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Abstract

This dissertation studies complex job shop scheduling problems. It consists of three coherent
parts: (1) a study of practical features of job shop scheduling, (2) a study of a novel job
shop extension problem that simultaneously addresses several practical features and its solution
methods, and (3) a study of surgical case scheduling in hospitals and ambulatory surgical
centers.

A job shop problem in practice often possesses one or several complexifying features that are
not addressed in the classical job shop (JS) model. In the �rst part of this dissertation, various
practical features of job shop scheduling are systematically analyzed. In addition, we formulate
a number of job shop problems extended with a single additional feature as mixed integer linear
programming (MILP) problems, which can be used as building blocks to formulate more complex
job shop problems. To evaluate the practical use of the exact method with MILP formulation
and CPLEX solver as a representative for general-purpose solvers for solving di�erent job shop
related problems, we carry out comprehensive computational experiments on benchmark data.

In the second part of the dissertation, a new job shop extension is proposed, which integrates into
the JS four complexifying features namely processor 
exibility, blocking constraints, sequence-
dependent setup times, and job transfer times. This extension is called the Flexible Generalized
Blocking Job Shop problem (FGBJS), which is capable of modeling many complex real world
scheduling problems but very di�cult to solve. To develop solution methods for the FGBJS, we
�rst formulate the problem as a MILP, then solve the problem heuristically since the performance
of the exact method by a MILP formulation and CPLEX solver is not good. We propose a
graph representation for the FGBJS and develop three neighbor structures allowing to generate
neighbor solutions by moving an operation in time and from a processor to another. Using these
neighborhoods and job insertion principles, we develop three constructive heuristics. To improve
a given FGBJS solution, we propose six Tabu search (TS) heuristics that result from combining
the three neighborhood structures and three generic TS algorithms. Extensive computational
results of these constructive and TS heuristics on 160 newly created FGBJS instances are given,
which can be used to benchmark other solution methods for the FGBJS in the future.

The last part of the dissertation tackles surgical case scheduling (SCS). This is an important
problem in healthcare management because of the �nancial impact of surgical activities in hos-
pitals and ambulatory surgical centers (ASC). We analyze the patient 
ow, model the problem
accordingly as a new job shop extension called the multimode blocking job shop (MMBJS), and
give a MILP formulation for the MMBJS. While developing e�cient solution methods for the
MMBJS is still in progress, we can show that it is possible to model the SCS in ASC as a FGBJS
because of several particular operational features. Further, we identify certain conditions upon
which the SCS in hospitals can also be modeled as the FGBJS. In these cases, one can apply
the solution methods developed in the second part of the dissertation to solve the SCS.
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Chapter 1

Introduction

1.1 Preliminaries

Suppose there are a number of jobs to be processed by several processors. Such processors can

be machines in a manufacturing plant or doctors in a hospital, while jobs can be customer orders

in a manufacturing plant or patient check-ups in a hospital. Processing of a job by a processor is

called an operation. Scheduling is the process of allocating the processors to the operations over

time. The result of scheduling is a schedule, which assigns some processor(s) to each operation

during a speci�c time period. In other words, a schedule is a plan that tells us \the detailed

timing of the operations within the capability of the resources" [Bak74]. Examples of schedules

are bus timetables, course time plans, operating room schedules, production schedules, etc. A

schedule is said to be feasible if it satis�es certain constraints in the context where scheduling

decisions are made. Two basic constraints are: (1) technology precedence constraints which

demand that certain operations be performed in some speci�c order, and (2) capacity constraints

which require that the workload imposed on a processor should not exceed its capacity at any

time. A scheduling problem is a problem of determining a feasible schedule for given operations

and processors in order to meet some objective set by the management. Solving a scheduling

problem is to seek answers to the following two questions [Bak74]:

1. Which processors will be allocated to perform each operation?

2. When will each operation be performed?

Thus, solving a scheduling problem is about making decisions on assigning processor to opera-

tions and sequencing operations at the same time.

When processors are scarce and hence required by competing operations, scheduling problems

can be very complex. The next section introduces some examples of such complex scheduling

problems that are to be referred to throughout this dissertation.

1
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1.2 Examples of complex scheduling problems

Example 1.1. A manufacturing scheduling problem

An automated manufacturing system can have several robot cells. A typical robot cell is com-

prised of several Computer Numerical Controlled (CNC) machines and a transport robot. These

CNC machines process some parts while the robot takes care of all material handling tasks. A

real-life example of robot cell with three CNC machines described in [RJ96] is shown in Figure

1-1.

CNC 1 CNC 2

CNC 3Rob
ot

Load/ 
Unload

Figure 1-1: A robot cell.

Each part has its own sequence of operations. Each CNC machine can be con�gured with appro-

priate tools to process more than one part type. The robot takes a part from the load/unload

area, feeds the part to a preassigned machine, makes an empty move to another machine to

take a part waiting there, and moves it to the next machine to process. If the robot holding a

part reaches the machine on which the next operation of the part takes place and the machine

is still processing another part, it cannot discharge the part due to lack of immediate inventory

bu�er and therefore, it is blocked by the part and cannot perform the next task. On the other

hand, if a machine has �nished a part and the robot is not available to take the part from the

machine, the machine cannot process another part and is blocked with the waiting part. The

shop 
oor manager's task is to decide which machine processes which part in which sequence

and in which sequence the robot transports the parts so that all parts are �nished in the shortest

time possible.

Example 1.2. A logistic scheduling problem

An automated high-density warehouse that stores a very large number of pallets is studied in

[GK05]. The warehouse is divided into several 
oors that are linked by elevators. Each 
oor

is divided into corridors where pallets are stored. Cross-aisles perpendicular to the corridors
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connect them to the elevators. Each corridor is equipped with one carriage and each cross-

aisle has one cross-aisle carriage (see Figure 1-2). Pallets to be retrieved or stored daily in the

Figure 1-2: An automated high-density warehouse.

warehouse are known in advance. The retrieval of a pallet consists of a sequence of operations.

First, the carriage of the corridor where the pallet is stored makes an empty move to the pallet,

takes the pallet, and moves it to the adjacent cross-aisle. The corridor carriage then waits

for the cross-aisle's carriage to come to hand over the pallet. Upon its arrival, the cross-aisle

carriage takes over the pallet and carries it to an elevator. If the elevator is not yet available,

the cross-aisle carriage has to wait while holding the pallet. When the elevator arrives, it takes

the pallet and moves it down to the loading area, where the pallet is loaded into a truck and

driven away. After each pallet transfer, the empty corridor or cross-aisle carriage or elevator

makes a move to another position to handle another pallet. The pallet storage process is done

in the reversed way. The warehouse manager, respectively the control logic, should decide how

to retrieve and store the pallets in order to maximize the daily throughput of the warehouse.

Example 1.3. A service scheduling problem

A health care facility (a hospital or an ambulatory surgical center) performs tens of surgical

operations per day in several operating room suites. When a patient arrives at the facility for

an operation, he or she has to go through three phases: preoperative, perioperative, and post-

operative phases. First, the patient is prepared in a holding unit. Then the patient undergoes

an operation performed in an appropriate operating room by a surgical team consisting of one

main surgeon, possibly one assistant surgeon, one anesthetist, and several nurses. After the

operation is �nished, the patient is moved to a recovering room and stays there for some time

before being either discharged or admitted to a nursing ward (see Figure 1-3).

Operating rooms are very expensive to run, especially in overtime. If a case is cancelled because

of lack of necessary resources, the patient will be negatively impacted with respect to his or her
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Holding 
Unit

Operating 
Room

Recovery 
Room

Preoperative Perioperative Postoperative

Patients

Figure 1-3: Patient 
ow for surgical cases.

health status and emotional well-being. Operating room managers need to schedule the cases

in a safe way for the patients while making e�cient use of the facility's resources.

Example 1.4. A transport scheduling problem 1

A railway scheduling problem is reported by D'Ariano, Pacciarelli and Pranzo [DPP06] as

follows. A railway network consists basically of track segments and control signals. Each train

goes through a number of speci�ed track segments and may dwell in some stations along its

route, each for a certain amount of time. There are signals to control the enter and exit of any

train before every track junction, along the lines for every speci�ed distance, and inside the

stations. A track segment between two control signals is called a block section. Only one train

can occupy a block section at a time. In the graph below, there are two junctions and nine

block sections. A collision between train T1 and T2 can take place in block sections 5 and 6.

T1
1

3

5 62

T2
4 7

9
8

Figure 1-4: A railway system with block sections.

Block signal can be either red (R) or yellow (Y) or green (G). The red control signal indicates

that the next block section is either out of service or still occupied and hence a train entering

a section with red signal should stop completely by the end of this section. The yellow signal

means that the next block section is free, but the block after next is occupied, so the train

can only enter the next block section at a limited speed. If the signal is green, the two next

consecutive blocks sections are free and the train can continue its travel at full speed. The

running time of a train in a block section is counted from the time its head enters the section.

After the whole train leaves this block section, the block's control signal before the previous

1Special thanks go to Prof. Dr. Peter Brucker for his communication note which further explained the
operations issues in railway scheduling.
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section turns yellow and the one before that switches to green. For example, signal states when

a train runs through a railway segment consisting of four sections (initially free) are as follows:

(1) GGGG, (2) RGGG, (3) RRGG, (4)YRRG, (5) GYRR, (7) GGYR, (8) GGGY, and (9)

GGGG, where a signal (R,Y or G) in bold indicates that the train is in the signal's associated

section.

The timetable for trains in the railway network is usually established in advance with detailed

information on the routing and starting times for each train. However, disturbances from various

causes can delay some trains. Since each train occupies a railway block section at a time, a

delayed train could collide with another train that enters the section as previously scheduled.

Therefore, a vital task for railway schedulers is to correct in real-time the starting time of each

train in each of its block sections after some delay has occurred. This problem is termed con
ict

resolution problem (CRP). Solving the CRP aims at obtaining a feasible solution that ensures

no collision and minimizes so-called secondary delay, which is the di�erence between the actual

arriving time of a train and its latest arriving time as previously scheduled.

1.3 Research focus

In order to survive and grow in today's business which is characterized by �erce competition and

high expectations from customers, any business entity should try to use its existing resources

as e�ciently as possible to e�ectively serve its customers. Making sound scheduling decisions

can contribute substantially to the successful use of resources of a company. \Interfaces", the

INFORMS' 
agship practitioner-oriented journal, has published several success stories where

companies use scheduling systems to gain competitive advantages. Nevertheless, the application

of scheduling theory to practice is still limited [PR00]. The gap between scheduling theory and

practical needs appears signi�cant as remarked by Dudek, Panwalker, and Smith (1992): \At

this time, it appears that one research paper (that of Johnson, 1954 [Joh54]) set a wave of

research in motion that devoured scores of person-years research time to an intractable problem

that is of little practical consequence " [DPS92].

This dissertation is set to make a contributive step in bridging scheduling theory and the

practical world by working on three \complementary parts":

1. Review of practical job shop scheduling features

Basically, a job shop is a shop environment where job processing goes through multiple

stages and routings of di�erent jobs may be di�erent. It is the most encountered shop

environment in industries. The �rst part of this dissertation focuses on identifying the

features of practical job shop scheduling problems and formulating them mathematically.

2. Development of a realistic scheduling model and its algorithmic solutions
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Based on the �ndings under part 1, part 2 proposes a scheduling model capable of modeling

a wide range of job shop scheduling applications where practical scheduling features of

blocking constraints, 
exibility, and sequence-dependent setup times are present. The

second task for this part is to develop good solution methods for this practical job shop

scheduling model.

3. Application

The last part concerns an application area of Operations Research that is �nding grow-

ing interest, namely healthcare services. Speci�cally, it addresses scheduling of surgical

operations, using methods and �ndings from the two preceding parts.

1.4 Dissertation's structure

The dissertation is organized as follows. Chapter 2 analyzes various features of scheduling

problems as they occur in practice. Then each of these features is integrated into a base model

called Job Shop (JS) to form the corresponding single-feature extension of the JS. Each JS

extension is then formulated as a mixed integer linear programming problem (MILP) from a

base formulation selected from several existing formulations for the JS.

Chapters 3 proposes a new complex job shop scheduling model that has not yet been ad-

dressed in the literature, although it is of practical relevance. This model, which we call the

Flexible Generalized Blocking Job Shop , integrates simultaneously into the JS several features

mentioned in Chapter 2, namely sequence-dependent setup times, job transfer times, blocking

constraints, and processor 
exibility. The model is shown to be capable of modeling many

practical scheduling problems, including all of the example problems mentioned in Section 1.2.

As the problem is too di�cult to be solved optimally, several heuristics based on Tabu search

approach are proposed together with three constructive heuristics, which are to �nd feasible

starting solutions.

Chapter 4 is devoted to the application part. The targeted application area is surgical case

scheduling, which is one of the pertinent issues in healthcare management. This chapter presents

a generalized job shop scheduling model and its MILP formulation. Since the model is too

complex to solve by exact algorithms, a scheme is proposed to heuristically solve the surgical

case scheduling problem with the help of the model and solution methods developed in Chapter

3.

Chapter 5 concludes this dissertation with a summary of contributions and a future research

outline. Several scheduling terminologies and subroutine algorithms are found in the Appendix.



Chapter 2

Job shop scheduling in practice

2.1 Introduction

Chapter 1 describes several practical scheduling problems in various industrial sectors, from

manufacturing to services. The shop environments of these problems have one thing in common,

which could be termed the job shop environment with multistage job processing and nonidentical

job routings. There is a standard scheduling model in scheduling literature called job shop

(JS) that deals with scheduling in a job shop environment. In the JS, a given number of

jobs have to be executed by some processors. All jobs and processors are available from time

zero. Each job consists of a chain of operations to be processed in that order. Each operation is

performed by a preassigned processor without preemption. The processing time of any operation

is deterministic, independent of other processing times, and known in advance. Each operation's

transfer, transport, and setup times (if any) are included in its processing time. There are

unlimited bu�ers before and after any processor to hold in-process jobs. Each processor can

process only one job at a time. Any feasible schedule should determine the starting time for

each operation such that there are no operations overlapping in any job's chain of operations

and in any processor's operation sequence. The objective is to �nd a feasible schedule that

minimizes the time to �nish all the jobs, which is commonly referred to as makespan.

As the JS model does not cover many real-life scheduling aspects, applying it directly to solve

a practical problem might result in solving a \wrong" problem [MSB88][WR90][Sch98]. For

this reason, many research works have been focusing on extending the JS model for di�erent

industrial settings. One of the common approaches to attack an extended JS is mathematical

programming, which formulates the JS extension as a mixed integer linear programming (MILP)

problem and then tries to solve the formulated problem by a general-purpose mixed integer linear

programming solver. According to Rinnooy Kan [RK76], it is a natural solution approach to

scheduling problems. Following this research stream, this chapter presents a number of real-life

job shop scheduling features along with their corresponding MILP formulations. The practical

7
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features introduced in this chapter are not new but some of them, to our knowledge, have not

been formally formulated in the scheduling literature. By gathering various job shop related

formulations in a single reference, this chapter complements earlier formulation compiling works

which do not su�ciently cover the JS [BDW99] or its extensions [Pan97].

This chapter is organized in seven sections. Section 2.2 formally de�nes the JS problem and

classi�es the problem's assumptions. Section 2.3 outlines several practical features of schedul-

ing, namely sequence-dependence setup times, multiprocessor requirements, job release times,

limited bu�ers, blocking constraints, no-wait and generalized no-wait constraints, transport and

transfer times, processor time windows, and processor 
exibility. All of these features, except

the last one, are of constraining nature. Di�erent objective functions other than the makespan

are also discussed. Section 2.4 reviews and evaluates the existing mathematical programming

formulations for the JS. Section 2.5 presents MILP formulations for 1-feature extensions of the

JS with respect to the features introduced in Section 2.4 and demonstrates through an illustra-

tive example how to formulate a complex scheduling problem with multiple features based on

several of the developed 1-feature formulations. Section 2.6 reports on the computational exper-

iments on various benchmark instances to evaluate the mathematical programming approach

and gives a brief overview on other solution methods to job shop related problems. Concluding

remarks are given in Section 2.7.

2.2 Problem statement and assumptions of the JS

2.2.1 Problem statement

The classical Job Shop Scheduling problem, in short JS, can be stated formally as follows. Let

J be a set of n jobs, M a set of m processors, and I be a set of o operations. A job J 2 J is a

set of operations to be performed in a �xed order. Therefore, J � I and J is a partition of I,

i.e. J � 2I . For any job J , index its operations in the processing order as J1; : : : ; JjJ j. De�ne

the set of pairs of consecutive operations for job J as AJ = f(Jr; Jr+1) : 1 � r < jJ jg. For

each (i; j) 2 AJ , i is the immediate job predecessor of j; i = JP (j), and j is the immediate job

successor of i; j = JS(i). De�ne � and � as two dummy operations of zero duration, � starts

before and � starts after every operation. Each operation i 2 I is performed by a preassigned

processor �(i) 2 M for a known and deterministic duration pi > 0. Denote by Ik the set of

all operations to be performed by processor k and by B the con
ict set of all unordered pairs

(i; j) of operations i and j performed on the same processor, i.e. B = f(i; j) : i; j 2 Ik; i 6=

j; k 2 Mg . Each processor can process only one operation at a time. All jobs and processors

are continuously available from time zero. No preemption is allowed for any operation. The

objective is to �nd a feasible schedule that respects the processing order of each job and the

capacity of each processor and minimizes the makespan. According to Graham et al.'s 3-�eld

classi�cations [GLLRK79], the JS can be addressed as J jjCmax.



2.2. Problem statement and assumptions of the JS 9

Example 2.1.

Consider a JS instance of 3 jobs J = f1; 2; 3g, 3 processors M = f1; 2; 3g, and 9 operations

I = f1; 2; :::; 9g. The operations are partitioned into jobs and listed in the jobs' processing order

as follows: job 1 = f1; 2; 3g, job 2 = f4; 5; 6g, and job 3 = f7; 8; 9g. The assigned processor

and processing time for each operation are given in Table 2-1. The set of pairs of consecutive

Proc/Op 1 2 3 4 5 6 7 8 9

1 10 20 30
2 20 10 20
3 30 30 10

Table 2-1: Processing times in Example 2.1.

operations for the jobs are A1 = f(1; 2); (2; 3)g; A2 = f(4; 5); (5; 6)g, and A3 = f(7; 8); (8; 9)g.

The operation sets for each processor are I1 = f1; 5; 9g; I2 = f2; 4; 8g and I3 = f3; 6; 7g. The

con
ict set is B = f(1; 5); (1; 9); (5; 9); (2; 4); (2; 8); (4; 8), (3; 6), (3; 7), (6; 7)g:

Figure 2-1 shows the Gantt chart of a feasible solution of makespan 90. It is easy to see that

this solution is non-delay (see Appendix for the concept of non-delay schedules).

Proc 1 1
Proc 2 4
Proc 3 7

0 10 20 30 40 50 60 70 80 90
6 3

8
9

2
5

Figure 2-1: Gantt chart of the JS in Example 2.1.

The JS is often represented graphically by a so-called disjunctive graph [ABZ88]1. This is

a arc-weighted graph G = (N;A [ A�;� ; E), where node set N contains for each operation

i 2 I [ f�; �g a representative node i 2 N . Conjunctive arc set A contains for each pair of

consecutive operations i; j; (i; j) 2 AJ ; J 2 J a conjunctive arc (i; j) 2 A having a weight equal

to the processing time of operation i. The arc set A�;�comprises zero-weighted arcs joining the

node representing dummy start operation � with the nodes associated with the �rst operation

of each job and positively weighted arcs linking the nodes associated with the last operation

of each job with the node representing dummy end operation �; these arcs' weight equals the

corresponding operations' processing time. The disjunctive arc set E contains for each pair

(i; j), i; j 2 Ik a pair of two disjunctive arcs f(i; j), (j; i)g having respective weights pi and pj ,

the former arc implies i precedes j on k and the latter implies the reverse order. A selection S

of disjunctive arcs in G, S � E, is feasible if S \ f(i; j), (j; i)g = 1 for every pair of disjunctive

arcs and the resulting solution graph G(S) = (V;A [ S) is acyclic. The JS is equivalent to the

problem of making a feasible selection S so that the length of the longest path from node � to

node � (the critical path) in G(S) is minimized. Each feasible selection then corresponds to a

1The disjunctive graph initially proposed by Roy and Sussmann in 1964 [RS64] is node-weighted.
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unique semi-active schedule (see Appendix for the concept of semi-active schedules) in which

the earliest starting time of operation i equals the length of the longest path (�; i). Conversely,

from any semi-active schedule we can easily construct its corresponding feasible selection.

The disjunctive graph for Example 2.1 below has conjunctive arcs drawn in solid arcs and pairs

of disjunctive arcs in non-weighted edges for the sake of simplicity. The selection corresponding

to the solution presented in Figure 2-1 is displayed to the right of Figure 2-2.

1 2 3
30

4 5 6
10

20

30

7 8 9
10 20

30

Proc 1 Proc 2 Proc 3

σ τ

Proc 1 Proc 2 Proc 3

1 2 3
10 20

30

4 5 6

10
20 30

7 8 9
2010

30

σ τ

10

20

10

10

10

10

10 10
2020

30

Figure 2-2: Disjunctive graph and feasible selection of Example 2.1.

2.2.2 Assumptions

The assumptions made in the JS can be classi�ed into the following groups.

1. Assumptions concerning jobs

J1. Each job is released at the beginning of the scheduling period and available to be

processed at any time.

J2. There is a precedence relation between any two operations of a same job but not

between any two operations of di�erent jobs.

J3. The routing for each job is de�ned by its operation sequence and a preassigned pro-

cessor for each of its operations. The routings of all jobs may not be the same.

J4. Each operation takes a continuous positive and deterministic processing time, which

includes job transport and setup times (if any).

J5. There is no due date for any job.

2. Assumptions concerning processors

M1. Each processor is continuously available throughout the scheduling period without

any breakdown or maintenance.

3. Assumptions concerning job processing

P1. All jobs must be completed.
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P2. Each processor processes at most one job (or equivalently, performs at most one

operation) at a time.

P3. Each operation, once started, must be �nished without any preemption.

P4. There are unlimited bu�ers before and after each processor to store in-process jobs.

P5. Each job can be processed by only one processor at a time.

P6. The processing of any job must follow its de�ned precedence order of operations.

P7. The time to switch between any two operations to be performed consecutively by a

processor is zero.

In practice, one or several of the assumptions in the JS might not hold, depending on the

particular shop environment. The next section examines this issue in detail.

2.3 Practical scheduling features unaddressed in the JS

The practical scheduling features introduced in this section can be divided into feature groups

concerning jobs, processors, job processing, and goals. Belonging to the �rst group are the

features of sequence-dependent setup times, multiprocessors, job release times, and job transport

and transfer times. The second group contains only the feature of processors' time windows.

The third group comprises the other features including limited bu�ers, blocking constraints, no-

wait constraints, generalized no-wait constraints, and processor 
exibility, and the last group

deals with various objective functions. Often more than one of these features can be observed in

a real-life job shop scheduling problem. From a methodological viewpoint, extending the JS to

include these features surely complexi�es the problem, which is already very di�cult to solve. On

the other hand, by excluding them in order to have a \clean" model for mathematical analysis,

one runs the risk of further alienating scheduling research from practical needs [MSB88]. Lee,

Lei, and Pinado observed that the current trend in deterministic scheduling is to take on the

challenge of extending (standard scheduling) models to include practical constraints instead of

retreating into the study of clean models [LdMH97].

2.3.1 Sequence-dependent setup times

Setup involves preparing or �nalizing an operation. The time required to perform a setup is

called setup time. In manufacturing settings, setups include obtaining proper tools, inspecting

materials, �xing parts, adjusting tools, removing parts, and cleaning machines after operations.

Setup activities in non-manufacturing sectors exist in various formats. For instance, mate-

rial handling's setups in warehouses involve moving idle carriages to their right positions to

store/retrieve the right pallet (Example 1.2); setups in surgical operations involve cleaning an

operating room after an operation and preparing surgical tools and supporting appliances for
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a next operation (Example 1.3 ); setups in scienti�c computing involve unloading and loading

executive programs from memory, etc.

A setup is said to be separable if an operation's setup can be separated from its job processing,

i.e. the operation's setup can done on the operation's available dedicated processor while its job

predecessor is still in process and inseparable if otherwise. Setup times can be either sequence-

independent or sequence-dependent. In the �rst case, a setup time to process a job on a processor

depends only on the job. In the second case, the setup time depends on both the current job and

its immediate preceding job on the processor. A scheduling problem with sequence-dependent

setup times is obviously more general than a problem with sequence-independent setup times.

Further classi�cation distinguishes batch setups where setup is required only between two con-

secutive batches but not between two jobs of the same batch from non-batch setups where jobs

are not grouped into batches and setup time of a job is speci�ed according to the job only.

The JS assumes that sequence-dependent setup times are either included in operations' pro-

cessing times or negligibly small (assumption J4); and there is no sequence-dependent setup

between any two operations (assumption P7). These assumptions do not hold in many settings,

e.g. printing industries which typically have long sequence-dependent setup times. Recognizing

the presence of setup times reveals opportunities to reduce them, hence to shorten the total lead

time and make the process more 
exible to changes in customers' demands. Although di�erent

setup time reduction measures (e.g. single-minute-exchange-of-dies SMED techniques, or com-

ponent modularization in manufacturing, or standard surgical tool kit in surgical services) have

been applied very successfully [AS06], it might take a long e�ort for many sectors, especially in

services, to reduce setup activities substantially.

Examples of separable, non-batch, and sequence-dependent setups can be found in all of the

example scheduling problems in Chapter 1. In the cell manufacturing example, the setup time

for the part-moving operation is the time it takes for a robot to move without any part from

one CNC machine to another. Because this time is proportional to the distance between two

machines, it is sequence-dependent. The transport times of empty carriages in Example 1.2

can be treated similarly. In Example 1.3, two consecutive identical cases may need the same

supporting equipment while non-identical cases may require di�erent surgical tools, thus setup

times for surgical operations can be considered as sequence-dependent to some extent. In the

railway scheduling problem in Example 1.4, a train can only enter a block if the previous train

occupying the block leaves it completely. The duration from the time the previous train's �rst

axle leaves the block until the time its last axle leaves the block is considered as the setup time

for the train, which is determined by the previous train's length and speed and hence sequence-

dependent. More examples of practical problems involving sequence-dependent setup times can

be found in the latest comprehensive survey by Allahverdi et al. [ANCK06].

Example 2.2.
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To illustrate the impact of sequence-dependent setup times on the makespan, consider Example

2.1 with additional sequence-dependent setup times on processor 3 as given in Table 2-2 while

other setup times are zero. Observe in the upper Gantt chart in Figure 2-3 that the setup times

lengthens the previous schedule's makespan from 90 to 120. A better schedule of makespan 110

(shown on the lower chart) is obtained by switching the sequence between operation 3 and 6.

From/To 3 6 7 �

� 10 10 10 -
3 - 10 10 10
6 10 - 10 10
7 10 20 - 10

Table 2-2: Sequence-dependent setup times in Example 2.2.

Proc 1 1
Proc 2 4
Proc 3 7

0 10 20 30 40 50 60 70 80 90 100 110 120

Proc 1 1
Proc 2 4
Proc 3 7

0 10 20 30 40 50 60 70 80 90 100 110
63

5 9
8 2

6 3
8

9
2

5

Figure 2-3: Gantt charts for a job shop with sequence-dependent setup times.

2.3.2 Multiple processors

Assumption P5 states that each operation is done by a single processor. In practice, several

processors may be needed simultaneously to perform an operation. For example, a machine and

an operator are required to operate a part; a surgery is done by a surgical team (Example 1.2);

several processors are allocated to perform threads of a computing task; and so on. Simultaneous

use of parallel resources might be used to speed up job processing. For an overview of scheduling

with multiprocessors, we refer the reader to [Dro96]. According to this review, the majority of

researches in scheduling with the multiprocessor feature are devoted to parallel and 
ow shop

scheduling, not job shop scheduling.

Example 2.3.

Assume that operation 5 needs processors 1 and 2 together instead of single processor 1 as in

Example 2.1, and its processing time is now half of its previous processing time on processor

1, i.e. 10 time units. The processor and processing time for each of the other operations, as

well as the sequences, are not changed. The Gantt chart below shows that although time of

operation 5 is performed in half the time, due to the simultaneous need of processors 1 and

2 by this operation, the resulting makespan can increase (100, see the Gantt chart below) in

comparison with the initial makespan 90 in Example 2.1.
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Proc 1 1
Proc 2 4
Proc 3 7
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Proc 3 7
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8 25Figure 2-4: Gantt charts for a job shop with multiprocessor requirement.

2.3.3 Job release times

In the JS, all jobs are available to be processed from time zero onwards (assumption J1).

Without considering dynamic job arrivals, the assumption of zero release (ready) times still

does not always hold. For instance, manufacturing parts from di�erent customers may arrive at

a plant at di�erent �xed times in a day; some surgeries are performed only after their same-day

medical tests' results are made available, etc.

2.3.4 Transport and transfer times

After being processed by a processor, a job is said to be transferred to the next processor if

both the current processor and the next processor are involved in the transfer, and it is said

to be transported if otherwise. Two synchronized steps of a job transfer are: (1) the hand-over

step where the job is handed over to the next processor and (2) the take-over step where the

next processor takes over the job from the current processor. Typically the two steps have same

duration. Since in general the job waits on the processor where it has been processed until

the processor hands over the job to the next processor, transfers occur together with blocking

constraints (to be discussed in Section 2.3.6).

Transport times are also negligible or included in processing times according to assumption J5.

This assumption is not valid when the system has at least one of the following characteristics:

(1) transporters are not always available; (2) processors are located remotely from one another;

(3) distances among processors are not identical; and (4) speeds of transporters are not identical.

When transporters are of high demand as per condition (1), they should be considered as scarce

resources like other processors. Transport times are not negligible under condition (2) and they

do not have a constant value under conditions (3) and (4). Our scheduling examples show that

in many settings, empty moves of transporters should be viewed as sequence-dependent setup

times.

2.3.5 Processor time windows

Processors in the JS are assumed to be continuously available from time zero (assumption M1).

This is hardly true in practice due to machine breakdowns or planned maintenances in manufac-

turing industries, or personnel absences in service sectors. Processor unavailability of stochastic

nature, e.g. machine breakdowns or personnel sick leaves, is out of the scope of this study.
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Other processor unavailability is deterministic and known in advance, e.g. unavailability due to

machine maintenance, personnel vacations, working shifts, etc. Therefore, we can associate with

each processor one or several time windows during which the processor is available to process

the jobs.

Example 2.4.

Suppose processor 1 is available in time window [10; 80], processor 2 in [20; 80], and processor 3

in [10; 100]. It appears that each processor's capacity is su�cient to meet its assigned workload

requirement (60 for processor 1, 50 for processor 2, and 80 for processor 3), but there is no fea-

sible solution to the problem because the operation precedence constraints reduce the capacity

of processor 3. If the time window for processor 3 is extended to [10; 110] then we can obtain a

feasible solution as shown below.
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Figure 2-5: Gantt chart for a job shop with processors' time windows.

2.3.6 Limited bu�ers and blocking constraints

The JS assumes that there are unlimited bu�ers before and after each processor (assumption

P4). Therefore, a job can wait in a bu�er for an arbitrary time for its next operation to be

performed. This assumption is valid in practice as long as the bu�ers' capacity is su�cient.

Nevertheless, this might not be the case in industrial settings. Bu�ers are often limited in

size for two reasons: (i) they require initial investments (especially in automated systems) and

(ii) bigger bu�ers tolerate more work-in-process, which is considered as \waste" and should

be reduced as much as possible according to the lean production philosophy. Technological

constraints in some environments might not even allow any intermediate bu�er at all. This

results in a so-called blocking constraint that forces a job to stay on its current processor after

its completion and thus block the processor during the waiting time for the job's next processor

to be free. Observe that when a limited bu�er is �lled up to its capacity with in-process jobs,

it can no longer store any other job, and processors needing the bu�er to store in-process jobs

become blocked as in the no-bu�er (blocking) case. The JS with blocking constraints can also

be referred to as Blocking Job Shop (BJS).

Blocking can be found in various settings. For example, robot cells introduced in Example

1.1 typically have no space for temporary storage. In warehouses (Example 1.2), discharging

palettes from a carriage to an aisle or a cross-aisle is not allowed, otherwise the aisles would be

quickly �lled up with discharged pallets and become unusable. Medical safety regulations do

not allow taking a patient out of an operating room if a recovery bed is not ready, so any delayed
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admission to the recovery room blocks the operating room from other surgeries (Example 1.3).

Obviously, a train staying in a section prohibits other trains from entering the section (Example

1.4).

According to Hall and Sriskandarajah's survey of machine scheduling problems with blocking

and no-wait in process [HS96], research on the job shop scheduling with blocking constraints

has been scarce. More research activities have been recorded only recently with applications

focused on the railway's con
ict resolution problem in Example 1.4.

Example 2.5.

Consider Example 2.1 with blocking constraints. In a feasible solution below, blocking times

are drawn in narrow bars. Observe for instance that job 3 cannot continue with operation 9 on

processor 1 at time 50, which is the time operation 8 was completed on processor 2, because

processor 1 is blocked by operation 5. This operation blocks processor 1 until time 60, when

processor 3 for its job successor (operation 6) becomes free.
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Figure 2-6: Gantt chart for a job shop with blocking constraints.

2.3.7 No-wait constraints

In several settings, a job once started should be processed continuously without any delay

between two consecutive operations. This restriction, commonly referred to as no-wait, is

mainly due to technological process requirements. The JS with no-wait constraints is termed

No-wait Job Shop (NWJS). No-wait constraints arise in many processing industries, including

steel casting, concrete ware moulding, and chemical and pharmaceutical manufacturing, etc.

For instance, in a galvanic plant, each job to be galvanized has to go through a series of tanks

arranged in straight lines. Each line uses a horizontal hoist to move the jobs. The lines are

interconnected by traversal hoists. If a job is done in a tank but its corresponding hoist is not

available to take it to the next tank, then the job has to wait inside the tank. Any tank delay of

more than one minute results in a serious quality degradation and hence a rejection of the job.

Therefore, process regulations require that a job once started be processed continuously without

any in-process delay [MMR99]. No-wait constraints can also be found in service environments.

Lee et al. observed that many ambulatory centers perform outpatient cases in a back-to-back

manner, which means that all patients are moved immediately from operating rooms to recovery

rooms after their surgery without any admission delay [LdMH02]. Bianco et al. reported an

air tra�c control problem in which landing or take-o� times of airplanes must be calculated
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carefully to avoid tra�c collision. Each airplane must follow strictly a prede�ned trajectory,

which is divided into several air segments at �xed attitudes. An airplane can only enter an air

segment if this segment is free. If a jet during its landing (take-o�) �nds out that the segment

it is about to enter is still occupied, it cannot wait in between two segments to avoid a collision,

which implies a no-wait constraint [BDG06].

Example 2.6.

The no-wait constraint is added to Example 2.1. A feasible schedule is given below. Observe

from the resulting Gantt chart that even though processors 1 and 3 are idle in their �rst 10

time units, it is impossible to start operation 7 10 minutes or operation 1 30 minutes earlier

due to the no-wait constraint.
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Figure 2-7: Gantt chart for a job shop with the no-wait constraint.

2.3.8 Generalized no-wait constraints

Under assumption P6, any operation can only start after the completion of its job predecessor

(if any). Nevertheless, operations of a job can overlap. The requirement to have a �xed pattern

of operations, overlapping or not, is termed generalized no-wait constraint. Generalized no-wait

constraint is a direct result of the use of lot streaming in industries. Lot streaming splits a

lot of identical parts into several sublots. All of these sublots must be processed continuously

without any delay between two consecutive sublots. Once a sublot is completed, it must be

transferred immediately to the next processing phase while the subsequent sublot of the same

job is in process. In other words, the transfer lot's size is smaller than or equal to the processing

lot's size. This contrasts to the standard job shop processing where the two sizes are the

same. We can see that the no-wait constraint previously described is just a special case of

the generalized no-wait constraint when the number of sublots of any job is one. Besides lot

streaming, generalized no-wait may also arise due to technical requirements, e.g. in the chemical

industry with batch-processing.

Although the JS with generalized no-wait (labeled as GNWJS ) has been addressed as early as

1977 by Gr�o
in [Gr�o77], scheduling research in this stream has been scarce. The most recent

paper on the subject by Alvarez-Valdes et al. discusses a real-life scheduling problem in a

glass factory, where each job consists of four operations: furnace heating, blowing, cooling and

packing in this order. The operations are tightly coupled: the �rst unit processed goes directly

to the second operation right after the �rst operation, i.e. the start-start time lag between the
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�rst and the second operation is equal to the processing time of one part in the �rst operation.

The start-start time lag between the blowing and the cooling operations is calculated similarly,

while the time to start the packing operation is determined by the length and the speed of the

conveyor belt [AVFT+05].

Example 2.7.

Suppose lot streaming decisions have been made to split each job in Example 2.1 into two equal

sublots. This leads to a �xed pattern of operations overlapping for each job as shown in Table

2-3. For example, processing the whole job 1 by processor 1 takes ten time units, but since lot

streaming allows half of the completed parts of job 1 to transfer to processor 2 immediately

after they are done, operation 2 can start �ve time units after operation 1 has started.

J1 J2 J3
Starting time of job t1 t2 t3

Starting time of operation
First operation t1 + 0 t2 + 0 t3 + 0

Second operation t1 + 5 t2 + 5 t3 + 5
Third operation t1 + 15 t2 + 15 t3 + 15

Table 2-3: Operations overlapping pattern of Example 2.7.

