingredients, all of the second generation’s WYSIWYG view
can be done using a plugin this way, without embedding it statically into the
model.

5.3.5 A Markup Language for Applications

The glue that holds the different components forming an application together
is the application description. As with all the work done around xmillum, this
is done in form of an XML markup language that describes all the components
involved in the system along with their dependencies.

In accordance with the main design goal behind the third generation of
xmillum, the application description language only specifies what cannot be
delegated to the plugins. This keeps the system general and does not place un-
necessary restrictions on the plugins. However, this also reduces the influence
of xmillum on the individual components.

This section presents the different parts of the application description lan-
guage using excerpts from fictitious applications4.

Plugin Declaration

Central to the application description language is the <implementation>
tag. It is the tag that is used by xmillum to reference a plugin. A sample plu-
gin reference is given in listing 5.9. It states that the plugin is located in the
Java class org.xmillum.data.XMLFile. The class is set up using the content of
the <setup> element. Since every plugin has different setup requirements, the
structure of this element is not specified and thus not fixed by the application
description language.

4Please note that there is no prototype of the third generation xmillum design. The plugins
mentioned in this section thus do not exist.

5.3. GENERATION 3: GENERALIZING THE XMILLUM IDEA 73

1 <implementation>
2 <java-class>
3 org.xmillum.data.XMLFile
4 </java-class>
5 <setup>
6 <file source="segmentation-file"/>
7 </setup>
8 </implementation>

Listing 5.9: The <implementation> element designates the plugin where the
implementation is delegated to.

Data Repositories

1 <data-repository name="segmentation-data">
2 <data-source name="segmentation-file">
3 <physical-file/>
4 </data-source>
5 <implementation>
6 <java-class>
7 org.xmillum.data.XMLFile
8 </java-class>
9 <setup>

10 <source name="segmentation-file"/>
11 </setup>
12 </implementation>
13 <validation>
14 <schema>
15 segmentation.xsd
16 </schema>
17 </validation>
18 </data-repository>

Listing 5.10: The <data-repository> element describes a data repository by giv-
ing a reference to the implementation and several setup parameters.

The first integral part of an application description is the definition of the
data repositories. A data repository is defined using the <data-repository> el-
ement. Listing 5.10 illustrates a sample physical file data repository. It first
defines that the data-repository fetches its data from a physical file. Next, since

74 CHAPTER 5. THE DESIGN OF XMILLUM

the actual work in xmillum is delegated to plugins whenever possible, a ref-
erence to the implementation of this data repository is given. This reference
is the <implementation> element we have presented above. As you can see,
the <setup> element references the segmentation-file data source. It would be
possible to place information about data sources directly into the <setup> ele-
ment, but this would deter xmillum to properly keep track of the dependencies
(because the contents of <setup> is not defined by xmillum).

The data repository is terminated with a <validation> element, which is
some sort of post-condition for the data repository. This information can be
used by xmillum to verify if the data used in the system is valid. If the validity
condition is not met, erroneous data has been injected or there is a bug in the
system. In our example, the output has to satisfy the XML Schema segmenta-
tion.xsd.

Data Types

1 <data-type name="text-line">
2 <operation name="split">
3 <implementation>
4 · · ·
5 </implementation>
6 </operation>
7 <operation name="merge">
8 <implementation>
9 · · ·

10 </implementation>
11 </operation>
12 · · ·
13 </data-type>

Listing 5.11: The <data-type> element describes a type and the operations that
can be applied to it.

Next in the application description we have the definition of the data types.
As already mentioned, the data type definition primarily defines the opera-
tions that are possible on a specific type of data.

Listing 5.11 shows a sample data type for a text line. We define two opera-
tions on this data type, split and merge. Both operations are implemented by
plugins. Our declaration does neither define how the operations are invoked
nor what parameters are passed to them, this information will be given when

5.3. GENERATION 3: GENERALIZING THE XMILLUM IDEA 75

the views are defined.

Views

Now that data repositories and data types are defined, we can go about visual-
izing them. This is done using the <view> element. A sample view is sketched
in listing 5.12.

The <data-source> tags specify that the view uses the two data repositories
lines-data and blocks-data as input. This information serves as a static defini-
tion of a dependency between data repositories and views.

The view itself is implemented in the Java class org.xmillum.view.Block-
Browser, which is once again declared using the <implementation> tag. The
implementation-specific <setup> tag defines that the information in our view
is presented in two layers with two different styles. Every layer presents one
of the data repositories defined previously.

The important thing to notice here is that everything specific to the visual
appearance is placed inside the view. Layers and styles, two integral parts of
the second generation xmillum, are now defined in the <setup> element of
this particular view rather than on a global level. Also, the notion of layer and
style is wholly unknown to xmillum—it is the view implementation that knows
about these concepts.

The <facility> tag eventually brings us to the mapping between the user
interface facilities and the data manipulation operations. In the example, we
assume that the view provides us with a facility for splitting rectangular blocks
along a horizontal or vertical split axis the user can choose interactively. If this
facility is invoked on an object of type text-line, the operation split gets called.
The <param> tags define the parameters that are passed to this operation.

In order to split an object horizontally or vertically, two parameters are re-
quired: the direction (horizontal, vertical) as well as the position where the cut
should be made. Since these parameters are chosen by the user through the fa-
cility, they cannot be specified statically. Instead, they are referenced using the
ref attribute. The values facility.direction and facility.splitpoint are therefore
simply pointers to the information.

At this point, we will refrain from specifying an entire language for passing
the parameters to the operations. This language can be arbitrarily complex,
but we are confident that one doesn’t need to go that far. Assuming that the
facilities are generally quite tightly coupled with the operations they are de-
signed for, simple pointers to data provided by the facility should be sufficient
for most applications.

76 CHAPTER 5. THE DESIGN OF XMILLUM

5.3.6 Too General?

The third generation xmillum model is very general. Using the right plugins,
virtually every kind of data can be treated in almost every imaginable manner.

In fact, contains almost no features specifically for the initial problem it was
designed for, document recognition. All the document recognition specific is-
sues enter into play only as as soon as the plugins will be designed. In this
respect, the third generation xmillum does not solve any immediate document
recognition problems, however, it suggests a method for arranging the differ-
ent components of the system in order to make them reusable and the system
extensible.

To summarize, even if this proposed model may seem too general, we feel
confident that this is a very promising approach for designing interactive doc-
ument recognition applications.

5.3. GENERATION 3: GENERALIZING THE XMILLUM IDEA 77

1 <view name="view-1">
2 <data-source name="lines">
3 <data-repository name="lines-data"/>
4 </data-source>
5 <data-source name="blocks">
6 <data-repository name="blocks-data"/>
7 </data-source>
8 <implementation>
9 <java-class>

10 org.xmillum.view.BlockBrowser
11 </java-class>
12 <setup>
13 <style name="yellow">
14 <param name="foreground" value="#ffff00"/>
15 <param name="transparency" value="0.4"/>
16 <param name="fill" value="true"/>
17 </style>
18 <style name="blue">
19 <param name="foreground" value="#0000ff"/>
20 <param name="transparency" value="0.4"/>
21 <param name="fill" value="true"/>
22 </style>
23 <layer name="text-lines">
24 <layer-data name="lines"/>
25 <style name="yellow"/>
26 </layer>
27 <layer name="text-blocks">
28 <layer-data name="blocks"/>
29 <style name="blue"/>
30 </layer>
31 </setup>
32 </implementation>
33 <facility name="split">
34 <operation name="split" type="text-line">
35 <param name="direction" ref="facility.direction">
36 <param name="splitpoint" ref="facility.splitpoint">
37 </operation>
38 </facilities>
39 </view>

Listing 5.12: A fictitious view that visualizes data from two data repositories
on two layers.

78 CHAPTER 5. THE DESIGN OF XMILLUM

Chapter 6

The xmillum Prototype

What was in the beginning a simple application with a custom markup lan-
guage for visualizing document recognition data more easily than it was pos-
sible with straight HTML, has rather quickly evolved into something much
more powerful resulting in more and more ideas for xmillum. The second gen-
eration xmillum design has been influenced by the prototype in an incremen-
tal manner: The more features were added to the prototype, the more ideas
emerged.

This chapter starts with two simple hands-on applications created using
the xmillum prototype. These applications demonstrate how easily document
recognition data can be visualized and interacted with using our xmillumpro-
totype. All the implemented components of the prototype are then presented
more in detail.

6.1 Two Real-World xmillum Applications

For a newspaper recognition project of our research group (see [61] for more
details) one task consisted in segmenting the document image into different
components. Figure 6.1 shows a sample newspaper document image used for
this project and an excerpt of the XML data generated by the segmentation
process.

As we can see, the XML data contains several types of nested rectangular
regions identified by their location and size (actually some types shown in the
following list are not in the excerpt shown in figure 6.1, but they are present in
our XML data nonetheless):

• <image> regions that contain image data

79

80 CHAPTER 6. THE XMILLUM PROTOTYPE

<document image="1-4-a-1.tif">
<thread x="7" y="3" w="3915" h="3"/>
:
<block x="679" y="154" w="2581" h="324">
<line x="679" y="154" w="2581" h="324">
<sign x="679" y="157" w="175" h="266"/>
<sign x="861" y="235" w="134" h="190"/>
<sign x="1014" y="235" w="143" h="189"/>
<sign x="1228" y="154" w="247" h="266"/>
:

</line>
</block>
:

</document>

Figure 6.1: A newspaper document image and the result of applying a segmen-
tation algorithm.

• <thread> horizontal and vertical rules used to delimit columns and arti-
cles

• <frame> regions that are completely surrounded by frames

• <block> lines of text grouped together

• <line> sequence of characters representing a line of text

• <sign> individual characters

Using this data and our xmillum prototype, we will now create two appli-
cations that solve the following problems:

Visualization In order to see how well the segmentation process worked, we
will visualize the data so that we can easily see if it actually corresponds
to the document image or if the segmentation is flawed.

Modification If the segmentation data has errors, why not offer the user a pos-
sibility for correcting them? The second application shows how under-
segmented blocks can be further split.

6.1. TWO REAL-WORLD XMILLUM APPLICATIONS 81

6.1.1 Data Visualization

The three key concepts of the second generation xmillum design, i.e. styles,
objects and layers have already been introduced in section 5.2.1. We will now
show how these concepts are used in for our visualization example.

The skeleton of the XSLT stylesheet 1 we are going to create is shown in list-
ing 6.1. The semantics of this skeleton are very simple: whenever an element
called <document> is met in the input document, this element is replaced with
everything that is between the <xsl:template> tags. Since our input document
is a <document> it will immediately match this template. We will now fill in
the styles, the objects and the layers we need.

1 <?xml version="1.0"?>
2

3 <xsl:stylesheet version="1.0"
4 xmlns:xmi="http://xmillum.sourceforge.net"
5 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
6

7 <xsl:template match="document">
8 <xmi:document>

...

101 </xmi:document>
102 </xsl:template>
103 </xsl:stylesheet>

Listing 6.1: Skeleton of our XSLT stylesheet.

Let’s assume that we are not interested in visualizing the individual char-
acters, but that we would like to see all other five types of objects (i.e. images,
threads, frames, blocks and lines), each of them drawn with a distinct color.
We will therefore disregard the <sign> elements.

Since we have five different objects, we introduce five styles with different
colors, such as the one for threads shown in listing 6.2.

Next, we need to define the objects that use these styles. We also need an
object that allows us to visualize the document image. Listing 6.3 illustrates
how this is done. It shows the definition of an object for visualizing document
images and one of the five objects for visualizing our rectangular regions. This
is done using two different plugins, that are indicated using their Java classes.

1For the complete XSLT stylesheet see appendix A.

http://xmillum.sourceforge.net
http://www.w3.org/1999/XSL/Transform

82 CHAPTER 6. THE XMILLUM PROTOTYPE

12 <xmi:style name="thread-style">
13 <param name="foreground" value="yellow"/>
14 <param name="transparency" value="0.4"/>
15 <param name="fill" value="true"/>
16 </xmi:style>

Listing 6.2: We need to define five styles such as this one.

43 <xmi:object name="image" class="iiuf.xmillum.displayable.Image"/>
44

45 <xmi:object name="thread-block" class="iiuf.xmillum.displayable.Block">
46 <param name="style" value="thread-style"/>
47 </xmi:object>

Listing 6.3: We define an object for visualizing the document image as well as
five objects for visualizing the five types of rectangular regions.

Note that one of these plugins, iiuf.xmillum.displayable.Block, requires the
style parameter, whereas the other one (iiuf.xmillum.displayable.Image) does
not need any initialization parameters.

Up to now, we were declaring the part of the internal data structure that
was called meta data in the previous chapter. As a final step, we now need to
create our layers and insert the data that corresponds to the elements in the
input data structure.

Since we would like to be able to switch all types of objects on and off
individually, we arrange all data in layers—one layer per data type.

The first layer is straightforward. It contains only the document image.
The layer is called Document Image. The name of the document image is in the
image attribute of the <document> element of the input data structure. The
complete code for this layer is shown in listing 6.4. XSLT replaces the expres-
sion {@image} with the attribute image of the current context element, which is
the <document> element.

The output of the other layers requires a little bit more knowledge of XSLT.
We need to iterate over all the <block> elements of the document. This can
be done using the XSLT’s <xsl:for-each> construct. We select all <block> de-
scendants (direct and indirect children) and iterate through them, as shown in
listing 6.5. This produces one <text-block> element for each <block> of the
source document.

6.1. TWO REAL-WORLD XMILLUM APPLICATIONS 83

67 <xmi:layer name="Document Image">
68 <image src="{@image}"/>
69 </xmi:layer>

Listing 6.4: The image object visualizes an image.

89 <xmi:layer name="Text Blocks">
90 <xsl:for-each select=".//block">
91 <text-block x="{@x}" y="{@y}" w="{@w}" h="{@h}"/>
92 </xsl:for-each>
93 </xmi:layer>

Listing 6.5: This loop also takes into account indirect <block> children of the
current element.

For every type of object, we need a loop such as the one in listing 6.5. The
resulting application visualizes our data as presented in figure 6.2.

6.1.2 Correction of Under-segmented Regions

In order to correct under-segmented regions, we need an event handler that
allows us to split regions. In the prototype, we have implemented such an
event handler in iiuf.xmillum.handlers.Split.

The complete XSLT stylesheet can be found in appendix B. The overall
structure stays the same as for the visualization application.

What is added is the declaration of our event handler. This is illustrated
in listing 6.6. Here, we associate the handler name split to the Java class
iiuf.xmillum.handlers.Split. Since our event handler does not need any ini-
tialization parameters, the <xmi:handler> element is empty. Other handlers
may require parameters, but the handler in question does not.

43

44 <xmi:handler name="split" class="iiuf.xmillum.handlers.Split"/>
45

Listing 6.6: Our event handler is declared.

This handler we have just declared now needs to be called from our objects.

84 CHAPTER 6. THE XMILLUM PROTOTYPE

Figure 6.2: Using the discussed XSLT stylesheet, xmillum visualizes our data.

Since we would like to see where a block is split, it is not sufficient to invoke
the split action when the mouse button is pressed on the object. This is why
the handler provides not only one operation, but three of them:

split Split the object at the current location.

turn Change between a horizontal and a vertical split.

show Show using a horizontal or vertical line (depending on the current set-
ting), where a split would be made.

Listing 6.7 shows how these operations are called for the different types of
events: When the mouse pointer moves over an object, the show operation is
called, indicating where a split would be made. When the left mouse button is

6.2. COMPONENTS OF THE XMILLUM PROTOTYPE 85

clicked, the current object is split and when the right mouse button is clicked,
the direction of the split is changed. Our event handler needs to be specified
on all objects we want to be able to split.

58 <xmi:object name="frame-block" class="iiuf.xmillum.displayable.Block">
59 <param name="style" value="frame-style"/>
60

61 <param name="click1" value="split" opt="split"/>
62 <param name="click3" value="split" opt="turn"/>
63 <param name="over" value="split" opt="show"/>
64 </xmi:object>

Listing 6.7: The event handler is called for three possible operations.

Finally, a last change concerns the data in the layers: Since we do not want
our handler to split the transformed object, we need to associate to every ele-
ment the corresponding element in the original input data. This is done using
the ref attribute shown in listing 6.8. The temporary tmp:refvalue attribute is
a unique identifier that has been embedded by xmillum, as explained in sec-
tion 5.2.4.

96 <xmi:layer name="Threads">
97 <xsl:for-each select=".//thread">
98 <thread-block x="{@x}" y="{@y}" w="{@w}" h="{@h}" ref="{@tmp:refvalue}"/>
99 </xsl:for-each>

100 </xmi:layer>

Listing 6.8: The ref attribute contains a value that uniquely identifies the ele-
ment that generated every <thread-block>.

6.2 Components of the xmillum Prototype

The xmillum prototype is driven by the result of an XSL transformation. This
data structure has to comply to a particular format, part of which has already
been introduced in section 6.1.

An outline of this internal data structure is sketched in listing 6.9. All ele-
ments are defined in the xmillum namespace2.

2The namespace is http://xmillum.sourceforge.net.

http://xmillum.sourceforge.net

86 CHAPTER 6. THE XMILLUM PROTOTYPE

1 <?xml version="1.0" encoding="UTF-8"?>
2

3 <xmi:document classpath="..."
4 xmlns:xmi="http://xmillum.sourceforge.net">
5 · · · Styles · · ·
6 · · · Flag Sets · · ·
7 · · · Handlers · · ·
8 · · · Objects · · ·
9 · · · Tools · · ·

10 · · · Layers · · ·
11 </xmi:document>

Listing 6.9: xmillum’s internal structure.

The following sections show how each of the individual components of
xmillum’s internal data structure look like and how they are connected. For
the sake of textual coherence, the components are not described in the order in
which they appear in the internal data structure, but in an order which makes
most sense for the reader.

6.2.1 Layers

Document recognition data is often arranged in layers. The bottom layer is
the document image, onto which other layers are stacked, as illustrated in fig-
ure 6.3.

Figure 6.3: A document decomposed into three layers: document image,
blocks, and text lines.

The xmillum prototype allows to take advantage of this characteristic by

http://xmillum.sourceforge.net

6.2. COMPONENTS OF THE XMILLUM PROTOTYPE 87

offering the layers functionality. The data to present is organized in layers that
can be activated and deactivated individually. This enables the user to mask
out unwanted information in order to concentrate on pertinent information
only.

Listing 6.10 shows two layers in xmillum. The first layer is called Document
Image and the second one Text Blocks.

The content of the <xmi:layer> element cannot be described any further at
the moment. It depends upon the data we want to present. We will see how
this content looks like and how it is related to the other components of the
internal data structure in the next couple of sections.

1 <xmi:layer name="Document Image">
2 · · ·
3 </xmi:layer>
4

5 <xmi:layer name="Text Blocks">
6 · · ·
7 </xmi:layer>

Listing 6.10: Declaration of the two layers Document Image and Text Blocks.

6.2.2 Objects

Objects are the basic building blocks of xmillum’s data visualization. The goal
of the object declaration section is to define what plugin is used to draw an
item.

This is done by associating an object name to a Java class, as illustrated in
listing 6.11. After this declaration, every time an element named block appears
in one of xmillum’s layers, the Java class package.Block will be called to draw
the graphical object.

1 <xmi:object name="block" class="package.Block">
2 · · · Initialization Parameters · · ·
3 </xmi:object>

Listing 6.11: Declaration of an object class called block.

88 CHAPTER 6. THE XMILLUM PROTOTYPE

Usage of Declared Objects

Once an object is declared, it can be used to draw a graphical item in a layer.
This is illustrated in listing 6.12.

1 <xmi:layer name="Text Blocks">
2 <block x="100" y="28" w="324" h="74"/>
3 </xmi:layer>

Listing 6.12: An object block is drawn at (100,28).

The employed strategy is very simple: The xmillum prototype iterates over
all elements inside the layers and tries to match the element name with a de-
clared object. When a match is found, the corresponding plugin is called and
the element is passed to it.

Per-Instance Parameters

xmillum itself does not care about any attributes or children elements which
may be present in the element. However, since the element is passed to the
plugin, attributes and children elements may be used to pass parameters to the
plugin.

In the case of rectangular regions, for example, these parameters might con-
sist of the exact coordinates where the graphical object will be rendered. This
is also sketched in listing 6.12.

Initialization Parameters

Listing 6.11 mentions initialization parameters. In fact, it is important to note
that xmillum does not define the content of the <xmi:object> element. xmillum
only “sees” as far as to the <xmi:object> element and defines that there need to
be name and class attributes. Everything else is up to the plugin to define.

Listing 6.13 shows how such initialization parameters might typically look:
A style parameter is given in form of a key–value pair. This parameter will
be valid everywhere an object called block is used. In this precise example, all
block objects will be drawn using the style yellow-style.

6.2.3 Styles

Using styles, xmillum provides a uniform way of dealing with the description
of visual appearance. xmillum’s styles are similar to the styles concept in well-

6.2. COMPONENTS OF THE XMILLUM PROTOTYPE 89

1 <xmi:object name="block" class="package.Block">
2 <param name="style" value="yellow-style"/>
3 </xmi:object>

Listing 6.13: A plugin may require initialization parameters.

known applications such as word processors. A style is a set of visual attributes
and is identified by a unique name through which the individual components
of xmillum have access to them. The xmillum prototype does not provide hier-
archical styles as in word processors, where styles can inherit from other each
other, but this would be a quite straightforward extension.

A sample style is declared in listing 6.14. It is composed of a name identi-
fying it and an arbitrary number of parameters in the form of key–value pairs.
Table 6.1 lists all keys supported by the prototype and their meaning.

1 <xmi:style name="yellow-style">
2 <param name="background" value="yellow"/>
3 <param name="fill" value="true"/>
4 <param name="transparency" value="0.4"/>
5 </xmi:style>

Listing 6.14: Declaration of a style called yellow-style.

Emphasizing Objects

Styles are not only used for telling xmillum how a particular type of object
should be rendered, but also for telling it how to emphasize objects tagged with
a specific tag. For instance, imagine an application where the user is presented
all textual blocks of a newspaper document image and he is asked to select
the ones that represent article titles. In order to reflect the user’s selection,
the selected textual blocks need to be drawn with a style different from all the
unselected blocks. In this case, xmillum applies both styles, the original one as
well as the style associated to the tag. The second style modifies the desired
attributes of the original style.

An attribute especially implemented for this use is the hilight parameter:
It highlights the color of the original style and thus produces a style that very
well contrasts the original style.

90 CHAPTER 6. THE XMILLUM PROTOTYPE

Name Description
foreground, background: Foreground and background color.
xor: Use the exclusive–OR drawing mode

for drawing pixels.
fill : Specify the drawing of filled objects

rather than hollow ones.
hilight : Lights the current color in order to re-

sult a high-lighted version of it.
transparency: Draws transparently instead of solid.
fontfamily, -weight,
-slope, -size:

Specifies the font for textual objects.

textdirection: Allows left–to–right and right–to–left
text.

resolution: Resolution in dots–per–inch. Used for
calculating the pixel size of textual ob-
jects.

stroke-width : Specifies the width of strokes.

Table 6.1: All possible parameters of styles.

6.2.4 Flag Sets

Many document recognition operations consist in assigning labels to objects.
During the logical structure recognition, for example, objects are associated to
labels describing the role of these objects in the document. And a character
recognition process boils down to assigning the correct character-labels to ob-
jects.

The xmillum prototype provides native support for labels through the flag
set feature. A set of labels that can be assigned to objects is called a flag set.

To every label can be associated a style. If an object is flagged, it will be
redrawn immediately with the new style.

Listing 6.15 shows how a flag set is declared. A flag set called title-type
for labeling titles is defined. It contains the three labels chapter, section and
subsection. Chapter titles are drawn using the yellow-style style, sections using
blue-style and subsection using red-style.