Observe in the corresponding Gantt chart (the upper chart in Figure 2-8) that because of the

generalized no-wait constraint, shifting an operation will move the whole job to which it belongs.

In the lower Gantt chart in Figure 2-8, switching operation 9 after operation 1 moved the whole

job 3.
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Figure 2-8: Gantt charts for a job shop with generalized no-wait constraints.

2.3.9 Processor 
exibility

Assumption J3 states that each operation is to be done by a dedicated processor. This assump-

tion removes resource allocation decisions from the scheduling problem, reducing it to a job

sequencing problem. Nevertheless, it is rather common in practice to have alternative proces-

sors to perform an operation, although one of the processors might be preferred to the others

for the operation. Processor 
exibility represents the possibility to select for an operation its

processor among several alternative processors. It is achieved through the processor's capabil-

ity of performing di�erent operation types and/or the availability of identical processors of the
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same type. In manufacturing environments, processor 
exibility is best observed in Flexible

Manufacturing Systems (FMSs). An FMS typically contains several CNC machines along with

an automatic material handling system. A robot cell in Example 1.1 can be a part of such an

FMS. The machines are multipurpose in the sense that they can process di�erent parts when

they are equipped with the right tools supplied from tool magazines. In service environments,

processor 
exibility is often associated with labor 
exibility, which is achieved by cross-training

so that workers can obtain a broad range of skills for di�erent tasks. For example, a general

surgeon can handle a range of di�erent outpatient surgery types (Example 1.3).

Example 2.8.

Consider the job shop instance in Example 2.1 with the following processor 
exibility:

Proccessor/Operation 1 2 3 4 5 6 7 8 9

1 10 20 30
2 10 20 30 10 20
3 20 30 30 10

Table 2-4: Processing times in Example 2.8.

In the solution below, operation 1 is assigned to processor 1, operation 2 to processor 3, and

operation 3 to processor 2. The processor for each of the other operations is already �xed. The

resulting makespan is 60, which is 67% of the makespan obtained when there is no processor


exibility.
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Figure 2-9: Gantt chart for a job shop with processor 
exibility.

It is necessary to di�erentiate between two categories of processor 
exibility: (i) processor


exibility with processor independency and (ii) processor 
exibility with processor dependency.

In the �rst case, the processor choice for an operation of a job is not dependent on the processor

choices for other operations of the same job. As a result, a job J of m operations i 2 J hasQ
i2J jMij di�erent routings, where Mi is the set of alternative processors for i 2 J . The second

case is more restrictive because a processor choice for an operation may narrow the range of

processor choices for other operations of the same job. For instance, a critical patient having

been operated in an operating room (OR) in a suite is moved to an Intensity Care Unit (ICU) in

the same suite, not to another ICU located several blocks far away from the OR. The processor


exibility with processor dependency is associated with alternative process plans to process

a job; each of the plans has its own routing. In manufacturing systems, process plans for a

job are generated by Computer Aided Planning (CAP). To illustrate this 
exibility category,

consider a small instance of a job J with two operations J1 and J2 to be processed by four
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processors M1; : : : ;M4. J1 can be processed by M1 or M2 while J2 can be performed by M3 or

M4. Because of proximity, if J1 is on M1 then J2 must be on M3; and if J1 is on M2 then J2 is

on M4. Consequently, there are only two possible routings for the job: J1(M1) � J2(M3) and

J1(M2)� J2(M4), compared to four possible combinations in case of processor independency.

In scheduling literature, the JS with processor 
exibility in the �rst 
exibility category can be

referred to as Flexible Job Shop (hereafter labeled as FJS) [MG00] or JS with multipurpose ma-

chines [HJT94]. The terms for the second processor 
exibility category are JS with alternative

process plans or JS with alternative routings [KE99].

2.3.10 Objective functions

Basically, an objective function is a function of the jobs' �nishing times CJ ; J 2 J ; where CJ

is de�ned as the time at which the processing of job J is completed and J leaves the system.

Most often, an objective function is of bottleneck type fmax(C) := maxJ2J ffJ(CJ)g or sum

type
P

f(C) :=
P

J2J fJ(CJ): The objective function to minimize the makespan is de�ned

as Cmax = maxJ2J fCJg; thus it belongs to the bottleneck type. The objective function to

minimize the total 
ow time
P

J2J CJ or the objective function to minimize the total weighted


ow time
P

J2J wJCJ are of the sum type. Di�erent objective functions have di�erent practical

implications. Minimizing the makespan implies high utilization of processors because a given

number of jobs is to be completed in the shortest time possible. Given a known �xed processing

time for each operation, minimizing the total 
ow time implies minimizing the total queuing

times, which might account for up to 80% of the total 
ow times, and hence reduces work-in-

process and working capital tied up on the shop 
oor.

Assumption J5 states that there is no due date for any job. It is hardly true in today's time-

based business, where meeting due dates is one of the management's top priorities to satisfy

their customers. Objective functions concerning due dates can be expressed with the following

functions:

1. lateness LJ := CJ � dJ

2. earliness EJ := dJ � CJ

3. tardiness TJ := maxf0; CJ � dJg

4. unit penalty UJ :=

(
0 if CJ � dJ

1 otherwise

where dJ is the due date for job J 2 J : Due-date based objective functions can be of the

bottleneck type, e.g. minimizing maximum tardiness, or the sum type, e.g. minimizing total

tardiness.
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An objective function is said to be regular if it does not decrease with respect to increases

in �nishing times and non-regular otherwise. As an example, objective functions involving

earliness are non-regular.

Of the above single-criterion objective functions, minimizing the makespan is the most common

objective in scheduling research. Its popularity could be explained for three reasons. First,

yielding high utilization is still one of the major management concerns, especially when pro-

cessors are costly to acquire and operate such as operating rooms. Second, computing the

makespan is facilitated by established graph algorithms to calculate the longest path's length

in an associated solution graph. Third, research on the makespan job shop problem bene�ts

from a large number of accumulated works on the subject over the past 50 years. It is expected

that the dominance of makespan minimization will continue in the near future. Nevertheless,

scheduling research on other objective functions, most notably on tardiness and multi-criteria

objective functions, will probably receive higher attention in the future.

2.4 Evaluation of the JS' MILP formulations

The popularity of the mathematical programming approach to tackle scheduling problems could

be attributed to several factors. First, it is a proven approach to solve many planning and

scheduling problems in the manufacturing sector [PW06], where job-shop-like environments are

frequently found. Second, the process of formulating a combinatorial optimization problem such

as the JS can give insights that are useful for solution methodology development. Third, algo-

rithmic advances and more powerful computing resources at cheaper cost have been improving

commercial MILP solvers' capability, most notably over the past decade [Bix04]. Last, a large

amount of detailed data necessary for decision making in scheduling is now available thanks to

information technology development.

There are several alternative formulations for the JS and their performance may vary signi�-

cantly. In this section, we try to answer the question \Which is the best formulation for the

JS?" Previous studies on this issue, e.g. Liao and You (1992) [LY92] and Pan (1997) [Pan97],

do not answer this question conclusively because of either faulty arguments or inadequate sup-

porting computational experiments. We also address this question because the gained insight

should help in developing formulations for extensions of the JS problem.

Mathematical programming formulations for the JS can be divided into two main groups de-

pending on how the time horizon is handled:

1. Discrete-time formulations where the time is discretized in time periods (of usually equal

length),

2. Continuous-time formulations where time is treated as continuous.
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In this chapter, we study only continuous-time formulations. The main reason for this is that

the number of time interval assignment variables in a discrete-time formulation (being either the

Bowman or the Morten formulation [Pan97]) is determined by the value of operations' processing

times. Consequently, in a JS instance with few jobs and processors, a long processing time for

some operation, and relatively small processing durations for other operations may result in

a very large-sized formulation [Pan97]. Therefore, unless the processing times of operations

are highly homogeneous (e.g. all operations have the same processing time), discrete-time

formulations have intrinsic limitations.

Continuous-time formulations can be further divided into two groups, which di�er mainly in

the way the operation sequence on each processor is expressed. Formulations in the �rst group,

including the Manne formulation and its two variants namely the Liao-You and the adaptive

Manne formulations, use disjunctive constraints to indicate the precedence relation between

any two operations performed by the same processor, while the second group's formulations,

including the Wagner formulation and its Wilson variant, assign each operation to a unique

position in its processor's operation sequence.

The notations used in formulations for the JS are summarized in Table 2-5.

Notations

Sets Where

J Set of jobs J
I Set of operations
M Set of processors
Mi Set of processors assignable to i 2 I
AJ Set of pairs of consecutive operations (Jr; Jr+1); 1 � r < jJ j of job J 2 J
B Set of pairs of operations i; j 2 I; i 6= j performed on a same processor k; k 2M
Ik Set of operations performed on processor k 2M
Parameters

pi Processing time of operation i 2 Ik, k 2M
H Very large positive number
Hij Very large positive number with respect to operations i; j 2 Ik, k 2M AM
Decision variables

yij =

�
1 if i is sequenced before j on some processor k 2Mi \Mj ; (i; j) 2 B
0 otherwise

MA, LY, AM

xi Starting time of operation i 2 I MA, LY, AM
x� Starting time of dummy operation �
qij Slack variables LY


kiw =

�
1 if operation i is assigned to position w on processor k; 1 � w � jIkj
0 otherwise

WA, WI

tkw Starting time of an operation occupying position w on k, k 2M; 1 � w � jIkj WA, WI
skw Idle time on processor k between the completion of an operation in sequence WI

position w and the start of an operation in position w + 1; k 2M; 1 � w � jIkj
sk0 Idle time on processor k before the start of the �rst operation in the sequence on k 2M WI

MA=Manne, LY=Li-You, AM=Adaptive Manne, WA=Wagner, WI=Wilson
Used in all formulations otherwise

Table 2-5: Notations for the JS formulations
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2.4.1 Manne formulation

The Manne formulation [Man60] de�nes sequence variable yij for any two operations performed

on the same processor i; j 2 I; (i; j) 2 B as:

yij =

(
1 if i precedes j (not necessarily immediately)

0 otherwise
.

Minimize x� subject to : (2-1)

xj � xi � pi for all (i; j) 2 AJ ; J 2 J (2-2)

xj +H(1� yij)� xi � pi for all (i; j) 2 B (2-3)

xi +Hyij � xj � pj for all (i; j) 2 B (2-4)

x� � xi � pi � 0 for all i 2 I (2-5)

yij 2 f0; 1g for all (i; j) 2 B (2-6)

xi � 0 for all i 2 I (2-7)

x� � 0 (2-8)

Objective function (2-1) minimizes the makespan, which is equal to the starting time of dummy

operation � of processing time zero. Constraints (2-2) ensure that any operation can start only

after its job predecessor has been completed. Two capacity constraints (2-3) and (2-4) express

the disjunctive constraints xj � xi + pi or xi � xj + pi for all (i; j) 2 B. If i precedes j on

processor k then yij = 1 and (2-3) becomes xj�xi � pi while (2-4) becomes redundant because

of a large positive value H, commonly referred to as the big-M. On the other hand, if j precedes

i then yij = 0 and (2-4) becomes xi � xi � pj while (2-3) becomes redundant. The value of

H must be large enough to satisfy H � xi + pi � xj for all i; j 2 Ik; for all k 2 M . For this

requirement, H =
P

i2I pi is su�cient. Constraints (2-5) force dummy operation � to start

after all other operations. The last three constraints de�ne the domain for each variable.

2.4.2 Liao-You formulation

Liao and You modi�ed the Manne formulation by introducing new slack variables qij into

constraints (2-4) to obtain

Hyij + xi � xj � pj = qij for all (i; j) 2 B (2-9)

Since xj � xi = Hyij � pj � qij , constraints (2-3) are now

qij � H � pi � pj for all (i; j) 2 B; i < j (2-10)
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and constraints (2-4) become

qij � 0 for all (i; j) 2 B; i < j (2-11)

The Liao-You formulation [LY92] then comprises objective function (2-1) and constraints (2-

2), (2-9), (2-10), (2-11), and (2-5) to (2-8). Liao and You's supporting argument is that even

though their formulation has more continuous variables than the Manne formulation does, it

has fewer functional (non-upper bound) constraints. Upper bound constraints for qij (2-10) can

be handled e�ciently by the simplex algorithm.

2.4.3 Adaptive Manne formulation

Both Manne and Liao-You formulations use a large positive value H for their capacity con-

straints. Observe that when an LP-relaxation-based commercial solver solves the Manne MILP

formulation, a tighter value of H is more likely to force variable yij to take value 0 or 1 in

the capacity constraints. We propose here a new scheme to tighten H: H is replaced by Hij

in constraints (2-3) and by Hji in constraints (2-4) respectively. The resulting formulation,

called adaptive Manne formulation, consists of objective function (2-1), constraints (2-2), (2-5)

to (2-8), and the following two constraints

xj +Hij(1� yij)� xi � pi for all (i; j) 2 B; i < j (2-12)

xi +Hjiyij � xj � pj for all (i; j) 2 B; i < j (2-13)

The values of Hij and Hji are calculated as follows. In order to make constraints (2-13) redun-

dant when yij = 1 (i precedes j), Hji must satisfy Hji � xj � xi + pj for all (i; j) 2 B; i < j.

Obviously, the value Hji = max(i;j)2B(xj � xi) + maxj2I pj satis�es this requirement. Simi-

larly when j precedes i (yij = 0); a su�cient value of Hij to keep constraints (2-12) redun-

dant is Hij = max(i;j)2B(xi � xj) + maxi2I pi. Observe that when i precedes j, xj � xi �

x� � optail(j) � ophead(i) where optail(j) is the sum of processing times of operation j and

all of its job successors, while ophead(i) is the sum of processing times of all job predecessors

of operation i. For a given feasible schedule with makespan C, e.g. a permutation schedule,

we have x� � C. Thus, assuming i = J ir and j = J js , Hij = max(i;j)2B(xi � xj) + maxi2I pi �

C�
PjJj j

l=s pJjl
�
Pr�1

l=1 pJil
+maxi2I pi: Set Hij := C�

PjJj j
l=s pJjl

�
Pr�1

l=1 pJil
+maxi2I pi. A value

for Hij is calculated similarly.

2.4.4 Wagner formulation

The original Wagner formulation addresses a somewhat more generalized scheduling problem

than the JS in which each job goes through a series of processing stages and in each stage the job

has one or several operations whose sequence is irrelevant [Wag59]. The Wagner formulation
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views the scheduling problem as an assignment problem in which each operation has to be

assigned to a unique position on its processor's operation sequence. Pan presents an adapted

version of the Wagner formulation for the JS where each stage consists of only one processor and

each job has only one operation in each of its stages [Pan97]. This adapted Wagner formulation

has the following decision variables:

(1) 
kiw =

(
1 if operation i 2 Ik; k 2M; is assigned to position w; 1 � w � jIkj;

0 otherwise;

(2) tkw is the starting time of an operation occupying position w on processor k, k 2M; 1 � w �

jIkj;

(3) skw, k 2 M; 1 � w � jIkj, is the idle time on processor k between the completion of the

operation in the sequence position w and the start of the operation in position w + 1;

(4) continuous variable sk0, k 2 M , is the idle time on processor k before the start of the �rst

operation in the sequence on k;

(5) the makespan is represented by the starting time x� of dummy operation �:

The corresponding formulation is as follows.

Minimize x� subject to : (2-14)

jIkjX
w=1


kiw = 1 for all i 2 Ik; k 2M (2-15)X
i2Ik


kiw = 1 for all k 2M;w = 1; : : : ; jIkj (2-16)

tk1 = sk0 for all k 2M (2-17)

tkw =
w�1X
u=0

sku +
w�1X
u=1

X
i2Ik

pi

k
iu for all k 2M;w = 2; : : : ; jIkj (2-18)

tkw + pi � tk
0

w0 +H(1� 
kiw) +H(1� 
k
0

jw0) (2-19)

for all i 2 Ik; j 2 Ik0 ; (i; j) 2 AJ ; J 2 J ; k; k
0 2M;w = 1; : : : ; jIkj; w

0 = 1; : : : ; jIk0 j

x� � tkjIkj +
X
i2Ik

pi

k
ijIkj

for all k 2M (2-20)


kiw 2 f0; 1g for all k 2M; i 2 Ik; 1 � w � jIkj (2-21)

tkw � 0 for all k 2M; 1 � w � jIkj (2-22)

skw � 0 for all k 2M; 1 � w � jIkj (2-23)

sk0 � 0 for all k 2M (2-24)

x� � 0 (2-25)

Constraints (2-15) force each operation to occupy exactly one position on its processor's se-

quence. Constraints (2-16) make sure that each position on any processor is assigned to only



26 Chapter 2. Job shop scheduling in practice

one operation. Constraints (2-17) and (2-18) are capacity constraints requiring that at any time

there is at most one job processed on any processor. The processing order of any job is ensured

by constraints (2-19). Note that a su�cient value of H to make (2-19) to be redundant when

operation i and j are not assigned to position w on k and w0 on k0, respectively, is H =
P

i2I pi.

Constraints (2-20) enforce that dummy operation � must start after the last operation on each

processor. The last �ve constraints de�ne the domain of variables.

2.4.5 Wilson formulation

Initially, Wilson modi�ed the Wagner formulation for the 
ow shop scheduling problem. His

formulation di�ers from the Wagner formulation in the way the precedence relation between

any two consecutive operations performed on the same processor is formulated. Instead of

using two equality constraints, the Wilson formulation uses a set of inequality constraints. The

Wilson formulation for the JS, which results from a direct application of this modi�cation to the

Wagner job shop formulation above, has objective function (2-14), constraints (2-15), (2-16),

(2-18) to (2-22), (2-25), and the following constraints:

tkw+1 � tkw +
X
i2Ik

pi

k
iw for all k 2M;w = 1; : : : ; jIkj (2-26)

Observe that because constraints (2-17) and (2-18) of the Wagner formulation are replaced by

constraints (2-26), the explicit idle time variables used in constraints (2-17) and (2-18) are no

longer needed in the Wilson formulation.

2.4.6 Evaluation of the JS' MILP formulations by a general-purpose solver

Evaluation of the �ve presented MILP formulations for the JS is conducted by analyzing their

size complexity and comparing their performance with a general-purpose MILP solver on a set

of benchmark instances. Size complexity of a formulation is expressed here by three metrics: (1)

the number of binary variables, (2) the number of constraints, and (3) the number of continuous

variables. The number of binary variables in
uences how many nodes are developed in the

Branch-and-Bound algorithm. Thus increasing the number of binary variables could prolong

the solution time. The number of constraints is related to the size of a base and in
uences

the computing times of LP relaxation subproblems. The number of continuous variables also

exercises some in
uence on the computing time of LP relaxation subproblems. For these reasons,

it seems appropriate to characterize size by more than one metric, for example the number of

binary variables as was in [Pan97]. Without loss of generality, assume that each job is processed

by all processors, once by each of the processors. Table 2-6 summarizes the size complexities of

the �ve JS formulations, where n is the number of jobs, m the number of processors, and mn

is the number of operations.
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Formulation Binary variables Continuous variables

MA mn(n� 1)=2 mn+ 1
LY mn(n� 1)=2 mn(n+ 1)=2 + 1
AM mn(n� 1)=2 mn+ 1
WA mn2 2mn+ 1
WI mn2 mn+ 1

Formulation Total constraints Functional constraints Bound constraints

MA 3mn2=2 + 3mn=2� n+ 1 mn2 � n mn(n+ 3)=2 + 1
LY 3mn2 � n+ 1 mn2=2 +mn=2� n 5mn2=2�mn=2 + 1
AM 3mn2=2 + 3mn=2� n+ 1 mn2 � n mn(n+ 3)=2 + 1
WA n3(m� 1) +mn2 + 5mn+ 2m+ 1 n3(m� 1) + 3mn+m mn2 + 2mn+m+ 1
WI n3(m� 1) +mn2 + 4mn+ 2m n3(m� 1) + 3mn+m mn2 +mn

MA=Manne, LY=Li-You, AM=Adaptive Manne, WA=Wagner, WI=Wilson

Table 2-6: Size complexity of the JS' MILP formulations.

Several observations are drawn from this table:

1. The Manne family's formulations (MA, LY, and AM) have fewer binary variables and

constraints, especially functional ones, than the Wagner family's members (WA and WI)

do.

2. The number of continuous variables is almost identical between the two families, except

in the Liao-You formulation where slack variables qij are used.

3. The size complexities of the Manne formulation and the Adaptive Manne formulation are

identical because the latter tightens the former's capacity constraints only by modifying

the value of H.

4. The Liao-You formulation reduces the number of functional constraints in the Manne

formulation at the cost of additional real variables qij and bound constraints for qij .

5. The Wilson formulation improves size complexity of the Wagner formulation in the number

of real variables and the number of bound constraints.

As the Wagner family's formulations have higher size complexity in comparison to the Manne

family's formulations, we can expect the latter to outperform the former. Two formulations

in the Wagner family would perform similarly. Among these two formulations, the Wilson

formulation might perform slightly better than the Wagner one. It is di�cult to compare the

performance of the Manne-based formulations since they all have the same number of binary

variables, while the impact of tightening the capacity constraints and introducing slack variables

is di�cult to assess unless a comprehensive computational experiment is made. Liao and You

claimed that their formulation outperformed the Manne formulation. However, their supporting

computational study was done on rather homogeneous instances of small sizes, which have

not been used elsewhere as standard benchmark instances. Their claim would be more valid

if it were con�rmed by a more comprehensive computational study on so-called \standard"
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JS benchmark instances. There are several test sets that are often used to evaluate solution

methods developed for the JS, e.g. a set of three instances due to Fisher and Thompson that

includes the famous 10 � 10 FT10 instance [AC91], a set of 40 instances due to Lawrence

[Law84], a set of ten 10 � 10 instances by Applegate and Cook [AC91], a set of 80 instances

by Taillard [Tai93], and some other sets [JM99]. We selected the Lawrence's instance set

to reevaluate all MILP formulations for the JS because (1) it covers a rather wide range of

problem sizes, (2) the number of instances (40) is not too big, and (3) many of its instances

have been solved optimally. The set's instances are labeled la01 � la40 and grouped in eight

equal subsets according to their sizes. Among these 40 instances, we limited our selection to only

settled Lawrence instances with con�rmed optimal makespans. Furthermore, we purposefully

selected \easy" instances la01 � la20 and la31 � la3, for which the Branch-and-Bound (BnB)

algorithm developed by Brucker, Jurish, and Sievers can obtain optimal makespans in less

than 24 seconds with two exceptional computing times of 340 and 343 seconds for la19 and

la20 respectively [BJS94]. We coded the JS formulations in the LPL mathematical modeling

language version 4.99j [H�ur07] and solved them by by general-purpose MILP solver CPLEX

version 9.0 with default parameters [ILO]. The time limit was set at ten minutes, which is

far beyond the times required to obtain optimality for these instances by the Brucker's BnB

algorithm. Table 2-7 presents upper bounds and lower bounds obtained for each formulation

and each instance, as well as the optimal makespan and the optimality time for each instance as

reported in [BJS94]. For each formulation, we calculated four metrics: (1) its average relative

error where relative error =(Makespan found-Optimal makespan)/Optimal makespan� 100%,

(2) its average gap where Gap=(Optimal makespan-Lower bound found)/Optimal makespan�

100%, (3) its number of optimal makespans found without being proven optimal, and (4) its

number of optimal solutions found. We then compared the JS formulations according to these

metrics. Table 2-8 summarizes these metrics for all formulations.

As expected, all Manne-based formulations signi�cantly outperformed the Wagner-based for-

mulations. None of the Wagner family's members could yield a feasible solution for any instance

within the allotted time while all Manne-based formulations did. As shown in Table 2-8, the

Liao-You formulation under-performed the Manne and adaptive Manne formulations in all met-

rics. When being benchmarked with a more comprehensive test set, the Liao-You formulation

did not perform as well as their authors claimed. The Manne formulation ranked �rst in three

out of the four metrics, followed closely by the adaptive Manne formulation; but this order is

reversed as for the number of the best makespans obtained. This suggests that simple tighten-

ing disjunctive constraints of the Manne formulation does not lead to the expected performance

improvement for the Manne formulation. Note that more complicated tightening schemes that

properly update the value of adaptive big�M have not been attempted. Observe that the solver

found optimal makespans for these two formulations in many instances without being able to

prove optimality because of the low quality of the achieved lower bounds, which resulted in a gap

of more than 33%. On the other hand, lower bounds by the Wagner and Wilson formulations,
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Formulations Average Average Nr. of best Nr. of optimal

relative error (%) gap (%) makespans found makespans

Manne 3.27 33.05 16 6
Liao-You 7.61 38.28 10 0

Adaptive Manne 3.77 33.78 17 5

Table 2-8: Summary of performance of the JS formulations.

(if achieved) were better (at 6.08% and 6.40%, respectively). There was no evidence to say that

the Wilson formulation performed better than the Wagner one as expected. Note that while

performing poorly for the JS, the Wagner-based formulations outperformed the Manne-based

formulations for the permutation 
ow shop problem as reported in [TSG04].

Due to its superiority in comparison to the other formulations, the Manne formulation was

selected as the base to formulate generalized job shop scheduling problems in the following

section. Hereinafter we shall refer to it as Classical Job Shop (CJS) formulation.

2.5 Formulations of practical job shop scheduling problems

This section �rst presents MILP formulations for 1-feature JS extension problems for the various

complexifying features mentioned in Section 2.3. 1-feature formulations can then be used as

\building blocks" to formulate practical job shop scheduling problem which possesses more than

one of the studied features. This is illustrated by developing a formulation for a complex JS

with two additional features.

2.5.1 Formulations of 1-feature JS extension problems

Sequence-dependent setup times

Extending the Manne formulation for the JS to cover the feature of sequence-dependent setup

times is rather straight forward. Let psij � 0 be the sequence-dependent setup times between

operation i and its succeeding operation j on the same processor k = �(i) = �(j); i; j 2 I; k 2M:

Let ps�i denote the setup time for operation i 2 Ik when i is the �rst operation in an operation

sequence on processor k. Also denote by psi� the setup time for operation i 2 Ik when i is

the last operation in the sequence on k. The MILP formulation for the job shop problem

with sequence-dependent setup times, labeled as the SDSJS formulation; is derived from the

CJS formulation by including corresponding setup times into four constraints (2-3)-(2-6) while

keeping the objective function and other constraints of the CJS. The full SDJS formulation is
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given below.

Minimize x� subject to : (2-27)

xj � xi � pi for all (i; j) 2 AJ ; J 2 J (2-28)

xj +H(1� yij)� xi � pi + psij for all (i; j) 2 B (2-29)

xi +Hyij � xj � pj + psji for all (i; j) 2 B (2-30)

xi � ps�i for all i 2 I (2-31)

x� � xi � pi + psi� for all i 2 I (2-32)

yij 2 f0; 1g for all (i; j) 2 B; i < j (2-33)

xi � 0 for all i 2 I (2-34)

x� � 0 (2-35)

Consider three operations u; v; and w; which are sequenced in this order on some processor k.

Then yuv = yvw = yuw = 1, and from (2-29) we have (i) xv�xu � pu+p
s
uv, (ii) xw�xv � pv+p

s
vw;

and (iii) xw � xu � pu+ psuw: From (i) and (ii), xw � xu � pv + psvw + pu+ psuv (iv). Since u and

w are not performed consecutively, (iii) should be implied by (i) and (ii). This can be achieved

by asking pv + psvw + pu + psuv � pu + psuw or pv + (psuv + psvw � psvw) � 0 (v). When the triangle

inequality (psuv + psvw � psuw) is assumed for the SDSJS then (v) clearly holds. Further, this

assumption allows us to remove transitive arcs in the associated disjunctive graph in calculating

the length of the longest path from � to � (the critical path).

This SDJS formulation can be found in several papers (see [ANCK06] for references).

Multiple processors

LetMi be the set of (one or several) processors to perform operation i 2 I. Two operations i; j 2

I can be in a processor's capacity con
ict if they share some common processor k 2 Mi \Mj :

We can extend the CJS formulation to obtain a Job Shop with Multiple Processors formulation

(MPJS) that covers the multiprocessor feature with just a minor change by de�ning the con
ict

set B as B = f(i; j) : i; j 2 I;Mi \Mj 6= ;g:

Job release times

Formulating job release times is done by identifying a set Ifirst of the jobs' �rst operations, i.e.

Ifirst = fi 2 I : i = J1; J 2 J g, and adding the following constraints to the CJS

xi � ri for all i 2 Ifirst; (2-36)

where ri is the release time of job J i. The resulting formulation is labeled JRJS.
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Processor time windows

There are two approaches to formulate the feature of processor time windows. The �rst approach

�lls each period during which a processor is unavailable by a dummy single-operation job. The

processing time of a dummy operation equals the length of the corresponding unavailable period

and its starting time is the beginning of the period. The dummy operations are included in

a set of dummy operations Idum, which is then added to the existing set of operations I. We

include the following constraints to the CJS:

xi = ui for all i 2 Idum; (2-37)

where ui is the start of the unavailability period associated with dummy operation i 2 Idum.

The second formulation approach can be applied when there is a single period of availability

[sk; ek] for each processor k 2M . We add the following constraints to the CJS:

xi � sk for all i 2 Ik; k 2M (2-38)

xi � ek for all i 2 Ik; k 2M (2-39)

We label the resulting formulation as TWJS.

Blocking constraints

Blocking constraints enforce that if a job is completed on a processor and its next processor is

still busy, then the job stays on the the current processor and blocks it from processing another

job until its next processor becomes available. The two processor capacity constraints of the CJS

formulation, constraints (2-3) and (2-4), do not enforce that the next operation on the processor

starts only after the commencement of the job successor of the current operation. Therefore,

the CJS formulation is not straightforwardly extensible to cover blocking constraints. One way

to achieve this is to introduce, besides starting time variables, also variables expressing each

operation's �nishing time, i.e. the time the operation's job leaves its current processor. This

�nishing time may come after the time the job processing on the processor is completed due

to possible blocking. Denote by xti and xhi the starting and �nishing times of operation i 2 I;

respectively. We retain the sequence decision variables yij and other parameters of the CJS and

present below the formulation for the job shop with blocking constraints or Blocking Job Shop
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(BJS).

Minimize x� subject to : (2-40)

xhi � xti � pi for all i 2 I (2-41)

xtj � xhi = 0 for all (i; j) 2 AJ ; J 2 J (2-42)

xtj +H(1� yij)� xhi � 0 for all i; j 2 Ik; i < j; k 2M (2-43)

xti +Hyij � xhj � 0 for all i; j 2 Ik; i < j; k 2M (2-44)

x� � xhi � pi for all i 2 I (2-45)

yij 2 f0; 1g for all i; j 2 I; i < j;Mi \Mj 6= ; (2-46)

xti; x
h
i � 0 for all i 2 I (2-47)

x� � 0 (2-48)

The objective function is to minimize the makespan. Constraints (2-41) ensure that a job can

only leave its current processor after its operation by the current processor has been completed.

Constraints (2-42) require that the next operation of a job start without delay once the job has

�nished its sojourn on the processor of the current operation. Constraints (2-43) and (2-44) are

capacity constraints, which ensure that the processor is blocked until its current job leaves for

the next processing. These two constraints are mutually redundant upon the binary values of

yij : If yij = 1, i.e. i precedes j on k, then (2-43) becomes xtj�xhi � 0; which requires j to starts

on k only after the job of i leaves k. The case where yij = 0 is interpreted analogously. The

rest of the constraints de�ne the decision variables' domain.

Limited bu�ers

The JS with a bu�er of limited size b can be formulated as a BJS in either of the two following

ways, depending on the bu�er's type:

1. Sequential bu�er where each job traverses through b one-job bu�ers in series (e.g. conveyor

belts) in that order. In this case, assuming that the conveyor traversal time is negligible,

any job entering the bu�er can be seen as having b dummy zero operations in series by b

dummy processors;

2. Parallel bu�er where each job can be placed in any of the b available space of the bu�er (e.g.

shop 
oor). In this case, any job entering the bu�er can be seen as having one dummy zero-

time operation performed by one of b dummy parallel and identical processors. Scheduling

with processor 
exibility is to be studied later.

In both cases, the bu�er's upstream processor is blocked when all bu�er's slots are occupied.

Figure 2-10 illustrates instances of these bu�er types with n = 3 jobs, m = 4 processors, and
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b = 2. Routings for job 1, 2, and 3 are M1 �M4 ; M3 �M4, and M2 �M4 respectively. Bu�er

b is considered as a composition of two sub-bu�ers b1 and b2, both are of capacity one.

M1

b1M2 b2 M4

Sequential buffer

M3

M1
b1

M2
b2

M4

Parallel buffer

M3

Figure 2-10: Modeling the JS with limited bu�ers as the BJS.

No-wait constraints

We adapt the CJS formulation for the JS with no-wait constraints (NWJS) by changing the

inequality constraints (2-2) to the following equality constraints

xj � xi = pi for all (i; j) 2 AJ ; J 2 J (2-49)

and keeping the rest of the CJS formulation. The resulting formulation comprises objective

function (2-1), constraints (2-49), and constraints (2-3) to (2-8).

Generalized no-wait constraints

Let oi be the time lag between the starting time of operation i and the starting time of the

�rst operation of the operation's job (denoted as J i) and sJ be the decision variable to express

the starting time of job J: As the starting time of a job de�nes the starting time of each of the

job's operations, a formulation for the JS with generalized no-wait constraints (GNWJS) is

obtained by modifying the precedence constraints (2-2):

xi � s
Ji
= oi for all i 2 J i (2-50)

Job transfer times

Job transfer times can be easily integrated into the BJS, the NWJS or the GNWJS formulations.

For example, the BJS with job transfer times is formulated as follows. Let pti and phi be

respectively the hand-over and take-over times associated with operation i. To incorporate job

transfer times in the BJS formulation, add the hand-over and take-over times to constraints

(2-41),(2-43), and (2-44) as follows:
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xhi � xti � pti + pi for all i 2 I (2-51)

xtj +H(1� yij)� xhi � phi for all i; j 2 Ik; i < j; k 2M (2-52)

xti +Hyij � xhj � phj for all i; j 2 Ik; i < j; k 2M (2-53)

x� � xhi � pi + phi for all i 2 I (2-54)

The resulting formulation is termed BJST. Integrating job transfer times in the NWJS and the

GNWJS formulations can be carried out similarly. The resulting formulations are not shown

here.

Processor 
exibility

Decisions on which processor is allocated to which operation are formulated with the help of

additional variables:

zik =

(
1 if operation i is assigned to processor k 2Mi

0 otherwise.

Let pik be the processing time of operation i by processor k 2 Mi. The �rst mathematical

formulation for the Flexible Job Shop (FJS), labeled FJS-1, is proposed in [GKZ93] as follows:

Minimize x� subject to : (2-55)

xj � xi �
X
k2Mi

pikzik for all (i; j) 2 AJ ; J 2 J (2-56)

xj +H(1� yij)� xi +H(2� zik � zjk) � pik (2-57)

for all i; j 2 I; i < j; k 2Mi \Mj

xi +Hyij � xj +H(2� zik � zjk) � pjk (2-58)

for all i; j 2 I; i < j; k 2Mi \Mj

x� � xi �
X
k2Mi

pikzik � 0 for all i 2 I (2-59)

X
k2Mi

zik = 1 for all i 2 I (2-60)

zik 2 f0; 1g for all i 2 I; k 2Mi (2-61)

yij 2 f0; 1g for all (i; j) 2 B; i < j (2-62)

xi � 0 for all i 2 I (2-63)

x� � 0 (2-64)

If at least one of the two operations i and j;Mi \Mj 6= ;; is not assigned to some processor

k 2 Mi \Mj , then (2 � zik � zjk) � 1 and both constraints (2-57) and (2-58) are redundant
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because of the high value of H. Only when both operations i and j are assigned to k do these

two constraints become the disjunctive constraints as previously explained. In order to hold

constraints (2-57) and (2-58) redundant when needed, H should satisfy H � xi+pik�xj for all

i; j 2 I; k 2Mi\Mj . A value meeting this requirement is H =
P

i2I maxk2Mi
(pik). Constraints

(2-60) require that each operation is assigned to only one processor.

The big number H has a coe�cient of three in the capacity constraints of the FJS-1 formulation.

As H of large value is suspected to cause the CJS' LP relaxation to perform poorly, increasing

the coe�cient of H could probably worsen the issue. For this reason, a new formulation is

proposed to keep the coe�cient of H in the two capacity constraints at one as in the CJS.

This formulation, labeled FJS-2, applies binary variables yij for all ordered pairs (i; j), with

Mi \Mj 6= ;.

The formulation is below.

Minimize x� subject to : (2-65)

xj � xi �
X
k2Mi

pikzik for all (i; j) 2 AJ ; J 2 J (2-66)

xj +H(1� yij)� xi � pikzik for all i; j 2 I; i < j; k 2Mi \Mj (2-67)

xi +H(1� yji)� xj � pjkzjk for all i; j 2 I; i < j; k 2Mi \Mj (2-68)

x� � xi �
X
k2Mi

pikzik � 0 for all i 2 I (2-69)

X
k2Mi

zik = 1 for all i 2 I (2-70)

yij + yji � zik + zjk � 1 for all i; j 2 I; k 2Mi \Mj (2-71)

zik 2 f0; 1g for all i 2 I; k 2Mi (2-72)

yij 2 f0; 1g for all i; j 2 I;Mi \Mj 6= ; (2-73)

xi � 0 for all i 2 I (2-74)

x� � 0 (2-75)

If zik + zjk � 1 then constraints (2-67), (2-68), and (2-71) become redundant. If zik = zjk = 1

then constraints (2-71) enforce that yij + yji = 1, i.e. exactly one of the two variables should

take value one. Therefore, exactly one of (2-67) and (2-68) is active while the other one is

redundant. Note that the coe�cient reduction of H in the capacity constraints comes at the

price of doubling the number of binary variables yij and increasing the number of constraints

((2-71)).
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Objective functions

Formulating the JS problem with an objective function other than the makespan minimization is

done by replacing the makespan minimization objective function (2-1) and makespan constraints

(2-6) of the CJS formulation by the objective function and constraints corresponding to the new

objective function. For instance, the formulation with the objective function to minimize the

maximum lateness Lmax := maxJ2J LJ is given below:

Minimize Lmax subject to : (2-76)

xJjJj + pJjJj � dJ � Lmax for all J 2 J (2-77)

Constraints (2-2)-(2-4); (2-6)-(2-8)

If the objective function is to minimize the total weighted tardiness, then we have:

Minimize
X
J2J

wJTJ subject to : (2-78)

xJjJj + pJjJj � dJ � TJ for all J 2 J (2-79)

TJ � 0 for all J 2 J (2-80)

Constraints (2-2)-(2-4);(2-6)-(2-8)

Constraints (2-79) and (2-80) ensure that TJ = maxf0; CJ � dJg, where CJ = xJjJj+ pJjJj is

the �nishing time of job J and dJ is its due date.