Flags and Plugins

Flags are mainly useful for the implementors of plugins.
Whenever an object is labeled, an event is triggered. By subscribing to these

events, a plugin can react accordingly. A plugin that connect xmillum to an

6.2. COMPONENTS OF THE XMILLUM PROTOTYPE 91

1 <xmi:flag name="title-type">
2 <value name="chapter" style="yellow-style"/>
3 <value name="section" style="blue-style"/>
4 <value name="subsection" style="red-style"/>
5 </xmi:flag>

Listing 6.15: Definition of a flag set called title-type.

external classification engine, for instance, might use these events to feed the
objects selected by the user to the external engine for learning or recognition
purposes.

Instead of a real-time notification when a label changes, a plugin can also
get access to all objects labeled with a given label. This allows for interaction
scenarios such as “Select all objects you would like to correct and click Next to
go on.”

Selection, a Predefined Flag Set

There is a special, builtin flag set, the selection. It contains only one label and
is used by the xmillum prototype to keep track of the objects that are selected.
Therefore this flag set only contains one label, selected. All objects that are not
labeled with this label are unselected.

Associated to this label is a style that highlights the original style using the
hilight parameter from table 6.1.

6.2.5 Handlers

Up to now, we have dealt with visualization, as well as with some xmillum-
internal labeling. Since this thesis is about interactive document recognition,
there need to be means for modifying the data that is visualized. This is where
event handlers enter.

Event handlers have been created in the style of events in HTML. Whereas
in HTML events are handled by scripts (typically using the JavaScript lan-
guage), in xmillum an event handler is a plugin that gets called whenever an
event is triggered.

The <xmi:handler> element declares and configures a plugin so it is used
as an event handler. In listing 6.16, an event handler called popup is declared
whose code is in the plugin package.PopupMenu.

As with the other plugins in xmillum, the initialization parameters are de-
fined by every event handler. xmillum only defines the <xmi:handler> element

92 CHAPTER 6. THE XMILLUM PROTOTYPE

as well as the name and class attributes.

1 <xmi:handler name="popup" class="package.PopupMenu">
2 <param name="flag" value="type"/>
3 <param name="allow-clear" value="true"/>
4 </xmi:handler>

Listing 6.16: Declaration of an event handler popup.

At the source of the events is the xmillum environment. All events are
routed through the xmillum environment to the objects in question. The object
then invokes a handler if it is configured to do so.

An event handler, when it is called, has full access to all the internal data
structures of the xmillum prototype. It has therefore all the possibilities to
apply all kinds of modifications.

Supported Types of Events

Since all events are routed through the xmillum environment to the objects,
it is the environment that defines the types of events that are supported. The
xmillum prototype supports only the following couple of events:

click1. . . 3 Triggered when mouse button 1, 2 or 3 is clicked (i.e. pressed and
released within a given time t) inside the rectangular bounding box of an
object.

press1 . . . 3 Triggered when mouse button 1, 2 or 3 is pressed (i.e. not released
for a given time t) inside the rectangular bounding box of an object.

over Triggered when the mouse moves over the rectangular bounding box of
an object.

Events Triggered by Objects

Upon reception of an event, the objects are free to hand them on to handlers.
Since the xmillum environment only checks if the event has taken place inside
the rectangular bounding box of an object, an object which is not rectangular
might want to further analyze the exact location to decide if the event is really
relevant or not.

The handler that is then invoked by an object is typically defined at object
declaration time. Listing 6.17 shows an object that calls a handler declared

6.2. COMPONENTS OF THE XMILLUM PROTOTYPE 93

under the name popup when the user presses the left mouse button on the
object in question.

1 <xmi:object name="block" class="package.Block">
2 <param name="style" value="yellow-style"/>
3 <param name="press1" value="popup"/>
4 </xmi:object>

Listing 6.17: This object calls the popup handler when the left mouse button is
pressed on it.

Passing a Further Parameter to the Handler

As we have already seen in the correction application in section 6.1.2, there are
handlers that provide multiple actions.

In order to tell the handler what operation to invoke, a further parameter
needs to be sent to it. This is illustrated in listing 6.18. All mouse buttons
invoke the same event handler, but a different option parameter can be given
along with the event in order to decide what operation to invoke.

1 <xmi:object name="block" class="package.Block">
2 <param name="style" value="yellow-style"/>
3 <param name="press1" value="popup" opt="perform-operation-1"/>
4 <param name="press2" value="popup" opt="perform-operation-2"/>
5 <param name="press3" value="popup" opt="perform-operation-3"/>
6 </xmi:object>

Listing 6.18: All mouse buttons call the same event handler, but a different
operation can be chosen using the opt attribute.

Finding the Object that Triggered the Event

When a handler is called, it also receives the element that has triggered the
event. Since we are working on a transformed version of our XML data, this
information is not of much use. In order to be able to identify the element
in the original, untransformed input data, this information needs to be made
available somehow.

94 CHAPTER 6. THE XMILLUM PROTOTYPE

In section 5.2.4 we have explained how this is done in our prototype: When
the original XML data is read, a unique identifier is added to every element.
This is done in the form of the attribute tmp:refvalue. Listing 6.19 shows the
attributes that are added to input data when it is read in. This value is then
used as a link between the transformed version of our data and the original
XML data (explained in detail in section 5.2.4).

1 <document image="1-4-a-1.tif" tmp:refvalue="1">
2 <thread x="7" y="3" w="3915" h="3" tmp:refvalue="2"/>
3 · · ·
4 </document>

Listing 6.19: When an XML document is read, tmp:refvalue attributes with
unique values are added in order to identify every element.

6.2.6 Tools

The most flexible way of extending the xmillum prototype are tools. These
plugins can serve many different purposes, be it for the implementation of
custom views whenever the default WYSIWYG-style view is too restricting, for
interfacing xmillum to external programs (e.g. a recognition engine) or simply
for guiding a user through a well-defined interaction step.

The declaration of a tool that guides the user through an interactive object
labeling process is shown in listing 6.20. The plugin package.Wizard is used for
this purpose.

As already seen in the declaration of objects, only the <xmi:tool> element
is imposed by xmillum. Everything contained in this element is specific to the
tool and is for initializing it.

Similar to event handlers, tool are also granted full access to the internal
data structures of the xmillum prototype and can do therefore everything they
like to our XML data.

However, since tools are not invoked by xmillum events, they need imple-
ment their own event handling. Typically, a tool creates an additional window
and reacts on events concerning this window.

6.3 Plugins Implemented in the Prototype

This section presents the different plugins that have been implemented in the
prototype: (Graphical) Objects, Event Handlers and last but not least Tools.

6.3. PLUGINS IMPLEMENTED IN THE PROTOTYPE 95

1 <xmi:tool class="package.Wizard">
2 <step flag="type" value="title">
3 <prompt>Select title zones.</prompt>
4 </step>
5 <step flag="type" value="author">
6 <prompt>Select author zones.</prompt>
7 </step>
8 <step flag="type" value="abstract">
9 <prompt>Select abstract zones.</prompt>

10 </step>
11 </xmi:tool>

Listing 6.20: Declaration of a tool for guiding a user through a manual labeling
process.

6.3.1 Graphical Objects

Rectangular Blocks

For the presentation of document recognition results, the ability to visualize
simple rectangular blocks is without doubt one of the primary requirements.
Many basic document recognition algorithms result in such rectangular blocks:
bounding boxes of connected components, character, word and line segmenta-
tion, etc.

The plugin iiuf.xmillum.displayable.Block can be used to draw rectangu-
lar blocks with many visual attributes. Blocks are declared using the excerpt
shown in listing 6.21. The Block plugin takes several configuration parameters
in form of key–value pairs, the most important being the style parameter. It de-
fines the exact visual appearance of blocks drawn with particular instance of
this plugin. All other parameters define handlers that are called when specific
events occur. The list of all possible key–value pairs is presented in table 6.2.

1 <xmi:object name="character" class="iiuf.xmillum.displayable.Block">
2 <param name="style" value="character-style"/>
3 </xmi:object>

Listing 6.21: Declaration of the Block plugin.

A declared Block plugin can now be used as sketched in listing 6.22. The
top left coordinate as well as the width and height are given as x, y, w and h

96 CHAPTER 6. THE XMILLUM PROTOTYPE

Name Description
style Specifies the style to be used for ren-

dering this block. The style must be
declared before.

click1 . . . 3 Specifies the handler that is called
when mouse button 1 to 3 is clicked
(i.e. pressed and immediately re-
leased) on this rectangle.

press1 . . . 3 Specifies the handler that is called
when mouse button 1 to 3 is pressed
on this rectangle.

over Specifies the handler that is called
when the mouse button is over this
rectangle.

Table 6.2: The key–value pairs of the Block object.

attributes.

1 <xmi:layer name="My-Layer">
2 · · ·
3 <character x="· · ·" y="· · ·" w="· · ·" h="· · ·"/>
4 · · ·
5 </xmi:layer>

Listing 6.22: A declared block plugin takes four parameters describing the lo-
cation and size of the rectangle to visualize. The link between <character> and
the Block plugin is the object name character from listing 6.21.

Bitmap Image

Using the graphical object iiuf.xmillum.displayable.Image, bitmap images can
be visualized in xmillum. Image is a requirement for creating WYSIWYG
views.

Using a standard install of the Java Virtual Machine, only GIF and JPEG
images (PNG and JPEG since Java 1.4) can be read. In the document recog-
nition domain, other image formats are more common (e.g. TIFF for scanned
documents), Image optionally uses JAI, the Java Advanced Imaging Toolkit3, a

3JAI is available at http://java.sun.com/products/java-media/jai/

http://java.sun.com/products/java-media/jai/

6.3. PLUGINS IMPLEMENTED IN THE PROTOTYPE 97

Java add-on from Sun. JAI enlarges Java by a significant quantity of additional
image formats as well as a huge library of image processing operations. On the
Sparc and Intel i386 platforms, JAI even uses native implementations of some
operations, what speeds them up significantly compared to their pure Java
counterpart. The use of natively accelerated operations is completely transpar-
ent, i.e. if JAI is properly installed and on a platform where native processing
is supported, image are automatically processed using the native versions of
the image processing operations.

If JAI is installed, xmillum uses it for reading images and for scaling them,
if it is not, only the stock Java classes are used.

The Image class is declared using the excerpt shown in listing 6.23. It takes
an optional parameter visible, which defaults to true. If visible is set to false,
the image will be invisible. In some situations, this can be a useful feature.

1 <xmi:object name="image" class="iiuf.xmillum.displayable.Image">
2 <param name="visible" value="true"/>
3 </xmi:object>

Listing 6.23: The Image object can be declared with the optional visible param-
eter.

Once declared, the Image object is used as presented in listing 6.24. The src
attribute is a URL pointing to the image to visualize. This URL is relative to the
location of the original XML file (i.e. the XML file that is viewed). If instead of
the attribute src, the attribute asksrc is present, a dialog pops up and asks the
user to choose an image to visualize.

1 <xmi:layer name="My-Layer">
2 · · ·
3 <image src="any-image.tif"/>
4 · · ·
5 </xmi:layer>

Listing 6.24: The src attribute contains the URL of the image to show.

By default, images are drawn at the top left corner. Using the x and y at-
tributes, it is possible to change the location of the image.

98 CHAPTER 6. THE XMILLUM PROTOTYPE

Polygon

As the name suggests, the plugin iiuf.xmillum.displayable.Polygon allows to
draw arbitrary polygons. A sample declaration is shown in listing 6.25. The
polygon plugin takes exactly the same parameters as the Block plugin for
drawing rectangles (see table 6.2).

1 <xmi:object name="polygon" class="iiuf.xmillum.displayable.Polygon">
2 <param name="style" value="any-style"/>
3 </xmi:object>

Listing 6.25: The Polygon plugin and its most important parameter.

Since an actual polygon is defined by an arbitrary number of vertices, the
coordinates therefore need to be given differently than with the plugins seen
so far. Listing 6.26 shows how the coordinates of the vertices are passed to the
Polygon plugin.

1 <xmi:layer name="My-Layer">
2 · · ·
3 <polygon>
4 <point x="· · ·" y="· · ·"/>
5 <point x="· · ·" y="· · ·"/>
6 <point x="· · ·" y="· · ·"/>
7 · · ·
8 </polygon>
9 · · ·

10 </xmi:layer>

Listing 6.26: Every Polygon requires an arbitrary number of points.

Text Block

The iiuf.xmillum.displayable.TextArea allows to visualize text blocks. It writes
text into a rectangular area.

The TextArea plugin is declared as illustrated in listing 6.27. It takes the
same parameters as the Block plugin (see table 6.2), the most important being
the style parameter. In the style, the exact font characteristics are described
(refer to table 6.1).

6.3. PLUGINS IMPLEMENTED IN THE PROTOTYPE 99

1 <xmi:object name="text" class="iiuf.xmillum.displayable.TextArea">
2 <param name="style" value="title-text"/>
3 </xmi:object>

Listing 6.27: Declaration of the TextArea plugin.

In listing 6.28, an invocation of the TextArea plugin is shown. The four
attributes x, y, w and h describe the rectangle containing the text, while the text
attribute contains the text to write.

1 <xmi:layer name="My-Layer">
2 · · ·
3 <text text="Write this text." x="· · ·" y="· · ·" w="· · ·" h="· · ·"/>
4 · · ·
5 </xmi:layer>

Listing 6.28: The text to render by the TextArea plugin is passed in the text
attribute.

6.3.2 Event Handlers

Select

As introduced in section 6.2.4, xmillum supports the concept of a selection.
This means that objects can be selected and deselected. Whenever the selection
changes, all plugins that are interested in this kind of change are notified. This
can be used to have multiple views of the same data among which the selection
is synchronized. Selecting an object in one view will automatically select it in
the other view and vice-versa.

The handler iiuf.xmillum.handlers.Select changes the selection state of an
object. It’s use is straightforward, as illustrated in listing 6.29. This listing
makes all objects of type block selectable.

PopupFlagger

The iiuf.xmillum.handlers.PopupFlagger event handler allows a user to label
objects using a simple popup menu such as shown in figure 6.4. The possible
labels are given in a flag set as introduced in section 6.2.4.

100 CHAPTER 6. THE XMILLUM PROTOTYPE

1 <xmi:handler name="select" class="iiuf.xmillum.handlers.Select"/>
2

3 <xmi:object name="block" class="iiuf.xmillum.displayable.Block">
4 <param name="style" value="my-style"/>
5 <param name="click1" value="select"/>
6 </xmi:object>

Listing 6.29: Usage of the Select handler.

Figure 6.4: The PopupFlagger allows to label objects with a popup menu.

Listing 6.30 shows a sample usage of the plugin. Lines 1 to 5 declare a
flag set called type, that contains three different flags with their corresponding
styles. The declaration of the plugin is given in lines 7 to 10, where the before-
mentioned flag set is referenced using the flag parameter. The PopupFlagger
plugin constructs its menu according to the flag values of this flag set. The
allow-clear parameter tells the plugin to add a menu entry that removes all
flags from the object in question. Finally, line 14 tells xmillum to call the Pop-
upFlagger whenever mouse button 3 is pressed on an object.

Once set, the labels can be collected by other xmillum plugins. For instance,
it would be possible to use this information for training recognition algorithms.

Info

The plugin iiuf.xmillum.handlers.Info works in conjuction with another plu-
gin, the iiuf.xmillum.tool.InfoWindow tool.

The InfoWindow tool and the Info are used to show a simple informational
message in a window. The window is opened by the InfoWindow tool. The

6.3. PLUGINS IMPLEMENTED IN THE PROTOTYPE 101

1 <xmi:flag name="type">
2 <value name="title" style="title-style"/>
3 <value name="author" style="author-style"/>
4 <value name="abstract" style="abstract-style"/>
5 </xmi:flag>
6

7 <xmi:handler name="popup" class="iiuf.xmillum.handlers.PopupFlagger">
8 <param name="flag" value="type"/>
9 <param name="allow-clear" value="true"/>

10 </xmi:handler>
11

12 <xmi:object name="block" class="iiuf.xmillum.displayable.Block">
13 <param name="style" value="default-style"/>
14 <param name="press3" value="popup"/>
15 </xmi:object>

Listing 6.30: Usage of the PopupFlagger plugin.

Info handler is then used to send messages to that window. Figure 6.5 shows
an example of such a message.

Figure 6.5: A message shown using the Info handler.

Listing 6.31 shows how the Info handler is used. Line 1 defines a window
called my-window used to display messages sent from the handler. Lines 3 to 5
define the handler that sends the messages. In line 9, this handler is referenced.
It will be called whenever the mouse pointer moves over a block object. Lines 14
and 15, eventually, show an object that triggers the handler. The text that is
shown is given in the info attribute of the element. Whenever the mouse pointer
moves over such an object, a message such as shown in figure 6.5 appears.

Split

The iiuf.xmillum.handlers.Split handler is tailored to a very specific applica-
tion, unlike the general-purpose handlers presented so far. Suppose that you

102 CHAPTER 6. THE XMILLUM PROTOTYPE

1 <xmi:tool class="iiuf.xmillum.tool.InfoWindow" name="my-window"/>
2

3 <xmi:handler name="info" class="iiuf.xmillum.handlers.Info">
4 <param name="name" value="my-window"/>
5 </xmi:handler>
6

7 <xmi:object name="block" class="iiuf.xmillum.displayable.Block">
8 <param name="style" value="default-style"/>
9 <param name="over" value="info"/>

10 </xmi:object>
11

12 <xmi:layer name="Zones">
13 <xsl:for-each select="paragraph">
14 <block x="{@x}" y="{@y}" w="{@width}" h="{@height}"
15 info="Paragraph at {@x}, {@y}"/>
16 </xsl:for-each>
17 </xmi:layer>

Listing 6.31: Declaration and use of the Info handler and InfoWindow tool.

have a document that is segmented into rectangular blocks representing para-
graphs, text lines, words etc. Some of these blocks may be incorrectly seg-
mented and you might want to correct such errors directly on the document.
The Split handler allows you to do exactly this: You may choose visually what
blocks you want to split and where exactly you want to split them.

Figure 6.6: The Split handler allows to split blocks along a separation line.

Figure 6.6 shows the handler in action. When the mouse pointer moves
over the block in question, a line appears showing where the block will be split
in two. A click on the left mouse button then splits the block in two.

As illustrated in listing 6.32, this handler does not require any initialization
parameters when it is declared. However, referencing the handler is somewhat
special compared to the handlers seen so far. We want this handler to become

6.3. PLUGINS IMPLEMENTED IN THE PROTOTYPE 103

active when the mouse pointer is over the block in question (for drawing the
separation line), but also when the mouse button is clicked (for splitting the
block). This means that the same handler is called for different purposes. In
order to tell the handler what it needs to do, we have added the opt attribute to
the <param> element. It is a simple parameter that is passed to the handler. In
lines 5 to 7, the handler is referenced with the three parameters split, turn and
show. The split parameter tells it to split the current block. The turn switches
between vertical and horizontal splitting. This switch is done when the right
mouse button is clicked. Finally, using the show parameter, the separation line
is drawn whenever the mouse pointer is over a block.

1 <xmi:handler name="split" class="iiuf.xmillum.handlers.Split"/>
2

3 <xmi:object name="block" class="iiuf.xmillum.displayable.Block">
4 <param name="style" value="default-style"/>
5 <param name="click1" value="split" opt="split"/>
6 <param name="click3" value="split" opt="turn"/>
7 <param name="over" value="split" opt="show"/>
8 </xmi:object>
9

10 <xmi:layer name="Zones">
11 <xsl:for-each select="line">
12 <block x="{@x}" y="{@y}" w="{@width}" h="{@height}"
13 ref="{@tmp:refvalue}"/>
14 </xsl:for-each>
15 </xmi:layer>

Listing 6.32: Using the Split handler.

When the Split handler is called to split a block, it looks up the element
referenced by the ref attribute. The size of the two new blocks is then calculated
and the blocks are inserted into the XML structure. xmillum is then asked to
rerun the XSLT transformation in order for the change also to be reflected in
the transformed structure.

This handler is a proof of concept implementation. It shows that it is pos-
sible to use xmillum for manually correcting segmentation results. For a real
application, it would need to be enhanced in several ways. For instance, it
does not take into account the location of children elements of the element that
is split. If a block representing a paragraph is split, all children of this block
end up in one of the resulting partial blocks. If the children are text lines,
they should end up in one block or the other depending on their location. In

104 CHAPTER 6. THE XMILLUM PROTOTYPE

some circumstances, it might even be desirable to recursively split elements
contained in the block to split. The exact specifications depend on the applica-
tion in question.

6.3.3 Tools

XMLTree

The iiuf.xmillum.tool.XMLTree plugin is a very basic example of an additional
view. It shows part of the original data structure in form of a tree, such as
shown in figure 6.7. The XMLTree keeps the selections in the two views syn-
chronized, selecting an element in the tree will automatically select it in the
WYSIWYG view and vice-versa.

Figure 6.7: The XMLTree gives access to the original data structure in form of
a tree.

The XMLTree tool is used as shown in listing 6.33. It offers the follow-
ing possibilities: The start attribute is a pointer to the root node of the tree.
This allows for partial trees of the original XML structure to be represented.
showattributes instructs XMLTree to also show attributes in the tree. If showat-
tributes is 0 (zero), only elements are present in the tree. Finally, if attributes are

6.3. PLUGINS IMPLEMENTED IN THE PROTOTYPE 105

shown, not necessarily all attributes are useful. The filter attribute is a comma-
separated list of attributes you do not wish to include in the XMLTree.

1 <xmi:tool class="iiuf.xmillum.tool.XMLTree"
2 start="{@tmp:refvalue}"
3 showattributes="1"
4 filter="id"/>

Listing 6.33: Using the XMLTree tool.

LabelWizard

The iiuf.xmillum.tool.LabelWizard tool has the same goal as the PopupFlagger
handler seen in section 6.3.2, but it works differently. Instead of showing the
user all choices in a popup menu, the labeling of objects is done step by step one
class at a time using a Wizard-like user interface, hence the name. Figure 6.8
shows a simple dialog shown by this tool. Objects that are selected while this
message is shown are tagged as title. A click on the Next button takes the user
to the next message and then selected objects will be tagged differently.

Figure 6.8: The LabelWizard asks the user to select objects of a given type.

The LabelWizard tool is used as shown in listing 6.34. Every step is mod-
eled in a <step> element. For instance, lines 2 to 4 tell our tool that all selected
objects should be tagged with the flag title of the flag set type while the user is
shown a textual message asking him to select the title zones.

Of course, in order to work, the LabelWizard tool requires a correctly de-
clared flag set. Also, it requires object selections to be set up. This can be done
using the Select handler presented in section 6.3.2. The LabelWizard tool has
access to the internals of xmillum where it intercepts changes in the selection
state of objects and acts accordingly. No handler is required here.

106 CHAPTER 6. THE XMILLUM PROTOTYPE

1 <xmi:tool class="iiuf.xmillum.tool.LabelWizard">
2 <step flag="type" value="title">
3 <prompt>Select title zone(s).</prompt>
4 </step>
5 <step flag="type" value="author">
6 <prompt>Select author zone(s).</prompt>
7 </step>
8 <step flag="type" value="abstract">
9 <prompt>Select abstract zone(s).</prompt>

10 </step>
11 </xmi:tool>

Listing 6.34: Initialization of the LabelWizard tool.

Hottable

As the name suggests, the iiuf.xmillum.tool.Hottable tool allows to show hot
objects in tabular form. It provides the user with a shortcut to interesting ob-
jects. It could for example be used to show the user a list of all objects whose
recognition confidence value is less than a given threshold. These objects are
then to be inspected manually by the user. Figure 6.9 shows a sample table
produced by the Hottable tool.

Figure 6.9: The Hottable tool shows objects in tabular form.

Listing 6.35 shows how the Hottable tool is used. The columns attribute in
line 2 lists the columns the table will be composed of. Every row is then given
with a <row> element and the chosen attributes. Using the <xsl:for-each>
instruction in line 3, we iterate over all paragraphs whose confidence value is

6.3. PLUGINS IMPLEMENTED IN THE PROTOTYPE 107

less than 80% 4. Of these paragraphs, the x any y coordinates as well as the
32 first characters of the contained text will be shown in our table.