2.5.2 Formulation of complex job shop scheduling problems

Formulation of the Multimode Job Shop Scheduling problem

Job shop problems in practice often have more than one of the practical features presented in

Section 2.3. An example of such a complex job shop scheduling problems is the Multimode Job

Shop Scheduling problem (MMJS), which was introduced by Brucker and Neyer (1998) [BN98].

The problem is stated as follows. Let J ; I; andM be the set of jobs, operations, and processors

respectively. The processing of an operation i requires several processors simultaneously; the

set of these processors forms a mode. Denote by A the set of all q possible modes Ak; 1 � k � q.

Associated with each operation i 2 I is a set of assignable modes Ai � A;[i2IA
i= A. The

processing time of operation i in mode Ak 2 Ai is pik. Denote by �(i) the processing mode

assigned to operation i. Finding a feasible schedule that minimizes the makespan consists of

assigning a processing mode to each operation and sequencing jobs for each processor. It is

obvious that the MMJS is the JS complexi�ed by two additional features: multiprocessor (each

processing mode might contain more than one processor) and processor 
exibility (there may

be more than one assignable mode for each operation). To put it di�erently, the MPJS is a
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special case of the MMJS where each operation has only one assignable mode, and the FJS is

also a special case of the MMJS where each mode in the MMJS contains only one processor.

Based on the MPJS and the FJS-1 formulations, we propose an MILP formulation for the

MMJS as follows. The mode assignment decision variables zik is de�ned as:

zik =

(
1 if operation i is assigned to mode Ak 2 A

i; i.e. �(i) = Ak;

0 otherwise

Two operations i and j are said to be in con
ict if i is assigned to mode Ak, j is assigned to

mode Al and Ak\ Al 6= ;. An operation uses all processors in its assigned mode at the same

time; hence if i precedes j on processor h 2 Ak\ Al then i precedes j on all processors in

Ak\ Al: Let xi and x� be the starting times of operation i 2 I and dummy end operation �

respectively. The sequence decision variable yij is now de�ned for all unordered pairs (i; j) such

that 9Ak 2 A
i; 9Al 2 A

j and Ak\ Al 6= ;k as

yij =

(
1 if operation i precedes operation j

0 otherwise

The full MMJS formulation is presented below:

Minimize x� subject to : (2-81)

xj � xi �
X

Ak2Ai

pikzik for all (i; j) 2 AJ ; J 2 J (2-82)

xj +H(1� yij)� xi +H(2� zik � zjl) � pik (2-83)

for all i; j; k; l with i; j 2 I;Ak 2 A
i;Al 2 A

j ; and Ak \ Al 6= ;

xi +Hyij � xj +H(2� zik � zjl) � pjl (2-84)

for all i; j; k; l with i; j 2 I;Ak 2 A
i;Al 2 A

j ; and Ak \ Al 6= ;

x� � xi �
X

Ak2Ai

pikzik � 0 for all i 2 I (2-85)

X
Ak2Ai

zik = 1 for all i 2 I (2-86)

zik 2 f0; 1g for all i 2 I;Ak 2 A
i (2-87)

yij 2 f0; 1g for all i; j 2 I: i < j; 9Ak 2 A
i; 9Al 2 A

j and Ak \ Al 6= ;k (2-88)

xi � 0 for all i 2 I (2-89)

x� � 0 (2-90)

The secondH-term in capacity constraints (2-83) and (2-84) ensures that operations i and j have

a resource con
ict only if the two modes assigned to them share at least one processor. In this

case, the two constraints express the alternative relations as previously explained. Constraints

(2-86) make sure that each operation is assigned to one processing mode. Other constraints
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have already been explained.

Example 2.9.

Below are three modes and mode-dependent processing times for the job shop instance in

Example 2.1.

Processor/Mode A1 A2 A3

1 1 1 0
2 1 0 1
3 0 1 1

Table 2-9: Processors in modes.

Mode/Operation 1 2 3 4 5 6 7 8 9

A1 10 20 30
A2 10 20 20 10 20
A3 10 30 30 10

Table 2-10: Mode-dependent processing times.

Observe for instance that operation 2 can be performed either in mode 2 that uses simultaneously

processors 1 and 3 or in mode 3 that employs processors 2 and 3. A feasible solution of the

instance is displayed in Figure 2-11.

Proc 1 4 1
Proc 2
Proc 3 4 1

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160

6

3

3
7

8 5

8
2

9

Figure 2-11: Gantt chart for Example 2.9.

A structure tree to analyze and formulate complex job shop scheduling problems

We have seen how the MMJS, a complex job shop scheduling problem, was analyzed and

formulated based on two 1-feature formulations for the FJS and MPJS. In the graph below, a

structure tree is presented to facilitate the process to analyze and formulate a complex scheduling

problem. The tree displays several single complexifying features (in solid boxes) together with

their associated MILP formulation (in dashed boxes) and some multi-feature problems (e.g.

2-feature and 3-feature problems) that are composed from 1-feature problems (see solid arcs)

and formulated correspondingly (see dashed arcs). For example, a complex scheduling problem

called Generalized Blocking Job Shop (GBJS ) in [Kli01] is a 3-feature problem having sequence-

dependent setup times, blocking constraints, and transfer times features. Note that the transfer

times feature should be incorporated with one of the following features: blocking, no-wait, or

generalized no-wait constraints. The tree can be extended by adding more features and/or

combining more single features.
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Job Shop 
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Figure 2-12: Structure tree for complex job shop scheduling problems.

2.5.3 Evaluation of the mathematical programming approach by a general-

purpose solver

In order to evaluate the performance of the mathematical programming approach to the pre-

sented JS extensions, we selected the extensions for which standard instances have been estab-

lished. Moreover, the benchmark instances should be accessible for comparison purposes. Our

computational experiments include the following selected JS extensions together with their test

instances:

1. the FJS with test instances taken from Hurink, Jurisch and Thole (1994) [HJT94],

2. the BJS with test instances taken from Mascis and Pacieralli (2001) [MP02],

3. the NWJS with test instances taken from Mascis and Pacieralli (2001) [MP02].

All MILP formulations were coded in the LPL modeling language version 4.99j and solved by

by general-purpose MILP solver CPLEX version 9.0. The original test instances for the FJS in
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[HJT94] include 120 instances, which were 40 job shop instances of Lawrence modi�ed by three

levels of 
exibility. Since the computing times of a Tabu search for instances in the subgroups

of sizes 15 � 10 (i.e. 15 jobs and 10 processors), 20 � 10 , 30 � 10 and 15 � 15 took very long

time without achieving proven optimality [HJT94], we dropped these instances from our test

and only tested the FJS formulation on 60 instances of sizes 10� 5; 15� 5; 20� 5 and 10� 10.

The maximum computing time for those instances reported in [HJT94] is slightly more than

14 minutes; hence we set the computing time limit for all instances at 15 minutes. Mascis and

Pacieralli tested their BnB approaches for the BJS and the NWJS on 18 instances of identical

size 10 � 10. As computing times on these instances were rather long (up to 13,255 seconds),

we did not use a common time limit for all instances but let each of them run for the time

equal to its optimality time in [MP02]. Table 2-11 shows average relative errors and gaps for

the BJS and the NWJS. The FJS' computational results for both formulations FJS-1 and FJS-2

are displayed in Table 2-12.

Instance Size BJS NWJS
nxm Opt Time (s) UB LB RE Gap Opt Time (s) UB LB RE Gap

abz05 10x10 1641 4669.82 N/F 1067 N/A 34.96 2150 769.51 2493 1509 20.90 39.06
abz06 10x10 1249 3071.10 1864 904 49.24 27.62 1718 92.82 2039 1268 25.70 36.03
ft10 10x10 1158 6215.53 1314 829 13.47 28.41 1607 194.65 1782 1087 15.11 44.91
la16 10x10 1148 5531.21 1555 843 35.45 26.57 1575 124.46 1727 1207 13.24 32.06
la17 10x10 968 2087.34 1305 730.7 34.81 24.51 1371 139.01 2141 832.5 79.55 55.63
la18 10x10 1077 3748.17 1297 792.4 20.43 26.43 1417 196.42 1810 1052 36.49 33.89
la19 10x10 1102 2366.90 1404 791 27.40 28.22 1482 371.18 1645 1046 14.79 39.56
la20 10x10 1118 1471.40 1389 852 24.24 23.79 1526 177.52 1526 1127 0.00 35.69

orb01 10x10 1256 8311.11 1503 843 19.67 32.88 1615 61.35 1722 1077 8.52 42.83
orb02 10x10 1144 498.11 1684 813.9 47.20 28.86 1485 169.34 1893 1036 35.66 39.25
orb03 10x10 1311 569.85 1922 809.6 46.61 38.25 1599 156.59 1769 990 12.97 46.45
orb04 10x10 1246 3254.72 1785 892 43.26 28.41 1653 238.87 1923 1135 21.67 41.54
orb05 10x10 1203 796.31 1601 747.1 33.08 37.90 1365 1025.7 1567 991.5 16.79 31.05
orb06 10x10 1266 12183.68 1525 899.00 20.46 28.99 1555 30.43 1918 1056 28.67 39.42
orb08 10x10 1139 1033.75 1413 722 24.06 36.61 1319 197.51 1466 872.4 12.91 39.21
orb09 10x10 1130 879.42 1405 801 24.34 29.12 1445 62.62 1812 1052 32.48 34.78
orb10 10x10 1367 353.17 1876 817.7 37.23 40.18 1557 843.33 1749 1162 14.05 28.90

Average (%) 31.31 30.69 22.91 38.84

Opt = optimal makespan, UB = upper bound (makespan obtained by CPLEX)
LB = lower bound obtained by CPLEX, N/F = not found, N/A = not applicable
RE = relative error = (UB � Opt)=Opt, Gap = (LB � Opt)=Opt

Table 2-11: Performance of the MILP approach for on instances of the BJS and the NWJS.
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Instance Size FJS-1 FJS-2
nxm LB UB LB RE Gap UB LB RE Gap

la01-edata 10x5 609 * 609 547 0.00 10.18 609 593 0.00 2.63
la02-edata 10x5 655 * 655 636 0.00 2.90 655 655 0.00 0.00
la03-edata 10x5 550 * 551 481 0.18 12.55 550 547 0.00 0.55
la04-edata 10x5 568 * 568 568 0.00 0.00 568 568 0.00 0.00
la05-edata 10x5 503 * 503 420 0.00 16.50 503 503 0.00 0.00

la06-edata 15x5 833 * 864 493.6 3.72 40.74 833 584 0.00 29.89
la07-edata 15x5 762 * 803 425.7 5.38 44.13 777 505.4 1.97 33.68
la08-edata 15x5 845 * 846 492 0.12 41.78 845 574 0.00 32.07
la09-edata 15x5 878 * 906 491 3.19 44.08 878 554 0.00 36.90
la10-edata 15x5 866 * 885 535.2 2.19 38.20 866 607.7 0.00 29.83

la11-edata 20x5 1087 * 1178 492 8.37 54.74 1172 516 7.82 52.53
la12-edata 20x5 960 * 999 450 4.06 53.13 1001 475 4.27 50.52
la13-edata 20x5 1053 * 1121 487 6.46 53.75 1082 527 2.75 49.95
la14-edata 20x5 1123 * 1171 525 4.27 53.25 1146 543.6 2.05 51.59
la15-edata 20x5 1111 * 1259 493 13.32 55.63 1172 530 5.49 52.30

la16-edata 10x10 892 * 892 887 0.00 0.56 892 892 0.00 0.00
la17-edata 10x10 707 * 707 707 0.00 0.00 707 707 0.00 0.00
la18-edata 10x10 842 * 843 803 0.12 4.63 842 842 0.00 0.00
la19-edata 10x10 796 * 796 796 0.00 0.00 796 798 0.00 -0.25
la20-edata 10x10 857 * 864 839.5 0.82 2.04 857 885 0.00 -3.27

la01-rdata 10x5 570 588 413 3.16 27.54 588 413 3.16 27.54
la02-rdata 10x5 529 543 396 2.65 25.14 541 403 2.27 23.82
la03-rdata 10x5 477 482 349 1.05 26.83 488 349 2.31 26.83
la04-rdata 10x5 502 525 369 4.58 26.49 521 369 3.78 26.49
la05-rdata 10x5 457 486 380 6.35 16.85 471 380 3.06 16.85

la06-rdata 15x5 799 858 413 7.38 48.31 835 413 4.51 48.31
la07-rdata 15x5 749 775 387 3.47 48.33 801 387 6.94 48.33
la08-rdata 15x5 765 799 372 4.44 51.37 820 372 7.19 51.37
la09-rdata 15x5 853 886 467 3.87 45.25 913 436 7.03 48.89
la10-rdata 15x5 804 827 443 2.86 44.90 836 443 3.98 44.90

la11-rdata 20x5 1071 * 1120 478 4.58 55.37 1421 445 32.68 58.45
la12-rdata 20x5 936 969 408 3.53 56.41 1052 408 12.39 56.41
la13-rdata 20x5 1038 * 1090 447 5.01 56.94 1191 447 14.74 56.94
la14-rdata 20x5 1070 * 1124 443 5.05 58.60 1215 443 13.55 58.60
la15-rdata 20x5 1089 1195 473 9.73 56.57 1261 462 15.79 57.58

la16-rdata 10x10 717 * 793 717 10.60 0.00 780 717 8.79 0.00
la17-rdata 10x10 646 * 665 646 2.94 0.00 677 646 4.80 0.00
la18-rdata 10x10 666 * 758 663 13.81 0.45 735 663 10.36 0.45
la19-rdata 10x10 647 753 644 16.38 0.46 760 642 17.47 0.77
la20-rdata 10x10 756 * 814 756 7.67 0.00 775 756 2.51 0.00

la01-vdata 10x5 570 * 589 413 3.33 27.54 587 413 2.98 27.54
la02-vdata 10x5 529 * 540 394 2.08 25.52 560 394 5.86 25.52
la03-vdata 10x5 477 486 349 1.89 26.83 496 349 3.98 26.83
la04-vdata 10x5 502 * 519 369 3.39 26.49 510 369 1.59 26.49
la05-vdata 10x5 457 464 380 1.53 16.85 474 380 3.72 16.85

la06-vdata 15x5 799 * 856 441 7.13 44.81 950 441 18.90 44.81
la07-vdata 15x5 749 776 376 3.60 49.80 917 377.5 22.43 49.60
la08-vdata 15x5 765 793 369 3.66 51.76 1018 369 33.07 51.76
la09-vdata 15x5 853 889 382 4.22 55.22 1097 382 28.60 55.22
la10-vdata 15x5 804 * 875 443 8.83 44.90 915 443 13.81 44.90

la11-vdata 20x5 1071 * 1157 413 8.03 61.44 1555 413 45.19 61.44
la12-vdata 20x5 936 * 1035 408 10.58 56.41 1279 408 36.65 56.41
la13-vdata 20x5 1038 * 1106 382 6.55 63.20 1547 382 49.04 63.20
la14-vdata 20x5 1070 * 1108 443 3.55 58.60 1487 443 38.97 58.60
la15-vdata 20x5 1089 1183 378 8.63 65.29 1748 378 60.51 65.29

la16-vdata 10x10 717 * 831 717 15.90 0.00 1248 717 74.06 0.00
la17-vdata 10x10 646 * 733 646 13.47 0.00 1052 646 62.85 0.00
la18-vdata 10x10 663 * 724 663 9.20 0.00 980 663 47.81 0.00
la19-vdata 10x10 617 * 713 617 15.56 0.00 864 617 40.03 0.00
la20-vdata 10x10 756 * 846 756 11.90 0.00 1207 756 59.66 0.00

Average 5.24 30.82 14.19 29.10

LB = lower bound obtained by CPLEX
RE = relative error = (UB � BestLB)=BestLB
Gap = (LB � BestLB)=BestLB

Table 2-12: Performance of the MILP approach on instances of the FJS.
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The overall performance of the mathematical programming approach was not impressive. While

the upper bound quality varied from acceptable (average relative error around 5% for the FJS

instances) to low (average relative error around 30% for the BJS and NWJS instances), the lower

bound quality was low (average gap around 30%) for all JS extensions in our study. This agrees

with the �ndings in the computational experiments on the CJS formulation's performance with

standard instances in Section 2.4. Similar experiments by ILOG on other CJS instances also

attest that the upper bound obtained by CPLEX is quite close to the optimum, but the lower

bound is just of 67% of the optimum [DRLP03]. Amtat�urk and Savelsberch suggested that the

computational di�culty with big-M based formulations is that the LP relaxation often gives a

fractional of yij-value even if the disjunctive statement xj � xi � pi or xi � xj � pj is satis�ed,

which leads to unnecessary branchings [AS05]. Our initiatives to tighten these constraints did

not bring the hoped results, possibly because decreasing the coe�cient of H comes with the

increase in the number of binary variables and the number of constraints. All together, the use

of MILP formulations together with general-purpose solvers is limited to scheduling problem

sizes often too small to be of use in practice.

2.6 Overview of other solution approaches to job shop related

problems

A scheduling problem is called job shop related if it is based on the JS with possibly one or

several complexifying real-life features presented in Section 2.2. The previous section presented

a mathematical programming approach to several JS related problems by formulating them

as MILP formulations and solve the problems with a general-purpose solver (e.g. CPLEX).

This section brie
y outlines other solution methods that have been deployed to solve job shop

related problems. For a complete treatment of solution methods to the JS, readers are referred

to excellent surveys by Blazewicz et al. (1996) [BDP96], Vaessens et al. (1996) [VAL96], and

Jain and Meeran (1999) [JM99]. Descriptions of methods to solve the JS with sequence-setup

times can be found in the survey by Allahverdi et al. [ANCK06]. There are no equivalent

comprehensive surveys for other JS extensions.

In general, solution methods to a job shop related problem can be either exact or approximative,

the latter can be further divided into constructive and iterative heuristics.

2.6.1 Exact methods

Branch and Bound (BnB) algorithms employed in general-purpose MILP solvers like CPLEX

often use the LP relaxation framework, where branching in a node of the BnB tree corresponds

to �xing a speci�c sequencing variable to value zero or one. Various cutting planes could be

added during the process in order to obtain good lower bounds, e.g. cuts used by Applegate and
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Cook (19991) to solve the JS [AC91]. Ad hoc BnB algorithms usually utilize speci�c knowledge

of the speci�c job shop related problem under study. These algorithms are associated with the

corresponding disjunctive graphs. An ad hoc BnB algorithm starts with an empty disjunctive

arc selection. Branching in the BnB tree then corresponds to an addition of a disjunctive arc

to a partial selection. A lower bound is calculated at each node by solving a subproblem, e.g.

a one-machine scheduling problem with release dates and due dates. The main shortcoming of

all BnB algorithms is their lack of tight lower bounds to prune unpromising branches of the

enumeration tree as early as possible, which makes them inadequate to solve job shop instances

of real-life size.

2.6.2 Constructive heuristics

A constructive heuristic builds up a feasible solution from the given input data. Constructive

heuristics include priority dispatch rules, insertion heuristics, and shifting bottleneck heuristics.

Priority dispatching rules are widely used in practice because of their simplicity and low com-

puting e�ort, but their results are often of poor quality. Moreover, they can fail to �nd feasible

solutions for highly constrained job shop problems such as the blocking job shop. The common

scheme to apply a priority dispatching rule is as follows. At the start, all operations are un-

scheduled. In a generic step, schedule an unscheduled operation as follows: �nd the earliest time

at which one or several unscheduled operations can start. Among these operations, choose one

operation of the highest priority according to some priority rule, and schedule it. Repeat until

all operations are scheduled. Examples of priority rules are SPT (shortest processing time),

LPT (longest processing time), FCFS (�rst-come-�rst-served), etc.

Insertion heuristics are usually based on operation-insertion or job-insertion principles. An

operation-insertion algorithm is based on the insertion of an individual operation into a given

partial schedule. One version of such an algorithm is to use optimal insertion, i.e. to insert

an operation minimizing the objective function for the corresponding partial schedule. A job-

insertion algorithm inserts, in a generic step, all operations of a job into a partial schedule. Job

insertion for the JS is described in [KH03]; job insertion for various JS extensions is discussed

in [GKP08] and [GK07].

Shifting bottleneck heuristics [ABZ88] schedule the operations by repeatedly solving one-processor

scheduling problems where each operation on the processor has, besides its processor duration,

an earliest starting time (head) and a sojourn time after processing (tail). The choice of which

(one-) processor (problem) to consider is done by a simple bottleneck criterion. In a �rst phase,

a sequence of one-processor-problems build up a solution. In a second phase, it improves the

solution by repeatedly rescheduling operations on a processor (in that sense, strictly speaking,

only the �rst phase is a constructive heuristic). Shifting bottleneck heuristics often perform

rather well at inexpensive computing cost. Initially developed for the JS, the algorithms can

be applied to some JS extensions with appropriate modi�cations made to the disjunctive graph
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[WR90][Sch98].

In general, constructive heuristics typically are easy to implement and have low computational

costs. Their shortcomings are that they �nd solutions of often average quality only. Moreover,

as other heuristics, they do not provide a quality guaranty in form of a lower bound on the

minimum makespan.

2.6.3 Iterative heuristics

Iterative heuristics start from one or more feasible solutions and use the solution(s) as the

base(s) to �nd a better solution. These heuristics can involve local or population search.

Iterative heuristics with local search �nd a new solution (neighbor) in the neighborhood of a

feasible one. The most decisive factor in designing a local search heuristic is the neighborhood

function, which is (hopefully) optimum connected and able to easily generate feasible solutions.

The most popular local search heuristics are simulated annealing [VLAL92], tabu search [GL97],

and variable neighborhood search [HM01]. In simulated annealing, if the di�erence � between the

current schedule's objective function and the one of its neighbor is negative, the neighbor can still

be accepted if exp(��=t), where t is a time-dependent control parameter called \temperature",

is greater than a random number in (0,1) generated by a random mechanism. Tabu search

heuristics are local search method with a mechanism of tabu list that aims to forbid the short-

term return to a previously found solution. Some solution of lower quality might be accepted

during the search in order to help the search escape a local optimum. Variable neighborhood

search employs a systematic use of di�erent neighborhoods when several di�erent neighborhoods

are available.

Iterative heuristics with population search �nd a new solution from a pool of feasible solutions

called \population". The population evolves according to certain self-adaptation and combina-

tion operators. A selected solution would be the best �t member of the population. The most

representative population search heuristic is genetic algorithms, which create a new solution

(child) from two existing solutions (parents) by a combination operator called cross-over; or

from an existing solution by a self-adaptation operator called mutation.

Research on iterative heuristics with local and population search has been very active for the

past two decades. For guidelines to apply local and population search algorithms, refer to Hertz

and Widmer (2003) [HW03]. More details on the algorithms can be found in [Ree93]. Iterative

heuristics are perhaps the most used tools in solving job shop related problems. According

to recent methodology comparisons for the JS [JM99][VAL96], the Tabu search algorithm by

Nowicki and Smutnicki [NS96] and a hybrid of Tabu search and Shifting Bottleneck procedure

called Guided Local Search with Shifting Bottleneck by Balas and Vazacopulos [BV98] are the

two best performing heuristics. Similar comparative studies for other extended JS problems are

not available.
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2.7 Concluding remarks

This chapter studied practical issues in job shop scheduling. Several complexifying features in

practice that invalidate some of the JS' assumptions have been systematically presented in this

chapter. The chapter evaluated four existing MILP formulations for the JS: the Manne, the Liao-

You, the Wagner, and the Wilson formulations, together with a newly proposed Adaptive Manne

formulation. From our comprehensive computational experiments, the Manne formulation has

proven to be the best, not the Liao-You one as claimed elsewhere. For each of the presented

complexifying features, an MILP formulation for the corresponding 1-feature JS extension has

been presented. Several of the presented formulations are novel: (i) the formulation for the

BJS, (ii) the formulation for the GNWJS, and (iii) the formulation FJS-2 for the FJS. Using

the 1-feature formulations as building blocks, we developed a new formulation for the multimode

job shop problem, a JS extension with two complexifying features, namely processor 
exibility

and multiprocessor requirements. Our computational experiments showed that with the current

MILP formulations, the performance of available general-purpose MILP solvers (e.g. CPLEX)

still has to be much improved, especially in terms of the lower bound quality.



Chapter 3

Flexible generalized blocking job

shop problem

3.1 Introduction

After having examined various job shop scheduling problems with additional features that occur

in practice, having modeled these problems as MILP, and also having seen the limitations in

solving these MILP, we address in this chapter a complex job shop scheduling problem with

four additional features namely blocking constraints, 
exibility, sequence-dependent setup times,

and job transfer times. We shall refer to this problem as the Flexible Generalized Blocking Job

Shop (FGBJS). The problem has not yet been addressed in the literature to our knowledge,

although it can be used to model a variety of real world scheduling problems. After formulating

the problem, we shall develop several heuristics based on novel neighborhoods and tabu search,

and present extensive computational results.

The FGBJS extends the version of the scheduling problem without 
exibility which has been

addressed in Klinkert's dissertation [Kli01] and a paper [GK05] as the so-called Generalized

Blocking Job Shop (GBJS ). In [GK05], Gr�o
in and Klinkert solve the GBJS in a tabu search

approach, using a neighborhood based on job insertion that allows them to consistently generate

feasible solutions and achieve good solution quality. In this chapter, we shall borrow or extend

several ingredients from this previous work on GBJS while formulating and developing solution

approaches for the FGBJS. In addition, we shall adapt some of recent research �ndings on job

insertion in non-
exible generalized job shop scheduling in [GK07] to the FGBJS. Also, for our

computational experiments, we have bene�ted form the software used in [Kli01] and [GK05],

which we have modi�ed for the FGBJS.

The chapter is structured as follows. The next section informally introduces the FGBJS and

illustrates it with some applications. Section 3.3 provides a formal problem formulation as a

MILP. Section 3.4 presents results from [Kli01], [GK05], and [GK07] for the GBJS, which are

47
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to be extended for the FGBJS. Section 3.5 develops a graph presentation with local operation


exibility, which extends the disjunctive graph representation for the GBJS. Section 3.6 derives

three neighborhood structures for the FGBJS. Based on these neighborhood structures, Sec-

tion 3.7 develops three constructive heuristics while Section 3.8 presents six tabu search based

heuristics. Performance of these heuristics on newly created benchmark instances is presented

in Section 3.9. Finally, Section 3.10 concludes the chapter with some remarks.

3.2 The FGBJS and some applications

The FGBJS is informally described as follows. A number of jobs have to be processed by a

number of processors. All jobs and processors are available continuously from time zero. There

is no bu�er at or between the processors. Each job consists of a chain of operations to be

processed in that order. Each operation of any job comprises four consecutive steps: (1) a

take-over step where the job is taken from its previous processor, or the job is loaded on a

processor if the processor is to perform the job's �rst operation, (2) a processing step where

the job is processed for a positive duration, (3) a waiting step where the job is waiting for an

unknown duration (possibly zero) for its next processor to become available and thus blocking

its current processor, and (4) a hand-over step where the job is handed over to its next processor

or unloaded from the current one if the operation is the job's last operation. Each and every

step takes place without preemption. Each job transfer has its hand-over and take-over steps

synchronized; these two steps start and (typically) end at the same time. Each operation can

be processed by one processor selected from several alternative processors, and the operation's

processing time might depend on the processor assigned to it. Any processor can perform

only one operation at a time. There is a sequence-dependent setup between two operations

consecutively performed on the same processor. Besides sequence-dependent setup times, there

exist for any processor's operation sequence a �rst setup time to prepare the �rst operation on

the processor and a last setup time to clear the processor after its last operation is �nished. All

setup times for an operation can be processor-dependent.

Any feasible schedule determines one processor and a starting time for each operation such that

the sequence of operations of each job is maintained and at any time, no processor is used by

more than one operation. The objective is to �nd a feasible schedule that minimizes the time

to �nish all jobs, which is referred to as the makespan.

Clearly, the FGBJS provides 
exibility in modeling scheduling problems in practice to a larger

extent than the extended JS models described in Chapter 2 does, because it combines more

practical aspects of complex scheduling. In fact, the scheduling examples mentioned in Chapter

1 can be modeled as a FGBJS as follows.

1. Example 1.1 (robot cell scheduling): Each part is modeled as a job while each CNCmachine

or the transport robot as a processor. For any part, its processing on a machine is preceded
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and followed by two moving operations by the robot. Flexibility is evident as a part can

be processed by any machine equipped with the right tool. Synchronization takes place

between the robot and a machine when the robot feeds the machine with a part or remove

the part from it. Job transfer times are often assumed to be negligible. Blocking happens

when (1) a part stays on the robot until its next assigned machine becomes free, or (2)

a part stays on a machine waiting for the robot to come. The duration of the robot's

travel without holding any part from a CNC machine to another one can be modeled as

a sequence-dependent setup time.

2. Example 1.2 (automated high-density warehouse scheduling): Each pallet retrieval can

be modeled as a job consisting of three consecutive operations: (1) the pallet's retrieval

from a storage position by a carriage integrated into the aisle holding the pallet, (2) the

pallet's move along a cross-aisle by its integrated carriage, and (3) the pallet's carrying by

an elevator. Pallet routing 
exibility may exist, for instance when elevators are installed

at both ends of a cross-aisle. Blocking occurs when a pallet is waiting on a carriage for

its next carriage or elevator to arrive. Travelling time for an empty carriage depends on

positions of two pallets to be retrieved consecutively, so it is sequence-dependent. It may

also depend on the carriage, thus it is processor-dependent. Hand-over and take-over steps

involved in any pallet transfer normally take some positive time. For a �xed number of

pallets, maximizing the throughput of the warehouse is equivalent to minimizing the time

to �nish moving all parts, i.e. the makespan.

3. Example 1.3 (surgical case scheduling): This problem can be modeled a FGBJS problem

in which patients are modeled as jobs while the most expensive resource in each of the

three phases (e.g. nurses in the preoperative phase, operating rooms in the perioperative

phase, and recovery beds in the postoperative phase) are modeled as processors. There

is 
exibility in choosing a resource for a patient in each phase, e.g. the patient can be

operated in one of alternative operating rooms. Turnover time between two consecutive

operations in an operating room depends on the �rst operation's cleanup time and the

second operation's setup time, hence it is sequence-dependent. When a patient cannot

go on to the next phase if a resource over there is not yet available, it occupies and thus

blocks the current phase's resource while waiting for the next phase's resource. Note that

transport and transfer times are often negligible when transporters are always available

and holding units, operating rooms, and recovery rooms are in proximity of one another.

4. Example 1.4 (railway scheduling): Each block section can be modeled as a processor,

each train's entire travel as a job, and each train's traversal through a block section

as an operation. The start of each operation is the time when the head of the train

enters the section and the operation's completion time is the time the head enters the

next section. Job transfer times are the synchronization times between two consecutive

section traversals, hence they are zero. Setup time for an operation is the time it takes
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a preceding train to completely leave the block, plus some safety time. This time is

sequence-dependent since it depends on the previous train's length and speed. Once a

train has to stay in a section for some reason, e.g. because there is an accident in the next

section, no other train can enter the section and the section is thus blocked. A train can

take one of several parallel segments in a station or be rerouted to deal with unexpected

events, which implies 
exibility.

3.3 Problem formulation

This section formally formulates the FGBJS as a MILP problem. Let J be a set of n jobs,

M a set of m processors, and I be a set of o operations. A job J 2 J is a set of operations

to be processed in some order. Therefore, J � I; and J is a partition of I, i.e. J � 2I .

For any job J , index its operations in the job's processing order as J1; : : : ; JjJ j. Let the job

of i 2 I be J i. De�ne a set of pairs of consecutive (hence ordered) operations for job J as

AJ = f(i; j) : J i = J j = J; i = Jr; j = Jr+1; 1 � r < jJ jg. For each (i; j) 2 AJ , i is the

immediate job predecessor of j; we denote i = JP (j), and j is the immediate job successor of

i; j = JS(i). De�ne � and � as two dummy operations of zero duration where � starts before

and � starts after all other operations respectively. Associated with each operation i 2 I is a

set of assignable processors Mi �M ; each processor k 2Mi processes i for a duration pik: Each

operation is performed by the one processor assigned to it, and each processor can perform only

one operation at a time. Let � be a complete assignment that assigns each operation i 2 I to

a processor k 2 Mi, i.e. �(i) := k. Denote by Ik the set of operations assigned to processor

k under �. Operation i 2 I is composed of four steps: (1) a take-over step ti of duration pti;

(2) a processing step for a processor-dependent duration pik (k = �(i)), (3) a waiting step for

an unknown duration, and (4) a hand-over step hi of duration phi . The hand-over step of an

operation and the take-over step of the operation's immediate job successor are synchronized.

Denote by ps�ik and p
s
i�k respectively the setup times for operation i as �rst and the last operation

on processor k 2Mi, and let p
s
ijk be a setup time for two operations i; j 2 I, to be consecutively

performed on k 2 Mi \Mj 6= ;. No preemption is allowed for any operation. All processing

times are positive; other durations are nonnegative. All jobs and processors are continuously

available from time zero. The objective is to �nd a feasible schedule that respects the processing

order of each job and the capacity of each processor, and minimizes the makespan.

Example 3.1.

Consider a FGBJS instance of 3 jobs J = f1; 2; 3g, 3 processorsM = f1; 2; 3g, and 7 operations

I = f1; 2; :::; 7g. The operations are partitioned into jobs and listed in the jobs' processing order

as follows: job 1 = f1; 2g, job 2 = f3; 4; 5g, and job 3 = f6; 7g. Sets of consecutive operations for

the jobs are A1 = f(1; 2)g; A2 = f(3; 4); (4; 5)g, and A3 = f(6; 7)g. Sets of assignable processors

for operations are M1 = f1g; M2 = f2g;M3 = f1; 3g;M4 = f2g; M5 = f3g;M6 = f1; 2g, and
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M7 = f3g: Processor-dependent processing times are given in Table 3-1. All take-over and

hand-over times, as well as setup times for the �rst and last operations on any processor, are

set equal to 10. Table 3-2 shows the sequence-dependent setup times. Setup times are assumed

to be processor-independent for the sake of simplicity.

Processor/Operation 1 2 3 4 5 6 7

1 20 20 20
2 20 20 20
3 30 20 20

Table 3-1: Processing times in Example 3.1

Operation/Operation 1 2 3 4 5 6 7

1 10 10
2 10 10
3 20 10 10 10
4 10 10
5 10
6 10 10 20 10
7 10 10

Table 3-2: Sequence dependent setup times in Example 3.1.

The Gantt chart of a feasible schedule is shown in Figure 3-1 (the chart labels the operations in

the format Job number.Index of operation (J:r) instead of the subscripted format Jr to �t the

font size to the boxes, e.g. 2.3 refers to the third operation of job 2). In this schedule, operation 3

(2.1) is assigned to processor 1, operation 6 (3.1) to processor 2, and each of the other operations

is assigned to its single processor. Observe the synchronization of two consecutive operations

of any job, e.g. the hand-over step of operation 6 (3.1) and the take-over step of operation

7 (3.2) both start at time 40 and end at time 50. Observe further that although operation 3

(2.1) is completed at time 40, job 2 cannot be moved to processor 2 since this processor is still

processing job 3. Therefore job 2 has to stay on processor 1 and thus blocks this processor from

processing job 1 until time 60 when processor 2 becomes available, and transfer of job 2 occurs.

The resulting makespan is 170.

Figure 3-1: Gantt chart in Example 3.1.

In order to give a mixed integer linear programming (MILP) formulation for the FGBJS, de�ne

the decision variables as follows. Let x� be the starting time of dummy operation � , xti and x
h
i
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be the starting times of the take-over and the hand-over steps of operation i 2 I respectively.

De�ne assignment binary variables zik as:

zik =

(
1 if i is assigned to k 2Mi

0 otherwise
.

Also for two operations i; j 2 I; i < j; Mi \Mj 6= ;; de�ne sequence variable yij as:

yij =

(
1 if i precedes j (not necessarily immediately) on some k 2Mi \Mj

0 otherwise
.

All notations are summarized in Table 3-3. A MILP formulation for the FGBJS is given below:

Notations

Sets

J Set of jobs J
I Set of operations
M Set of processors
Mi Set of processors assignable to i 2 I
AJ Set of pairs of consecutive operations (Jr; Jr+1); 1 � r < jJ j of job J 2 J
Parameters

pik Processing time of operation i 2 I on processor k 2Mi

pti Take-over time of operation i 2 I

phi Hand-over time of operation i 2 I
ps�ik Setup time of operation i 2 I as the �rst operation on processor k 2Mi

psi�k Setup time of operation i 2 I as the last operation on processor k 2Mi

psijk Setup time between i; j 2 I on k 2Mi \Mj 6= ;
H Very large positive number
Decision variables

zik =

�
1 if i 2 I is assigned to processor k 2Mi

0 otherwise

yij =

�
1 if i is sequenced before j on some processor k 2Mi \Mj ; i; j 2 I; i < j
0 otherwise

xti Starting time of the take-over step ti of i 2 I

xhi Starting time of the hand-over step hi of i 2 I
x� Starting time of dummy operation �

Table 3-3: Notations for the MILP.

Minimize x� subject to : (3-1)

xhi � xti �
X
k2Mi

pikzik � pti for all i = J1; J 2 J (3-2)

xhj � xtj � (ptj + pjk)zjk � 0 (3-3)

for all (i; j) 2 AJ ; J 2 J ; k 2Mj �Mi

xhj � xtj � pjkzjk � ptj (zjk � zik)� psijk(zik + zjk � 1) � 0 (3-4)

for all (i; j) 2 AJ ; J 2 J ; k 2Mi \Mj

xhi � xtj = 0 for all (i; j) 2 AJ ; J 2 J (3-5)
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xtj +H(2� zik � zjk) +H(1� yij)� xhi � phi + psijk (3-6)

for all i; j 2 I; i < j; (i; j) =2 AJ2J ;k 2Mi \Mj 6= ;

xti +H(2� zik � zjk) +Hyij � xhj � phj + psjik (3-7)

for all i; j 2 I; i < j; (i; j) =2 AJ2J ;k 2Mi \Mj 6= ;

xti �
X
k2Mi

ps�ikzik for all i 2 I (3-8)

x� � xhi � phi +
X
k2Mi

psi�kzik for all i 2 I (3-9)

X
k2Mi

zik = 1 for all i 2 I (3-10)

zik 2 f0; 1g for all i 2 I; k 2Mi (3-11)

yij 2 f0; 1g for all i; j 2 I; i < j;Mi \Mj 6= ; (3-12)

xti; x
h
i � 0 for all i 2 Ix� � 0 (3-13)

Objective function (3-1) is to minimize the makespan. Constraints (3-2) are precedence con-

straints ensuring that for any operation i which is the �rst operation of its job, its hand-over

step takes place after the completion of its take-over and processing steps. Constraints (3-3)

express that if j is on processor k and its job immediate predecessor i = JP (j) is not on k, then

xhj � xtj � ptj + pjk. If both i and j = JP (i) are on k, then the two operations are, in e�ect,

merged to an operation of processing time (pik + psijk + pjk), and constraints (3-4) enforce that

xhj � xtj � psijk + pjk. Synchronization constraints (3-5) make sure that the hand-over step of

operation i is synchronized with the take-over step of its immediate job successor j = JS(i).

Constraints (3-6) and (3-7) are disjunctive constraints ensuring that if i and j are on k then

either i is before j and xtj � xhi � phi + psijk or j is before i and xti � xhj � phj + psjik: Note that

because of possible blocking, the completion time of i 2 I on k, de�ned as Ci =x
t
i + pti + pikzik,

might not be the time at which i leaves k. Therefore, we use the term departure time to mention

the point of time when the hand-over step of an operation is done and its job either goes on to

the next processing phase or leaves the system. Observe that from constraints (3-6) and (3-7),

for any three operations u; v; and w 2 I sequenced in this order on processor k, we need to have

psuvk+ pvk+ psvwk � psuwk as w is not sequenced immediately after u: This requirement is clearly

satis�ed if the triangle inequality psuvk + psvwk � psuwk is assumed for the setup times. If v is the

�rst operation in the sequence on k, then the triangle inequality is ps�vk+p
s
vwk � ps�wk. Similarly,

if v is the last operation in the sequence on k, then the triangle inequality is psuvk+psv�k � psu�k:

Constraints (3-8) and (3-9) take into account initial and last setup times for all sequences. As-

signment constraints (3-10) require that exactly one processor is assigned to each operation.

Domains of decision variables are stated in the last four constraints (3-11)-(3-4).

Note that when two sets of assignable processors for any two consecutive operations i and j of

the same job are disjoint, or when it is practically impossible to process i and j on the same

processor k (e.g. when k should be calibrated o�-load after each operation), constraints (3-2),
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(3-3), and (3-4) can be replaced by the following constraints

xhi � xti �
X
k2Mi

pikzik � pti for all i 2 I; (3-14)

while the condition (i; j) =2 AJ2J is dropped from constraints (3-6) and (3-7).

The MILP formulation above can be coded by any mathematical programming language (e.g.

LPL) then solved by any commercial MILP solver (e.g. CPLEX). However, it is certainly

more di�cult to solve than are the formulations for the JS or other single-feature extensions

studied in Chapter 2 since it covers more practical constraints. As results of our computational

experiments on the job shop related formulations in Chapter 2 suggest, solving the FGBJS by

a general-purpose MILP solver is out of reach, at least currently, for large problem sizes as they

occur in practice. Therefore, more e�cient heuristic solution approaches should be sought.

3.4 The Generalized Blocking Job Shop

The Generalized Blocking Job Shop (GBJS) introduced in [Kli01] and [GK05] is a special version

of the FGBJS where each operation can be performed by only one processor. In other words, the

FGBJS is an extension of the GBJS in the dimension of processor 
exibility. Therefore, we may

extend research results in [Kli01] and [GK05] for the FGBJS. Furthermore, recent results on job

insertion in a generalized job shop environment in [GK07] will prove very useful to address the

FGBJS. This section brie
y presents these research backgrounds. Without loss of generality,

assume that a setup time between two non-consecutive operations of the same job assigned to

the same processor is not greater than the sum of processing times of their job's in-between

operations.

3.4.1 Graph representation for the GBJS

As shown in Chapter 2, solving an JS instance is equivalent to �nding a feasible selection

in the instance's associated disjunctive graph so that the length of the critical path � � �

is minimized. This approach can be applied to other extended JS problems [Sch98][WR90].

However, the disjunctive graph cannot represent JS extensions involving blocking constraints

because selecting a disjunctive arc in a pair is the same as �xing a sequencing variable yij

in capacity constraints (2-3) and (2-4) of the CJS formulation to value 1 (or 0); it is shown

in Section 2.5 that this value �xing fails to enforce blocking. Therefore, Klinkert [Kli01] and

Gr�o
in and Klinkert [GK05] proposed a new generalized disjunctive graph in their solution

method for the GBJS, which we refer to throughout of this chapter as the disjunctive blocking

graph:

Reusing all of the FBGJS' notations introduced in Section 3.2 (except that processing times



3.4. The Generalized Blocking Job Shop 55

and setup times are not processor-dependent due to non-
exibility), we de�ne for a given GBJS

instance its associated disjunctive blocking graph G = (V;A;E; E ; c) as follows. Each operation

i 2 I is represented by two nodes ti and hi corresponding to the take-over and hand-over steps

of the operation. The node set V = V I [ f�; �g, where V I = fti; hi : i 2 Ig; and nodes �

and � respectively represent the dummy start and end operations. The set of conjunctive arcs

A = A0 [ A1 [ A�;� . Set A0 is the set of pairs of synchronization arcs joining hand-over node

hi to take-over node tj and vice versa where i and j are two consecutive operations of the same

job, i.e. A0 = f(hi; tj)(tj ; hi) : (i; j) 2 AJ ; J 2 J g. Set A1 is the set of operational arcs, i.e.

A1 = f(ti; hi) : i 2 Ig. Finally, A�;� = A� [ A� where A� = f(�; ti) : i 2 Ig is the set of arcs

connecting dummy start node � to each take-over node and A� = f(hi; �) : i 2 Ig is the set of

arcs joining the hand-over nodes to dummy end node � . The set E of disjunctive arcs contains,

for each pair of operations fi; jg to be performed on k (i; j 2 Ik), disjunctive arcs e = (hi; tj)

and its mate e = (hj ; ti), i.e. E = f(hi; tj); (hj ; ti) : i; j 2 Ik; k 2 Mg. Denote by E the family

of all disjunctive sets D = fe; eg, we have E � 2E and E =
S
D2E D.

The arc weights c are set as follows: ce := 0 for e 2 A0, ce := ps�i for e = (�; ti) 2 A
�;�
; ce :=

phi + psi� for e = (hi; �) 2 A
�;�
; ce := pti + pi for e = (ti; hi) 2 A1, and ce := phi + psij for

e = (hi; tj) 2 E.

The disjunctive blocking graph di�ers from the disjunctive graph for the classical job shop in

the following main points: (1) there are two nodes (ti and hi) instead of one to represent an

operation; (2) each disjunctive set D = f(hi; tj); (hj ; ti)g is composed of two disjunctive arcs of

di�erent ends instead of two arcs with same ends; and (3) the conjunctive arc set contains pairs

of synchronization arcs f(hi; tj); (tj ; hi) : (i; j) 2 AJ ; J 2 J g where each synchronization pair

forms a zero cycle.

Note that Mascis and Pacciarelli proposed in [MP02] another graph representation for the

Blocking Job Shop (see Section 2.5.1) called the alternative graph, which is an extension of the

classical disjunctive graph and can also be used to represent the GBJS. However, according

to our modeling experience, it is somewhat more di�cult to track disjunctive relations among

operations performed on the same processor in the alternative graph than in the disjunctive

blocking graph since the former expresses a blocking relation of an operation with another one

through the representative node of the operation's job successor.

A selection S is a subset of the set of disjunctive arcs, S � E. Selecting S means adding

a number of disjunctive arcs to the set of conjunctive arcs A, which results in a subgraph

G(S) = (V;A [ S; c). S is said to be complete if S \ D 6= ; for all D = fe; eg 2 E : If there

is no positive cycle in G(S) then S is positive acyclic. Clearly, any acyclic selection S satis�es

jS \ Dj � 1 for all D 2 E ; otherwise a trivial cycle containing some pair fe; eg exists. S is

feasible if it is complete and positive acyclic. The resulting graph G(S) is called the solution

graph of S. The GBJS problem is equivalent to the problem of determining a feasible selection

S in G so that the length of a critical path L(S) in G(S) is minimized. An arc lying on a critical
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path is called a critical arc, and its head and tail nodes are called critical nodes. An operation

is said to be a critical operation if at least one of its two representing nodes (hand-over and

take-over) is critical.

The graph representation for the GBJS is illustrated by the following example.

Example 3.2.

We create a GBJS instance from the FGBJS instance in Example 3.1 by setting M3 := f1g and

M6 := f1g while keeping the (single) processors for the other operations. Disjunctive blocking

graph G = (V;A;E; E ; c) associated with this GBJS instance has a node set V = fti; hi : i =

1; : : : ; 7g [ f�; �g; a set of constructive arcs A = A0 [ A1 [ A�;� where A0 = f(h1; t2); (t2; h1),

(h3; t4), (t4; h3), (h4; t5), (t5; h4), (h6; t7), (t7; h6)g, A
1 = f(ti; hi) : i = 1; : : : ; 7g, A�;� = f(�; ti) :

i = 1; : : : ; 7g [ f(hi; �) : i = 1; : : : ; 7g; a set of disjunctive arcs

E = f(h1; t3); (h3; t1); (h1; t6); (h6; t1); (h3; t6); (h6; t3); (h2; t4),(h4; t2),(h7; t5),(h5; t7)g;

and a family of disjunctive sets containing disjunctive arc e and its mate e

E =ff(h1; t3); (h3; t1)g,f(h1; t6); (h6; t1)g,f(h3; t6); (h6; t3)g,f(h2; t4); (h4; t2)g,f(h7; t5); (h5; t7)gg:

Proc 1
20

t1 h1
30

t3 h3
30

t6 h6
3020

20

20
t2 h2

30
t4 h4

20

20
t7 h7

30
t5 h5

30

Proc 2

Proc 3 Job 1 Job 2 Job 3

20

30

20

30

20

30

Figure 3-2: Disjunctive blocking graph for Example 3.2.

Figure 3-2 displays disjunctive blocking graph G: Pairs of synchronization arcs with zero weight

are drawn as edges and the arcs in A�;� are not shown for the sake of clarity.

3.4.2 Job insertion and con
ict graph

Job insertion activities frequently occur in practical scheduling, e.g. when updating a schedule

upon an arrival of a new job. In fact, there is a class of scheduling problems called job insertion

problems, where a job needs to be inserted into an existing schedule so that an updated schedule

is feasible and its makespan is minimized. For further information on job insertion problems

in various job shop environments, the reader is referred to [KH03] (the classical job shop),

[GKP08] (the multiprocessor task job shop), and [GK07] (a generalized job shop). This section
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recalls some research results on job insertion in a generalized job shop [GK07] (and their proofs

if deemed necessary) with slight modi�cations to adapt them to the GBJS. Our motivation is

to use the adapted results to derive a scheme to obtain a feasible solution from a given feasible

one in the next subsection.

Given disjunctive blocking graphG = (V;A;E; E ; c), de�ne the node set of job J as VJ = fhu; tu :

u 2 Jg; the set of disjunctive arcs entering J as E�
J = fe 2 E : tail(e) =2 VJ ; head(e) 2 VJg,

the set of disjunctive arcs leaving J as E+
J = fe 2 E : tail(e) 2 VJ ; head(e) =2 VJg, and the set

of disjunctive arcs incident to J as EJ = E�
J [ E+

J . Let EJ � E be the family of disjunctive

pairs D = fe; eg;[D2EJ = EJ . Assume that a selection R � E � EJ such that jR \Dj = 1 for

all D 2 E � EJ and R is positive acyclic has been determined. We need to insert J into the

partial schedule of J � J jobs to obtain a feasible schedule in which a predetermined operation

i 2 J is sequenced before a predetermined operation j, j 6= i and j is not a job predecessor of i,

on processor k. Denote by GJ = (V;A [R;EJ ; EJ ; c) the disjunctive blocking graph associated

with the insertion of job J and call GJ the (job) insertion graph of J . A selection in GJ is

SJ � EJ ; SJ can also be called an insertion. SJ is complete if SJ \D 6= ; for all D 2 EJ ; SJ is

positive acyclic if GJ(SJ) = (V;A[R[SJ) contains no positive cycle; and SJ is feasible if it is

complete and positive acyclic. As operation i is required to be before operation j on processor

k in any solution, (hi; tj) 2 E+
J is thus a preselection.

Proposition 1. Given an insertion graph GJ ; if a selection SJ results in a positive cycle Z in

(V;A[R[SJ), then there exists a \short" positive cycle Z
0 in (V;A[R[SJ) with Z

0\EJ � Z\EJ

and Z 0 visits job J once.

Proof. Suppose there is a positive cycle Z in GJ(SJ): If Z visits J only once, then Z 0 = Z.

Otherwise, let q be a times that Z visits J , i.e. jZ \ E�
J j = jZ \ E+

J j = q; 1 < q � jJ j.

Number q entering arcs in the order they enter J; Z \ E�
J = fe1; : : : ; eqg. Number q leaving

arcs similarly, Z \ E+
J = ff1; : : : ; fqg. Cycle Z can be expressed as a concatenation Z =

fe1; P1; f1; Q1; : : : ; eq; Pq; fq; Qqg where for p = 1; : : : ; q � 1, Pp is a path from head(ep) to

tail(fp) of positive length as Pp contains at least one operational arc and Qp is a path from

head(fp) to tail(ep+1). By convention, the indices are given modulo q, i.e. eq+1 = e1. Let r be a

job visiting index associated with the highest indexed operation that must be processed after all

other q� 1 operations in the job processing order of J; 1 � r � q. Consider a path (fr;Qr; er+1)

from tail(fr) to head(er+1) and a path Pr+1 from head(er+1) to tail(fr), Pr+1 exists because

operation associated with visiting index r + 1 is processed before operation associated with

visiting index r in the processing of job J ; these two paths form together a cycle Z 0. Clearly Z 0

is positive because it contains at least one conjunctive operational arc. Furthermore, Z 0 visits

job J once through entering arc er+1 and leaving arc fr.

Cycle Z 0 is drawn in bold in Figure 3-3. Proposition 1 implies that if a selection in GJ results

in no \short" cycle, then this selection is positive acyclic.
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Figure 3-3: A short cycle visiting job J once.

Besides the insertion graph, another graph representation to express insertion of job J when all

jobs in J � J have been scheduled is proposed in [GK07].

De�nition 1. Given an insertion graph GJ = (V;A [ R;EJ ; EJ ; c); the con
ict graph of GJ is

the undirected graph HGJ = (EJ ; U) where for any e 2 E�
J and f 2 E+

J , (e; f) 2 U if there is a

short positive cycle in GJ passing through fe; fg.

HGJ is a bipartite graph with two separate node sets, EJ = E�
J [E

+
J . Clearly, (e; e) 2 U for all

e 2 EJ . The concepts of insertion and con
ict graphs are illustrated in the following example.

Example 3.3.

Consider the disjunctive blocking graph G from Example 3.2. Suppose jobs 1 and 3 have been

scheduled with R = f(h1; t6)g and job J = 2 is to be inserted. Construct G2 as shown to the left

of Figure 3-4 (with arcs in R are drawn in bold and dashed) and its associated con
ict graph

HG2 = (E2; U) as shown to the right of Figure 3-4. Besides (e; e) 2 U , edges (e; f) 2 U; f 6= e;

are: (1) (a; c) due to cycle Z1 in G2 passing through nodes (h1; t3; h3; t4; h4; t2), (2) (a; c) due

to Z2 = (h3; t1; h1; t2; h2; t4), (3) (b; d) due to Z3 = (h6; t3; h3; t4; h4; t5; h5; t7); and (4) (c; d) due

to Z4 = (h4; t2; h1; t6; h6; t7; h7; t5).

Theorem 2. There is a one-to-one correspondence between the feasible selections in GJ =

(V;A [ R;EJ) and the stable sets of maximum cardinality jEJ j=2 in the con
ict graph HGJ =

(EJ ; U).

Proof. Suppose there is a feasible selection SJ in GJ , then (V;A[R[SJ) is positive acyclic by

de�nition. Therefore, there is no fe; fg � SJ such that (e; f) 2 U and SJ is thus a stable set in

HGJ . Since SJ is feasible, it is complete and hence jSJ j = jE�
J j = jE+

J j = jEJ j=2: Conversely,
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Figure 3-4: Insertion graph G2 and its associated con
ict graph HG2 in Example 3.3.

let SJ be a stable set of maximum cardinality in HGJ , hence jSJ j = jE�
J j = jE+

J j = jEJ j=2 and

SJ is complete. If SJ forms some cycle in GJ(SJ), then (V;A [ R [ SJ) contains a short cycle

Z 0 visiting J once according to Proposition 1. Z 0 enters J through some e 2 S�J and leaves J

through some f 2 S+
J . But then (e; f) 2 U , contradicting to SJ being stable in HGJ .

The following prerequisite terms are needed for our derivation of a feasible selection in GJ when

given a set of preselections (e.g. f(hi; tj)g) in the next subsection.

De�nition 2. Let HGJ = (E;U) be the con
ict graph of GJ . Let a sequence of distinct nodes

P = (e0; f1; e1; f2; e2; : : : ; fn; en); n � 0; be an alternating path from node e0 to node en if

(ek�1; fk) 2 U; fk 6= ek�1, and ek = fk; for all 1 � k � n, and denote such a node sequence as

e0  en. Path P = (e0; e0) is a trivial alternating path.

De�nition 3. Let SJ � EJ be a selection in GJ : The closure �(SJ) is �(SJ) = ff 2 EJ :

e f for some e 2 SJg.

Example 3.4.

Consider the insertion graph G2 and con
ict graph HG2 constructed in Example 3.3. Suppose

SJ = fcg, J = 2, we have �(SJ) = fc; ag as there exists c  a = (c; a; a) (see the dark

nodes and the bold edges in the right graph in Figure 3-5): The selected disjunctive arcs in G2

corrsponding to �(SJ) are drawn in bold in the left graph in Figure 3-5.

For a given SJ , �(SJ) can be obtained from GJ without explicitly constructing HGJ as follows.

Proposition 3. De�ne '(SJ) = SJ [ fe 2 EJ : GJ(SJ [ e) contains a short positive cycle

passing through eg: Then �(SJ) is the output of the algorithm Closure below.

algorithm Closure

begin
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Figure 3-5: Closure in Example 3.4.

Set counter r := 1, '0(SJ) := SJ ; �(SJ) := SJ :1

Compute '1(SJ) := '(SJ):2

while 'r(SJ) 6= 'r�1(SJ) do3

r := r + 1;4

'r(SJ) := '('r�1(SJ)):5

end (while)6

�(SJ) := 'r(SJ):7

return �(SJ):8

end (Closure)

Proof. Indeed, suppose e =2 SJ and e 2 '(SJ), then by the de�nitions of '(SJ), there exists

some short positive cycle Z in GJ(SJ [ e) that passes through e. Without loss of generality,

assume that Z leaves GJ(SJ [ e) through e, thus Z 0 must enter J through some f 2 SJ . By

construction of HGJ = (EJ ; U), (f; e) 2 U , hence f  e through path (f; e; e). Suppose in the

next iteration, '('(SJ)) includes g 2 EJ , g =2 SJ [ e, then there is a short positive cycle that

respectively enters and leaves GJ(SJ [ e [ g) in e and g, hence e g in HGJ , but then f  g

since f  e. Therefore, in iteration r; 1 � r � jEJ j=2� jSJ j; when no more arcs can be added

to 'r�1(SJ), we obtain the closure �(SJ).

Example 3.5.

Return to the previous example with J = 2, R = fh1; t6g; and SJ = f(h2; t4)g. In the

�rst iteration of the Closure algorithm, (h1; t3) is included into '1(SJ) because of cycle Z =

(h2; t4; h3; t1; h1; t2) in G; and '1(SJ) = f(h2; t4); (h1; t3)g. After the second iteration, since

'2(SJ) = '1(SJ); we have �(SJ) = f(h2; t4); (h1; t3)g; which is the closure found in Example

3.4.
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3.4.3 Feasible schedule generation

As pointed out in [VLAL92], when solving a classical job shop instance by the longest path prob-

lems, a new solution obtained by reversing a disjunctive arc in the critical path (i.e. replacing

the arc by its mate) always produce a feasible solution. Unfortunately, such an arc exchanging

scheme can no longer guarantee to obtain feasible solutions for the GBJS. A feasibility question

\Given a disjunctive blocking graph G for an instance of the GBJS and an arbitrary set Q of

preselected disjunctive arcs in G; is there any feasible selection S in G such that Q � S?" is

di�cult to answer. Indeed, the feasibility problem for the GBJS has been proved to be NP-

complete [Kli01], which implies that applying constructive heuristics like priority-based rules

to a GBJS instance might give infeasible solutions. To �nd a new feasible solution from a fea-

sible one when moving an operation to another position in its processor's sequence, a new arc

exchanging scheme is proposed in [GK05]. This scheme, which always �nds a feasible solution,

can also be derived using a main theorem on job insertion feasibility in [GK07] stated below.

Let Q be a set of preselected nodes in HGJ (or equivalently, a set of preselected disjunctive

arcs in GJ) and de�ne Q� = �(Q). Also de�ne bEJ = fe 2 EJ : fe; eg \ Q� = ;g and letbHGJ = ( bEJ ; bU) be the bipartite graph induced by bEJ .

Theorem 4. (i) There exists a feasible selection in GJ if and only if Q� is stable in HGJ ;

(ii) If Q� is stable in HGJ , the feasible selections in GJ are precisely the sets SJ = Q� [ T ,

where T are the stable sets of maximum cardinality j bEJ j=2 in bHGJ .

Proof. (i) We �rst prove that there exists a feasible selection in GJ only if Q� is stable in HGJ .

Notice that Q must be stable in HGJ , otherwise there is obviously no feasible selection in GJ

that contains Q. Let SJ be a feasible selection in GJ with Q � SJ , then SJ is a stable set of

maximum cardinality jEJ j=2 in HGJ by Theorem 2. Suppose for e 2 Q, e  f in HGJ with

path P = (e = e0; f1; e1; f2; e2; : : : ; fn; en = f), i.e. f 2 Q�. Assuming ek�1 2 SJ ; 1 � k � n;

as (ek�1; fk) 2 U , we have fk =2 SJ ; and as jSJ j = jE�
J j = jE+

J j = jEJ j=2, ek = fk 2 SJ , thus

f 2 SJ and Q� � SJ . Therefore, SJ is feasible only if Q� is stable in HGJ . The su�ciency

results from the second part of (ii) below.

(ii) Let SJ be a feasible selection in GJ with Q � SJ , then as proved in (i), Q� � SJ . Let

T = SJ �Q�. By de�nition of bEJ ; T = SJ \ bEJ and hence T is a stable set in bHGJ since SJ is

stable in HGJ . As SJ has the maximum cardinality jEJ j=2 and jT \ fe; egj = 1 for all e 2 bEJ ,

T has a maximum cardinality j bEJ j=2. We next prove that if T is a stable set of maximum

cardinality j bEJ j=2 in bHGJ , then SJ = Q� [ T is a feasible selection in GJ . Suppose that Q
� [ T

is not stable in HGJ , then there exists (f; g) 2 U in HGJ = (EJ ; U) with f 2 Q� and g 2 T

since Q� is stable in HGJ and T is stable in bHGJ . As f 2 Q�, there is some e 2 Q such that

e f by de�nition of Q�. Then as e f and (f; g) 2 U; g 6= f , we have e g, hence g 2 Q�,

a contradiction to fg; gg \Q� = ;. Therefore, Q� [ T is stable in HGJ . Since T is a stable set

of maximum cardinality j bEJ j=2 in bHGJ , jT \ fe; egj = 1 for all e 2 bEJ , and by de�nitions of bEJ
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and Q�, jQ� \ fe; egj = 1 for all e 2 EJ � bEJ . Therefore, SJ = Q� [ T is a stable set in HGJ of

maximum cardinality jEJ j =2 and a feasible selection in GJ by Theorem 2. Observe that one of

feasible selection(s) is Q� [ (E+
J \

bEJ).

Theorem 4 is illustrated by the following example.

Example 3.6.

Continue the previous example with Q = fag = f(h3; t1)g. Construct Q
� = �(Q) = fa; c; d; bg,

observe for instance that a b through P = (a; c; c; d; d; b; b). Q� is stable in HGJ = HG2 since

Q� � E+
J , hence there exists a feasible selection in G2. Construct bEJ = fe 2 EJ : fe; eg \Q� =

;g; bEJ = ; hence T = ;. Finally, SJ = S2 = Q�[T = fa; c; d; bg is a feasible selection in G2: The

corresponding Gantt chart is shown in Figure 3-6. Note that if Q = fbg then Q� = fb; d; c; ag

and SJ = fb; d; c; ag.

d

bProc 1 t1 h1 t3 h3 t6 h6

t2 h2 t4 h4

t7 h7t5 h5

Proc 2

Proc 3
Job 1 Job 2 Job 3

b
a

a

c
c

a

b

c

d

a

b

c

d
d

2G 2GH

Figure 3-6: A feasible selection in G2.

Given a disjunctive blocking graph G, a feasible selection S in G, and some arc e 2 S; suppose we

want to �nd a feasible neighbor of S in which e is replaced by its mate e. Let J be a job incident

with e (w.o.l.g, always consider the head job, i.e. head(e) = ti for some i 2 J), and R = S�EJ ,

construct GJ . Let SJ = S \ EJ and for any K � EJ ; de�ne E(K) = fe 2 E : fe; eg \K 6= ;g:

The following theorem allows us to �nd a new feasible insertion SJ in GJ when operation

i; ti = head(e); is moved before operation j; hj = tail(e).

Theorem 5. Let Q = fe = (hi; tj)g and construct Q� = �(Q). Then SJ = Q� [ (SJ �E(Q�))

is a feasible selection in GJ , and SJ [R is a feasible selection in G.
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Proof. We have e 2 E+
J by the selection of e, hence Q� = �(e) � E+

J by the construction of

�(e). Therefore, Q� is stable in HGJ . Let SJ be the set of disjunctive arcs in S incident with

J; then jSJ j = jEJ j=2. De�ne bEJ = fe 2 EJ : fe; eg \ Q� = ;g and let bHGJ = ( bEJ ; bU) be the
bipartite graph induced by bEJ . Let T = SJ �E(Q�), then T is a stable set in bHGJ since SJ is

stable in HGJ . Furthermore, as jT j + jQ�j = jSJ j, T is the stable set of maximum cardinality

in bHGJ . Therefore, by Theorem 4, Q� [ T is a feasible selection in GJ . Clearly, S = R [ SJ is

complete and positive acyclic in G, hence S = R [ SJ is a feasible selection in G.

Example 3.7.

Suppose the GBJS instance in Example 3.2 has a given initial feasible solution S = f(h1; t6),

(h1; t3), (h3; t6); (h2; t4); (h7; t5)g. Consider moving operation i = 3 before operation j = 1; i.e.

replace e = (h1; t3) by e = (h3; t1). We have J = J3 = 2, hence SJ = f(h1; t3); (h3; t6), (h2; t4),

(h7; t5)g and R = S�EJ = f(h1; t6)g. For e = (h3; t1); construct Q
� = �(e) = f(h3; t1), (h4; t2),

(h5; t7), (h3; t6)g in HG2 as seen in the previous example or directly from G2 using algorithm

Closure. A feasible insertion in GJ by Theorem 5 is SJ = Q�[(SJ�E(Q
�)) = f(h3; t1), (h4; t2),

(h5; t7), (h3; t6)g: Finally, the feasible selection in G is S = R [ SJ = f(h1; t6); (h3; t1); (h4; t2),

(h5; t7), (h3; t6)g. The corresponding Gantt chart is already shown in Figure 3-6.

After moving operation i before its current immediate processor predecessor j (i.e. replacing

e = (hj ; ti) by e = (hi; tj)), we observe in the resulting solution by Theorem 5 that (1) i is

before j but not necessarily the immediate processor predecessor of j and (2) some (or all) of

the operation's job J i might also have been moved to the left, i.e. some other entering disjunctive

arcs in E�
J might have been replaced by their leaving mates in E+

J during the construction of

Q�. The process of moving i and possibly resequencing some other operations of J i according

to Theorem 5 is called the closure procedure.

3.5 Graph representation for the FGBJS

Given a feasible assignment � where �(i) 2 Mi for all i 2 I, a FGBJS instance becomes a

GBJS one and we can associate with it a disjunctive blocking graph G = (V;A;E; E ; c). A

selection S in G only concerns sequencing operations. Consider now the move of an operation

i from its current position on a processor l = �(i) to a position on a new processor k (not

necessarily di�erent from l), i.e. the processor assignments before and after the move are �

and �0 with �(i) = l; �0(i) = k; and �(j) = �0(j) for all j 6= i. Therefore, we can express

the 
exibility with respect to a single operation i by jMij disjunctive blocking graphs, each of

them associated with a distinct assignable processor k 2 Mi. The disjunctive blocking graph

w.r.t. operation i and processor k is denoted as Gi
k = (V;A;E; E ; c). Clearly, given a �xed new

assignment �0 (where only the processor assignment of operation i is changed), all de�nitions

for the disjunctive blocking graph are retained for the disjunctive blocking graph w.r.t. to

operation i and processor k. We have a node set V = ftu; hu : u 2 Ig [ f�; �g, a set of
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conjunctive arcs A = A0 [ A1 [ A�;� where A0 = f(hu; tv); (tv; hu) : (u; v) 2 AJ ; J 2 J g,

A1 = f(tu; hu) : u 2 Ig, and A�;� = A� [ A� = f(�; tu) : u 2 Ig [ f(hu; �) : u 2 Ig, a set E

of disjunctive arcs, E = f(hi; tj); (hj ; ti) : i; j 2 Il; l 2 Mg, a family E of pairs of disjunctive

arcs D = fe; eg;[D2E = E; and a weight function c 2 <A[E . The weight for arc e 2 A1 is

c(tu;hu) = (ptu + pu;�0(u)) for u 6= i and c(ti;hi) =
�
pti + pik

�
, ce = 0 for e 2 A0, ce = ps

�u�0(u) for

e = (�; tu), ce = phu + ps
�u�0(u) for e = (hu; �), and ce = phu + ps

uv�0(u) for e = (hu; tv) 2 E. We

denote the set of disjunctive arcs incident with a job J as EJ and the set of disjunctive arcs

incident with operation i on processor k as Ei
k. The set of disjunctive arcs entering i is hence

denoted as Ei�
k = fe 2 Ei

k : head(e) = tig. Similarly, E
i+
k = fe 2 Ei

k : tail(e) = hig is the set of

disjunctive arcs leaving i. For any U � E in Gi
k; de�ne E(U) = fe 2 E : fe; eg \ U 6= ;g.

A selection S � E is acyclic if there is no positive cycle in (V;A[S); S is complete if S\D 6= ;

for all D 2 E ; and S is feasible if it is complete and acyclic. A solution graph associated with

operation i; processor k, and a feasible selection S in Gi
k is denoted as Gi

k(S).

Given a feasible solution (�; S) where � is a feasible assignment and S is a feasible selection, a

new graph Gi
k where operation i is moved to processor k is constructed as follows.

1. Construct the node set V , the conjunctive arc set A = A0[A1[A�;� , and the disjunctive

arc set E with the appropriate arc weights.

2. Adjust the obtained graph if i is assigned to the same processor that performs its job

predecessor and/or job successor:

� If k = �(JP (i)) and k 6= �(JS(i)) (i.e. k is also assigned to the immediate job

predecessor of i but not the immediate job successor of i): Combine i and JP (i)

into one operation ei with processing time (pik + pJP (i) + ps
JP (i);i;k). In Gi

k, re-

place four nodes ftJP (i); hJP (i); ti; hig by two nodes ft
ei
; h

ei
g, replace conjunctive arcs

f(tJP (i); hJP (i)); (hJP (i); ti); (ti; hJP (i)); (ti; hi)g by conjunctive arc (tei; hei) with weight

(pt
JP (i) + pJP (i);k + pik + ps

JP (i);i;k), and direct disjunctive arcs entering tJP (i) and ti

to enter t
ei
and disjunctive arcs leaving hJP (i) and hi to leave hei.

� If k 6= �(JP (i)) and k = �(JS(i)): Combine i and JS(i) into one operation ei with
processing time (pik+pJS(i)+p

s
i;JS(i);k): In G

i
k, replace four nodes fti; hi; tJS(i); hJS(i)g

by two nodes ft
ei
; h

ei
g, replace conjunctive arcs f(ti; hi), (hi; tJS(i)), (tJS(i); hi),

(tJS(i); hJS(i))g by conjunctive arc (tei; hei) with weight (pti + pik + pJS(i);k + ps
i;JS(i);k),

and direct disjunctive arcs entering tJS(i) and ti to enter t
ei
and disjunctive arcs

leaving hJS(i) and hi to leave hei.

� If k = �(JP (i)) and k = �(JS(i)) : Combine i, JP (i); and JS(i) into one operationei
with processing time (pJP (i)+pik+pJS(i)+p

s
JP (i);i+p

s
i;JS(i)): In G

i
k, replace six nodes

ftJP (i); hJP (i); ti; hi; tJS(i); hJS(i)g by two nodes ft
ei
; h

ei
g, replace conjunctive arcs

f(tJP (i); hJP (i)); (hJP (i); ti); (ti; hJP (i)); (ti; hi); (hi; tJS(i)), (tJS(i); hi), (tJS(i); hJS(i))g



3.5. Graph representation for the FGBJS 65

by conjunctive arc (t
ei
; h

ei
) with weight (pt

JP (i) + pJP (i);k + pik + pJS(i);k + ps
JP (i);i;k +

ps
i;JS(i);k), and direct disjunctive arcs entering tJP (i); tJS(i), and ti to enter t

ei
and

disjunctive arcs leaving hJP (i); hJS(i); and hi to leave hei.

The adjustment step 2 is necessary because a moved operation can be assigned to a processor

performing the operation's immediate job predecessor or immediate job successor, or both; and

in these cases, there are no hand-over and take-over steps between two consecutive operations of

the same job on the same processor. Construction of Gi
k; k 2Mi; is illustrated in the following

example.

Example 3.8.

Consider a partial feasible assignment � for the FGBJS instance in Example 3.1, �(1) =

1; �(2) = 2; �(4) = 2; �(5) = 3; �(6) = 1; and �(7) = 3. Operation 3 has as its set of al-

ternative processors M3 = f1; 3g: The two graphs G3
1 and G3

3, associated with the two choices

k = 1; k = 3 of the processor for operation 3, are depicted respectively at the top and the

bottom of Figure 3-7. Consider, for instance, G3
3, we have

Job 1 Job 2 Job 3

Proc 1 t1 h1
30

t3 h3

20

t6 h6
30

t2 h2 t4 h4

20
t7 h7

30
t5 h5

30

Proc 2

Proc 3

20

30

20

30

20

20

30

30

20

30

Proc 1 t1 h1
30

t3 h3

20

t6 h6
30

20

t2 h2 t4 h4

20
t7 h7

30
t5 h5

30

Proc 2

Proc 3

40

20

20

20

20

3030

20

3
1G

20

20

20

3
3G

Figure 3-7: Disjunctive blocking graphs w.r.t. operation 3.



66 Chapter 3. Flexible generalized blocking job shop problem

V = f1; : : : ; 7g [ f�; �g;

A0 = f(h1; t2); (t2; h1); (h3; t4); (t4; h3); (h4; t5); (t5; h4); (h6; t7); (t7; h6)g;

A1 = f(ti; hi) : i = 1; : : : ; 7g;

A�;� = f(�; ti) : i = :1; : : : ; 7g [ f(hi; �) : i = 1; : : : ; 7g;

E = f(h3; t5); (h5; t3); (h3; t7); (h7; t3); (h1; t6); (h6; t1); (h2; t4); (h4; t2); (h7; t5); (h5; t7)g;

E = ff(h3; t5); (h5; t3)g; f(h3; t7); (h7; t3)g; f(h1; t6), (h6; t1)g; f(h2; t4); (h4; t2)g,

f(h7; t5); (h5; t7)gg:

The Gantt chart in Figure 3-8 corresponds to the following feasible selection with a preselection

f(h3; t7)g in G3
3: S = f(h6; t1); (h4; t2); (h7; t5); (h3; t5); (h3; t7)g.