1 <xmi:tool class="iiuf.xmillum.tool.Hottable"
2 columns="x,y,text">
3 <xsl:for-each select="paragraph[@confidence < 0.8]">
4 <row x="{@x}" y="{@y}"
5 text="{substring(text(), 1, 32)}"
6 ref="{@tmp:refvalue}"/>
7 </xsl:for-each>
8 </xmi:tool>

Listing 6.35: Initialization of the Hottable tool.

The Hottable tool also keeps track of object selections and synchronizes
them with the main view of xmillum.

4The < character may not appear in XSLT expressions, which is why it needs to be written as
<.

108 CHAPTER 6. THE XMILLUM PROTOTYPE

Chapter 7

Conclusion and Perspective

The main result of this thesis is without doubt the xmillum prototype, which
is a rather simple but nonetheless powerful tool. This chapter presents other
projects using xmillum, it gives possible directions for further research and
improvements and it summarized the accomplished work.

7.1 xmillum in other Projects

This thesis presents an attempt at creating a modular and reusable software
framework for interactive document recognition. The result, xmillum, in itself
is very useful as a visualization tool, but, only integrated into another applica-
tions, it can show its full potential.

The next couple of sections present projects that benefit from the use of
xmillum.

7.1.1 2(CREM)

The 2(CREM) project of Lyse Robadey [61] has already been briefly presented
in section 2.2.8. It is a general classification technique that makes use of user in-
put to incrementally and interactively build document models. The approach
has not only proved to be capable of labeling physical document objects with
logical tags, but also to merge consecutive text lines into blocks, a not so com-
mon use of a general classification technique.

In order to prove the feasibility of the classification technique, a flexible tool
for visualizing the different aspects of document objects was required. This tool
also needed to be capable of handling classification requests made by the user.

109

110 CHAPTER 7. CONCLUSION AND PERSPECTIVE

Since the 2(CREM) approach builds the underlying document model in an in-
cremental manner, every classification change made by the user may modify
the document model in such a way that it affects the classification of other ob-
jects. In other words, by manually classifying an object, the classes of the other
objects may change immediately because the old classifications no longer re-
spect the new document model. This suggests that the 2(CREM) user interface
be online, that is, directly connected to the 2(CREM) engine. This allows to
send all classification actions made by the user to the 2(CREM) engine and to
update the visualization accordingly to reflect the changed situation.

All requirements can be fully satisfied by xmillum: The visualization of
different types of document objects can be solved with the appropriate XSLT
stylesheets. For interfacing the user interface with the 2(CREM) engine, an
xmillum tool has been developed. It presents two lists, one containing all the
object elements to classify and the other containing the available classes. Se-
lecting an element in one list automatically selects its class in the other list. At
the same time, xmillum’s main view scrolls to the element in question, showing
the user where this element is located on the document image. The class can
be changed by simply clicking on the new class. This change is then sent to the
2(CREM) engine, which integrates it into its document model and reclassifies
the other elements according to the new model.

The resulting application demonstrates the power of xmillum: Creating a
user interface especially for 2(CREM) from scratch would have been a very
time-consuming task. With xmillum, many subtasks (e.g. the visualization)
were already solved, it was only necessary to add a relatively small compo-
nent which interfaces xmillum with the 2(CREM) engine. This allows to con-
centrate on the main problem at hand, in the present example the creation of
the 2(CREM) engine. It can be said that the development of the 2(CREM) pro-
totype did heavily benefit from xmillum. Without doubt, the same is also true
the opposite way around: xmillum would probably not have all the features it
currently offers had it not been used for 2(CREM).

7.1.2 Edelweiss

The idea of Nicolas Roussel’s Edelweiss [63] was to create an environment for
making document recognition services available through the Web.

Edelweiss was one of the first attempts of solving the document recognition
problem with Web Services. While at that time, the term “Web Services” did
not yet resound throughout the land, the underlying concepts were already
known at the time Edelweiss was created.

In Edelweiss, document processing chains are described in an XML struc-
ture called eDocument. An eDocument defines the source of the document to

7.1. XMILLUM IN OTHER PROJECTS 111

process, as well as the individual elementary document processing operations
called jobs. eDocuments are stored in repositories, from where they are fetched
by schedulers to execute part of the processing chain. In Edelweiss, all resources
are addressed using URLs and data is transferred over HTTP. Thus, reposito-
ries are simply web servers serving eDocuments as well as source documents
and schedulers are elementary document processing modules capable of fetch-
ing their input from web servers.

xmillum is integrated in Edelweiss as a document viewer for all types of
data produced by the system. By using xmillum instead of an especially crafted
viewer, more time could be invested on the other components of Edelweiss,
while at the same time a very customizable viewer was provided.

7.1.3 DocMining

A very ambitious project using the xmillum framework is DocMining [13], a
collaborative effort of the DocMining Consortium. The consortium consists of
France Telecom R&D and four academic institutions in France and Switzer-
land.

The aim of DocMining is to create a general document interpretation frame-
work for processing large numbers of heterogeneous documents involving not
only textual components, but also graphical objects. Such systems tailored
to very specific applications and domains exist, however, adapting them to
other domains is a major effort because they rely largely on domain knowl-
edge. DocMining tries to overcome this problem by offering a flexible plugin
oriented architecture. Domain knowledge may be included in plugins, but it is
not included in the platform itself.

The DocMining platform can best be characterized with the following key
features:

Document-centered All communication goes through the document. All data
that is produced during a processing stage is put into the document.
This allows communication between processing stages without an out-
side communication channel.

Plugin architecture New elementary processing stages may be integrated into
the system in the form of plugins.

Scenario-based Know-how is stored in the form of scenarios. These are sim-
ply programs that describe the sequence of processings that need to be
applied to a given type of document in order to achieve a goal.

In the DocMining project, xmillum is the key user interface component. It
is used for two tasks: For controlling the DocMining engine (also called the

112 CHAPTER 7. CONCLUSION AND PERSPECTIVE

controller) and for the visualization of results. The controller is responsible for
executing scenarios and for managing data and access to the data.

The xmillum framework has been chosing for this project mainly because
of its extensibility. Many DocMining extensions to xmillum are currently being
implemented.

7.1.4 PLANET

In his project PLANET [31, 32] (short for Physical Layout Analysis of Com-
plex Structured Arabic Documents Using Artificial Neural Nets), Karim Had-
jar tackles the layout analysis problem using neural networks.

In this project, xmillum is used for training the neural network by correct-
ing over- and undersegmentation. Custom plugins have been developed for
this purpose. The project benefits from the robust visualization possibilities of
xmillum.

7.2 Future Work

7.2.1 XML Schemas and Plugins Exporting Their Interfaces

In xmillum, as it is presented in this thesis, it is very difficult to verify the va-
lidity of the internal XML format. The reason for this is that the internal format
depends on the plugins that are used. Every plugin requires its data in its own
specific format, and there is no way for xmillum to know these requirements.

It would be an interesting project to have all plugins export their require-
ments on the input data. This can be considered like part of a contract as advo-
cated in Bertrand Meyer’s Design by Contract software development method-
ology [53]: The plugin works if the input data meets given criteria. Doing so
would allow the internal structure to be validated instead of having every plu-
gin do the work.

The interesting part is how this requirements should be presented. Since
there are techniques for validating XML structures, the idea to use these tech-
niques is straightforward.

At the beginning of the work on this thesis, the only method available for
describing and validating XML structures was the DTD (Document Type Defi-
nition), which lacks many important features. For instance, DTDs do not sup-
port the notion of types. Content is simply content, it is impossible to restrict it
any further. From the point of view of xmillum, the most important deficiency
of DTDs, however are the lack of Namespaces support.

7.2. FUTURE WORK 113

Later on during the work on this thesis, another technique for represent-
ing XML grammars became known: XML Schemas [80, 81, 82]. XML Schemas
solve many of the problems of DTDs. Using XML Schemas, it is possible to
restrict the content of elements and attributes using elementary data types (in-
tegers, strings etc.). Based on these types, new types can be declared. XML
Schemas also fully support XML Namespaces, making it possible to mix dif-
ferent grammars from different Namespaces, while retaining the possibility to
validate the structure. But, the best of all is that XML Schemas are XML docu-
ments themselves and as such can be processed just like other XML documents.

Using XML Schemas, it should be possible to use a unique Namespace for
every plugin and a corresponding XML Schema to validate content.

7.2.2 Generalizing xmillum

Considering how well xmillum works for presenting data from a very specific
domain, it might be desirable to apply it also to other domains.

Clearly, given the early efforts around the Extensible Stylesheet Language
(XSL), the idea of having one program or technology to visualize most or all
kinds of XML data is hardly new. However, considering how long it took until
half-decent implementations of XSL (especially the XSL-FO part) were show-
ing up, the chosen approach of creating a huge vocabulary for specifying the
formatting semantics has probably not been the most effective of approaches.

xmi relies on external plugins that offer a specific service. Given the right
plugins, the xmillum approach should allow to visualize virtually all kinds of
data. But, doing so will also put other decisions of xmillum in question. For
instance, the layered structure of xmillum visualizations is very well suited
for presenting document recognition data, but it may be troublesome for other
domains.

No doubt using xmillum in other domains does not just imply new plugins,
but also more far-reaching changes.

7.2.3 Hierarchical Nature of XSLT

The XML language is very well suited for hierarchical structures. More com-
plex structures, such as graphs-like structures can be represented, but doing
so quickly gets messy. The same holds for transformation rules formulated in
XSLT.

For some documents, the hierarchy is not the most natural structure. This
is true especially for intermediary document recognition data which is not yet
completely structured, but laid out two-dimensionally.

114 CHAPTER 7. CONCLUSION AND PERSPECTIVE

Having another data format such as XML, but which is better suited for
data not structured hierarchically, might help for working with such data.

7.2.4 Code, Code, Code

xmillum is a prototype that may be useful for very specific applications. How-
ever, in order to serve a larger public, it needs to be extended. To facilitate
this, the whole xmillum code has been published at SourceForge, the world’s
largest Open Source software development website 1. Everybody is invited to
contribute!

7.3 Accomplished Work

We have discussed aspects of document recognition in general and aspects and
motivations for interactive document recognition in particular.

We have shown how the family of XML technologies and a modern pro-
gramming language such as Java can be combined to create a modular visual-
ization and editing system for interactive document recognition. The resulting
xmillum prototype is a proof of concept quality software package with many
possibilities for improvements and extensions. It shows that our approach is
feasible once XML document recognition data is available.

1The URL to the xmillum project is http://xmillum.sourceforge.net

http://xmillum.sourceforge.net

Bibliography

[1] Marc Abrams, Constantinos Phanouriou, Alan L. Batongbacal,
Stephen M. Williams, and Jonathan E. Shuster. UIML: An Appliance-
Independent XML User Interface Language. In Proceedings of the Eighth
International World-Wide Web Conference, 1999.

[2] Oronzo Altamura, Floriana Esposito, and Donato Malerba. Transform-
ing Paper Documents into XML Format with WISDOM++. International
Journal on Document Analysis and Recognition, 4(1):2–17, 2001.

[3] European Computer Machinery Association. ECMAScript Language Spec-
ification. European Computer Machinery Association, June 1997.

[4] Antoine Azokly. Une approche générique pour la reconnaissance de la struc-
ture physique de documents composites. PhD thesis no. 1076, University of
Fribourg, 1995.

[5] H. S. Baird. Feature Identification for Hybrid Structural/Statistical Pattern
Classification. In Proceedings, CVPR ’86 (IEEE Computer Society Conference
on Computer Vision and Pattern Recognition, Miami Beach, FL, June 22–26,
1986), IEEE Publ.86CH2290-5, pages 150–155. IEEE, 1986.

[6] Henry S. Baird. The Skew Angle of Printed Documents. In Proceed-
ings of the Conference of the Society of Photographic Scientists and Engineers,
Rochester, New York, May 1987.

[7] Frédéric Bapst. Reconnaissance de documents assisté: architecture logicielle et
intégration de savoir-faire. PhD thesis, University of Fribourg, 1998.