Proc 1 t1 h1
30

t3 h3
30

t6 h6
30

t2 h2

30
t4 h4

30

20
t7 h7

30
t5 h5

30

Proc 2

Proc 3

Job 1 Job 2 Job 3

20

20

20

20

Figure 3-8: A feasible selection for Example 3.8.

If processor 2 were assignable to operation 3 with p32 = 20 and ps34 = 10, then in addition to

G3
1 and G3

3 we would also have G3
2; in which operations 3 and 4 are merged into operation e3

(see Figure 3-9).

This section ends with three remarks. First, observe that if a selection results in a zero cycle

C, this implies a \deadlock" situation in which two or more jobs block one other (see Figure

3-10 for an example of a two-job deadlock) and all of them should be swapped together to reach

a feasible solution. Hereinafter, swapping activities are assumed to be accepted, and such a

selection having a zero cycle C is considered feasible and called swap-based.

The second remark is about the sequence-dependent setup times. Consider three critical opera-

tions u; v; and w 2 I sequenced consecutively in that order on a processor and their operational

arcs lie on the critical path. If their sequence-dependent setup times do not satisfy the inequality

psuvk + pvk + psvwk � psuwk, then as the length of the path (hu; tv; hv; tw) is not greater than the
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Job 1 Job 2 Job 3

Proc 1 t1 h1
30

20

t6 h6
30

20

t2 h2

20
t7 h7

30
t5 h5

30

Proc 2

Proc 3

20

20

20

60 = 10 + 20 + 20 + 1030

3
2G

~
3t

~
3h

Figure 3-9: Two consecutive operations of a job are on are the same processor.

Proc 1 t1 h1 t4 h4

t2 h2Proc 2

Job 1= {1,2} Job 2 = {3,4}

t3 h3

0

0

Figure 3-10: Deadlock situation involving two jobs.

length of the path (hu; tw), critical path computing will result in having u as the direct processor

predecessor of w, which is incorrect. Therefore, the triangle inequality psuvk + psvwk � psuwk is

often assumed to avoid this problem. However, in a general case, we can compute the critical

path in reduced solution graphs where only disjunctive arcs of pairs of consecutive operations in

the operation sequence of each processor are kept. Removing the transitive disjunctive arcs does

not a�ect the operation sequence of any processor (there is a path (hu; tv; hv; tw) from hu to tw

if disjunctive arcs (hu; tv) and (hv; tw) are kept while arc (hu; tw) is removed). For example, in

a reduced solution graph derived from the solution graph shown in Figure 3-8, disjunctive arc

(h3; t5) is removed.

The last remark is about solution representation. A solution for an n � m FGBJS instance

can be represented as an m-tuple � = (�1;:::;�m); where �k = (�k(1); : : : ; �k(l)) denotes the

operation sequence on processor k and �k(i) denotes the i
th operation performed on processor

k. This representation does not need a separate list � of the processor assigned to each operation

i 2 I since this information can be extracted from m-tuple � (if �k \ fig 6= ; then �(i) = k).

Given a sequence � together with an n-tuple job processing order � = (�1;:::;�jJ j) where �J =

(�J(1); : : : ; �J(jJ j)) is the operation sequence of job J , it is easy to determine the earliest starting

time for each operation by computing the longest path L(�; i) for all i 2 I in the solution graph

G(S) for a selection S given by �.
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3.6 Neighborhood structures for the FGBJS

Concepts of neighborhood and neighborhood structures are brie
y summarized as follows. Con-

sider the following instance of a combinatorial optimization problem (P):

(P) Minimize c(x); subject to x 2 X;

where x is a discrete variable; c(x) is some objective function; and X is a �nite set of all feasible

solutions.

Given a feasible solution x 2 X, a neighbor x0 of x is a feasible solution that can be reached

directly from x by applying on x a transformation called move s 2 S(x) ; i.e. x0 = s(x); x0 2 X:

Set S(x) is a set of moves that can be applied to x: The neighborhood of x is a set of neighbors

of x; i.e. N(x) = fx0 = s(x) : x0 2 X; s 2 S(x)g where N : X ! 2X is a neighborhood structure

(or neighborhood function). N is said to be optimum-connected if an optimal solution x� can be

reached from each solution x; i.e. there exists a �nite sequence (x1; x2; : : : ; xk) where x1 = x,

xi+1 2 N(xi), and xk = x�.

Neighborhood structure design has proved to substantially contribute to the performance of

local search algorithms. Good neighborhood structures can result in very e�ective and e�cient

local search algorithms, such as the Tabu search by Nowicki and Smutnicki [NS96] for the JS

or the Tabu search by Mastrolilli and Gambardella [MG00] for the FJS.

This section presents three neighborhood structures for the FGBJS namely simple, pairwise

exchange, and 
exible closure neighborhood structure. Basically, a neighbor in a neighborhood

of a feasible FGBJS solution is obtained by moving an operation to another position (probably

on another processor) while keeping assigned processors of other operations unchanged. In

a solution obtained, other operations of the operation's job might also be moved. Denote

by x be a current feasible solution for a FGBJS instance and Ic � I be a set of selected

operations on which moves s 2 S(x) are to be applied. Also denote respectively by � and S the

feasible assignment and the feasible selection for x, we write x = (�; S). Finding a new feasible

solution x0 = (�0; S) from x when moving operation i to another position on processor k can

be interpreted as determining a corresponding feasible selection S in disjunctive blocking graph

Gi
k.

Clearly the larger the set of selected operations Ic is, the larger the resulting neighborhood be-

comes and the higher the chance optimality can be reached. However, a too large neighborhood

is time-consuming to inspect and memory-consuming to store. For the objective function of

makespan minimization, it is more computationally e�cient to include into Ic only operations

that will have some e�ect on the makespan if they are moved. Local search methods for the JS

often apply moves on critical operations (operations whose nodes are on the solution graph's

critical path). The rationale is that if other operations are moved then the old critical path still

exists after the transformation and the makespan is not improved. We follow this approach by

randomly choosing a critical path L in G(S) and limiting Ic to a set of critical operations that
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have at least one representing node incident with a critical arc on L (see bold lines in Figure

3-11).

tv hv

tz hzti hity hy

tu hu

Figure 3-11: Critical path, nodes, arcs, and operations.

3.6.1 Simple neighborhood N
s(x)

Consider a FGBJS instance with a feasible solution x and its associated feasible assignment �

and selection S. Number the q operations performed on processor k 2 M from 1 to q in their

sequencing order and denote a position before operation numbered w by position w. Thus we

have 1 � w � q + 1 where position q + 1 denotes the position behind the last operation in the

sequence.

Simple move s 2 Ss(x) to obtain neighbor x0 2 N s(x) does the following:

1. Extract an operation i from the operation sequence of its current processor l;

2. Evaluate the feasibility when inserting i in position w in the operation sequence on pro-

cessor k (not necessarily di�erent from l), and make the insertion only if feasibility is

ensured.

This move is interpreted by the following selection in Gi
k = (V;A;E) (see Figure 3-12, note that

Gi
l(S) is the current solution graph):

1. Select all disjunctive arcs not incident with i (all e 2 E � Ei
k) if they are selected in S;

2. Select disjunctive arcs a; b 2 Ei
k; a = (hu; ti) and b = (hi; tv) where v is the operation in

position w on k 2Mi and u is the immediate processor predecessor of v (if any);

3. For each operation u0 and each operation v0 respectively sequenced before u and after v

on k, select disjunctive arcs (hu0 ; ti) and (hi; tv0);

4. Accept the selection if the resulting solution graph is positive acyclic.

In step 3, when w = 1 only disjunctive arcs leaving i are selected and when w = q + 1 only

disjunctive arcs entering i are chosen. In the new assignment �0, only the assigned processor
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Figure 3-12: Simple move.

for operation i is possibly changed from l to k. In S, only disjunctive arcs incident with i are

changed from S.

A simple move is infeasible if the obtained solution graphGi
k(S) is positively cyclic. For instance,

inserting i in between u and v that are involved in a swap creates infeasibility since the move

results in a positive cycle consisting of a zero path P from tv to hu in the swap and a positive

path Q with node sequence (hu; ti; hi; tv) (see Figure 3-13). Such an insertion position between

u and v is called swap-forbidden.

tv hv

ti hi

tu huk

l

a b

t ht h

t ht h

Job 1 Job 2 Job 3

0

0

0
P

Q

Figure 3-13: Simple move in between two operations involved in a 3-job swap.

A simple move takes O(1) e�ort to make and O(o) e�ort to evaluate. Suppose the largest
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number of operations performed on any processor is q � 1, then all moves s 2 Ss(x) associated

with moving an operation i can be evaluated in O(q:o) time. However, many moves can be

infeasible. Denote by Ei�
k and Ei+

k are respectively the sets of disjunctive arcs entering and

leaving i in Gi
k; and let Ei

k = Ei�
k \ Ei+

k . The following lemma and corollary can help us to

avoid inspecting cost of some infeasible moves.

Lemma 6. Let S be a selection resulting from moving i in between u and v on k; u and v are

not involved in a swap. If a cycle C 0 is formed in Gi
k(S), then there exists a cycle C in Gi

k(S)

with C \ Ei
k = a = (hu; ti) or C \ Ei

k = b = (hi; tv) (see Figure 3-12).

Proof. Since the current selection S is feasible in Gi
l, C

0 \Ei
k 6= ?. Suppose C

0 \ Ei�
k = a0 and

C 0 \ Ei+
k = b0, i.e. C enters i through some (hu0 ; ti) and leaves i through some (hi; tv0) (note

that by the move de�nition, u0 is before u on k when a0 6= a ; similarly v0 is after v when b0 6= b).

Then there exists a path P from tv0 to hu0 which forms together with a positive path Q from hu0

to tv0 (as u
0 is before v0 on k) a positive closed walk in Gi

l(S), a contradiction to S being feasible

in Gi
l. Therefore, either C

0 \Ei�
k = a0 and C 0 \Ei+

k = ; or C 0 \Ei�
k = ; and C 0 \Ei+

k = b0. In

the former case, there is a path P from ti to hu0 in G
i
k(S); P forms together with path Q from

hu0 to hu and arc a = (hu; ti) 2 Ei�
k a cycle C in Gi

k(S). C is a zero cycle only if P has length

zero, a0 = a, and a has weight zero; otherwise C is positive. In the latter case, there is a path

P from tv0 to hi in Gi
k(S), which consists of conjunctive arcs and some arcs in S not incident

with i; P forms together with arc b and path Q from tv to tv0 a cycle C in Gi
k(S). C is a zero

cycle only if P has length zero, b0 = b, and b has weight zero; otherwise C is positive.

Corollary 7. If there is a feasible insertion position of operation i on processor k, then the

set of feasible insertion positions forms an interval (l; l + 1; : : : ; p); 1 � l � p � q + 1. Some

positions in this interval may be swap-forbidden.

Proof. Suppose positions l and p; l < p; are feasible and position w; l < w < p, is not feasible

and not swap-forbidden (see Figure 3-14). Then there is a cycle C with C \ Ei
k = a = (hu; ti)

or C \ Ei
k = b = (hi; tv) according to Lemma 6. In the �rst case, C \ Ei

k = a and there is

a path P from ti to hu. Then a cycle will occur if i is inserted in any position after w; this

cycle is positive since it contains at least one conjunctive arc. Therefore, position p > w is not

feasible, a contradiction (see the picture at the top of Figure 3-14). Similarly, in the second

case where C \ fa; bg = b, any position before w is infeasible, hence position l < w is infeasible,

a contradiction (see the picture at the bottom of Figure 3-14).

Corollary 7 implies that it is unnecessary (1) to inspect further to the right if an infeasible

insertion in position p + 1 is detected and (2) to inspect further to the left if an infeasible

insertion in position l�1 is detected. Such a feasible block (l; l+1; : : : ; p) (be aware that it may

contain some swap-forbidden positions) can be found by a bisection search at a computational

cost of O(log q:o). An alternative procedure is to start searching from position 0, move onward
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Figure 3-14: Infeasible insertions to the left and right.

to the right while recording feasible simple moves (if any), and stop at a position w behind

operation u if there exists a path P from ti to hu since all positions after w are infeasible (see

Figure 3-14). In order to save e�ort of explicitly constructing Gi
k and making S, these searches

can be done in Gi
l(S) as follows.

Proposition 8. Let S
i�
l and S

i+
l be the set of disjunctive arcs in S that enter and leave i

respectively in the current solution graph Gi
l(S). A simple move will result in infeasible selection

S in Gi
k if at least one of the following conditions is detected in Gi

l(S): (1) There is a positive

path P from ti to hu that does not pass through any e 2 S
i+
l ; (2) c(hu;ti) > 0 and there is a zero

path P from ti to hu that does not pass through any e 2 S
i+
l ;(3) There is a positive path Q from

tv to hi that does not pass through e 2 S
i�
l ; and (4) c(tv ;hi) > 0 and there is a zero path Q from

tv to hi that does not pass through e 2 S
i�
l :

Proof. Suppose there is a path P in Gi
l(S) from ti to hu, then P \ S

i�
l = ; since otherwise

ti would be in a loop, contradicting S is positive acyclic. If P \ S
i+
l = ;, then P will still be

present in Gi
k(S) since all arcs in S�S

i+
l are reselected in S. Thus P forms with arc a a positive

cycle in Gi
k(S) upon two conditions (1) and (2). Similar reasoning is applied to conditions (3)

and (4).

Example 3.9.

A starting solution x for the FGBJS instance in Example 3.1 is represented by a Gantt

chart at the top of Figure 3-15. The starting Gantt chart corresponds to the selection S =

f(h1; t3); (h1; t6); (h3; t6); (h2; t4); (h7; t5)g in the underneath solution graph G(S). Suppose we
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want to move operation i = 3 from processor l = 1 to a position before operation j = 1 on pro-

cessor k = 1 by a simple move. Since there is a path P = (t1; h1; t2; h2; t4; h3) in G(S) = G3
1(S)

that does not pass through any e 2 S
3+
1 = f(h3; t6)g, such a move will yield an infeasible solu-

tion. On the other hand, moving i = 6 from l = 1 to k = 2, before j = 2; is feasible since there

exists no path from t2 to h6 in G(S) = G6
1(S) that does not use any e 2 S

6�
1 = f(h3; t6)g. The

Gantt chart associated with this move is shown at the bottom of Figure 3-15.

Proc 1 t1 h1 t3 h3 t6 h6

t2 h2 t4 h4

t7 h7 t5 h5

Proc 2

Proc 3 Job 1 Job 2 Job 3

G

Figure 3-15: Simple neighbor for Example 3.9

Table 3-4 lists all feasible moves s 2 Ss(x) : x0 = s(x); x0 2 N s(x); in the format of (i; u; v; k);

which means that operation i is moved between operation u and v on processor k , v = �1

(respectively u = �1) indicates that i is inserted before (after) the �rst (last) operation u(v) of

the sequence, and the resulting makespan is l�;� :

i u v k l�;� i u v k l�;�
6 2 -1 2 190 7 5 -1 3 240
3 7 -1 3 210 6 -1 3 1 240
7 -1 5 3 220 4 -1 2 2 240
6 1 -1 1 220 5 -1 7 3 240
6 4 2 2 220 1 3 -1 1 240
5 7 -1 3 220 3 6 1 1 240
6 3 1 1 230 2 4 -1 2 240
3 -1 6 1 230 3 5 7 3 260

Table 3-4: Simple moves in Example 3.9.
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As we can only make a simple move when no infeasibility condition is detected, N s(x) is rather

limited in space. Further, neighborhood function Nv is not optimum-connected. For instance,

in the above example, after the best neighbor (6; 2;�1; 2) is selected, no other improving simple

move can be made while there exists a better solution of makespan 170. More complicated

moves involving moving together with operation i several other operations of job J i to recover

feasibility could improve this situation.

3.6.2 Pairwise exchange neighborhood N
p(x)

The pairwise exchange neighborhood of a current solution x is Np(x) = fx0 = s(x); x0 2 X; s 2

Sp(x)g. Given a feasible solution x = (�; S), a pairwise exchange move s 2 Sp(x) keeps

assignment � unchanged and generates another selection S by doing the following:

1. Exchange the position of operation i with its immediate processor predecessor j in the

operation sequence of �(i), provided that j is not a job predecessor of i;

2. Repeat resequencing several or all operations of job J i, if necessary, while keeping i always

before j (not necessarily immediately) and all currently assigned processor unchanged until

feasibility is obtained.

A pairwise exchange move is precisely the construction of the selection through the closure

procedure described by Theorem 5 in subsection 3.4.3. The pairwise exchange neighborhood

used in [Kli01] and [GK05] consists of pairwise exchange moves associated with critical arcs.

Observe that making a pairwise exchange move is more computationally expensive than making

a simple move because each iteration in the Closure algorithm already involves a path detection

subroutine of complexity O(o) (see Appendix).

Pairwise exchange moves with the ability to recover feasibility by the closure procedure allow us

to escape an impasse where no simple move exists because of highly coupling relations among

operations. A pairwise exchange move brings in a more profound impact on the current solution

than a simple move does since it may resequence more than one operation if necessary. However,

pairwise exchange moves do not make use of processor 
exibility, which is addressed in the next

neighborhood structure.

3.6.3 Flexible closure neighborhood N
c(x)

The 
exible closure neighborhood of a feasible solution x is N c(x) = fx0 = s(x); x0 2 X; s 2

Sc(x)g. Given a feasible solution x = (�; S), a neighbor x0 2 N c(x) in which operation i is

sequenced (not necessarily immediately) before operation j on processor k 2Mi (not necessarily

di�erent from k) is obtained by a move s 2 Sc(x) that does the following:

1. Extract i from its operation sequence on processor l;
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2. Insert i immediately before j in the operation sequence on processor k (clearly, a move is

valid only if j is not a job predecessor of i).

3. If the insertion creates infeasibility, keep resequencing the operations of job J i if necessary

until feasibility is obtained while always ensuring that (i) i precedes j; and (ii) the assigned

processor for each operation of J i is retained.

Flexible closure move s is expressed through a selection S in Gi
k as follows:

1. Select all disjunctive arcs not incident with J i (all e 2 E � EJi) if they are present in S;

2. Select disjunctive arc e = (hi; tj) 2 Ei
k, provided that J i 6= J j or i = J ir; j = J is; and

r � s� 1;

3. Select disjunctive arcs in EJi � e so that S is complete and Gi
k(S) is acyclic.

Selecting disjunctive arcs in EJi � e to obtain feasibility (in step 3 of the selection procedure

above) is essentially the task of inserting job J i into a schedule where all jobs in J �J i have been

scheduled so that the obtained schedule is feasible in which e is selected. To ease the notation,

we denote the job of i as J in place of J i. Note that moving i before j on k determines a

new assignment �0, which di�ers from a current assignment � in only the assigned processor

for i. Hence, we are actually solving a GBJS instance. In Gi
k; let R = S \ (E � EJ) and

SJ = S \ EJ . Construct the insertion graph GJ = (V;A [ R;EJ) associated with Gi
k and R,

and the con
ict graph HGJ = (EJ ; U) associated with GJ . Recall that for e; f 2 EJ ; if there is

an alternating path P from e to f in HGJ ; P = (e = e0; f1; e1; f2; e2; : : : ; fn; en = f); n � 0 where

(ek�1; fk) 2 U; fk 6= ek�1, and ek = fk for all 1 � k � n, then we write e f . For any K � EJ ,

let K� = �(K) = ff 2 EJ : e  f for some e 2 Kg and E(K) = ff 2 EJ : ff; fg \K 6= ;g.

The following theorem enables us to �nd a feasible job insertion in GJ when moving i before j

on processor k.

Theorem 9. Let Q = fe = (hi; tj)g and construct Q� = �(Q). De�ne F = Ei�
k � E(Q�) and

construct F � = �(F ). Then SJ = (Q� [ F �) [ (SJ �E(Q� [ F �)) is a feasible selection in GJ ,

and SJ [R is a feasible selection in Gi
k:

Proof. By the construction of Q�, Q� � Ei+
k , hence Q� is stable in HGJ since HGJ is a bipartite

graph with two node sets EJ = Ei�
k [ Ei+

k . Similarly, F � � Ei�
k is stable in HGJ . Q� [ F � is

a stable set in HGJ because if there were (f; g) 2 U; f 2 Q�; g 2 F � (shown as a dashed line in

Figure 3-16), then f  g and g 2 Q�; contradicting g 2 F �. Observe that j(Q� [ F �) \ Ei
kj =

jEi�
k j by de�nitions of F;Q�; and F �; and hence (Q� [ F �) de�nes a complete selection for

i. Now consider bEJ = EJ � E(Q� [ F �) and the subgraph bHGJ induced by bEJ . Obviously,

T = SJ � E(Q� [ F �) is a stable set of maximum cardinality
��SJ �� � jQ�j � jF �j in bHGJ . By

Theorem 4, SJ is a feasible selection in GJ . Clearly, S = R[SJ is complete and positive acyclic

in Gi
k, hence S = R [ SJ is a feasible selection in Gi

k.
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Figure 3-16: A feasible job selection in GJ or a stable set of maximum cardinality in HGJ .

The process to establish a feasible selection S according to Theorem 9 is called the 
exible

closure procedure and illustrated in the example below.

Example 3.10.

The FGBJS instance in Example 3.1 is given an initial feasible solution with assignment � :

�(1) = 1, �(2) = 1, �(3) = 3; �(4) = 2, �(5) = 3, �(6) = 1, and �(7) = 3; together with a

feasible selection S = f(h6; t1), (h2; t4); (h7; t3), (h7; t5), (h3; t5)g. A corresponding Gantt chart

is shown at the top of Figure 3-16.

Consider moving operation i = 3 before operation j = 1 on processor k = 1. ConstructGi
k = G3

1:

We have J = J3 = 2; SJ = S \ EJ = f(h2; t4); (h7; t5)g, and R = S \ (E � EJ) = f(h6; t1)g.

Construct GJ = G2 and let Q = fa = (h3; t1)g. Find Q� = fa = (h3; t1); c = (h4; t2)g, hence

E(Q�) = f(h3; t1); (h1; t3); (h4; t2); (h2; t4)g. As the set of disjunctive arcs entering i is Ei�
k =

E3�
1 = fa = (h1; t3); b = (h6; t3)g, we have F = Ei�

k �E(Q�) = fb = (h6; t3)g; hence F
� = fb =

(h6; t3); d = (h7; t5)g, Q
� [ F � = f(h3; t1); (h4; t2); (h6; t3); (h7; t5)g and E(Q� [ F �) = f(h3; t1),

(h1; t3), (h4; t2), (h2; t4), (h6; t3), (h3; t6), (h7; t5), (h5; t7)g: Therefore, T = SJ�E(Q
�[F �) = ;

and a feasible selection in GJ according to Theorem 9 is SJ = (Q�[F �)[T = f(h3; t1), (h4; t2),

(h6; t3), (h7; t5)g: Finally, R [ SJ = f(h6; t1), (h3; t1), (h4; t2), (h6; t3), (h7; t5)g is a feasible

selection in G3
1:

The selected arcs are drawn in bold in Figure 3-17. A corresponding Gantt chart is given at

the bottom of the �gure.
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Figure 3-17: Flexible closure move of Example 3.10.

Given a FGBJS feasible solution x, its neighborhood N c(x) consists of moves associated with

operations having a representative node on some critical path of x. There might be several

of such critical paths. In such a case, in tracing back our critical path, we give preference to

conjunctive arcs, resulting in a path containing job blocks. An example of a job block with black

nodes and bold arcs is given in Figure 3-18. Moving an operation in a job block probably moves

the other operations in the block; thus signi�cant impact to the makespan may be expected.

tv hv

tz hzti hity hy

tu hu

Figure 3-18: Job blocks in a critical path.

The neighborhood N c is conjectured to be optimum-connected. Unfortunately, no proof or

counter-example has been found so far.
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3.6.4 Move representations

Each pairwise exchange move, as well as each 
exible closure move, is represented by a pair (j; i)

where i is the operation to be moved and j is the target operation that i should precede. Simple

moves can also be represented by this format. However, preliminary computational experiences

showed that simple moves that move an operation behind the last operation performed on

a processor outperformed other simple moves where the operation is moved before another

operation for many times. Therefore, we represent each simple move by a 4-tuple (i; u; v; k)

where i denotes the operation to be moved, k the new processor for i; and u and v two consecutive

operations on k to insert i in between. When v is the �rst operation in the sequence on k, set

u := �1. Similarly, if u is the last operation in the sequence then v := �1.

3.7 Constructive heuristics

This section presents several heuristics to construct feasible solutions. Obviously, for a given

feasible assignment, any randomly generated permutation of jobs yields a feasible solution, a so-

called permutation schedule. Nevertheless, non-trivial constructive heuristics can give solutions

of much better quality.

3.7.1 A general framework for constructive heuristics

The three constructive heuristics to be introduced in this section share a base algorithm called

Schedule Generator (SG). Basically, the SG schedules all jobs in a given job sequence one by

one. For each job, it solves an embedded job insertion problem. Recall that in a job insertion

problem, given a partial schedule of some jobs and a newly arrived job, we need to insert the

new job into the partial schedule so that a resulting makespan is minimized. The job insertion

problem for the JS has been proved to be NP-hard [KH03]; thus the job insertion problem for

the FGBJS is also NP-hard, hence heuristics are often used to solve the problem.

The SG consists of two parts. Part 1 (lines 1 to 11) determines the insertion order for the

jobs based on their average processing times and schedule the �rst ordered job. The average

processing time of an operation i is computed as pi =
�P

k2Mi
pik
�
=jMij and the average

processing time of job J is P J =
P

i2J pi. The initial �xed workload of processor k is W 0
k =P

i2I:Mi=fkg
(pti+pi+phi ): After ordering jobs to insert and computing the �xed initial workload

for each processor, the algorithm assigns each operation of the �rst job in the order to a valid

processor having the smallest initial �xed workload. In the case of tie, assign the operation to

the processor of the smallest index. After the �rst job in the order is scheduled, in part 2, the

heuristic consecutively schedules the other jobs according to a particular insertion algorithm A

(line 14).

algorithm (SG)
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begin

Order all n jobs in the non-increasing order of total average processing times.1

Label the jobs from 1 to n according to the order above.2

Calculate the initial �xed workload W 0
l for every processor l 2M .3

for each operation i of the job labeled 1 do4

if Mi = fkg then set �(i) := k and pi := pik.5

else6

Set �(i) := l where l 2Mi has the least �xed workload: W 0
l �W 0

l0 for all l
0 2Mi7

Set pi := pil.8

Update the processor's �xed workload Wl :=W 0
l + pil + pti + phi + ps�i:9

end (else)10

end (for)11

Sequence each operations of J as the �rst operation on its assigned processor.12

for each job labeled from 2 to n do13

Call job insertion algorithm A.14

end (SG)

The following example shows how to order the jobs and schedule the �rst job.

Example 3.11.

We illustrate part 1 of the SG algorithm through the FGBJS instance in Example 3.1. To

facilitate reading, the data in Example 3.1 are recalled as follows. J = f1; 2; 3g, M = f1; 2; 3g,

I = f1; 2; :::; 7g, operations of job 1 is f1; 2g, job 2 is f3; 4; 5g, and job 3 is f6; 7g. Sets of

assignable processors for operations are M1 = f1g; M2 = f2g;M3 = f1; 2; 3g;M4 = f2g;

M5 = f3g;M6 = f1; 2; 3g, and M7 = f3g: All take-over and hand-over times, as well as the �rst

and last setup times, are equal to 10. Processor-dependent processing times and the sequence-

dependent setup times are respectively shown below; all setup times are processor-independent.

Proc/Op 1 2 3 4 5 6 7

1 20 20 20

2 20 20 20 20

3 30 20 30 20



80 Chapter 3. Flexible generalized blocking job shop problem
Op/Op 1 2 3 4 5 6 7

1 10 10

2 10 10

3 20 10 10 10

4 10 10

5 10

6 10 10 20 10 10 10

7 10 10

Average processing times for the operations are p1 = 20, p2 = 20, p3 = (20+20+30)=2 = 23:33,

p4 = 20, p5 = 20, p6 = (20+ 20+ 30)=2 = 23:33, and p7 = 20. Average processing times for the

jobs are P 1 = 40, P 2 = 63:33 and P 3 = 43:33; hence the jobs are ordered as f2; 3; 1g. Processor

�xed workloads are W 0
1 = pt1 + p11 + ph1 = 40, W 0

2 = pt2 + p22 + ph2 + pt4 + p42 + ph4 = 80; and

W 0
3 = pt5 + p53 + ph5 + pt7 + p73 + ph7 = 80. The operations of job 2 are assigned to processors as

follows:

1. Assignable processors for operation 3 are M3 = f1; 2; 3g, min(W 0
1 ;W

0
2 ;W

0
3 ) = 40, so

�(3) := 1. Update the �xed workload of processor 1,W1 :=W 0
1 +p31+p

t
3+p

h
3+p

s
�31 = 90:

2. Operation 4 has M4 = f2g, hence �(4) := 2.

3. Operation 5 has M5 = f3g, hence �(5) := 3.

Each operation of job 1 is now the �rst operation on its assigned processor.

A constructive heuristic developed from the SG is named after the job insertion subroutine

heuristic A it uses (see line 14) as SG-A. There are three such job insertion heuristics namely

Most Critical Operation (MOC), Most Favorable Position (MFP), and Bottleneck (BN). So

there are three constructive heuristics called SG-MOC, SG-MFP, and SG-BN. In general, each

job insertion heuristic inserts a new job into a partial schedule in three steps:

1. Assign each operation of the job to one of its assignable processors that has the lightest

�xed load;

2. Append the job's operations to the assigned processor's operation sequence;

3. Improve the resulting schedule.

Three heuristics MOC, MFP, and BN di�er only in the last step of improving a schedule obtained

after appending the new job to an existing schedule.

3.7.2 Most critical operation heuristic

The job insertion heuristic Most Critical Operation (MCO) is based on an idea that each job

typically has an operation that is the most \expensive" in terms of processing time or cost,



3.7. Constructive heuristics 81

while the other job's operations play supporting roles. For instance, the most critical operation

of a surgery is its perioperative operation. Scheduling the critical operation should determine

scheduling for other operations.

algorithm (MCO)

begin

for each operation i of job J do1

if Mi = fkg then set �(i) := k and pi := pik.2

else3

for each k 2Mi4

Calculate the potential workload W k :=Wk + psqik + pti + pil + phi ,5

where q is the last operation on k in the current partial schedule.6

end (for)7

Set �(i) := l, l 2Mi has the least potential workload: W l �W k 8k 2Mi:8

Set pi := pil.9

Update the processor's �xed workload, Wl :=Wl + psqil + pti + pil + phi ,10

where q is the last operation on l in the current partial schedule.11

end (else)12

end (for)13

Append each i 2 J to the sequence on �(i) to obtain a feasible solution x.14

Calculate the partial makespan c(x) and set c� := c(x):15

Find the most critical operation u of J .16

Generate a list of 
exible closure moves Sc(x);17

Sc(x) = f(j; u) : �(j) = �(u); j is sequenced before u and behind any job18

predecessor of u performed on the same processor in the current partial scheduleg:19

Set the best candidate move s� := ;.20

for k = 1 to Sc(x) do21

if c(sk(x)) < c� then s� := sk(x), c
� := c(sk(x)) where sk 2 Sc(x).22

end (for)23

if s� 6= ; then obtain a new solution x0 := s�(x).24

end (MCO)

After a processor for each operation of J has been determined, append J to the partial schedule
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to obtain a new schedule. Then determine the most critical operation u of the job J by ranking

the job's operations in a non-decreasing order of their average processing times. Starting from

the �rst operation in this order, choose the �rst operation in the list that has some predecessor

on its assigned processor as the critical operation of J . Next, improve the initial schedule where

J is appended by evaluating moves associated with moving the critical operation u to di�erent

positions on its assigned processor, then making the best move if it improves the initial schedule.

Example 3.12.

Algorithm SG-MOC determines a job sequence f2; 3; 1g and the processor for each operation of

job 2 as previously determined in Example 3.11. Consider inserting job 3:

1. Operation 6 hasM6 = f1; 2; 3g, the potential workloadsW 1 = 90+p61+p
t
6+p

h
6+p

s
36 = 140,

W 2 = 80 + p62 + pt6 + ph6 + ps46 = 130, and W 3 = 80 + p63 + pt6 + ph6 + ps56 = 140, hence

�(6) := 2. Update W2 :=W 2 = 130:

2. Operation 7 has M7 = f3g, hence �(7) := 3.

Operations 6 and 7 are appended to the current partial schedule, resulting in a new partial

schedule of makespan 170. As the average processing time of operation 6 is larger then the

one of operation 7, p6 > p7, the critical operation of job 3 is 6. There is only one position for

operation 6 to move in the operation sequence on processor 2, that is before operation 4. This

is an improving move of makespan 140; so the move is made. Continue with the last job (job

1), we have �(1) := 1 and �(2) := 2. Appending operations 1 and 2 to the current partial

schedule (behind operation 6 and 4 respectively) results in a schedule of makespan 170. The

critical operation of job 1 is operation 1 and its single associated move (3; 1) would lead to a

larger makespan of 190, therefore operations of job 1 stay in their current positions. The Gantt

chart of the �nal schedule is shown in Figure 3-19.
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Figure 3-19: Feasible schedule obtained by the SG-MOC for Example 3.12

3.7.3 Most favorable position heuristic

The job insertion heuristic Most Favorable Position (MFP) considers all rather than just a

single \critical" operation of the inserted job in the improving step (step 3). It �nds the
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best improving position for each operation by estimating the decrease in the time span of the

operation's processor for each position instead of calculating an exact makespan associated

with each position for each operation. Suppose there are q operations sequenced on processor

k and labeled (1; : : : ; q) in that sequence. Let �k be the departure time of the last operation

on k; �k = xtq + ptq + pqk + phq ; and refer to �k as the time span of k. Consider moving the last

operation of the sequence, operation labeled q; before operation i, q � 1 � i � 1:

1. Moving operation q before operation labeled i and after operation labeled i � 1; q � 1 �

i � 2; decreases �k by an amount 4k
i = (xti �

�
xhi�1 + phi�1

�
)� (psi�1;q;k + psqik) + psq�1;q;k,

where (xti �
�
xhi�1 + phi�1

�
) is the interval between the departure of operation i � 1 and

the start of operation i;

2. Moving operation q before operation i = 1 decreases �k by an amount 4k
1 = xt1 � psq;1;k +

psq�1;q;k.

Positions yielding 4k
i > 0; 1 � i � q� 1, are favorable to those yielding negative values because

they decrease the time span of k. The position yielding the largest decrease in time span is

called the most favorable position, and the operation corresponding to this position is denoted

by 4(q). If there is no favorable position for q then 4(q) := ;.

Details of the MFP heuristic are found below.

algorithm (MFP)

begin

for each operation i of job J do1

if Mi = fkg then set �(i) := k and pi := pik.2

else3

for each k 2Mi4

Calculate the potential workload W k :=Wk + psqik + pti + pil + phi ,5

where q is the last operation on k in the current partial schedule.6

end (for)7

Set �(i) := l, l 2Mi has the least potential workload: W l �W k 8k 2Mi:8

Set pi := pil.9

Update the processor's workload, Wl :=Wl + psqil + pti + pil + phi ,10

where q is the last operation on l in the current partial schedule.11

end (else)12

end (for)13
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Append each i 2 J to the sequence on �(i) to obtain a feasible solution x.14

Calculate the partial makespan c(x):15

Set the list of 
exible closure moves Sc(x) := ;:16

for each operation i of J do17

Find the most favorable position for i and its associated target operation 4(i).18

Set Sc(x) := Sc(x) [ (4(i); i):19

end (for)20

Set the best candidate move s� := ; and c� := c(x):21

for k = 1 to Sc(x) do22

if c(sk(x)) < c� then s� := sk(x), c
� := c(sk(x)) where sk 2 Sc(x).23

end (for)24

if s� 6= ; then obtain a new solution x0 := s�(x).25

end (MFP)

Example 3.13.

Continue Example 3.11 with a determined job insertion sequence f2; 3; 1g. Further assume

that jobs 2 and 3 have already been scheduled and sequences on the processors are �1 =

f3g; �2 = f6; 4g; and �3 = f7; 5g: Apply the MFP algorithm to schedule job 1 as follows.

Assign each operation of job 1 to its single processor (�(1) := 1 and �(2) := 2) and append

job 1 to the current partial schedule to obtain a schedule of makespan 170. For operation

1, its single possible position before operation 3 would give a decrease of the time span on

processor 1 of 41
3 = xt3 + ps3;1;1 � ps1;3;1 = 20. Thus, this position is favorable and 4(1) := 3.

Calculations for operation 2 with respect to operations 6 and 4 on processor 2 give 42
4 =

(xt4� xh3 � ph3)� (ps3;2;2+ ps2;6;2) + ps4;2;2 = 0 and 42
6 = xt6+ ps6;1;2� ps1;6;2 = 10, hence 4(2) := 6.