[8] T. Berners-Lee, R. Fielding, U. C. Irvine, and L. Masinter. Uniform Re-
source Identifiers (URI): Generic syntax. Technical report, RFC 2396, Au-
gust 1998. http://www.ietf.org/rfc/rfc2396.txt.

115

http://www.ietf.org/rfc/rfc2396.txt

116 BIBLIOGRAPHY

[9] L. Bottou, P. Haffner, P. G. Howard, P. Simard, Y. Bengio, and Y. LeCun.
High Quality Document Image Compression with DjVu. Journal of Elec-
tronic Imaging, 1998.

[10] David Brownell. SAX2. O’Reilly & Associates, Inc., Cambridge, MA, 2002.

[11] Rolf Brugger. Eine statistische Methode zur Erkennung von Dokumentstruk-
turen. PhD thesis, University of Fribourg, 1995.

[12] R. Cattoni, T. Coianiz, S. Messelodi, and C. M. Modena. Geometric Lay-
out Analysis Techniques for Document Image Understanding: A Review.
ITC-IRST 9703-09, 1998.

[13] Eric Clavier, Gerald Masini, Maurizio Rigamonti, Karl Tombre, and Joel
Gardes. DocMining: A Cooperative Platform for Heterogeneous Docu-
ment Interpretation According to User-Defined Scenarios. In GREC’03:
IAPR Workshop on Graphics Recognition, pages 21–32, Barcelona, Spain, July
2003.

[14] T. M. Cover and P. E. Hart. Nearest Neighbor Pattern Classification. IEEE
Transactions on Information Theory, 13:21–27, 1967.

[15] Danny Coward and Yutaka Yoshida. Java Servlet Specification Version 2.4.
Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California
95054, USA, November 2003.

[16] Chris Cracknell and Andy C. Downton. A Handwriting Understand-
ing Environment (HUE) for Rapid Prototyping in Handwriting and Doc-
ument Analysis Research. In ICDAR’99: Fifth International Conference
on Document Analysis and Recognition, pages 362–365, Bangalore, India,
September 1999.

[17] Andreas Dengel, Rainer Bleisinger, Rainer Hoch, Frank Hönes, Michael
Malburg, and Frank Fein. Officemaid – a system for office mail analysis,
interpretation and delivery. In A. Lawrence Spitz and Andreas Dengel,
editors, International Association for Pattern Recognition Workshop on Docu-
ment Analysis Systems, volume 14 of Series in machine perception and artificial
intelligence, P. O. Box 128, Farrer Road, Singapore 9128, 1995. World Scien-
tific Publishing Co. Pte. Ltd.

[18] Andreas Dengel, Rainer Hoch, Frank Hönes, Thorsten Jäger, Michael
Malburg, and Achim Weigel. Techniques for improving ocr results. In
H. Bunke and P. S. Wang, editors, Handbook of Character Recognition and
Document Image Analysis, chapter 8, pages 227–258. World Scientific, 1997.

BIBLIOGRAPHY 117

[19] Andreas R. Dengel and Bertin Klein. smartFIX: A Requirements-Driven
System for Document Analysis and Understanding. In DAS’2002: 5th In-
ternational Workshop on Document Analysis Systems, number 2423 in Lecture
Notes in Computer Science, pages 433–444. Springer, August 2002.

[20] P. A. Devijver and J. Kittler. Pattern Recognition: A Statistical Approach.
Prentice Hall, 1982. DEVIJVER82.

[21] T. Dierks and C. Allen. RFC 2246: The TLS protocol version 1, January
1999. Status: PROPOSED STANDARD.

[22] Dov Dori, David Doermann, Christian Shin, Robert Haralick, Ihsin
Phillips, Mitchell Buchman, and David Ross. The Representation of Doc-
ument Structure: A Generic Object-Process Analysis. In H. Bunke and
P. S. Wang, editors, Handbook of Character Recognition and Document Image
Analysis, chapter 16, pages 421–456. World Scientific, 1997.

[23] Philippe Dosch, Karl Tombre, Christian Ah-Soon, and Gérald Masini. A
Complete System for the Analysis of Architectural Drawings. International
Journal on Document Analysis and Recognition, 3(2):102–116, 2000.

[24] Richard Duda and Peter Hart. Pattern Recognition and Scene Analysis. John
Wiley and Sons, 1973.

[25] International Organization for Standardization. ISO 8879:1986: Informa-
tion processing — Text and office systems — Standard Generalized Markup Lan-
guage (SGML). International Organization for Standardization, Geneva,
Switzerland, August 1986.

[26] International Organization for Standardization. ISO 8613:1994: Informa-
tion processing - Text and office systems - Office Document Architecture (ODA)
and interchange format. International Organization for Standardization,
Geneva, Switzerland, 1994.

[27] International Organization for Standardization. ISO/IEC 10179:1996: In-
formation technology — Processing languages — Document Style Semantics
and Specification Language (DSSSL). International Organization for Stan-
dardization, Geneva, Switzerland, 1996.

[28] A. O. Freier, P. Karlton, and P. C. Kocher. The SSL protocol — version 3.0,
March 1996. Internet draft draft-freier-ssl-version3-01.txt.

[29] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley,
Massachusetts, 1995.

118 BIBLIOGRAPHY

[30] C. Lee Giles, Kurt D. Bollacker, and Steve Lawrence. CiteSeer: An Au-
tomatic Citation Indexing System. In DL’98: Proceedings of the 3rd ACM
International Conference on Digital Libraries, pages 89–98, 1998.

[31] Karim Hadjar and Rolf Ingold. Arabic Newspaper Page Segmentation.
In ICDAR’03: Seventh International Conference on Document Analysis and
Recognition, Edinburgh, Scotland, August 2003.

[32] Karim Hadjar and Rolf Ingold. Physical Layout Analysis of Complex
Structured Arabic Documents Using Artificial Neural Nets. In DAS’2004:
International Workshop on Document Analysis Systems, pages 170–178, Flo-
rence, Italy, September 2004.

[33] P. V. C. Hough. Methods and Means to Recognize Complex Patterns. U.S.
Patent 3,069,654, 1962.

[34] T. Hu and R. Ingold. A Mixed Approach toward an Efficient Logical Struc-
ture Recognition from Document Images. In Christoph Hüser, Wiebke
Möhr, and Vincent Quint, editors, Proceedings of the Fifth International
Conference on Electronic Publishing, Document Manipulation and Typography,
13–15 April, 1994, Darmstadt, Germany, volume 6(4) of Electronic Publish-
ing—Origination, Dissemination, and Design, pages 457–468, New York, NY,
USA; London, UK; Sydney, Australia, 1993. John Wiley and Sons.

[35] Tao Hu. New Methods for Robust and Efficient Recognition of the Logical Struc-
tures in Documents. PhD thesis, University of Fribourg, 1994.

[36] Matthew Hurst. Layout and Language: Challenges for Table Understand-
ing on the Web. In Apostolos Antonacopoulos and Jianying Hu, editors,
Proceedings on the First International Workshop on Web Document Analysis.
Seattle, USA, 2001.

[37] Adobe Systems Inc. PDF Reference. Addison-Wesley, second edition, 2000.

[38] Adobe Systems Incorporated. PostScript Language Reference. Addison-
Wesley, Reading, MA, USA, third edition, 1999.

[39] Adobe Systems Incorporated. PDF Reference: Adobe Portable Document For-
mat, version 1.4. Addison-Wesley, Reading, MA, USA, third edition, 2001.

[40] Rolf Ingold. Structures de documents et lecture optique: une nouvelle approche.
Presses Polytechniques Romandes, 1990.

[41] Min-Chul Jung, Yong-Chul Shin, and Sargur N. Srihari. Multifont Classi-
fication using Typographical Attributes. In ICDAR’99: Fifth International

BIBLIOGRAPHY 119

Conference on Document Analysis and Recognition, pages 353–356, Banga-
lore, India, September 1999.

[42] Tapas Kanungo. Document Degradation Models and a Methodology for Degra-
dation Model Validation,. PhD thesis, University of Washington, 1996.

[43] Tapas Kanungo, Chang H. Lee, Jeff Czorapinski, and Ivan Bella. TRUE-
VIZ: a Groundtruth/Metadata Editing and Visualizing Toolkit for OCR.
In Proceedings of SPIE, San Jose, USA, January 2001.

[44] Stewart Kelland and Slawo Wesolkowski. A Comparison of Research and
Production Architectures for Check Reading Systems. In ICDAR’99: Fifth
International Conference on Document Analysis and Recognition, pages 99–
102, Bangalore, India, September 1999.

[45] Donald Ervin Knuth. The TEXbook, volume A. Addison-Wesley, Reading,
MA, USA, 1986.

[46] Gary E. Kopec and Philip A. Chou. Document Image Decoding Using
Markov Source Models. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 16(6):602–617, June 1994.

[47] Louisa Lam, Yea-Shuan Huang, and Ching Y. Suen. Combination of mul-
tiple classifier decisions for optical character recognition. In H. Bunke and
P. S. Wang, editors, Handbook of Character Recognition and Document Image
Analysis, chapter 16, pages 79–101. World Scientific, 1997.

[48] Leslie Lamport. LATEX: A Document Preparation System. Addison-Wesley,
Reading, MA, 2nd edition, 1994.

[49] D. X. Le, G. R. Thoma, and H. Wechsler. Classification of Binary Document
Images into Textual or Nontextual Data Blocks Using Neural Network
Models. Machine Vision and Applications, 8(5):289–304, 1995.

[50] Philippe Lefèvre, C. Felter, and P. Lobbrecht. Reconnaissance de docu-
ments: Passage du document papier à l’information électronique. EPURE,
58:15–25, April 1998.

[51] Philippe Lefèvre and François Reynaud. ODIL: An SGML Description
Language of the Layout of Documents. In ICDAR’95: Third International
Conference on Document Analysis and Recognition, pages 480–488, Montreal,
Canada, August 1995.

[52] Heiko Maus. Workflow Context as a Means for Intelligent Informa-
tion Support. In Varol Akman, Paolo Bouquet, Richmond Thomason,

120 BIBLIOGRAPHY

and Roger A. Young, editors, Modeling and Using Context, pages 261–274.
Springer-Verlag, Berlin, Germany, 2001.

[53] Betrand Meyer. Object-Oriented Software Construction. Prentice Hall, 1988.

[54] S. Mori, C. Y. Suen, and K. Yamamoto. Historical Review of OCR Research
and Development. Proceedings of the IEEE, 80:1029–1058, 1992.

[55] George Nagy. At the Frontiers of OCR. Proceedings of the IEEE, 80(7):1093–
1100, July 1992.

[56] George Nagy, Sharad Seth, and Mahesh Viswanathan. A Prototype Doc-
ument Image Analysis System for Technical Journals. Computer, 25(7):10–
22, July 1992.

[57] George Nagy and Yihong Xu. Priming the Recognizer. In DAS’96, pages
263–281, Malvern, Pennsylvania, October 1996.

[58] Lawrence O’Gorman. The Document Spectrum for Page Layout Analysis.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 15(11):1162–
1173, 1993.

[59] W. Postl. Detection of linear oblique structures and skew scan in digitized
documents. In Proceedings, Eighth International Conference on Pattern Recog-
nition (Paris, France, October 27–31, 1986), IEEE Publ. 86CH2342-4, pages
687–689, 1986.

[60] RAF Technology, Inc. DAFS Library, Programmer’s Guide and Reference, Au-
gust 1995.

[61] Lyse Robadey. Une méthode de reconnaissance structurelle de documents com-
plexes basée sur des patterns bidimensionnels. PhD thesis, University of Fri-
bourg, 2001.

[62] Lyse Robadey, Oliver Hitz, and Rolf Ingold. Segmentation de documents
ideaux à structure complexe. In CIFED’2000: Colloque International Franco-
phone sur l’Ecrit et le Document, pages 383–392, Lyon, France, jul 2000.

[63] Nicolas Roussel, Oliver Hitz, and Rolf Ingold. Web-based Cooperative
Document Understanding. In ICDAR’01: Sixth International Conference on
Document Analysis and Recognition, pages 368–373, Seattle, WA, September
2001.

[64] P. K. Sahoo, S. Soltani, A. K. C. Wong, and Y. C. Chen. A Survey of
Thresholding Techniques. Computer Vision, Graphics, and Image Processing,
41(2):233–260, February 1988.

BIBLIOGRAPHY 121

[65] Youssouf Saidali. Modélisation et Acquisition de Connaissances: Application
à une Plate-Forme de Traitement d’Images. PhD thesis, Universitè de Rouen,
France, 2002.

[66] R. Sivaramakrishnan, I. T. Philipps, J. Ha, S. Subramanium, and R. M.
Haralick. Zone Classification in a Document Using the Method of Feature
Vector Generation. In ICDAR’95: Third International Conference on Docu-
ment Analysis and Recognition, pages 541–544, Montreal, Canada, August
1995.

[67] A. Lawrence Spitz. Style-directed document recognition. In DLIA’99: Doc-
ument Layout Interpretation and its Applications, Bangalore, India, Septem-
ber 1999.

[68] Sargur N. Srihari. Recognition of Handwritten and Machine-Printed Text
for Postal Address Interpretation. Pattern Recognition Letters, 14(4):291–
302, 1993.

[69] Sargur N. Srihari and Venu Govindaraju. Analysis of Textual Images Us-
ing the Hough Transform. Machine Vision and Applications, 2(3):141–153,
1989.

[70] Sargur N. Srihari and Edward J. Kuebert. Integration of Hand-Written
Address Interpretation Technology into the United States Postal Service
Remote Computer Reader System. In ICDAR’97: Fourth International Con-
ference on Document Analysis and Recognition, pages 892–896, Ulm, Ger-
many, August 1997.

[71] World Wide Web Consortium (W3C). Cascading Style Sheets, level 2:
CSS2 Specification. http://www.w3.org/TR/REC-CSS2/, 1998.

[72] World Wide Web Consortium (W3C). Document Object Model (DOM)
Level 1 Specification. http://www.w3.org/TR/REC-DOM-Level-1/, 1998.

[73] World Wide Web Consortium (W3C). Extensible Markup Language
(XML) 1.0. http://www.w3.org/TR/REC-xml, 1998.

[74] World Wide Web Consortium (W3C). HTML 4.01 Specification. http:
//www.w3.org/TR/html4/, 1999.

[75] World Wide Web Consortium (W3C). Namespaces in XML. http://www.
w3.org/TR/REC-xml-names/, 1999.

[76] World Wide Web Consortium (W3C). XML Path Language (XPath) 1.0.
http://www.w3.org/TR/xpath, 1999.

http://www.w3.org/TR/REC-CSS2/
http://www.w3.org/TR/REC-DOM-Level-1/
http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/html4/
http://www.w3.org/TR/html4/
http://www.w3.org/TR/REC-xml-names/
http://www.w3.org/TR/REC-xml-names/
http://www.w3.org/TR/xpath

122 BIBLIOGRAPHY

[77] World Wide Web Consortium (W3C). XSL Transformations (XSLT) 1.0.
http://www.w3.org/TR/xslt, 1999.

[78] World Wide Web Consortium (W3C). Extensible Stylesheet Language
(XSL) 1.0. http://www.w3.org/TR/xsl, 2001.

[79] World Wide Web Consortium (W3C). Scalable Vector Graphics (SVG) 1.0.
http://www.w3.org/TR/SVG, 2001.

[80] World Wide Web Consortium (W3C). XSL Schema Part 0: Primer. http:
//www.w3.org/TR/xmlschema-0, 2001.

[81] World Wide Web Consortium (W3C). XSL Schema Part 1: Structures.
http://www.w3.org/TR/xmlschema-1, 2001.

[82] World Wide Web Consortium (W3C). XSL Schema Part 2: Datatypes.
http://www.w3.org/TR/xmlschema-2, 2001.

[83] Norman Walsh and Leonard Muellner. DocBook: The Definitive Guide.
O’Reilly & Associates, Inc., 103a Morris Street, Sebastopol, CA 95472,
USA, Tel: +1 707 829 0515, and 90 Sherman Street, Cambridge, MA 02140,
USA, Tel: +1 617 354 5800, 1999. Includes CD-ROM.

[84] K. Y. Wong, R. G. Casey, and F. M. Wahl. Document Analysis System. IBM
Journal of Research and Development, 26(6):647–656, 1982.

[85] Abdelwahab Zramdini. Study of Optical Font Recognition Based on Global
Typographical Features. PhD thesis, University of Fribourg, 1995.

http://www.w3.org/TR/xslt
http://www.w3.org/TR/xsl
http://www.w3.org/TR/SVG
http://www.w3.org/TR/xmlschema-0
http://www.w3.org/TR/xmlschema-0
http://www.w3.org/TR/xmlschema-1
http://www.w3.org/TR/xmlschema-2

Appendix A

Visualizing Segmentation
Data

1 <?xml version="1.0"?>
2

3 <xsl:stylesheet version="1.0"
4 xmlns:xmi="http://xmillum.sourceforge.net"
5 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
6

7 <xsl:template match="document">
8 <xmi:document>
9

10 <!-- Styles -->
11

12 <xmi:style name="thread-style">
13 <param name="foreground" value="yellow"/>
14 <param name="transparency" value="0.4"/>
15 <param name="fill" value="true"/>
16 </xmi:style>
17

18 <xmi:style name="frame-style">
19 <param name="foreground" value="blue"/>
20 <param name="transparency" value="0.4"/>
21 </xmi:style>
22

23 <xmi:style name="image-style">
24 <param name="foreground" value="red"/>
25 <param name="transparency" value="0.4"/>

123

http://xmillum.sourceforge.net
http://www.w3.org/1999/XSL/Transform

124 APPENDIX A. VISUALIZING SEGMENTATION DATA

26 <param name="fill" value="true"/>
27 </xmi:style>
28

29 <xmi:style name="text-style">
30 <param name="foreground" value="green"/>
31 <param name="transparency" value="0.4"/>
32 <param name="fill" value="true"/>
33 </xmi:style>
34

35 <xmi:style name="line-style">
36 <param name="foreground" value="grey"/>
37 <param name="transparency" value="0.4"/>
38 <param name="fill" value="true"/>
39 </xmi:style>
40

41 <!-- Objects -->
42

43 <xmi:object name="image" class="iiuf.xmillum.displayable.Image"/>
44

45 <xmi:object name="thread-block" class="iiuf.xmillum.displayable.Block">
46 <param name="style" value="thread-style"/>
47 </xmi:object>
48

49 <xmi:object name="frame-block" class="iiuf.xmillum.displayable.Block">
50 <param name="style" value="frame-style"/>
51 </xmi:object>
52

53 <xmi:object name="image-block" class="iiuf.xmillum.displayable.Block">
54 <param name="style" value="image-style"/>
55 </xmi:object>
56

57 <xmi:object name="text-block" class="iiuf.xmillum.displayable.Block">
58 <param name="style" value="text-style"/>
59 </xmi:object>
60

61 <xmi:object name="line-block" class="iiuf.xmillum.displayable.Block">
62 <param name="style" value="line-style"/>
63 </xmi:object>
64

65 <!-- Finally, the layers -->
66

67 <xmi:layer name="Document Image">
68 <image src="{@image}"/>
69 </xmi:layer>
70

125

71 <xmi:layer name="Threads">
72 <xsl:for-each select=".//thread">
73 <thread-block x="{@x}" y="{@y}" w="{@w}" h="{@h}"/>
74 </xsl:for-each>
75 </xmi:layer>
76

77 <xmi:layer name="Frames">
78 <xsl:for-each select=".//frame">
79 <frame-block x="{@x}" y="{@y}" w="{@w}" h="{@h}"/>
80 </xsl:for-each>
81 </xmi:layer>
82

83 <xmi:layer name="Images">
84 <xsl:for-each select=".//image">
85 <image-block x="{@x}" y="{@y}" w="{@w}" h="{@h}"/>
86 </xsl:for-each>
87 </xmi:layer>
88

89 <xmi:layer name="Text Blocks">
90 <xsl:for-each select=".//block">
91 <text-block x="{@x}" y="{@y}" w="{@w}" h="{@h}"/>
92 </xsl:for-each>
93 </xmi:layer>
94

95 <xmi:layer name="Text Lines">
96 <xsl:for-each select=".//line">
97 <line-block x="{@x}" y="{@y}" w="{@w}" h="{@h}"/>
98 </xsl:for-each>
99 </xmi:layer>

100

101 </xmi:document>
102 </xsl:template>
103 </xsl:stylesheet>

126 APPENDIX A. VISUALIZING SEGMENTATION DATA

Appendix B

Correcting
Undersegmentation

1 <?xml version="1.0"?>
2

3 <xsl:stylesheet version="1.0"
4 xmlns:tmp="tmp"
5 xmlns:xmi="http://xmillum.sourceforge.net"
6 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
7

8 <xsl:template match="document">
9 <xmi:document>

10

11 <!-- Styles -->
12

13 <xmi:style name="thread-style">
14 <param name="foreground" value="yellow"/>
15 <param name="transparency" value="0.4"/>
16 <param name="fill" value="true"/>
17 </xmi:style>
18

19 <xmi:style name="frame-style">
20 <param name="foreground" value="blue"/>
21 <param name="transparency" value="0.4"/>
22 </xmi:style>
23

24 <xmi:style name="image-style">
25 <param name="foreground" value="red"/>

127

http://xmillum.sourceforge.net
http://www.w3.org/1999/XSL/Transform

128 APPENDIX B. CORRECTING UNDERSEGMENTATION

26 <param name="transparency" value="0.4"/>
27 <param name="fill" value="true"/>
28 </xmi:style>
29

30 <xmi:style name="text-style">
31 <param name="foreground" value="green"/>
32 <param name="transparency" value="0.4"/>
33 <param name="fill" value="true"/>
34 </xmi:style>
35

36 <xmi:style name="line-style">
37 <param name="foreground" value="grey"/>
38 <param name="transparency" value="0.4"/>
39 <param name="fill" value="true"/>
40 </xmi:style>
41

42 <!-- Handlers -->
43

44 <xmi:handler name="split" class="iiuf.xmillum.handlers.Split"/>
45

46 <!-- Objects -->
47

48 <xmi:object name="image" class="iiuf.xmillum.displayable.Image"/>
49

50 <xmi:object name="thread-block" class="iiuf.xmillum.displayable.Block">
51 <param name="style" value="thread-style"/>
52

53 <param name="click1" value="split" opt="split"/>
54 <param name="click3" value="split" opt="turn"/>
55 <param name="over" value="split" opt="show"/>
56 </xmi:object>
57

58 <xmi:object name="frame-block" class="iiuf.xmillum.displayable.Block">
59 <param name="style" value="frame-style"/>
60

61 <param name="click1" value="split" opt="split"/>
62 <param name="click3" value="split" opt="turn"/>
63 <param name="over" value="split" opt="show"/>
64 </xmi:object>
65

66 <xmi:object name="image-block" class="iiuf.xmillum.displayable.Block">
67 <param name="style" value="image-style"/>
68

69 <param name="click1" value="split" opt="split"/>
70 <param name="click3" value="split" opt="turn"/>

129

71 <param name="over" value="split" opt="show"/>
72 </xmi:object>
73

74 <xmi:object name="text-block" class="iiuf.xmillum.displayable.Block">
75 <param name="style" value="text-style"/>
76

77 <param name="click1" value="split" opt="split"/>
78 <param name="click3" value="split" opt="turn"/>
79 <param name="over" value="split" opt="show"/>
80 </xmi:object>
81

82 <xmi:object name="line-block" class="iiuf.xmillum.displayable.Block">
83 <param name="style" value="line-style"/>
84

85 <param name="click1" value="split" opt="split"/>
86 <param name="click3" value="split" opt="turn"/>
87 <param name="over" value="split" opt="show"/>
88 </xmi:object>
89

90 <!-- Finally, the layers -->
91

92 <xmi:layer name="Document Image">
93 <image src="{@image}"/>
94 </xmi:layer>
95

96 <xmi:layer name="Threads">
97 <xsl:for-each select=".//thread">
98 <thread-block x="{@x}" y="{@y}" w="{@w}" h="{@h}" ref="{@tmp:refvalue}"/>
99 </xsl:for-each>