As 
exible closure moves (3; 1) and (6; 2) are not improving, no further move is made. The

Gantt chart of the �nal schedule is shown in Figure 3-20.
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Figure 3-20: Feasible schedule obtained by the SG-MFP for Example 3.13.
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3.7.4 Bottleneck heuristic

In the improving step of the job insertion heuristic Bottleneck (BN), operations performed by

the most loaded processor, the so-called bottleneck, are resequenced. Resequencing is done by

making the best pairwise exchange move among all moves associated with the operations on

the bottleneck. Details of the heuristic are found below.

algorithm (BN)

begin

for each operation i of job J do1

if Mi = fkg then set �(i) := k and pi := pik.2

else3

for each k 2Mi4

Calculate the potential workload W k :=Wk + psqik + pti + pil + phi ,5

where q is the last operation on k in the current (partial) schedule.6

end (for)7

Set �(i) := l, l 2Mi has the least potential workload: W l �W k 8k 2Mi:8

Set pi := pil.9

Update the processor's workload, Wl :=Wl + psqil + pti + pil + phi ,10

where q is the last operation on l in the current partial schedule.11

end (else)12

end (for)13

Append each i 2 J to the sequence on �(i) to obtain a feasible solution x.14

Calculate the partial makespan c(x):15

for each processor k 2MJ (i.e. k is assigned to an operation of J) do16

Label q operations already on k from 1 to q in their sequence order.17

Calculate the actual load on k:18 cWk = ps�1k +
Pq�1

i=2 p
s
i;i+1;k + psq�k +

Pq
i=1(p

t
i + pik + phi ).19

end (for)20

Find the bottleneck l 2MJ : cWl � cWk for all k 2MJ21

Generate a list of pairwise moves22

Sp(x) = f(j; i) : �(i) = �(j) = l; j immediately precedes i on the found bottleneck lg23

Set best candidate move s� := ;. Set c� := c(x):24
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for k = 1 to jSp(x)j do25

if c(sk(x)) < c� then s� := sk(x), c
� := c(sk(x)), where sk 2 Sc(x).26

end (for)27

if s� 6= ; then obtain a new solution x0 := s�(x).28

end (BN)

Example 3.14.

Continue Example 3.11 with the job sequence f2; 3; 1g and job 2 has been scheduled. Schedule

job 3 = f6; 7g. Assume that the processor assignment step for job 3 has been done, which

gives �(6) := 2 and �(7) := 3. Appending job 3 to the current partial schedule yields a

makespan 170. Calculate the actual workloads for processors in MJ=3 = f2; 3g as cW2 =

ps�42+pt4+p4;2+ph4+ps4;6;2+pt6+p6;2+ph6 = 110 and similarly, cW3 = 110. The tie-breaking rule

selects processor 2 as the bottleneck whose list of pairwise exchange moves is f(4; 6)g; which

is an improving move with the corresponding makespan of 140. Next, continue with the last

job (job 1) with �(1) := 1 and �(2) := 2. After job 1 is appended, calculate the workloads of

processors 1 and 2 to �nd that the bottleneck is processor 2 with cW2 = 110. Since none of the

bottleneck's pairwise exchange moves f(6; 4); (4; 2)g is an improving one, we keep the current

schedule with makespan 170 (see Figure 3-21).
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Figure 3-21: Feasible schedule obtained by the SG-BN for Example 3.14.

3.8 Tabu search algorithms

Tabu search (TS) [GL97] is frequently reported in in scheduling literature as a successful tool

for solving job shop related problems (e.g. in [VAL96][MG00]). For this reason, we selected TS

as our main solution method for the FGBJS. In this section, three generic TS algorithms are

presented. Next, these generic algorithms are combined with the three di�erent neighborhood

structures discussed in Section 3.6 to create six TS algorithms for the FGBJS.
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3.8.1 Three generic Tabu search algorithms

Tabu search is a deterministic search algorithm, which is used as a general tool to solve com-

binatorial optimization problems [GL97]. Given a combinatorial optimization problem (P), TS

starts with a feasible initial solution and solves (P) iteratively by selecting a move in a set of

moves applicable to the current solution and applying the move to the solution to obtain a

new solution. Making a move made in some earlier iteration might lead to a previously found

solution. To prevent such a solution cycling, all found solutions should be recorded. How-

ever, keeping a record of all found solutions is memory-consuming while checking the record

is time-consuming. That is why only some recent solutions are stored. To save memory and

inspection time, these solutions are not stored directly but indirectly through so-called tabu

moves that have created the solutions. These tabu moves are stored in a list T of size t called

tabu list. When a move s is applied to a solution x to �nd its neighbor x0, the reverse move

s�1transforming x0 back to x is appended to T , and if T is already full then the oldest move

in T is dropped from T . This is to ensure that we will not get back to solution x for at least

t iterations. Note that since only some attributes of a solution are stored, a tabu move may

correspond to some unvisited solutions. The TS algorithm stops when a stopping criterion is

met (e.g. the maximum number of iterations (max iter) is reached; or the maximum number of

non-improving iterations is passed; or the allotted running time is over, etc).

The initial TS algorithm (TSB) proposed by Glover is presented below:

algorithm TSB

begin

Calculate an initial feasible solution x:1

Set the best solution so far x� := x and the best objection function value c� = c(x�):2

Set tabu list T := ; and the iteration counter k := 0:3

while k < max iter and other stop criteria (if any) are not met do4

Set k := k + 1:5

Find the candidate list of moves S(x).6

if S(x)� T = ; then stop.7

else select the best move sk 2 S(x)� T .8

Set x := sk(x).9

Update T with the reverse move s�1
k .10

if c(x) < c� then set x� := x, c� := c(x):11

end (while)12

end (TSB)



88 Chapter 3. Flexible generalized blocking job shop problem

Note that in iteration k, the best move to be selected is typically the move that gives the best

objective function value, i.e. c(sk(x)) � c(s0k(x) : s
0 2 S(x)� T ).

The TSB has been enhanced by various advanced techniques, e.g. applying aspiration criteria,

varying the tabu list length, deploying long-term memory strategies to improve the search

quality, etc. One of such improvised TS versions is Tabu Search with Back Jump Tracking

(TSBJT) algorithm developed by Nowicki and Smutnicki to solve the JS [NS96]. TSBJT uses

two advanced techniques: aspiration criteria and elite list. The �rst technique is used to select a

move when all possible moves are tabu. Two aspiration criteria in [NS96] are: (1) aspiration by

default where the oldest tabu move is selected, and (2) aspiration by improvement where a tabu

move improving the current best objective function is chosen. The second technique employs an

elite list L of �xed size l as a long-term memory instrument to both intensify and diversify the

search. If a solution xk is an improving one, it is set to be appended to L. Suppose in iteration

k + 1, a prede�ned number of non-improving moves is reached or objective function value's

cycling is detected, the search thus comes back to L to use the last stored improving solution as

a new starting solution to intensify the search in a seemingly good region. Restarting the search

from scratch looses all information found so far. Therefore besides xk, L also stores the tabu

list Tk found in iteration k and the set of applicable moves S(xk) found in iteration k+1: As a

result, L is a list of triples, L = fL1; : : : ;Leg where Lr = (xk; Tk; S(xk)), 1 � r � e � l; k � r.

When L is full and a new triple is to be added to L, the oldest one is dropped from L. When the

last improving solution xk in L is called, the previously selected move sk applied to xk should

not be reapplied to avoid repeating the previously found search path. This search diversi�cation

is achieved as follows. In iteration k, xk and Tk are not yet stored in L. In the next iteration

k + 1, before applying the selected move sk+1 to obtain the new solution xk+1 = sk+1(xk), a

triple Lk = (xk; Tk; S(xk)� sk+1) is appended to L.

The pseudo-code of the TSBJT is given below, in which new parameter max q < maxiter is the

maximum number of consecutive non-improving moves.

algorithm TSBJT

begin

Calculate an initial feasible solution x:1

Set the best solution so far x� := x and the best objection function value c� = c(x�):2

Set tabu list T := ; and the iteration counter k := 0.3

Set the 
ag save := true, the 
ag restore := false, and the elite list L := ;.4

while k < max iter and the allotted running time is not over do5

Set k := k + 1:6

if restore = false then �nd the candidate list of moves S(x).7

else set restore := false:8
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if S(x)� T = ; then9

Apply aspiration by improvement to choose the best improving tabu move10

sk 2 S(x). If no improving move exists then apply aspiration by default to choose11

the oldest move sk 2 T \ S(x).12

else choose the best move sk 2 S(x)� T:13

if save = true and jS(x)j > 1 then update L with the triple (x; T; S(x)� sk).14

Set save := false;15

Update T with the reverse move s�1
k .16

Set x := sk(x).17

if c(x) < c� then18

Set x� := x, c� := c(x), save := true, and continue with the next iteration.19

if k < max q and no cycling is detected on c(x) then continue with the next iteration.20

if L = ; then stop.21

Given L = fL1; : : : ;Le:e�lg; set x := xe; T := Te; S(x) := Se;L := L � Le:22

Set save := true; restore := true; k := 0. Update the running time so far.23

end (while)24

end (TSBJT )

The aspiration by default gets the oldest move in T \ S(x) by left-shifting T , i.e. Ti := Ti+1

(i = 1; : : : ; t � 1) until S(x) � T 6= ;. The elite list L = fL1; : : : ;Leg is updated with a new

triple Lnew = (x; T; S(x) � sk) also by left-shifting: if e < l then set Le+1 := Lnew; otherwise

set Li := Li+1 for i = 1; : : : ; l� 1 and Ll := Lnew: Cycling on the objective function value (line

20) is detected as follows: we check for the last maxc:max� iterations where maxc and max�

are two parameters to see if there is any period of length �; 1 � � � max �; for which there are

periodic repetitions of objective function values. For example, suppose max � = 3;max c = 2;

and objective function values have been obtained in order (1; 4; 5; 1; 2; 3; 1; 2; 3; 1; 2; 3) for the

last 12 iterations, then there is a repetition period � = 3 (observe the last 9 values).

The second generic TS algorithm to be presented is Tabu Search with Alternating Phases

(TSAP). This is based on the original idea proposed by Glover [Ree93], which has been largely

unattempted so far. Two alternating phases in TSAP are the improving phase (Phase 1) and

the diversifying phase (Phase 2). Both phases apply the �rst-�t principle, which makes the �rst

improving move encountered. In the �rst phase, the algorithm inspects neighborhood N1(x)

(or equivalently the list of applicable moves S1(x)). The �rst improving move found (if any) is

executed, then the TSAP restarts Phase 1 with the newly found solution as the new starting
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solution. If no improving move is found in Phase 1, the algorithm switches to Phase 2 to di-

versify the search. In this phase, the algorithm searches another neighborhood N2(x) given by

a move list S2(x) and with the help of a tabu list T . N2(x) is usually di�erent from N1(x). If

an improving move in N2(x) is found, it is made and the search restarts from Phase 1 with the

found solution, else the best non-tabu move is selected and used as the new initial solution in

the next search starting in Phase 1. The TSBJT stops when a certain criterion is met, e.g. the

maximum number of iterations in both phases (max iter) is reached; or the maximum number

of consecutive non-improving moves in Phase 2 (max q) is reached; or the allocated time is over;

or objective function value's cycling is detected, etc.

The pseudo-code of TSAP is given below. Notations sik and s
cand
k respectively stand for move i

in iteration k and the best candidate move in iteration k.

algorithm TSAP

begin

Calculate an initial feasible solution x:1

Set the best solution so far x� := x and the best objective function value c� = c(x�):2

Set tabu list T := ;, the iteration counter k := 0, and the non-improving counter q := 0.3

while k < max iter and q < max q and the allotted time is not over do4

Phase 1:5

Set k := k + 1:6

Find a candidate list of moves S1(x).7

if S1(x) = ; then goto Phase 2.8

for i = 1 to jS1(x)j do9

if sik is an improving move, then10

Set x := sik(x), x
� := x, c� := c(x), q := 0, goto Phase 1.11

end (for)12

Phase 2:13

Find a candidate list of moves S2(x).14

if S2(x) = ; then stop.15

Initialize scandk := ;, ccand :=1:16

for i = 1 to jS2(x)j do17

if sik is an improving move, then18

Set x := sik(x), x
� := x, c� := c(x), q := 0, goto Phase 1.19

if sik =2 T and c(sik(x)) < ccand then20
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Set scandk := sik, c
cand := c(sik(x)).21

end (for)22

if scandk 6= ; then x := scandk (x):23

else scandk := the oldest tabu move in T \ S2(x).24

Set x := scandk (x); calculate c(x):25

if repetition on c(x) is detected then stop.26

Update T with the reverse move (scandk )�1:27

Set q := q + 1: Update the running time so far.28

end (while)29

end (TSAP)

The last generic TS to study is Tabu Search with Variable Neighborhoods (TSVN). This al-

gorithm inspects di�erent neighborhoods systematically in the Tabu Search framework. This

systematic use of neighborhood is inspired by the neighborhood exploration approach in Vari-

able Neighborhood Search [HM01]. The TSVN algorithm is outlined as follows. Given a set of

y di�erent neighborhood structures N1; : : : ; Ny and their associated tabu lists T1; : : : ; Ty, the

TSVN sequentially searches neighborhoods Nr(x); 1 � r � y according to the �rst-�t principle.

The algorithm executes the �rst improving move (if any), updates the neighborhood's associ-

ated tabu list, and then starts over from neighborhood N1 with the newly found solution used

as the starting solution. If a neighborhood contains no improving move then the TSVN records

the best non-tabu move of this neighborhood and switches to the next one. If all neighborhoods

have been inspected without �nding any improving move then all best non-tabu moves recorded

are compared in terms of the objective function value and the best of them is selected. After

making this selected move and updating the corresponding tabu list, the algorithm continues

until some stopping criterion is met (e.g. the maximum number of iterations is reached; or the

maximum number of consecutive non-improving moves is reached; or the allocated time is over;

or objective function value's cycling is detected, etc).

Detailed steps of the TSVN are given below. In each iteration, neighborhood Nr(x) is given

through the corresponding candidate list of moves Sr(x). Each move is denoted as srik where

r is the neighborhood structure index, i is the order of the move in its neighborhood, and k is

the iteration. For each neighborhood r; 1 � r � y;denote respectively by sr, Tr, and c
r the �rst

non-tabu move, the tabu list, and the move's corresponding objective function value. ccand is

the best move among all non-tabu non-improving moves found in each iteration.

algorithm TSVN

begin

Calculate an initial feasible solution x:1
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Set the best solution so far x� := x and the best objective function value c� = c(x�):2

Set the iteration counter k := 0 and the non-improving counter q := 0.3

Set tabu list Ti := ;, 1 � i � q.4

Loop 1:5

while k < max iter and q < max q and the allotted running time is not over do6

Initialize ccand :=1:7

Set the neighborhood counter r := 1.8

Loop 2:9

while r � y do10

Initialize sr := ;, cr :=1.11

Find a candidate list of moves Sr(x).12

if Sr(x) = ; then set r := r + 1, goto Loop 2.13

for i = 1 to jSr(x)j do14

if srik is an improving move, then15

Set x := srik(x), x
� := x, c� := c(x); q := 0:16

Update Tr with the reverse move (srik)
�1 and goto Loop 1.17

end (if)18

if srik =2 Tr and c(srik(x)) < cr then set sr := srik, c
r := c(srik(x)).19

end (for)20

if ccand < cr then set ccand := cr:21

Set r := r + 1:22

end (while Loop 2)23

if ccand = cp; 1 � p � y; then24

Set x := sp(x), x� := x, c� := c(x):25

Update Tp with the reverse move (sp)�1:26

end (if)27

if repetition on c(x) is detected then stop.28

Set q := q + 1: Update the running time so far.29

end (while Loop 1)30

end (TSAP)
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3.8.2 Tabu search algorithms for the FGBJS

Combining three generic TS algorithms TSBJT, TSAP and TSVN with three neighborhoods:

simple N s(x), pairwise exchange Np(x); and 
exible closure N c(x) results in the following six

TS algorithms for the FGBJS:

1. TSBJT with neighborhoods N s(x) and Np(x) combined (TSBJT �N s=Np);

2. TSBJT with neighborhood N c(x)(TSBJT �N c);

3. TSAP with neighborhood Np(x) in phase 1 and neighborhood N s(x) in phase 2 (TSAP �

Np �N s);

4. TSAP with neighborhood N s(x) in phase 1 and neighborhood N c(x) in phase 2 (TSAP �

N s �N c);

5. TSAP with neighborhood Np(x) in phase 1 and neighborhood N c(x) in phase 2 (TSAP �

Np �N c);

6. TSVN with neighborhoods N s(x), Np(x) and N c(x) to be inspected in this sequence

(TSV N �N s �Np �N c):

The �rst two algorithms are based on the generic algorithm TSBJT. Algorithm TSBJT�N s=Np

is developed from a Glover's proposal to combine di�erent move types [Ree93]. It uses the 4-

tuple (i; u; v; k) format to present both simple and pairwise exchange moves. When evaluating

or executing a move (i; j; v; k), the algorithm checks if j is the operation that immediately

precedes ij in sequence ��(j). If yes, the algorithm makes the pairwise exchange move (j; i);

otherwise it carries out an appropriate simple move (i; j; v; k). Algorithms (3)(4)(5) are based

on the generic TS algorithm TSAP. Algorithms TSAP � Nv � N c and TSAP � Np � N c

use the 
exible closure neighborhood in their diversifying phase. When considering all moves

associated with all critical operations, the size of this neighborhood becomes very large and its

full inspection is very time-consuming. For the purpose of diversifying the search, it is su�cient

to search in a reduced 
exible closure neighborhood that considers only the �rst operation of

each job block belonging to the critical path. This neighborhood can be reduced even further

when considering only moves (j; i) where j starts earlier than i in the current solution. Similarly,

the full 
exible closure neighborhood used in the TSBJT � N c is huge; hence the search can

be limited to its reduced version (which is still very large). The last algorithm is based on the

TSVN.
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3.9 Computational results

3.9.1 Benchmark instances

Three constructive heuristics introduced in Section 3.7 and six TS algorithms presented in

Section 3.8 were coded in C++ and tested on 160 benchmark instances on a PC having a

processor Pentium IV 2.8 GHz and 512 MB of memory. Initially, no benchmark instances

were available since the FGBJS has never been addressed in scheduling literature. However,

it is possible to create FGBJS instances from available benchmark instances proposed for the

FJS and the GBJS. First, we chose 160 FJS instances generated by Hurink, Jurisch and Thole.

These instances are evenly divided in four instance groups, namely sdata, edata, rdata, and vdata

[HJT94]; each group consists of Lawrence's 40 JS base instances (labeled la01-la40) modi�ed

with a certain level of 
exibility. The groups' 
exibility levels are in the order sdata, edata,

rdata, and vdata, where instance set sdata is the original Lawrence's JS set without 
exibility

(see Table 3-5). In any instance, the default processor for any operation is its processor in the

base JS instance. Because assignable processors for each operations were randomly generated,

for any two instances derived from a same base JS instance but di�ering in their 
exibility

levels, e.g. la01 in edata and la01 in vdata, an assignable processor for an operation in one

instance might not be a valid processor for this operation in the other instance which has a

higher 
exibility level.

Instance Size sdata edata rdata vdata
sets n m aveg max aveg max aveg max aveg max

la01-la05 10 5 1 1 1.15 2 2 3 2.5 4
la06-la10 15 5 1 1 1.15 2 2 3 2.5 4
la11-la15 20 5 1 1 1.15 2 2 3 2.5 4
la16-la20 10 10 1 1 1.15 3 2 3 5 8
la21-la25 15 10 1 1 1.15 3 2 3 5 8
la26-la30 20 10 1 1 1.15 3 2 3 5 8
la31-la35 30 10 1 1 1.15 3 2 3 5 8
la36-la40 15 15 1 1 1.15 3 2 3 7.5 12

n : number of jobs, m : number of processors
aveg: average number of assignable processors for each operation
max: maximum number of assignable processors for each operation

Table 3-5: Flexibility levels in FJS benchmark instances.

We then added to the above FJS instances transfer and sequence-dependent setup times taken

from GBJS benchmark instances developed by Gr�o
in and Klinkert [GK05]. These GBJS

instances were modi�ed from the same Lawrence's base instances with transfer and sequence-

dependent setup times uniformly distributed in the intervals [1; 20] and [0; 50] respectively. For

simplicity, the setup times are processor-independent. The creation of the FGBJS instances was

completed with 160 FGBJS instances divided in four groups. Each generated FGBJS instance

can be referred to by its base JS instance's name and its 
exibility group's name (e.g. la01-sdata

stands for instance la01 in sdata group).



3.9. Computational results 95

The computational experiments conducted on these 160 FGBJS instances were carried out in

three steps:

1. Evaluate three constructive heuristics SG-MOC, SG-MFP, and SG-BN.

2. Evaluate six TS algorithms with a common constructive heuristic to generate initial fea-

sible schedules.

3. Evaluate the dependence of the TS algorithms on di�erent initial solutions.

To experiment blocking's e�ects as much as possible, we did not allow any two consecutive

operations of the same job to be performed by the same processor. Algorithms were evaluated

by two criteria: e�ciency and e�ectiveness. E�ciency measures computing e�ort (in CPU

times) to obtain a solution. E�ectiveness measures how good a solution is by comparing the

solution's objective function value to a known optimal solution's objective function value or

a known tight lower bound. The performance of the FGBJS's MILP formulation on these

benchmark instances is, as anticipated, disappointing. Only 55 out of 160 instances, most of

them in sdata set, could obtain feasible solutions after a 30-min of computing time per instance

by CPLEX 9.0 solver (see Appendix). Obtained lower bounds were also of low quality. Further,

since both the FGBJS problem and the solution methods are novel, no previous computational

results exist to assert any particular solution. Therefore, we could only evaluate the algorithms

by comparing their performances among themselves.

3.9.2 Computational results on the constructive heuristics

The performance of three heuristics SG-MOC, SG-MFP, and SG-BN on each data set sdata,

sdata, rdata, and vdata are respectively presented in four tables from Table 3-6 to Table 3-

9. Column (3) of these tables shows the makespans obtained by the permutation schedule

corresponding to a non-decreasing order of total average times of jobs. Each entry of three

columns (4)-(6) shows for each instance the makespan obtained by the corresponding heuristic

(e.g. applying the SG�MFP on the la01�sdata yields makespan 1988, see line 1 of Table 3-6).

For each instance, the best of three obtained makespans is shown in column (7). Columns (8)-

(10) show the derived makespan deviations calculated for each makespan Cmax as
Cmax- Cbest

Cbest �

100% where Cbest is the corresponding best makespan obtained from the information in columns

(4)-(7). The last four columns (11)-(13) show the heuristics' running times in seconds.
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Instance Size Makespan of SG- Deviation (%) of SG- Time (seconds) of SG-
lax-sdata nxm Seq MOC MFP BN Best MOC MFP BN MOC MFP BN

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)

la01-sdata 10x5 2925 1737 1988 2368 1737 0.00 14.45 36.33 3.23 2.35 2.07
la02-sdata 10x5 2779 1949 1841 2106 1841 5.87 0.00 14.39 3.25 2.25 3.21
la03-sdata 10x5 2614 1745 1542 1988 1542 13.16 0.00 28.92 3.29 2.38 2.23
la04-sdata 10x5 2430 1917 1994 1952 1917 0.00 4.02 1.83 3.52 2.44 2.17
la05-sdata 10x5 2809 1470 1696 1878 1470 0.00 15.37 27.76 3.07 2.66 2.11
la06-sdata 15x5 4181 2577 2472 3004 2472 4.25 0.00 21.52 7.21 3.66 4.53
la07-sdata 15x5 3870 2684 2526 2751 2526 6.25 0.00 8.91 7.29 3.91 4.49
la08-sdata 15x5 4089 2738 2406 2518 2406 13.80 0.00 4.66 7.12 3.79 4.74
la09-sdata 15x5 4012 2696 2717 2944 2696 0.00 0.78 9.20 7.19 3.81 4.45
la10-sdata 15x5 3764 2629 2742 3428 2629 0.00 4.30 30.39 6.82 3.57 4.50
la11-sdata 20x5 5264 3653 3526 3461 3461 5.55 1.88 0.00 12.70 5.65 8.41
la12-sdata 20x5 5202 3418 3218 3464 3218 6.22 0.00 7.64 12.17 5.17 8.03
la13-sdata 20x5 5228 3373 3566 3830 3373 0.00 5.72 13.55 13.12 5.26 8.27
la14-sdata 20x5 5456 3523 3446 3872 3446 2.23 0.00 12.36 13.11 5.62 7.95
la15-sdata 20x5 5446 3368 3399 3667 3368 0.00 0.92 8.88 12.13 5.41 7.72
la16-sdata 10x10 5387 3091 2886 3779 2886 7.10 0.00 30.94 5.77 7.19 3.30
la17-sdata 10x10 4991 2818 2430 3451 2430 15.97 0.00 42.02 5.72 6.58 3.59
la18-sdata 10x10 5385 2964 3098 3349 2964 0.00 4.52 12.99 5.73 6.85 3.68
la19-sdata 10x10 5896 2887 2685 3567 2685 7.52 0.00 32.85 5.67 6.82 3.39
la20-sdata 10x10 5293 3705 2969 3644 2969 24.79 0.00 22.73 5.88 6.84 3.48
la21-sdata 15x10 7309 4720 4219 4975 4219 11.87 0.00 17.92 13.14 11.82 7.28
la22-sdata 15x10 7251 4954 3880 4561 3880 27.68 0.00 17.55 13.63 11.90 7.41
la23-sdata 15x10 8518 4901 4528 5295 4528 8.24 0.00 16.94 13.82 11.43 7.33
la24-sdata 15x10 7990 4242 4231 4645 4231 0.26 0.00 9.78 13.84 11.28 7.68
la25-sdata 15x10 8163 4693 4059 5187 4059 15.62 0.00 27.79 12.69 11.17 7.34
la26-sdata 20x10 10161 5996 4752 6119 4752 26.18 0.00 28.77 26.16 14.56 14.39
la27-sdata 20x10 10548 5388 5600 6985 5388 0.00 3.93 29.64 25.13 16.15 12.35
la28-sdata 20x10 10412 6341 5723 6601 5723 10.80 0.00 15.34 21.94 9.99 8.07
la29-sdata 20x10 10940 6040 5313 6228 5313 13.68 0.00 17.22 17.79 10.00 8.27
la30-sdata 20x10 10690 6198 5247 6596 5247 18.12 0.00 25.71 15.38 9.94 7.67
la31-sdata 30x10 15535 8654 7916 9155 7916 9.32 0.00 15.65 70.36 25.16 25.28
la32-sdata 30x10 16343 9114 8067 9632 8067 12.98 0.00 19.40 63.99 31.89 24.97
la33-sdata 30x10 15449 8251 8417 9589 8251 0.00 2.01 16.22 65.01 28.07 22.98
la34-sdata 30x10 15614 7976 8720 8832 7976 0.00 9.33 10.73 66.43 24.39 23.52
la35-sdata 30x10 14392 8605 7974 10122 7974 7.91 0.00 26.94 64.94 27.44 23.37
la36-sdata 15x15 11925 6587 5708 7714 5708 15.40 0.00 35.14 12.00 14.70 6.56
la37-sdata 15x15 12423 7143 5905 8229 5905 20.97 0.00 39.36 13.21 15.28 7.71
la38-sdata 15x15 11242 6415 5379 8038 5379 19.26 0.00 49.43 10.96 13.59 6.83
la39-sdata 15x15 11891 5603 5901 7331 5603 0.00 5.32 30.84 11.27 14.19 7.07
la40-sdata 15x15 12493 6572 5310 7767 5310 23.77 0.00 46.27 12.63 12.57 6.72

Table 3-6: Performance of the constructive heuristics on sdata set.

Instance Size Makespan of SG- Deviation (%) of SG- Time (seconds) of SG-
lax-edata nxm Seq MOC MFP BN Best MOC MFP BN MOC MFP BN

la01-edata 10x5 2925 2320 1909 2294 1909 21.53 0.00 20.17 1.06 0.70 0.85
la02-edata 10x5 2779 1916 1795 2060 1795 6.74 0.00 14.76 1.14 0.78 0.77
la03-edata 10x5 2614 1855 1666 1721 1666 11.34 0.00 3.30 1.09 0.78 0.84
la04-edata 10x5 2430 1799 1782 1760 1760 2.22 1.25 0.00 1.14 0.78 0.78
la05-edata 10x5 2809 1504 1740 1796 1504 0.00 15.69 19.41 1.10 0.91 0.78
la06-edata 15x5 4181 2605 2611 3189 2605 0.00 0.23 22.42 2.66 1.79 1.76
la07-edata 15x5 3870 2447 2429 2877 2429 0.74 0.00 18.44 2.61 1.46 1.89
la08-edata 15x5 4089 2702 2385 2518 2385 13.29 0.00 5.58 2.62 1.54 1.65
la09-edata 15x5 4012 2803 2709 2569 2569 9.11 5.45 0.00 2.71 1.55 1.93
la10-edata 15x5 3764 2835 2508 2822 2508 13.04 0.00 12.52 2.68 1.44 1.85
la11-edata 20x5 5264 3586 3500 3813 3500 2.46 0.00 8.94 5.22 2.51 3.74
la12-edata 20x5 5202 3333 3097 3347 3097 7.62 0.00 8.07 5.30 2.45 3.44
la13-edata 20x5 5228 3228 3633 3722 3228 0.00 12.55 15.30 5.13 2.74 3.52
la14-edata 20x5 5456 3543 3421 3611 3421 3.57 0.00 5.55 5.52 2.63 3.60
la15-edata 20x5 5446 3374 3274 3556 3274 3.05 0.00 8.61 5.44 2.33 3.88
la16-edata 10x10 5387 3392 2994 3847 2994 13.29 0.00 28.49 2.12 2.84 1.61
la17-edata 10x10 4991 2708 2462 3107 2462 9.99 0.00 26.20 2.05 2.77 1.53
la18-edata 10x10 5385 2886 3027 3317 2886 0.00 4.89 14.93 2.53 2.67 1.80
la19-edata 10x10 5896 3306 3035 3395 3035 8.93 0.00 11.86 2.22 2.79 1.76
la20-edata 10x10 5293 3551 2773 3780 2773 28.06 0.00 36.31 2.25 2.53 1.49
la21-edata 15x10 7309 4630 4235 5036 4235 9.33 0.00 18.91 6.74 5.04 4.08
la22-edata 15x10 7251 4223 4109 4842 4109 2.77 0.00 17.84 6.53 6.02 4.55
la23-edata 15x10 8518 4284 4167 5001 4167 2.81 0.00 20.01 6.94 5.95 4.66
la24-edata 15x10 7990 4429 4416 4951 4416 0.29 0.00 12.12 7.25 5.91 5.05
la25-edata 15x10 8163 4185 4182 4824 4182 0.07 0.00 15.35 6.45 5.87 4.03
la26-edata 20x10 10161 5544 5270 6365 5270 5.20 0.00 20.78 14.57 10.67 8.40
la27-edata 20x10 10548 5962 5422 6975 5422 9.96 0.00 28.64 13.91 10.96 8.78
la28-edata 20x10 10412 5302 5094 6466 5094 4.08 0.00 26.93 14.29 9.92 8.22
la29-edata 20x10 10940 6065 5083 6389 5083 19.32 0.00 25.69 16.36 9.78 8.60
la30-edata 20x10 10690 6215 5611 6589 5611 10.76 0.00 17.43 14.93 9.88 8.39
la31-edata 30x10 15535 7982 8258 9788 7982 0.00 3.46 22.63 55.06 28.55 27.12
la32-edata 30x10 16343 9190 9124 10003 9124 0.72 0.00 9.63 52.30 30.00 23.63
la33-edata 30x10 15449 7951 8444 8882 7951 0.00 6.20 11.71 49.07 27.84 24.61
la34-edata 30x10 15614 7896 8051 9094 7896 0.00 1.96 15.17 58.56 25.14 24.32
la35-edata 30x10 14392 8139 7905 9751 7905 2.96 0.00 23.35 51.92 23.78 23.56
la36-edata 15x15 11925 6373 5708 8030 5708 11.65 0.00 40.68 11.44 14.40 7.53
la37-edata 15x15 12423 6451 5869 8502 5869 9.92 0.00 44.86 12.08 14.33 8.61
la38-edata 15x15 11242 5544 5978 8220 5544 0.00 7.83 48.27 11.77 12.62 6.95
la39-edata 15x15 11891 6750 5818 6955 5818 16.02 0.00 19.54 12.64 14.21 8.15
la40-edata 15x15 12493 6564 5896 7547 5896 11.33 0.00 28.00 12.26 11.36 7.64

Table 3-7: Performance of the constructive heuristics on edata set.
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Instance Size Makespan of SG- Deviation (%) of SG- Time (seconds) of SG-
lax-rdata nxm Seq MOC MFP BN Best MOC MFP BN MOC MFP BN

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)

la01-rdata 10x5 2925 2206 1908 2071 1908 15.62 0.00 8.54 1.06 0.79 0.96
la02-rdata 10x5 2779 2042 1944 1812 1812 12.69 7.28 0.00 1.11 0.85 1.16
la03-rdata 10x5 2614 1670 1527 1572 1527 9.36 0.00 2.95 1.17 1.00 0.91
la04-rdata 10x5 2430 1637 1653 1472 1472 11.21 12.30 0.00 1.26 0.85 0.97
la05-rdata 10x5 2809 1611 1664 1645 1611 0.00 3.29 2.11 1.19 0.94 0.89
la06-rdata 15x5 4181 2647 2765 2973 2647 0.00 4.46 12.32 2.76 1.91 2.05
la07-rdata 15x5 3870 2451 2706 2568 2451 0.00 10.40 4.77 2.90 1.66 2.25
la08-rdata 15x5 4089 2459 2208 2656 2208 11.37 0.00 20.29 3.01 1.61 2.31
la09-rdata 15x5 4012 2464 2681 2597 2464 0.00 8.81 5.40 2.75 1.65 2.04
la10-rdata 15x5 3764 2554 2637 2810 2554 0.00 3.25 10.02 2.74 1.63 2.26
la11-rdata 20x5 5264 3296 3224 3774 3224 2.23 0.00 17.06 5.49 2.93 4.23
la12-rdata 20x5 5202 3321 3181 3038 3038 9.32 4.71 0.00 5.74 3.13 4.26
la13-rdata 20x5 5228 3166 3297 3191 3166 0.00 4.14 0.79 5.83 2.67 4.64
la14-rdata 20x5 5456 3492 3227 3454 3227 8.21 0.00 7.03 5.64 3.14 4.05
la15-rdata 20x5 5446 3469 3566 3735 3469 0.00 2.80 7.67 5.88 2.95 4.47
la16-rdata 10x10 5387 3154 2891 3568 2891 9.10 0.00 23.42 2.47 3.01 2.18
la17-rdata 10x10 4991 2857 2456 3362 2456 16.33 0.00 36.89 2.53 2.88 2.22
la18-rdata 10x10 5385 3533 2666 3231 2666 32.52 0.00 21.19 2.80 2.87 2.20
la19-rdata 10x10 5896 2892 2851 3290 2851 1.44 0.00 15.40 2.63 3.08 2.17
la20-rdata 10x10 5293 3384 2911 3669 2911 16.25 0.00 26.04 2.59 2.93 2.08
la21-rdata 15x10 7309 4557 4322 4610 4322 5.44 0.00 6.66 7.86 6.87 5.70
la22-rdata 15x10 7251 3933 3326 4370 3326 18.25 0.00 31.39 7.41 5.89 5.48
la23-rdata 15x10 8518 4499 4057 4982 4057 10.89 0.00 22.80 8.18 6.59 5.81
la24-rdata 15x10 7990 4218 3737 4704 3737 12.87 0.00 25.88 7.03 6.37 5.74
la25-rdata 15x10 8163 3840 3476 4540 3476 10.47 0.00 30.61 7.04 6.19 6.00
la26-rdata 20x10 10161 5306 5273 5914 5273 0.63 0.00 12.16 16.88 13.10 12.56
la27-rdata 20x10 10548 5798 5476 6204 5476 5.88 0.00 13.29 17.19 14.42 14.31
la28-rdata 20x10 10412 5989 4947 6222 4947 21.06 0.00 25.77 16.42 13.60 12.48
la29-rdata 20x10 10940 5538 5306 6303 5306 4.37 0.00 18.79 16.91 14.10 12.74
la30-rdata 20x10 10690 5746 5519 6165 5519 4.11 0.00 11.71 17.76 12.95 12.11
la31-rdata 30x10 15535 8213 7868 9345 7868 4.38 0.00 18.77 52.97 41.18 36.61
la32-rdata 30x10 16343 8665 8436 10002 8436 2.71 0.00 18.56 59.33 37.11 37.29
la33-rdata 30x10 15449 7703 8031 8335 7703 0.00 4.26 8.20 50.35 37.18 34.32
la34-rdata 30x10 15614 8375 7698 8012 7698 8.79 0.00 4.08 54.98 38.91 37.79
la35-rdata 30x10 14392 8319 7952 8464 7952 4.62 0.00 6.44 52.26 37.11 36.08
la36-rdata 15x15 11925 5844 5833 7262 5833 0.19 0.00 24.50 13.70 14.72 13.79
la37-rdata 15x15 12423 6609 5662 7988 5662 16.73 0.00 41.08 14.06 15.39 11.41
la38-rdata 15x15 11242 5896 5613 7310 5613 5.04 0.00 30.23 13.30 17.90 12.23
la39-rdata 15x15 11891 6470 5595 7654 5595 15.64 0.00 36.80 13.39 18.45 12.15
la40-rdata 15x15 12493 6124 5691 7587 5691 7.61 0.00 33.32 14.09 15.20 12.34

Table 3-8: Performance of the constructive heuristics on rdata set.

Instance Size Makespan of SG- Deviation (%) of SG- Time (seconds) of SG-
lax-vdata nxm Seq MOC MFP BN Best MOC MFP BN MOC MFP BN

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)

la01-vdata 10x5 2925 2004 1751 1894 1751 14.45 0.00 8.17 1.24 0.92 1.01
la02-vdata 10x5 2779 1634 1606 1886 1606 1.74 0.00 17.43 1.26 0.96 0.95
la03-vdata 10x5 2614 1743 1792 1643 1643 6.09 9.07 0.00 1.20 0.92 0.91
la04-vdata 10x5 2430 1548 1623 1658 1548 0.00 4.84 7.11 1.24 0.85 0.91
la05-vdata 10x5 2809 1423 1462 1961 1423 0.00 2.74 37.81 1.22 0.91 0.89
la06-vdata 15x5 4181 2594 2406 2629 2406 7.81 0.00 9.27 2.86 1.73 2.21
la07-vdata 15x5 3870 2494 2474 2442 2442 2.13 1.31 0.00 2.96 1.72 2.26
la08-vdata 15x5 4089 2316 2497 2342 2316 0.00 7.82 1.12 3.10 2.01 2.26
la09-vdata 15x5 4012 2864 2812 2734 2734 4.75 2.85 0.00 3.03 1.91 2.17
la10-vdata 15x5 3764 2644 2454 2471 2454 7.74 0.00 0.69 3.27 1.80 2.29
la11-vdata 20x5 5264 3319 3161 3303 3161 5.00 0.00 4.49 6.06 3.01 4.66
la12-vdata 20x5 5202 2944 3055 3054 2944 0.00 3.77 3.74 5.98 3.22 4.22
la13-vdata 20x5 5228 3159 2981 3318 2981 5.97 0.00 11.30 6.42 3.26 4.71
la14-vdata 20x5 5456 2882 2953 3411 2882 0.00 2.46 18.36 6.11 3.21 4.28
la15-vdata 20x5 5446 3244 3614 3440 3244 0.00 11.41 6.04 5.94 3.24 4.64
la16-vdata 10x10 5387 2568 2446 3019 2446 4.99 0.00 23.43 3.64 3.74 3.02
la17-vdata 10x10 4991 2524 2294 2712 2294 10.03 0.00 18.22 3.83 3.87 3.29
la18-vdata 10x10 5385 3052 2652 3028 2652 15.08 0.00 14.18 3.61 3.63 3.07
la19-vdata 10x10 5896 2623 2510 3280 2510 4.50 0.00 30.68 3.44 4.07 3.05
la20-vdata 10x10 5293 3119 2604 3309 2604 19.78 0.00 27.07 3.57 3.92 2.90
la21-vdata 15x10 7309 4474 3415 4463 3415 31.01 0.00 30.69 10.19 9.01 8.51
la22-vdata 15x10 7251 3859 3578 4302 3578 7.85 0.00 20.23 10.15 9.79 8.32
la23-vdata 15x10 8518 3803 4026 4688 3803 0.00 5.86 23.27 9.39 9.47 8.45
la24-vdata 15x10 7990 3512 3547 4391 3512 0.00 1.00 25.03 10.63 9.98 8.46
la25-vdata 15x10 8163 4106 4051 4600 4051 1.36 0.00 13.55 10.15 9.75 8.41
la26-vdata 20x10 10161 4991 4570 5449 4570 9.21 0.00 19.23 23.46 18.74 19.12
la27-vdata 20x10 10548 5266 5350 5972 5266 0.00 1.60 13.41 22.89 18.68 18.12
la28-vdata 20x10 10412 5080 4896 5514 4896 3.76 0.00 12.62 21.83 17.52 17.02
la29-vdata 20x10 10940 5062 4574 5792 4574 10.67 0.00 26.63 21.21 18.44 16.99
la30-vdata 20x10 10690 5646 4809 5283 4809 17.40 0.00 9.86 22.91 17.97 17.58
la31-vdata 30x10 15535 7753 6348 8393 6348 22.13 0.00 32.21 73.13 49.60 54.01
la32-vdata 30x10 16343 8356 7599 8005 7599 9.96 0.00 5.34 72.95 51.14 53.57
la33-vdata 30x10 15449 7371 7275 8854 7275 1.32 0.00 21.70 73.32 51.76 53.77
la34-vdata 30x10 15614 7246 6999 8186 6999 3.53 0.00 16.96 75.78 51.72 54.73
la35-vdata 30x10 14392 7487 7730 7595 7487 0.00 3.25 1.44 75.98 56.13 55.67
la36-vdata 15x15 11925 6017 4466 6540 4466 34.73 0.00 46.44 25.58 25.05 22.64
la37-vdata 15x15 12423 5661 5772 7592 5661 0.00 1.96 34.11 24.96 24.64 22.03
la38-vdata 15x15 11242 5257 4724 6171 4724 11.28 0.00 30.63 25.45 24.73 22.49
la39-vdata 15x15 11891 5724 4448 6846 4448 28.69 0.00 53.91 27.18 32.17 22.41
la40-vdata 15x15 12493 5739 5657 6676 5657 1.45 0.00 18.01 25.02 25.81 22.02

Table 3-9: Performance of the constructive heuristics on vdata set.
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Data Average improvement (%) Rank
set SG-MOC SG-MFP SG-BN SG-MOC SG-MFP SG-BN

sdata 39.83 43.39 33.00 2 1 3
edata 40.43 43.36 34.21 2 1 3
rdata 41.84 44.93 37.80 2 1 3
vdata 45.80 48.50 41.36 2 1 3

average 42.69 45.60 37.79 2 1 3

Table 3-10: Performance of the constructive heuristics w.r.t. improvement to permutation
schedules.

Data Average deviation (%) Rank
set SG-MOC SG-MFP SG-BN SG-MOC SG-MFP SG-BN

sdata 8.87 1.81 21.61 2 1 3
edata 6.80 1.49 18.71 2 1 3
rdata 7.88 1.64 16.07 2 1 3
vdata 7.61 1.50 17.36 2 1 3

average 7.79 1.61 18.44 2 1 3

Table 3-11: Performance of the constructive heuristics w.r.t. deviations.

Data # best makespans Rank
set SG-MOC SG-MFP SG-BN SG-MOC SG-MFP SG-BN

sdata 12 27 1 2 1 3
edata 8 30 2 2 1 3
rdata 8 29 3 2 1 3
vdata 11 26 3 2 1 3

Total 39 112 9 2 1 3

Table 3-12: Performance of the constructive heuristics w.r.t. numbers of best makespans
obtained.

Table 3-10 ranks the heuristics according to their average improvements to permutation sched-

ules by non-decreasing order of total average times of jobs while Table 3-11 ranks them according

to their deviations. Table 3-12 gives a ranking based on the number of times a heuristic obtained

the best makespan. The outputs of these tables indicate that the SG-MFP heuristic is the best

performing algorithm in terms of solution quality. As its average running time was only 11.52%

higher than the average running time of the fastest heuristic (see Table 3-13), the e�ectiveness

of SG-MFP heuristic did not require a signi�cant trade-o� of e�ciency.

We further analyzed the impact of 
exibility and instance size on the constructive heuristics'

performance. First, the impact of 
exibility was evaluated. We used the makespans associated

with zero-
exibility instance set sdata as references to calculate the deviations of makespans

associated with the 
exible sets edata, rdata, and vdata (see Table 3-14). For instance with the

SG-MFP, the makespan obtained on la01-edata (with 
exibility) is 3:97% better than the one

obtained on la01-sdata (without 
exibility). Tables 3-14 and 3-15 suggest that in general, a

higher degree of 
exibility leads to a solution of better quality.

Table 3-16 presents the heuristics' average deviations and average computational times for each

data set. Observe that: (1) when the ratio of the number of jobs to the number of processors

(n : m) approached one, the average deviation increased and (2) when the value of the product

n�m increased, the computational time also increased.
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Data Average computing time (seconds)
set SG-MOC SG-MFP SG-BN

sdata 17.71 10.44 8.38
edata 12.29 8.01 6.66
rdata 13.07 10.39 9.63
vdata 18.30 14.52 14.20

average 15.34 10.84 9.72

Table 3-13: Computing times of the constructive heuristics.

3.9.3 Computational results of the Tabu search heuristics

We used the SG-MFP heuristic as an initial solution generator for six TS algorithms and carried

out computational experiments for them on the same 160 FGBJS instances. The algorithms

were run with a same set of Tabu parameters, including a maximum iteration number max iter =

10; 000, an universal tabu list length t = 10, a number of objective function value repetitions

max c = 4, and a checking length max � = 100. Other stopping criteria include a maximum

running time of 30 minutes and a maximum number of non-improving moves max q = 1000. We

obtained these parameter values from preliminary tuning. The TS algorithms were evaluated

on their (relative) e�ectiveness as their running times were limited to the same value. We used

the following three evaluation metrics: (1) the average deviation from the best makespans, (2)

the number of times to obtain the best makespans, and (3) the average improvement made to

initial solutions. An overall ranking of the TS algorithms was determined base on the average

of these three metrics.

The algorithms' obtained makespans and performance measurements are presented in four ta-

bles from Table 3-20 to Table 3-22, corresponding to sdata, edata, rdata, and vdata sets, re-

spectively. In each table, initial makespans are given in column (2) while makespans of the six

algorithms are shown in columns (3) to (8). Columns (9)-(14) show for each instance how much

its associated initial makespan was improved by a TS algorithm. Improvement is measured

as Initial makespan�Tabu search makespan
Initial makespan

� 100%. Column (15) shows for each instance the best

objective function value among six values obtained by the algorithms. Deviations from the best

makespans are given in the last six columns (16)-(21).

Tables 3-17 and 3-18 rank the performance of all six TS algorithms with respect to 
exibility

levels and instance sizes respectively.

The following remarks are made from Tables 3-17 and 3-18:

1. All algorithms made signi�cant improvements to the initial makespans with average im-

provements ranging from 11.38% to 37.05%. On average, the initial makespans were

improved by 27.94%.

2. No algorithm was the clear winner. On average, TSBJT � N s=Np(A1) was the best

and TSBJT � N c(A2) was the second-runner. However, the ranks varied over di�erent
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exibility levels and di�erent problem sizes. For instance, TSBJT �N s=Np ranked �rst

on rdata and vdata sets but only third on sdata and sdata sets; TSAP � Np � N s(A3)

trailed other algorithms most of time, but performed exceptionally well for vdata set which

has the highest 
exibility level.

3. The ranks based on di�erent metrics were also not consistent. For example, TSV N did

well on vdata with respect to the average deviation metric but not to the other metrics.

4. Increasing 
exibility gave better average improvement but did not always improve the

other metrics.
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Base Size MCO MFP BN
inst. nxm edata rdata vdata edata rdata vdata edata rdata vdata

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

la01 10x5 -33.56 -27.00 -15.37 3.97 4.02 11.92 3.13 3.13 20.02
la02 10x5 1.69 -4.77 16.16 2.50 -5.59 12.76 2.18 2.18 10.45
la03 10x5 -6.30 4.30 0.11 -8.04 0.97 -16.21 13.43 13.43 17.35
la04 10x5 6.16 14.61 19.25 10.63 17.10 18.61 9.84 9.84 15.06
la05 10x5 -2.31 -9.59 3.20 -2.59 1.89 13.80 4.37 4.37 -4.42
la06 15x5 -1.09 -2.72 -0.66 -5.62 -11.85 2.67 -6.16 -6.16 12.48
la07 15x5 8.83 8.68 7.08 3.84 -7.13 2.06 -4.58 -4.58 11.23
la08 15x5 1.31 10.19 15.41 0.87 8.23 -3.78 0.00 0.00 6.99
la09 15x5 -3.97 8.61 -6.23 0.29 1.32 -3.50 12.74 12.74 7.13
la10 15x5 -7.84 2.85 -0.57 8.53 3.83 10.50 17.68 17.68 27.92
la11 20x5 1.83 9.77 9.14 0.74 8.56 10.35 -10.17 -10.17 4.57
la12 20x5 2.49 2.84 13.87 3.76 1.15 5.07 3.38 3.38 11.84
la13 20x5 4.30 6.14 6.34 -1.88 7.54 16.40 2.82 2.82 13.37
la14 20x5 -0.57 0.88 18.19 0.73 6.36 14.31 6.74 6.74 11.91
la15 20x5 -0.18 -3.00 3.68 3.68 -4.91 -6.33 3.03 3.03 6.19
la16 10x10 -9.74 -2.04 16.92 -3.74 -0.17 15.25 -1.80 -1.80 20.11
la17 10x10 3.90 -1.38 10.43 -1.32 -1.07 5.60 9.97 9.97 21.41
la18 10x10 2.63 -19.20 -2.97 2.29 13.94 14.40 0.96 0.96 9.58
la19 10x10 -14.51 -0.17 9.14 -13.04 -6.18 6.52 4.82 4.82 8.05
la20 10x10 4.16 8.66 15.82 6.60 1.95 12.29 -3.73 -3.73 9.19
la21 15x10 1.91 3.45 5.21 -0.38 -2.44 19.06 -1.23 -1.23 10.29
la22 15x10 14.76 20.61 22.10 -5.90 14.28 7.78 -6.16 -6.16 5.68
la23 15x10 12.59 8.20 22.40 7.97 10.40 11.09 5.55 5.55 11.46
la24 15x10 -4.41 0.57 17.21 -4.37 11.68 16.17 -6.59 -6.59 5.47
la25 15x10 10.82 18.18 12.51 -3.03 14.36 0.20 7.00 7.00 11.32
la26 20x10 7.54 11.51 16.76 -10.90 -10.96 3.83 -4.02 -4.02 10.95
la27 20x10 -10.65 -7.61 2.26 3.18 2.21 4.46 0.14 0.14 14.50
la28 20x10 16.39 5.55 19.89 10.99 13.56 14.45 2.05 2.05 16.47
la29 20x10 -0.41 8.31 16.19 4.33 0.13 13.91 -2.59 -2.59 7.00
la30 20x10 -0.27 7.29 8.91 -6.94 -5.18 8.35 0.11 0.11 19.91
la31 30x10 7.77 5.10 10.41 -4.32 0.61 19.81 -6.91 -6.91 8.32
la32 30x10 -0.83 4.93 8.32 -13.10 -4.57 5.80 -3.85 -3.85 16.89
la33 30x10 3.64 6.64 10.67 -0.32 4.59 13.57 7.37 7.37 7.67
la34 30x10 1.00 -5.00 9.15 7.67 11.72 19.74 -2.97 -2.97 7.31
la35 30x10 5.42 3.32 12.99 0.87 0.28 3.06 3.67 3.67 24.97
la36 15x15 3.25 11.28 8.65 0.00 -2.19 21.76 -4.10 -4.10 15.22
la37 15x15 9.69 7.48 20.75 0.61 4.12 2.25 -3.32 -3.32 7.74
la38 15x15 13.58 8.09 18.05 -11.14 -4.35 12.18 -2.26 -2.26 23.23
la39 15x15 -20.47 -15.47 -2.16 1.41 5.19 24.62 5.13 5.13 6.62
la40 15x15 0.12 6.82 12.67 -11.04 -7.18 -6.53 2.83 2.83 14.05

Table 3-14: Impact of 
exibility on performance of the constructive heuristics.

Base MCO MFP MFP
instance s e r v s e r v s e r v

la01-la40 3 2 6 29 1 2 6 31 0 1 9 30

s : sdata, e : edata, r : rdata, v : vdata

Table 3-15: Impact of 
exibility on the number of best makespans obtained.
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Data Size Average deviation (%) Average computing time (s)
set n m MOC MFP BN MOC MFP BN

la01-la05 10 5 11.27 9.49 11.87 1.69 1.25 1.27
la06-la10 15 5 5.71 5.11 10.07 3.92 2.21 2.70
la11-la15 20 5 7.64 7.61 6.95 7.44 3.53 5.13
la16-la20 10 10 11.29 9.21 10.56 3.55 4.09 2.59
la21-la25 15 10 10.78 12.07 6.06 9.45 8.31 6.51
la26-la30 20 10 9.02 7.44 10.90 18.90 13.57 12.31
la31-la35 30 10 6.85 10.80 11.71 61.93 36.20 34.86
la36-la40 15 15 9.75 13.47 11.14 15.85 17.56 12.36

Table 3-16: Impact of instance size on the performance of the constructive heuristics.

TS algorithms Rank of algorithms
A1 A2 A3 A4 A5 A6 A1 A2 A3 A4 A5 A6

Overall
Avg. Imp.(%) 26.40 25.18 22.25 23.66 22.12 24.02 1 2 5 4 6 3

] best Cmax 51 32 14 31 22 16 1 2 6 3 4 5

Avg dev. (%) 5.13 7.23 9.94 10.31 11.41 7.93 1 2 4 5 6 3

Avg. ranks 1.00 2.00 5.00 4.00 5.33 3.67

sdata
Avg. Imp.(%) 16.85 17.93 11.38 17.32 16.52 13.96 3 1 6 2 4 5

] best Cmax 9 15 1 6 12 3 3 1 6 4 2 5

Avg dev. (%) 4.21 2.92 11.30 3.58 4.63 8.00 3 1 6 2 4 5

Avg. ranks 3.00 1.00 6.00 2.67 3.33 5.00

edata
Avg. Imp.(%) 19.52 20.67 14.51 20.44 18.34 17.86 3 1 6 2 4 5

] best Cmax 7 12 0 11 8 2 4 1 6 2 3 5

Avg dev. (%) 5.80 4.10 12.37 4.48 7.15 8.05 3 1 6 2 4 5

Avg. ranks 3.33 1.00 6.00 2.00 3.67 5.00

rdata
Avg. Imp.(%) 32.17 28.45 26.81 28.75 24.04 28.05 1 3 5 2 6 4

] best Cmax 21 2 5 6 2 4 1 5 3 2 5 4

Avg dev. (%) 1.89 7.49 10.03 7.19 14.40 8.32 1 3 5 2 6 4

Avg. ranks 1.00 3.67 4.33 2.00 5.67 4.00

vdata
Avg. Imp.(%) 37.05 33.68 36.30 28.11 29.60 36.19 1 4 2 6 5 3

] best Cmax 14 3 8 8 0 7 1 5 2 2 6 4

Avg dev. (%) 8.82 14.24 8.37 26.39 21.30 8.70 3 4 2 6 5 1

Avg. ranks 1.67 4.33 2.00 4.67 5.33 2.67

Avg. Imp.(%) - average improvement (in %)
] best Cmax - number of times an algorithm obtained the best makespan
Avg dev. (%) - average deviation from the best makespan in %
Avg. ranks - average ranks of the algorithms

A1 : TSBJT �Ns=Np, A2 : TSBJT �Nc, A3 : TSAP �Np �Ns;

A4 : TSBJT �Ns �Nc, A5 : TSBJT �Np �Nc, A6 : TSAP �Ns �Np �Nc

Table 3-17: Ranks of the TS algorithms with respect to 
exibility levels.
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TS algorithms Rank of algorithms
A1 A2 A3 A4 A5 A6 A1 A2 A3 A4 A5 A6

la01-la05 (10x5)
Avg. Imp.(%) 21.12 21.74 14.06 19.19 13.87 16.52 2 1 5 3 6 4

] best Cmax 10 10 1 2 1 1 1 1 4 3 4 4

Avg dev. (%) 2.83 2.26 12.32 5.65 12.88 9.16 2 1 5 3 6 4

Avg. ranks 1.67 1.00 4.67 3.00 5.33 4.00

la06-la10 (15x5)
Avg. Imp.(%) 19.42 18.21 13.07 17.90 14.86 14.83 1 2 6 3 4 5

] best Cmax 10 5 0 5 0 0 1 2 4 2 4 4

Avg dev. (%) 2.09 4.11 10.50 4.32 8.47 8.42 1 2 6 3 5 4

Avg. ranks 1.00 2.00 5.33 2.67 4.33 4.33

la11-la15 (20x5)
Avg. Imp.(%) 16.60 13.47 11.45 16.75 13.59 14.04 2 5 6 1 4 3

] best Cmax 8 2 1 6 3 1 1 4 5 2 3 5

Avg dev. (%) 2.58 6.53 8.93 2.36 6.43 5.83 2 5 6 1 4 3

Avg. ranks 1.67 4.67 5.67 1.33 3.67 3.67

la16-la20 (10x10)
Avg. Imp.(%) 34.19 31.77 25.23 30.10 23.28 26.60 1 2 5 3 6 4

] best Cmax 10 5 0 5 0 0 1 2 4 2 4 4

Avg dev. (%) 1.78 6.13 15.69 8.37 19.66 13.84 1 2 5 3 6 4

Avg. ranks 1.00 2.00 4.67 2.67 5.33 4.00

la21-la25 (15x10)
Avg. Imp.(%) 31.75 29.35 25.81 32.16 26.58 28.58 2 3 6 1 5 4

] best Cmax 4 4 1 7 2 2 2 2 6 1 4 4

Avg dev. (%) 4.39 8.10 13.01 3.49 12.88 9.05 2 3 6 1 5 4

Avg. ranks 2.00 2.67 6.00 1.00 4.67 4.00

la26-la30 (20x10)
Avg. Imp.(%) 28.25 26.38 25.57 23.16 25.88 26.78 1 3 5 6 4 2

] best Cmax 5 1 2 2 6 4 2 6 4 4 1 3

Avg dev. (%) 4.00 7.31 7.53 13.30 8.18 5.69 1 3 4 6 5 2

Avg. ranks 1.33 4.00 4.33 5.33 3.33 2.33

la31-la35 (30x10)
Avg. Imp.(%) 24.40 24.11 27.05 19.98 24.38 29.22 3 5 2 6 4 1

] best Cmax 1 3 6 1 5 4 5 4 1 5 2 3

Avg dev. (%) 12.73 14.03 7.19 21.51 13.64 5.00 3 5 2 6 4 1

Avg. ranks 3.67 4.67 1.67 5.67 3.33 1.67

la36-la40 (15x15)
Avg. Imp.(%) 35.46 36.43 35.77 30.01 34.55 35.55 4 1 2 6 5 3

] best Cmax 3 2 3 3 5 4 3 6 3 3 1 2

Avg dev. (%) 11.05 9.00 8.94 24.28 12.83 9.14 4 2 1 6 5 3

Avg. ranks 3.67 3.00 2.00 5.00 3.67 2.67

Avg. Imp.(%) - average improvement (in %)
] best Cmax - number of times an algorithm obtained the best makespan
Avg dev. (%) - average deviation from the best makespan (in %)
Avg. ranks - average ranks of the algorithms

A1 : TSBJT �Ns=Np, A2 : TSBJT �Nc, A3 : TSAP �Np �Ns;

A4 : TSBJT �Ns �Nc, A5 : TSBJT �Np �Nc, A6 : TSAP �Ns �Np �Nc

Table 3-18: Ranks of the TS algorithms with respect to instance sizes.
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We also evaluated the performance of the three generic TS algorithms based on their derived

TS algorithms. The results are summarized in tables 3-23 and 3-24. Observe from these two

tables that:

1. In general, the generic TSBJT performed best, TSVN second best, and TSAP worst;

2. Increasing 
exibility improved average improvement over the initial solutions but did not

always improve the other metrics.

Generic TS algorithms Rank
TSBJT TSAP TSV N TSBJT TSAP TSV N

Overall
Avg. Imp.(%) 25.79 22.68 24.02 1 3 2

] best Cmax 83 67 16 1 2 3

Avg dev. (%) 6.18 10.55 7.93 1 3 2

Avg. ranks 1.00 2.67 2.33

sdata
Avg. Imp.(%) 17.39 15.07 13.96 1 2 3

] best Cmax 24 19 3 1 2 3

Avg dev. (%) 3.57 6.50 8.00 1 2 3

Avg. ranks 1.00 2.00 3.00

edata
Avg. Imp.(%) 20.09 17.76 17.86 1 3 2

] best Cmax 19 19 2 1 1 3

Avg dev. (%) 4.95 8.00 8.05 1 2 3

Avg. ranks 1.00 2.00 2.67

rdata
Avg. Imp.(%) 30.31 26.53 28.05 1 3 2

] best Cmax 23 13 4 1 2 3

Avg dev. (%) 4.69 10.54 8.32 1 3 2

Avg. ranks 1.00 2.67 2.33

vdata
Avg. Imp.(%) 35.37 31.34 36.19 2 3 1

] best Cmax 17 16 7 1 2 3

Avg dev. (%) 11.53 18.68 8.70 2 3 1

Avg. ranks 1.67 2.67 1.67

Avg. Imp.(%) - average improvement (in %)
] best Cmax - number of best makespans obtained
Avg dev. (%) - average deviation from the best makespan (in %)
Avg. ranks - average ranks of the generic TS algorithms

Table 3-23: Ranks of the generic TS algorithms w.r.t. 
exibility levels.

Finally, we assessed how the TS algorithms' performance depends on di�erent initial solutions.

The in
uence of an initial solution on a performance of a local search is an open question, which

depends on a problem under study and an employed algorithm. Computational experiments

on the performance of Nowicki and Smutnicki's tabu search for the JS showed that a better

initial solution is likely to lead to a better �nal result [JRM00]. On the other hand, tabu

search algorithms for extended job shop problems seem to be less in
uenced by the starting

solutions, e.g. in [DPRL98]. In our experiment, to reduce the computing time to run all 160

instances, for each data set we randomly picked up eight instances, one per each subgroup of
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the same instance size. So there were 32 randomly selected instances in total. We run all TS

algorithms on each instance with three initial solutions obtained by three constructive heuristics

SG-MCO, SG-MFP, and SG-BN. Then for each algorithm, we compare its performance with

respect to di�erent constructive heuristics, i.e.we compare SG-MCO versus SG-MFP, SG-MCO

versus SG-BN, and SG-MFP versus SG-BN. We de�ned that an instance is nonconformity with

respect to a TS algorithm and two initial solution generators if one initial solution generating

method performs better than another but results in an inferior makespan when being used in

the TS algorithm. Obviously, if a TS's performance were dependent on initial solutions' quality

then its number of nonconformity instance would be zero. Nonconformity for each pair of

di�erent initial schedule generators are reported in Tables 3-25 to 3-27. These tables show that

no TS algorithm is dependent on initial solutions' quality to yield good results. This �nding

suggests that we can also use permutation schedules as initial solutions for the TS algorithms.

This was con�rmed by running the TS algorithms with �ve initial permutation schedules and

comparing the best makespan obtained with random permutations with the best makespans

obtained with constructive heuristics. Although constructive heuristics always outperformed

permutation schedule procedures, their associated makespans by the TS algorithms were inferior

in many cases (see Table 3-28).
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Instance Generic TS algorithms Rank
subgroup TSBJT TSAP TSVN TSBJT TSAP TSVN

la01-la05 (10x5)
Avg. Imp.(%) 21.43 15.70 16.52 1 3 2

] best Cmax 20 4 1 1 2 3

Avg dev. (%) 2.55 10.28 9.16 1 3 2

Avg. ranks 1.00 2.67 2.33

la06-la10 (15x5)
Avg. Imp.(%) 18.81 15.28 14.83 1 2 3

] best Cmax 15 5 0 1 2 3

Avg dev. (%) 3.10 7.76 8.42 1 2 3

Avg. ranks 1.00 2.00 3.00

la11-la15 (20x5)
Avg. Imp.(%) 15.03 13.93 14.04 1 3 2

] best Cmax 10 10 2 1 1 3

Avg dev. (%) 4.56 5.91 5.83 1 3 2

Avg. ranks 1.00 2.33 2.33

la16-la20 (10x10)
Avg. Imp.(%) 32.98 26.20 26.60 1 3 2

] best Cmax 15 5 4 1 2 3

Avg dev. (%) 3.95 14.57 13.84 1 3 2

Avg. ranks 1.00 2.67 2.33

la21-la25 (15x10)
Avg. Imp.(%) 30.55 28.18 28.58 1 3 2

] best Cmax 8 10 4 2 1 3

Avg dev. (%) 6.25 9.79 9.05 1 3 2

Avg. ranks 1.33 2.33 2.33

la26-la30 (20x10)
Avg. Imp.(%) 27.31 24.87 26.78 1 3 2

] best Cmax 6 10 4 2 1 3

Avg dev. (%) 5.66 9.67 5.69 1 3 2

Avg. ranks 1.33 2.33 2.33

la31-la35 (30x10)
Avg. Imp.(%) 24.25 23.80 29.22 2 3 1

] best Cmax 4 12 0 2 1 3

Avg dev. (%) 13.38 14.11 5.00 2 3 1

Avg. ranks 2.00 2.33 1.67

la36-la40 (15x15)
Avg. Imp.(%) 35.95 33.44 35.55 1 3 2

] best Cmax 5 11 0 2 1 3

Avg dev. (%) 10.03 15.35 9.14 2 3 1

Avg. ranks 1.67 2.33 2.00

Avg. Imp.(%) - average improvement (in %)
] best Cmax - number of best makespans obtained
Avg dev. (%) - average deviation from the best makespan (in %)
Avg. ranks - average ranks of the generic TS algorithms

Table 3-24: Ranks of the generic Tabu search algorithms w.r.t. instance sizes.
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3.10 Concluding remarks

This chapter proposes a new generalized job shop scheduling model called Flexible Generalized

Blocking Job Shop Problem (FGBJS) to address complex scheduling problems in practice. The

FGBJS extends the classical job shop problem with four complexifying features: processor


exibility, sequence-dependent setup times, job transfer times, and blocking constraints. To

solve this complex problem, this chapter proposes three constructive heuristics and six TS

heuristics. These algorithms are developed by using three neighborhood structures, with which

we can always �nd a feasible neighbor of a feasible solution by moving one operation (before

another one) and resequencing the other operations of the moved operation's job if necessary.

Three constructive heuristics proposed in this chapter are based on job insertion principles

and have the same structure, but di�er in the way a schedule is improved after a new job is

appended. Six TS algorithms are based on combinations of three generic TS algorithms and

the three neighborhood structures. The �rst generic TS algorithm is similar to the algorithm

proposed by Nowicki and Smutnicki; the second one exploits a largely unattempted innovative

idea of Glover to alternate between two di�erent neighborhood structures; and the last one,

considered as a hybrid of TS and Variable Neighborhood search, systematically explores di�erent

neighborhood structures in the TS framework. Our extensive computational experiments on 160

newly created benchmark instances showed that the TS algorithms gave signi�cant improvement

to initial schedules obtained by the constructive heuristics or job permutation. No TS algorithm

was a clear dominator; each algorithm performed best for some speci�c 
exibility levels and

instance sizes.

Future researches on the FGBJS may aim at solving the following problems:

1. Finding a good lower bound procedure for the FGBJS, which helps us to develop ad hoc

exact algorithms as well as to evaluate quality of the constructive and TS algorithms,

2. Finding fast approximation schemes to e�ciently estimate the length of the longest path

as opposed to the exact routine currently employed,

3. Extending the current FGBJS model and its solution methods to address more practical

scheduling problems.
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Chapter 4

Application in surgical case

scheduling

4.1 Introduction

Surgery is an important activity in most hospitals and clinics since it is estimated to generate

around two third of hospital revenues [Jac02]. On the other hand, it accounts for approximately

40% of hospital resource costs, including costs of personnel (surgeons, anaesthetists, nurses, etc.)

and facilities (operating rooms, intensive care beds, etc.) [MVDM95]. Surgery takes place in

a context of challenging trends such as heavy expenditure on health care [OEC03], increasing

rates in health care costs [CS01], and rising surgery demand due to aging populations and

technological advances that have broadened the scope of surgical interventions [Gab99].

In this context, hospital management is subject to ever mounting pressures to control surgical

costs while ensuring quality of care for surgical patients in a timely manner. A successful

cost containment strategy must integrate decision-making at all levels: strategic, tactical, and

operational. At the operational level, one of the main problems is surgical case scheduling (SCS)

[Gab99].

Although bene�ts of e�cient scheduling systems are publicized in many industrial applications,

few successes have been reported in healthcare. In fact, a recent survey on operating room

management in Switzerland in 2001 shows that hospital management is not satis�ed with the

current SCS practice. Only 26% of the survey interviewees are somewhat happy with the

scheduling systems, while 31% are not happy and 29% are strongly dissatis�ed [SL02].

This chapter investigates the SCS problem and proposes an integrated solution approach to the

problem. It is structured into six sections. Section 4.2 describes various SCS problems. Section

4.3 presents a literature review. Section 4.4 proposes amixed integer linear programming (MILP)

117
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model for SCS and discusses the model. This model is based on a novel extension of the well-

known job shop scheduling problem. Section 4.5 presents a heuristic scheme that decomposes a

weekly SCS problem into a series of daily SCS problems and then solves each daily SCS problem

heuristically. This section then shows how to use the research results obtained from Chapter 3

to solve the daily SCS problem. Section 4.6 concludes the paper.

4.2 Problem descriptions

Having been brie
y introduced in Chapter 1, the SCS problem is stated in this section in

more detail. Surgical services are o�ered at both hospitals and ambulatory surgical centers

(ASC). Patients in hospitals are called inpatients and patients in ASCs are called outpatients.

Typically, outpatient cases are shorter, less complex, and less variable than inpatient cases.

Outpatients often have same-day surgery and do not stay overnight in ASCs, while inpatients

are hospitalized for one or more days before surgery and stay in the hospital after surgery for

continuing care. Many hospitals are integrated hospitals that serve both patient types by the

same facilities [HZ98]. In such hospitals, the ambulatory surgical unit (ASU) is the front-line

unit for outpatients.

Surgical cases are performed in operating room (OR) suites, including ORs where patients are

operated and ORs' supporting facilities. During a surgery, a typical patient 
ow passes through

three stages: the preoperative, perioperative, and postoperative stage. The patient 
ow in

integrated hospitals (see Figure 4-1) can be described as follows:

� Preoperative stage: Inpatients are transported from nursing units to the preoperative hold-

ing unit (PHU) while outpatients come to PHU from the hospital's ASU. When a patient

arrives at PHU, a nurse checks the patient's documents and prepares the patient. The

patient is then moved to an OR.

� Perioperative stage: In the OR, the patient is anesthetized for surgery by an anaesthetist

and then operated by one or several surgeon(s) with the assistance of one or several

nurse(s) and surgical technologist(s).

� Postoperative stage: After surgery, the patient may be transported to several di�erent

destinations. Most patients are taken to the postanesthesia care unit (PACU) where

they recover from residual e�ects of anesthesia under the care of PACU nurses. Critical

inpatients (e.g. cardiac or thoracic patients) are moved directly to the intensive care

unit (ICU) where they bene�t from specialized equipment and specially trained nurses.

After their stay in PACU, inpatients return to their nursing units while outpatients go

through a second recovery stage in ASU before being discharged. Some outpatients might

be admitted to the hospital if their health condition requires it. Other outpatients having

minor regional anesthesia may bypass PACU.
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Nursing 
Units

ASU

PHU OR

PACU

ICU

OR Suite

Preoperative Perioperative Postoperative

Outpatients

Admitted

Inpatients

Figure 4-1: Patient 
ows in integrated hospitals.

Somewhat simpler than in integrated hospitals is the outpatient 
ow in ASCs as depicted in

Figure 4-2, where the preoperative and the second-phase postoperative procedures take place

in the ambulatory unit (AU).

AU OR PACU

ASC

Preoperative Perioperative Postoperative

Outpatients

Figure 4-2: Patient 
ows in ambulatory surgical centers.

To control the 
ow of patients, SCS decides on the resource assignment and sequence of the

cases in a short-term time horizon. Two questions that SCS addresses are:

� How to allocate hospital resources to surgical cases?

� How to schedule surgical cases on allocated resources?

For the �rst question, a set of suitable resources is assigned to each operation at any surgical

stage. For the second question, a sequence of operations on each assigned resource is determined,

and so are the planned starting time and ending time of each operation of the sequence.

Note that SCS, however, does not cover such planning issues as which surgical services are to

be provided and which resources to be made available. Answers to these issues are inputs into

SCS whose outcome can be fed back to adjust certain planning decisions [Bak74].
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SCS must deal with di�erent types of cases of di�erent priority and predictability. In elective

cases, inpatients or outpatients can typically wait for their surgeries for at least three days

and are scheduled one or more days before the day of surgery. Add-on cases [Gab99] include

emergency cases that require surgery in a very short time (less than two hours) to avoid loss

of life or great harm to the patients, urgent cases that need attention within 24 hours to avert

health deterioration and longer stay in hospital, and add-elective cases that are elective cases

submitted to �ll up the remaining OR time. Depending on their nature, add-on cases are

scheduled accordingly, e.g. immediately for emergency cases in the day of surgery or after some

cut-o� time (e.g. 14:00 of the current day) for add-elective cases to perform the next day.

SCS systems fall into two main categories:

1. Block systems: Cases are scheduled in OR time blocks. An OR block is an OR time

interval of typically a half or a full day. OR blocks can be allocated to individual surgeons

or surgical groups or remain open to all services on a �rst-come-�rst-served (FCFS) basis.

The allocation is presented in a 1 or 2-week cyclic timetable called OR block allocation

table or master surgical schedule. An example of an OR block allocation table for a 3-OR

hospital is given in Table 4-1 with 15 blocks allocated to three surgical groups.

Mon Tue Wed Thu Fri

8:00-16:00 8:00-16:00 8:00-16:00 8:00-16:00 8:00-14:00

OR1 Orthopedic General Orthopedic Orthopedic Orthopedic

OR2 Open General General Plastic General

OR3 Plastic Plastic Plastic Plastic Open

Table 4-1: Example of OR block allocation table.

2. Non-block systems: Cases are scheduled on a FCFS basis at surgeons' requests. Non-block

scheduling systems have turned out to have less utilization and more case cancellation than

do block scheduling systems. Besides, surgeons often do not prefer these systems as their

scheduled cases may scatter throughout the surgery day. Therefore, non-block systems

are rarely used in health care entities [Gab99].