100 </xmi:layer>
101

102 <xmi:layer name="Frames">
103 <xsl:for-each select=".//frame">
104 <frame-block x="{@x}" y="{@y}" w="{@w}" h="{@h}" ref="{@tmp:refvalue}"/>
105 </xsl:for-each>
106 </xmi:layer>
107

108 <xmi:layer name="Images">
109 <xsl:for-each select=".//image">
110 <image-block x="{@x}" y="{@y}" w="{@w}" h="{@h}" ref="{@tmp:refvalue}"/>
111 </xsl:for-each>
112 </xmi:layer>
113

114 <xmi:layer name="Text Blocks">
115 <xsl:for-each select=".//block">

130 APPENDIX B. CORRECTING UNDERSEGMENTATION

116 <text-block x="{@x}" y="{@y}" w="{@w}" h="{@h}" ref="{@tmp:refvalue}"/>
117 </xsl:for-each>
118 </xmi:layer>
119

120 <xmi:layer name="Text Lines">
121 <xsl:for-each select=".//line">
122 <line-block x="{@x}" y="{@y}" w="{@w}" h="{@h}" ref="{@tmp:refvalue}"/>
123 </xsl:for-each>
124 </xmi:layer>
125

126 </xmi:document>
127 </xsl:template>
128 </xsl:stylesheet>

Curriculum Vitae

Personal Information

· Full name: Oliver HITZ
· Date of birth: August 12th, 1974
· Nationality: Swiss
· Marital status: Single
· Languages: Swiss german (native tongue)

German (written and spoken)
French (written and spoken)
English (written and spoken)

Education

· 1998-2005 University of Fribourg, PhD student in computer science
· 1994-1998 University of Fribourg, studies of computer science and eco-

nomics
· 1990-1994 Collège Ste. Croix, Fribourg, scientific maturity

Work Experience

· 2001-now Founded the company net-track GmbH.
· 1998-2002 Teaching assistant at the University of Fribourg for the fol-

lowing classes: image processing and pattern recognition, theory of
programming languages, computer architecture and C programming.

· 1997-now Systems and network manager at senseLAN GmbH Internet
Services Provider.

· 1997-1999 Systems manager at the University of Fribourg.

131

	Abstract
	Zusammenfassung
	Acknowledgements
	Contents
	List of Figures
	Figure 1.1: Document production and document recognition are two opposing processes
	Figure 1.2: A document image of a scientific article
	Figure 1.3: Logical structure of the document image of figure 1.2
	Figure 1.4: Physical structure of the document image of figure 1.2
	Figure 1.5: A document recognition engine used for document conversion
	Figure 3.1: DSSSL, the Document Style Semantics and Stylesheet Language
	Figure 3.2: DOM provides an API for accessing and navigating through XML documents
	Figure 3.3: SAX is an event-based API for accessing XML documents
	Figure 3.4: XSLT transforms one XML structure into another XML structure using transformation rules
	Figure 4.1: Visualization of XML data
	Figure 4.2: Validation, a simple form of interactivity
	Figure 4.3: The goal of correction is not only to correct data, but to give the recognition system hints for improvement
	Figure 4.4: Facilitating the learning process has a direct impact on the performance of recognition systems
	Figure 5.1: xmillum borrows from modern web publishing, where content and presentation is separated
	Figure 5.2: First tests have been done using standard software
	Figure 5.3: The XSLT transformation produces data as well as meta data
	Figure 5.4: Modifications take place at the user-interface level. They need to be propagated to the original XML data
	Figure 5.5: Only data is transformed, meta data is statically defined in an application description
	Figure 6.1: A newspaper document image and the result of applying a segmentation algorithm
	Figure 6.2: Using the discussed XSLT stylesheet, xmillum visualizes our data
	Figure 6.3: A document decomposed into three layers: document image, blocks, and text lines
	Figure 6.4: The PopupFlagger allows to label objects with a popup menu
	Figure 6.5: A message shown using the Info handler
	Figure 6.6: The Split handler allows to split blocks along a separation line
	Figure 6.7: The XMLTree gives access to the original data structure in form of a tree
	Figure 6.8: The LabelWizard asks the user to select objects of a given type
	Figure 6.9: The Hottable tool shows objects in tabular form

	List of Tables
	Table 6.1: All possible parameters of styles
	Table 6.2: The key–value pairs of the Block object

	List of Listings
	Listing 3.1: A sample XML document
	Listing 3.2: The Document Type Definition (DTD) for the note document
	Listing 3.3: A document with two namespaces
	Listing 5.1: The plugin my.project.MyTool is registered as an xmillumtool
	Listing 5.2: A tool has to implement the iiuf.xmillum.Tool interface, which specifies that two methods need to be present
	Listing 5.3: The data structure we want to visualize contains a variety of data
	Listing 5.4: We need two styles for visualizing the text blocks and text lines
	Listing 5.5: These three objects are used for visualizing the three types of data objects
	Listing 5.6: This XSLT transformation excerpt transforms the input structure into an xmillum structure with three layers
	Listing 5.7: Upon a click on an object of type block, the handlermy.project.Delete is called
	Listing 5.8: The Delete handler removes an entire subtree from the original data structure
	Listing 5.9: The <implementation> element designates the plugin where the implementation is delegated to
	Listing 5.10: The <data-repository> element describes a data repository by giving a reference to the implementation and several setup parameters
	Listing 5.11: The <data-type> element describes a type and the operations that can be applied to it
	Listing 5.12: A fictitious view that visualizes data from two data repositories on two layers
	Listing 6.1: Skeleton of our XSLT stylesheet
	Listing 6.2: We need to define five styles such as this one
	Listing 6.3: We define an object for visualizing the document image as well as five objects for visualizing the five types of rectangular regions
	Listing 6.4: The image object visualizes an image
	Listing 6.5: This loop also takes into account indirect <block> children of the current element
	Listing 6.6: Our event handler is declared
	Listing 6.7: The event handler is called for three possible operations
	Listing 6.8: The ref attribute contains a value that uniquely identifies the element that generated every <thread-block>
	Listing 6.9: xmillum’s internal structure
	Listing 6.10: Declaration of the two layers Document Image and Text Blocks
	Listing 6.11: Declaration of an object class called block
	Listing 6.12: An object block is drawn at (100,28)
	Listing 6.13: A plugin may require initialization parameters
	Listing 6.14: Declaration of a style called yellow-style
	Listing 6.15: Definition of a flag set called title-type
	Listing 6.16: Declaration of an event handler popup
	Listing 6.17: This object calls the popup handler when the left mouse button ispressed on it
	Listing 6.18: All mouse buttons call the same event handler, but a differentoperation can be chosen using the opt attribute
	Listing 6.19: When an XML document is read, tmp:refvalue attributes withunique values are added in order to identify every element
	Listing 6.20: Declaration of a tool for guiding a user through a manual labeling process
	Listing 6.21: Declaration of the Block plugin
	Listing 6.22: A declared block plugin takes four parameters describing the location and size of the rectangle to visualize
	Listing 6.23: The Image object can be declared with the optional visible parameter
	Listing 6.24: The src attribute contains the URL of the image to show
	Listing 6.25: The Polygon plugin and its most important parameter
	Listing 6.26: Every Polygon requires an arbitrary number of points
	Listing 6.27: Declaration of the TextArea plugin
	Listing 6.28: The text to render by the TextArea plugin is passed in the text attribute
	Listing 6.29: Usage of the Select handler
	Listing 6.30: Usage of the PopupFlagger plugin
	Listing 6.31: Declaration and use of the Info handler and InfoWindow tool
	Listing 6.32: Using the Split handler
	Listing 6.33: Using the XMLTree tool
	Listing 6.34: Initialization of the LabelWizard tool
	Listing 6.35: Initialization of the Hottable tool

	Chapter 1: Introduction
	1.1 Document Production and Recognition
	1.2 Logical and Physical Document Structure
	1.3 Electronic Documents
	1.3.1 Paper Documents vs. Electronic Documents
	1.3.2 From Document Recognition to Document Restructuring

	1.4 Document Recognition Application Domains
	1.4.1 Office Applications
	1.4.2 Postal Address Recognition
	1.4.3 Check Reading
	1.4.4 Document Archiving
	1.4.5 Web Document Analysis
	1.4.6 Personal Use

	1.5 Document Models
	1.6 Automatic vs. Interactive Document Recognition
	1.7 Web Based Document Recognition
	1.8 Goal of this Thesis

	Chapter 2: State of the Art in Document Recognition
	2.1 Document Recognition Phases
	2.1.1 Image Preprocessing
	2.1.2 Image Segmentation
	2.1.3 Zone Classification
	2.1.4 Optical Character Recognition
	2.1.5 Optical Font Recognition
	2.1.6 Logical Structure Recognition

	2.2 Related Systems
	2.2.1 CIDRE
	2.2.2 Handwriting Understanding Environment (HUE)
	2.2.3 TrueViz
	2.2.4 WISDOM++
	2.2.5 Illuminator
	2.2.6 Style-Directed Document Recognition
	2.2.7 Generalized n-Grams
	2.2.8 2(CREM)
	2.2.9 OfficeMAID
	2.2.10 smartFIX
	2.2.11 Qgar
	2.2.12 ACTI_VA
	2.2.13 UIML

	Chapter 3: Technology
	3.1 Data Representation Formats
	3.1.1 Ad-hoc formats
	3.1.2 Document Recognition Oriented Formats
	3.1.3 General Data Representation Formats
	3.1.4 Presentation Oriented Formats
	3.1.5 Logical Structure Oriented Formats

	3.2 The XML Family of Technologies
	3.2.1 The XML Language
	3.2.2 DOM vs. SAX
	3.2.3 XSL: Presentation of Data using XSLT and XSL-FO
	3.2.4 XPath
	3.2.5 XML Namespaces

	3.3 Java

	Chapter 4: Requirements and Goals of xmillum
	4.1 Requirements
	4.1.1 End User
	4.1.2 System Integrator
	4.1.3 Researcher

	4.2 Goals of xmillum
	4.2.1 Visualization
	4.2.2 Validation
	4.2.3 Correction
	4.2.4 Learning

	Chapter 5: The Design of xmillum
	5.1 Generation 1: The Fundamental Idea
	5.1.1 Advantages
	5.1.2 First Feasibility Tests and Results

	5.2 Generation 2: A Custom Application
	5.2.1 Meta Data
	5.2.2 Plugins in xmillum
	5.2.3 A Simple Visualization Scenario
	5.2.4 From Visualization to Active Interaction
	5.2.5 Bundling xmillum Document Recognition Applications
	5.2.6 The xmillum Prototype
	5.2.7 Benefits and Drawbacks

	5.3 Generation 3: Generalizing the xmillum Idea
	5.3.1 Concepts
	5.3.2 Data Repositories
	5.3.3 Data Types
	5.3.4 Views
	5.3.5 A Markup Language for Applications
	5.3.6 Too General?

	Chapter 6: The xmillum Prototype
	6.1 Two Real-World xmillum Applications
	6.1.1 Data Visualization
	6.1.2 Correction of Under-segmented Regions

	6.2 Components of the xmillum Prototype
	6.2.1 Layers
	6.2.2 Objects
	6.2.3 Styles
	6.2.4 Flag Sets
	6.2.5 Handlers
	6.2.6 Tools

	6.3 Plugins Implemented in the Prototype
	6.3.1 Graphical Objects
	6.3.2 Event Handlers
	6.3.3 Tools

	Chapter 7: Conclusion and Perspective
	7.1 xmillum in other Projects
	7.1.1 2(CREM)
	7.1.2 Edelweiss
	7.1.3 DocMining
	7.1.4 PLANET

	7.2 Future Work
	7.2.1 XML Schemas and Plugins Exporting Their Interfaces
	7.2.2 Generalizing xmillum
	7.2.3 Hierarchical Nature of XSLT
	7.2.4 Code, Code, Code

	7.3 Accomplished Work

	Bibliography
	Appendix A: Visualizing Segmentation Data
	Appendix B: Correcting Undersegmentation
	Curriculum Vitae