4.3 Literature review

SCS can be viewed as a part of a broader process which can be called surgical process schedul-

ing. A classical reference is the paper by Malgerin and Martin [MM78] where surgical process

scheduling comprises two steps. First, advance scheduling gives patients some future date for

surgery. Second, allocation scheduling determines the sequence and resource assignment of the

cases in a given day. While allocation scheduling is within the scope of SCS, advance scheduling

is not. It is indeed a case planning process which ensures that capacity requirements for the

limited resources are met and optimizes patient waiting times as well as resource e�ectiveness
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over an intermediate-term time horizon. This case booking is in some sense similar to mas-

ter production scheduling in production management [GC03]. Another planning problem not

covered by SCS is OR block allocation to services and surgeons [BD02]. The solution of this

resource planning problem constrains SCS decision making. Therefore, this review does not

include advance scheduling and OR block allocation. In a conceptual framework proposed by

Blake and Carter [BC97], surgical process scheduling includes advance, allocation, and exter-

nal resource scheduling addressed at strategic, administrative, and operational decision making

levels. SCS as de�ned in Section 2 covers allocation and external resource scheduling at the

operational level in this framework.

SCS literature with quantitative orientation is relatively scarce. This brief review classi�es the

SCS literature according to outpatient, inpatient, and add-on case scheduling.

Although outpatient booking in clinics receives wide research attention [CV03], ASC surgical

case scheduling does not. In one of the few studies on this subject, Lee, Matta, and Hsu

[LdMH02] modeled an ASC as a two-stage no-wait 
ow shop. The �rst stage is the OR with

surgeons as its main resources, and the second stage is the PACU with nurses. To minimize the

number of PACU nurses and the makespan, they propose a heuristic approach which solves two

subproblems interactively. The �rst �nds the minimum number of PACU nurses subject to a

given upper bound of the makespan, and the second minimizes the makespan at a �xed number

of PACU nurses.

Inpatient case scheduling receives more attention than outpatient case scheduling does in the

literature. In [GC03], inpatient scheduling is also modeled as a 2-stage no-wait 
ow shop,

but no solution approach is attempted. Ozkarahan [Ozk95] proposed a MILP model to assign

cases to ORs in order to minimize the sum of ORs' undertime and overtime costs, and then

sequenced the loaded cases according to some priority rules. Sieber, Tobin, and Mcgurk [STM97]

introduced a discrete-time mixed integer nonlinear programming model which uses a weighted

penalty function taking into account patients' age, equipment usage con
ict, and OR usage

collision to assign OR time slots to patients. As their model is too hard to be solved optimally,

they propose a simulated annealing heuristic approach. For any given case sequence, Weiss

developed an associated cost function depending on waiting and idle times, in order to estimate

cost optimal starting times of the procedures [Wei88]. He also used simulation to sequence

cases and found that a best sequence is achieved by ordering cases according to increasing

variance. He mentions the problem of assigning OR to cases but does not pursue it further.

Also by simulation, Kuzdrall, Kwak and Schmidtz [KKS76] found the longest-case-�rst rule

to yield the highest OR utilization rate among di�erent dispatching rules. Dexter and Traub

[DT02] discussed two simple heuristics to load cases into unful�lled ORs as early and as late as

possible, called earliest-start-time and latest-start-time respectively, provided that the surgeons

and patients can choose their surgery days and no case is turned down in any day even if

overtime is required. Simulation results in [DT02] suggest that earliest-start-time rule provides

good schedules to reduce OR overtime. Dexter et al. [DEMdM05] evaluated strategies to reduce
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delays in admission into a PACU from ORs. These delays, due to full or insu�ciently sta�ed

PACU beds, cause \blocking" in the ORs. A best practice, according to the study, is to adjust

PACU sta�ng on the day of surgery by asking nurses to work overtime or getting help from

quali�ed nurses of other departments, since the bene�ts of having scheduled cases performed

outweigh the costs of working overtime due to PACU admission delays.

Literature on add-on case scheduling is again limited. Dexter, Macario, and Rodney [DMR99]

used bin-packing heuristics to schedule add-elective cases into ORs in order to maximize OR

utilization. On-line heuristics consider each add-on case in the order in which cases are submit-

ted, while o�-line heuristics pool add-elective cases until a cut-o� time and prioritize cases by

their surgical duration. Two basic on-line heuristics are best-�t (each case is scheduled to an

OR having the least remaining time available) and worst-�t (each case is scheduled to an OR

having the most remaining time available). Two basic o�-line heuristics are best-�t-descending

and worst-�t-descending, resulting from the application of on-line best-�t and worst-�t on a list

of cases sorted according to their descending durations. An additional condition called \fuzzy"

accepts OR overtime of 15 min to create more extended heuristics. Simulation experiments

showed that the best-�t-descending-with-fuzzy-constraints heuristic achieves the best OR uti-

lization. To sequence add-on urgent cases, Dexter, Macario, and Rodney [DMT99] considered

three policies which are based on: (1) minimization of the average length of time each surgeon

and patient waits, (2) FCFS basis, and (3) medical priority. They recommended that regardless

of the chosen policy, the sequence should meet all medical deadlines.

Finally, we are not aware of literature on SCS in integrated hospitals. This review concludes

with the following remarks:

1. OR or OR suite: Many papers focus on OR when discussing SCS. However, e�ciency

gains might be achieved by considering not only OR, the hospital's cost center, but also

its adjoining units. Indeed, there are strong interactions between OR and preoperative

and postoperative facilities as shown in the patient 
ow description in Section 2. This

is con�rmed by an e�ciency study [WEE03] that reveals non-emergency causes of OR

wasted time (including OR idle time and overtime) and their contribution (Table 4-2).

Units Share of Causes
OR wasted time

Preoperative (PHU) 17% Unprepared patients

Perioperative (OR) 65% including

10% Surgeon unavailability

30% Nurse shortage

10% anaesthetist shortage

15% Prolonged turnover time

Postoperative (PACU and ICU) 15% Congested PACU

Transport 3% Peak number of patients

Table 4-2: Causes of OR wasted time
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The interaction can also be inferred from the ICU rejection rate, which can mount up

to 24% for elective cases [KHYB00]. Without close coordination with ICU, a scheduled

elective case can be rejected on its day of surgery due to a full ICU, resulting in unused OR

time and negative impact on the patient. Hence, only with regard to the whole OR suite's

activities can an e�cient use of resources be achieved. These interactions have thus far not

received much attention in the literature. Only a few consider together OR and PACU,

while the interaction with PHU does not seem to have been addressed systematically up

to now.

2. Multi-resources: The study of Weinbroum [WEE03] also indicates the importance of hav-

ing all necessary resources during any operation. However, with some exceptions, e.g.

[STM97], most studies consider the use of only one resource (ORs or nurses) during any

operation and not the simultaneous use of multiple resources.

4.4 MILP model for SCS

This section models the elective surgical case scheduling problem as a multi-mode blocking job

shop (MMBJS), a new extension of the job shop scheduling problem, and develops a MILP

formulation for the MMBJS.

4.4.1 Multi-mode blocking job shop problem

As shown in Chapter 2, the classical job shop scheduling problem (JS) cannot be used straight-

forwardly to model many industrial scheduling problems because its does not take into account

a number of practical constraints. Several single-feature JS extensions and a two-feature exten-

sion (the multimode job shop MMJS) were already proposed in Chapter 2. Chapter 3 further

extended the JS with a model called 
exible generalized blocking job shop (FGBJS), which adds

to the JS four practical features namely processor 
exibility, sequence-dependent setup times,

job transfer times, and blocking constraints. The FGBJS model was shown to be capable of

modeling various complex scheduling problems in practice. However, it cannot be used to di-

rectly address the SCS problem as stated in the previous section because of the two following

features of the SCS:

1. There are time windows for resources; and

2. Each operation may require several resources to process.

For this reason, we propose another novel extension of the JS problem calledmulti-mode blocking

job shop (MMBJS) in order to model the SCS. The MMBJS is a result of integrating the multi-

resource and time windows requirements into the FGBJS model. The MMBJS is described as
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follows. There are n jobs to be performed on m resources. Each job consists of a sequence of

operations. The execution of an operation requires a set of resources. Such a set of resources

is called a mode. The modes of any two consecutive operations of any job have no common

resources. There might be more than one mode available for each operation, justifying the term

multi-mode. Once a mode is chosen for an operation, its processing entails a processing time

during which the resources of the mode are occupied simultaneously, and possibly a setup time

and a cleanup time. All these times can depend on the mode. Resources are not always available

all the time. Therefore, a time interval during which the mode is available is attached to each

mode. There is no bu�er between resources, so that if a job has �nished an operation and the

job's next operation cannot be started, the resources of the �nished operation remain blocked

until the next operation is started. Because of this blocking, one needs to distinguish between

the completion time of an operation, which equals the sum of its starting time and processing

time, and its departure time (the time the job leaves its current processing stage to enter its

next stage or leave the system). Scheduling the jobs means to assign a mode and determine

the starting and leaving time for each operation in such a way that some objective function is

minimized.

The next section shows how SCS can be modeled in the framework of the MMBJS, and gives

a MILP formulation of the MMBJS. In subsection 4.4.3, the application of the MMBJS model

to SCS with regard to several aspects in the surgical environment is discussed in more detail.

4.4.2 MILP model for SCS based on the MMBJS

A surgical case (job) can be considered as a sequence of processing steps (operations) to be

performed using a certain set of hospital resources. According to the patient 
ow description

given in Section 4.2, a case typically comprises three steps, corresponding to the preoperative,

perioperative and postoperative stage.

The resources needed to perform a surgical case comprise personnel (surgeons, anaesthetists,

nurses, ...) as well as facilities (ORs, PHU beds, PACU beds, ICU beds, specialized equipment,

...). Each processing step needs a speci�c set of resources for its execution. A possible choice of

resource set for a processing step is in fact a mode. For example, a mode of a perioperative step

may comprise several surgeons, one anaesthetist, one or several nurses, one OR and possibly

some specialized equipment. Typically, there exist several alternative modes (multi-mode) for

each processing step, corresponding to, for instance, the choice of di�erent ORs for a surgery

team in the perioperative step or the choice of di�erent PACU beds in the postoperative step for

a case. In practice, the number of feasible modes for any operation is quite limited for technical

and organizational reasons, which will be further discussed in subsection 4.4.3.

Each mode has an associated availability interval specifying the time window during which all

of the mode's resources are available. If the resources of a mode are together available in several

distinct time windows, di�erent modes consisting of the same resources for the initial mode are
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introduced, one for each time window.

It is assumed that durations of the preoperative, perioperative, and postoperative steps are

dependent on the chosen mode, that setup and cleanup time for each step are case-dependent,

and that all these durations are deterministic and known in advance. In plus, assume that

transporters are always available and transport times are negligible because of the proximity of

facilities.

Preoperative and perioperative steps of a case are assumed to be blocking operations in the sense

that the resources used for a step are not released (i.e. are blocked) until the case enters the

next step and a possible cleanup is done. For example, after �nishing a surgical operation in an

OR, the room remains occupied until the patient can be moved to the PACU. A reserved bed

in the nursing ward for any inpatient after surgery is assumed, hence postoperative operations

are non-blocking.

The aim of SCS is to determine a schedule for a given set of surgical cases, that minimizes some

objective function. In line with high resource utilization, the objective considered here involves

the makespan, i.e. the departure of the last case. A schedule de�nes for the processing steps of

each case the chosen mode, as well as the starting times and the leaving times.

A MILP formulation for the MMBJS can inherit the formulations of the following JS extensions

presented in Chapter 3: (1) the blocking job shop (BJS), (2) the multimode job shop (MMJS),

and (3) the job shop with processor time windows (JSTW). The formulation is presented as

follows.

Denote by J the set of jobs (surgical cases). A job J 2 J corresponds to a sequence J =

(J1; :::; JjJ j) of operations (processing steps) where Jk is the k -th operation of J . The set of all

operations is given by I =
S
J2J J . Operations i and j are consecutive operations of job J if

i = Jk and j = Jk+1 for some k, 1 � k < jJ j, and the set of these jJ j � 1 ordered pairs (i; j) is

denoted by OJ . J
i denotes the job to which operation i belongs, i.e. J i = K if i 2 K, K 2 J .

M is the set of all hospital resources needed for processing the surgical cases. Any operation

i 2 I requires a subset of resources (a mode), which are occupied simultaneously during the

processing of i. Possible modes of operation i are given by M r
i � M , r 2 Ri, where r is the

mode index and Ri is the set of mode indices associated to operation i. The set of all mode

indices is R =
S
i2I Ri. For instance, there are three resources M = fm1;m2;m3g and four

modes indexed by R = f1; 2; 3; 4g. Then R2 = f1; 4g means that operation i = 2 has two

possible modes M1
2 and M4

2 , where M
1
2 ;M

4
2 � M , e.g. M1

2 = fm1;m2g and M4
2 = fm1;m3g.

Two di�erent modesM r
i andM

s
j are called incompatible if M r

i \M
s
j 6= ;, i.e. if they have some

resource in common. Each mode has an associated availability interval [er; f r], 0 � er < f r,

r 2 R, where er is the starting time and f r the ending time of the mode's interval.

For any operation i 2 I, pri denotes the processing time if mode r 2 Ri is chosen for operation

i, and psui and pcli respectively are the operation's setup and cleanup times. All resources of the
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chosen mode r for operation i participate in the operation's setup and cleanup through their

di�erent activities.

Finally, � denotes a dummy �nish operation that goes after everything else is done and is used

to measure the makespan, H a large positive number, and � a small positive weight factor.

The following decision variables are used. xi is the starting time of operation i 2 I [f�g, and li

the leaving time of i 2 I (when the job's operation leaves its current processing step). For any

pair of operations i; j 2 I, i < j, a binary variable yij indicates whether operation i is processed

before j (yij = 1) or operation j is processed before i (yij = 0), if the modes assigned to i and

j are incompatible. Finally, zri is a binary variable indicating whether mode r 2 Ri is assigned

to operation i (zri = 1) or not (zri = 0).

Table 4-3 summarizes the notations used in the MMBJS formulation.

Sets

M Set of resources
I Set of operations,
J Set of jobs, J � 2I is the partition of I
OJ Set of pair of consecutive operations of a job J 2 J

OJ = fJk; Jk+1 : k = 1; : : : ; jJ j � 1g
Ri Set of indexes of modes for operation i 2 I
R Set of indexes of modes, R =

S
i2I Ri

Mr
i Mode r for operation i 2 I; r 2 Ri;M

r
i �M

Parameters

pri Processing time of operation i under mode Mr
i , i 2 I; r 2 Ri

psui Setup time of operation i 2 I

pcli Cleanup time of operation i 2 I
bi Maximum waiting time allowed for operation i 2 I

before the operation's job is moved to a next stage
er Starting time of the availability interval of mode r 2 R
fr Ending time of the availability interval of mode r 2 R
H Huge number
� Very small weight factor
� Dummy operation of zero duration, � is after all operations
J i Job to which operation i 2 I belongs to

Decision variables

zri =1 if mode Mr
i is assigned to operation i, zri = 0 otherwise,

i 2 I; r 2 Ri

yij =1 if operation j is processed after operation i on some
shared resource, yij = 0 otherwise, i; j 2 I; i < j

xi Starting time of operation i 2 I
li Leaving time of operation i 2 I
x� Starting time of dummy operation �

Table 4-3: Notations for the MMBJS's MILP formulation.
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MMBJS's MILP formulation:

Minimize x� + �
X
i2I

xi; subject to: (4-1)X
r2Ri

zri = 1 for all i 2 I (4-2)

li � xi � pri z
r
i � 0 for all i 2 I; r 2 Ri (4-3)

li � xj = 0 for all (i; j) 2 OJ ; J 2 J (4-4)

xj � li +H(2� zri � zsj ) +H(1� yij) � pcli + psuj (4-5)

for all i; j 2 I; i < j; J i 6= J j ; r 2 Ri;s 2 Rj ;M
r
i \M

s
j 6= ;

xi � lj +H(2� zri � zsj ) +Hyij � pclj + psui (4-6)

for all i; j 2 I; i < j; J i 6= J j ; r 2 Ri;s 2 Rj ;M
r
i \M

s
j 6= ;

xi � erzri � psui for all i 2 I; r 2 Ri (4-7)X
r2Ri

f rzri � li � pcli for all i 2 I (4-8)

x� � li � pcli for all i 2 I (4-9)

xi; li � 0 for all i 2 I [ f�g (4-10)

yij 2 f0; 1g for all i; j 2 I; i < j (4-11)

zri 2 f0; 1g for all i 2 I; r 2 Ri (4-12)

Objective function (1) minimizes the makespan, given by x� , and at the same time forces the

operations to be scheduled as early as possible by minimizing, as a second term with a small

weight �, the sum of all starting times. Constraints (4-2) ensure that exactly one mode is

assigned to each operation. Constraints (4-3) say that if mode r is assigned to operation i, the

time lag between the starting and leaving times xi and li is at least p
r
i where p

r
i is the mode-

dependent processing time of i. Constraints (4-4) ensure for any two consecutive operations i; j

of a job, that j starts immediately when i has left its processing step.

Constraints (4-5) and (4-6) make sure that two operations i and j do not overlap in time

if their assigned modes are incompatible. Observe that both constraints are redundant if the

(incompatible) modesM r
i andM

s
j are not assigned to i and j, respectively, since then z

r
i +z

s
j � 1

and hence H(2� zri � zsj ) is greater than the right hand side because of a very large value of H.

If incompatible modesM r
i ;M

s
j are assigned to i; j then constraints (4-5) and (4-6) are mutually

redundant, depending on whether yij = 1 or yij = 0. For instance, if yij = 1, (4-5) says that j

starts after the leaving time of i, with a minimum time lag pcli + psuj (cleaning and setup). The

value H =
P

i2I maxr2Rifp
r
i g +maxr2Ri;i2Ifp

r
i g +maxi2Ifp

su
i g +maxi2Ifp

cl
i g is su�cient to

keep constraints (4-5) and (4-6) redundant when necessary.

Constraints (4-7) and (4-8) ensure that the setup, processing, and cleanup of any operation are

done within the availability interval [er; f r] of its assigned mode. Constraints (4-9) say that
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the makespan is larger than any operation's leaving time plus its cleanup time. Constraints

(4-10) are nonnegativity constraints while constraints (4-11) and (4-12) are binary constraints

for decision variables.

4.4.3 Discussion

This section discusses the use of the MMBJS model in the context of SCS.

1. Durations:

Preoperative and postoperative operations have case-dependent duration. Cleanup and

setup times depend on the type of surgery, hence they are also case-dependent. Periopera-

tive operations might have mode dependent durations since di�erent surgeons can operate

with di�erent durations, depending on their skills and experience.

All durations in the model are assumed to be deterministic and known in advance. Nev-

ertheless, it is well known in surgical practice that durations are stochastic, and their

variability poses many problems to hospital management. Still, an e�ective and e�cient

deterministic solution approach will make a contributive step in the quest for solutions to

the SCS problem.

2. Modes:

The resources constituting a mode can di�er from one processing stage to another. A

preoperative mode may involve a nurse as its main resource. A perioperative mode can

consist of one surgeon, one nurse, one surgical technologist, one anaesthetist, one OR, and

one specialized equipment. A postoperative mode can comprise a sta�ed PHU bed.

The number of perioperative modes is manageable for several reasons. A patient is often

operated by his or her surgeon. A surgery assisting team including an anaesthetist and

nurses is normally attached to an OR on a permanent basis. Each surgeon is often

allocated to some predetermined ORs and has his preferred assisting team(s). Some

surgery types can only be done in their dedicated OR with specialized equipment.

The number of preoperative modes for a case can be limited as preoperative nurses are

often separated from other nurses to increase the ORs' e�ciency, and their number is

limited. The number of postoperative modes involving ICU beds is capped due to heavy

IUC bed investment. The number of postoperative modes involving sta�ed PACU beds

often approximates the number of ORs to a PACU bed:OR ratio which is typically from

0.75 to 1.5 [SL02]. The number of PACU bed choices for a case can be further reduced

since each service group is usually allotted some particular PACU beds.

The single availability interval of a mode is de�ned above as the intersection of single

availability intervals of all resources in the mode. In Figure 4-3, a perioperative set of

resources consists of a surgeon S and an OR; each has two availability intervals. Two
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di�erent modes are then created, each comprising the same surgeon and OR, but with its

own availability interval.

S

OR

2
1

1
11 ,};,{ tfteORSM ===

1t 2t 3t 4t
4

2
3

22 ,};,{ tfteORSM ===

lable: Not avai e: Availabl

1t 2t 3t 4t

Figure 4-3: Single availability interval modes

The model assumes simultaneous use and release of all resources in any mode whereas in

practice, the resources might have di�erent starting and releasing times (e.g. a surgeon

starts incision after anesthesia has been made to the patient).

3. Scheduling horizon:

Surgical cases can be scheduled on a weekly or daily basis. The 1-day surgical schedule,

which is common in the literature, is su�cient to schedule outpatients on any booked day

of surgery. In addition, some services, e.g. neurology, can only schedule their inpatients

one or two days in advance. But the 1-day horizon falls short for scheduling critical

inpatients who need more than one day of ICU stay after their surgeries [KHYB00]. This

makes the 1-day surgical schedule more vulnerable to disruptions caused by rejection due

to full ICUs and less 
exible for scheduling elective inpatients. Weekly schedule based

on the weekly OR block allocation table is long enough to handle the ICU issue and give

more choices of mode to inpatients. On the other hand, the 1-week schedule has much

larger size than the 1-day schedule does, making it more di�cult to solve. For both weekly

and daily planning horizons, the schedule cannot remain static but needs to be updated

frequently to re
ect the \shop 
oor" status.

4. Clinical considerations:

De�ning the set of possible modes for the various operations of a case should be done with

care giving absolute priority to the patient's safety and taking into account the surgeon's

and assisting team's preferences. Blocking times should not be long because: (1) blocking

causes poor e�ective resource utilization; (2) resources in an operative stage are typically

not designed for activities in its downstream stage, e.g. surgical beds are not designed

for recovery purposes; and (3) blocking creates crisis atmosphere in the surgical suite.

Blocking time thus can be limited by the constraints:

li � xi �
X
r2Ri

pri z
r
i � bi i 2 I (4-13)
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where bi is the maximum waiting time for i: Some hospitals require that there be no wait

between any two consecutive operations of any case. This requirement can be met by

setting bi = 0; i 2 I. Note that even though a patient is still recovering from anesthesia

e�ects during the time the patient blocks an OR due to unavailability of PACU room,

we should not subtract this blocking time from the patient's estimated postoperative

time. The reason is that if the blocking time is counted towards the recovery time, it is

implicitly accepted as productive and hence, blocking would be tolerated, which is bad for

OR management as mentioned above. To further reduce the e�ect of blocking, we can add

a penalty term �
P

i2I(li � xi �
P

k2Mi
pik); � is a small positive value, to the objective

function (4-1). A certain urgency deadline tubi for an operation i requires an upper bound

constraint xi � tubi . Similarly, availability of i after some time tlbi needs a lower bound

constraint xi � tlbi .

5. Surgeons may give priority to their cases. Suppose there are two di�erent operations

i < j 2 I, where i belongs to a case having higher priority than the case of operation j.

This is modeled by setting the sequence variable yij = 1, which means that i precedes j

on some shared resources, if any.

6. Adaptability:

The model is suitable for both hospitals and ambulatory surgical centers (ASC) using

the block scheduling systems. It can also be adapted to non-block systems by scheduling

elective cases as add-elective cases in online approach (more details follow in Discussion

8).

The model assumes �xed availability of modes and resources. This is appropriate when

overtime is not allowed to perform elective surgeries, e.g. in some public-run hospitals

[Man00]. However, in certain health care entities, overtime is practiced to some extent

to �nish the submitted elective cases. Although not directly formulated in the MMBJS

model, overtime can be allowed at a given limit or (e.g. 4 hours) for each mode r 2 R in

constraints (4-8): X
r2Ri

(f r + or)zri � li � pcli ; i 2 I (4-9')

The objective function (4-1) may add a penalty term for all cases scheduled in overtime.

This penalty is calculated as
P

i2I 
iwi where 
i > 0 is the penalty factor for i 2 I, and

variable wi represents the overtime incurred by operation i in its assigned mode r with

the regular interval [er; f r] and satis�es the following constraints:

wi � li + pcli �
X
r2Ri

f rzri ; i 2 I (4-14)

wi � 0; i 2 I (4-15)
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An alternative is to penalize the maximum incurred overtime, denoted by a new variable

w that replaces wi in constraints (4-14) and (4-15).

In private ASCs, all planned cases should be performed on the day of surgery even in late

overtime [Man00].

7. Feasibility:

The MILP model for SCS is highly constrained in the sense that it might be impossible

to obtain a feasible solution to schedule all listed cases in a planning horizon (daily or

weekly) due to limited resource capacity and availability intervals of modes. To address

the infeasibility issue, case planning should balance the total resource requirements and

the total available resources in the �rst place. Even so, overtime might still be required due

to the coupling of resources. When overtime is limited or not allowed, an OR manager

should decide which cases to perform during the regular time. This could be done by

using a single dummy mode as a feasibility bu�er. This mode does not use any resource,

is assignable to all operations, and is available from the end of the planning cycle in use.

The cases having operation(s) assigned to the dummy mode are late cases and would be

postponed.

8. Modi�cations of the MMBJS model for add-on surgical case scheduling:

While add-on case scheduling and elective case scheduling are often separated in the

literature, the proposed MMBJS model can be used to schedule add-on cases with minor

modi�cations.

� Emergency case scheduling (ECS)

Any emergency case should be scheduled for a prompt surgery within two hours

after its arrival. An add-on emergency case can delay or even bump some elective

cases if their modes are incompatible with the modes assigned to the emergency.

Nevertheless, the modes and sequences of scheduled elective operations should be

preserved, and all in-process cases should be �nished. Any bumped case due to

the emergency should be performed the following day. To keep the system from

being \nervous" with many changes on the following days caused by an emergency

on the current day, only a \today" part of the established schedule is rescheduled.

Exclusive reservation of ICU beds for emergency [KHYB00] also helps reduce the

system nervousness.

In fact, ECS can be modeled as the job insertion problem in the MMBJS. Given a

feasible schedule of some jobs and a new unscheduled job, the job insertion problem

inserts the new job into the established schedule so that the resulting schedule is

feasible and some objective function is minimized [GK07]. Let IS be the set of elective

operations that are scheduled but not yet performed at the time of rescheduling, IE

the set of waiting emergency operations, I = IE[IS the set of operations, Zr
i 2 f0; 1g
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the mode indicator of the operation i 2 IS ; r 2 Ri, Yij 2 f0; 1g the established

sequence for any two incompatible operations i; j 2 IS ; i < j, and tubi the urgency

deadline of operation i 2 IE . Update er; r 2 R with the scheduled departure time

of the in-process operations and replace constraint (4-8) by (4-9') to allow overtime.

Add to the model the following constraints:

zir = Zr
i ; i 2 IS ; r 2 Ri (4-16)

yij = Yij ; i; j 2 IS ; i < j (4-17)

xi � tubi ; i 2 IE (4-18)

Constraints (4-16) and (4-17) preserve the mode assignment and the sequence of

existing operations, respectively. Constraints (4-18) ensure the safety for emergency

patients.

An OR manager could consider bumping rescheduled elective cases that would end

too late and put them in the urgency list for the next day. The manager could,

otherwise, try to reschedule these late cases as add-elective cases on the same day if

other assignable modes are still available.

Urgent cases can be handled similarly as emergency cases with longer safety waiting

times.

� Add-elective case scheduling (ACS)

Add-elective cases are elective cases submitted daily to �ll up OR blocks of the next

surgery day, thus they can be performed or delayed. The OR manager schedules each

case upon its submission in the online scheduling approach, or pools and schedules all

submitted cases after a certain cut-o� time in the o�ine scheduling approach. The

new case(s) should be inserted into the established schedule in such a way that the

chosen mode, starting and leaving time of the scheduled operations do not change.

Both online and o�ine ACS can be formulated by setting I = IS [ IA (IA is the set

of add-elective operations, IS is the set of scheduled operations) and adding to the

MMBJS model constraints (4-16), (4-17), and the following constraints:

xi = Xi; i 2 IS (4-19)

li = Li; i 2 IS (4-20)

where Xi and Li are the respective starting and leaving times of the scheduled oper-

ation i 2 IS .

9. The perioperative times used in the model are in accordance with the procedural times

glossary proposed by the American Association of Clinical Directors (AACD) [AAC07]

as follows (abbreviations in parentheses are by the AACD). Starting time xi corresponds
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to Patient-In-Room (PIR) and leaving time li to Patient-Out-of-Room (POR), while pro-

cessing time pri is the duration from Patient-In-Room time to Procedure-Finish (PF)

time. The setup time psui is Room-Setup-Time (RST) measured from Room-Setup-Start

(RSS) time to Room-Ready (RR) time; cleanup time pcli is Room-Cleanup-Time (RCT)

measured from Patient-Out-of-Room time to Room-Clean-Finished (RCF) time. If no

time lag is planned between two consecutive operations and patients are assumed to be

brought in the OR at Room-Ready time, then the sum (pcli + psuj ) for two consecutive

operations i and j equals to their turnover time, which is de�ned as time from the prior

operation's Patient-Out-of-Room time to succeeding operation's Patient-In-Room time.

For each perioperative mode r, er and f r correspond to Room-Open and Room-Close

time respectively.

4.4.4 Computational experiments with the SCS' MILP formulation

Example 4.1.

Consider a hypothetical example of a small integrated hospital with two ORs fOR1; OR2g,

one sta�ed PACU bed fPg, and one sta�ed ICU bed fICg. The ORs are open from 8:00 to

16:00. The PACU bed is open from 8:00 to 17:00 while the ICU beds are available all the time.

The hospital has three surgeons fS1; S2; S3g, two anaesthetists fA1; A2g, two perioperative

nurses fN1; N2g, and one preoperative nurse fN3g. Each ORi is sta�ed with one nurse and one

anaesthetist fNi; Aig; i = 1; 2. The OR block allocation table over the next two days has been

set up as shown in Table 4-4.

Day 1 Day 2

OR1 S1 S2

OR2 S3 Open

Table 4-4: OR block allocation table in Example 4.1.

Based on this input, 13 initial modes (No 1 - No 13) and one dummy mode (No 14) are

constructed in Table 4-5.

Table 4-6 shows 10 cases planned to be performed over the two days, with information on the

cases' number, assigned surgeon (if any), booked date (if any), expected operational durations

(in minutes), and assignable modes. The cleanup and setup times for the perioperative opera-

tions are 10 minutes and 20 minutes, respectively. Blocking time is limited at 15 minutes.

The example's SCS model was coded in the mathematical modeling language LPL [H�ur07] and

solved by CPLEX solver (version 9.0). It has 511 binary variables, 61 continuous variables, and

817 constraints. Table 4-7 presents the optimal solution obtained after 10 seconds of computing

time on a PC with a processor Pentium 4 2.8 GHz and 512 MB RAM. Figure 4-4 shows the

corresponding Gantt chart. Observe, for instance, that blocking occurs when case 9 cannot be
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Mode No Mode's resources Availability

Preoperative modes
1 fN3g t1 - t2
2 fN3g t3 - t4

Perioperative modes
3 fOR1; S1; N1; A1g t1 - t2
4 fOR2; S1; N2; A2g t3 - t4
5 fOR1; S2; N1; A1g t3 - t4
6 fOR2; S2; N2; A2g t3 - t4
7 fOR2; S3; N2; A2g t1 - t2
8 fOR2; S3; N2; A2g t3 - t4

Postoperative modes
9 fPg t1 - t

0
2

10 fPg t3 - t
0
4

11 fICg t1 - t5

Dummy mode
12 ; t04 - t5

t0 = 0 (start), t1 = 480 (8:00, day 1), t2 = 960 (16:00, day 1),
t02 = 1020 (17:00, day 1), t3 = 1920, (8:00, day 2),
t4 = 2400, (16:00, day 2),t04 = 2460 (17:00, day 2),
t5 = 7200 (su�ciently large to cover ICU stays up to a week).

Table 4-5: Modes and their availability interval of Example 4.1.

Case S B PHU OR PACU ICU

D M D M D M D M

Case 1 S3 1 30 f1; 12g 180 f7; 12g 60 f9; 12g
Case 2 S3 2 30 f2; 12g 135 f8; 12g 75 f10; 12g
Case 3 S3 1 30 f1; 12g 180 f7,12g 60 f9; 12g
Case 4 S3 30 f1; 2; 12g 120 f7,8,12g 30 f9; 10; 12g
Case 5 S1 30 f1; 2; 12g 180 f3,4,12g 1500 f11; 12g
Case 6 S1 1 30 f1; 12g 90 f5,12g 30 f9; 12g
Case 7 S1 2 30 f2; 12g 150 f4,12g 60 f10,12g
Case 8 S2 30 f2; 12g 135 f5,6,12g 30 f9; 10; 12g
Case 9 S2 30 f2; 12g 105 f5,6,12g 90 f9; 10; 12g

Case 10 S2 30 f2; 12g 90 f5,6,12g 90 f9; 10; 12g
S: Assigned surgeon, B: Booked day of surgery, D: duration (in minutes), M: mode.

Table 4-6: Surgical cases with modes and processing times of Example 4.1.

moved to PACU until case 7 is discharged from there. Operations of case 4 are assigned to the

dummy mode, i.e. case 4 cannot be �nished during regular working hours of the two days.

Given the surgical schedule as shown in Table 4-7, suppose an emergency arrives early in

day 1. The case's preparation, surgery, and PACU durations are 30, 180, and 90 minutes,

respectively; it can be processed by any available surgeon in any available OR. The emergency

case will be inserted into the set of scheduled cases in day 1=f1, 3, 5, 6g. The modes' ending

availability times in the emergency model are extended until 24:00 of day 1 to take into account

all possible delayed cases due to the emergency. The resulting schedule in Figure 4-5 shows that

the emergency delays other cases, and cases 3 and 5 are to be performed beyond the regular

working time.
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Operation Case 1 Case 2 Case 3 Case 4 Case 5

Preoperative (1; 480; 510)y (2; 2220; 2250) (1; 675; 720) (12; 2460; 2490)z (1,615,660)
Perioperative (7; 510; 690) (8; 2250; 2385) (7; 720; 900) (12; 2490; 2610)z (3,660,810)
Postoperative (9; 690; 750) (10; 2385; 2460) (9; 900; 960) (12; 2610; 2640)z (11,810,2310)

Operation Case 6 Case 7 Case 8 Case 9 Case 10

Preoperative (1; 510; 540) (2; 1950; 1980) (2; 2175; 2220) (2; 2025; 2070) (2,1920,1950)
Perioperative (3; 540; 630) (4; 1980; 2130) (5; 2220; 2340) (5; 2070; 2190) (5,1950,2040)
Postoperative (9; 630; 660) (10; 2130; 2190) (10; 2340; 2370) (10; 2190; 2280) (10,2040,2130)

y 3-tuple indicating the chosen mode, starting time, and leaving time of the operation
z Postponed operations after the 2-day period

Table 4-7: Optimal solution with operations' modes, starting time, and leaving time of
Example 4.1.
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Figure 4-4: Gantt chart of Example 4.1.

Further computational experiments

Further computational experiments with practical-sized data sets include:

� Four ASC test instances labeled a01-a04 : Four daily data sets of an ASC of six sta�ed

ORs were obtained from the authors of [LdMH02]. Each set contains information on

preassigned OR, and perioperative and postoperative durations for all cases. To complete

the instances, each case assumes a cleanup time of �ve minutes, a setup time of ten

minutes, and a maximum blocking time of �ve minutes. Further, six sta�ed PACU beds are

assignable to all cases, and three PHU nurses are available for the preoperative operations.

The ASC is open for eight hours per day.

� Five hospital test instances labeled s01-s05 : The instances use data reported in [Ozk00]

for real sta�ed OR allocation and perioperative durations (including setup and cleanup

times) of selected cases during �ve 8-hour working days. Added information includes seven

identical PACU beds, four preoperative nurses, maximum blocking time of 10 minutes,

and postoperative times uniformly generated according to surgical types and perioperative

durations.
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Figure 4-5: Gantt chart after an emergency arrival in day 1 in Example 4.1.

CPLEX computing times for the instances were limited at 60 minutes (see [DRLP03] for similar

job shop experiments). The instances were run on a PC (Pentium 4 2.8 GHz and 512 MB

RAM) with default CPLEX (version 9.0) parameters. Table 4-8 shows for each test instance

the resulting MILP gap, de�ned as the relative gap between the obtained makespan (if any) and

the lower bound given by CPLEX after the set computing time (i.e. Makespan�CPLEX0sLB
Makespan

):

Number of a01 a02 a03 a04 s01 s02 s03 s04 s05

Booked cases 18 25 16 18 24 25 25 26 21

Modes 16 16 16 16 21 21 21 21 21
Binary variables 1665 3100 1336 1665 2911 3151 3149 3389 2267
Continuous variables 109 151 97 109 145 151 151 157 127
Constraints 3517 6501 2829 3519 6615 7491 7471 7769 5339

Postponed cases 0 - 1 5 - - - - 0

MILP gap (%) 25.5 - 0.001 0.001 - - - - 0.001

-: No feasible solution was found within the allotted computing time.

Table 4-8: Results of nine SCS test instances.

Table 4-8 shows that not all planned cases could be scheduled in regular time and no optimal

solution was achieved during the allotted time. This can be explained by the fact that it is

already di�cult to obtain feasible solutions for the BJS's MILP formulation with a general-

purpose solver such as CPLEX version 9.0 (see the computational experiments in Chapter 2).

Therefore, we probably need to resort to heuristic method(s) to tackle the SCS problem.

4.5 Heuristic approach to the SCS problem

4.5.1 Decomposition procedure for the weekly SCS problem

Suppose there is a list L of urgent and elective cases to be scheduled for next week of T = 5

working days. Assume that each elective case in L already has an admission date determined

from the case planning phase and is expected to be operated no later than two days from this
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date. To solve the case planning problem, one can formulate it as a mathematical programming

problem (e.g. as a goal programming problem in [OE03] or an integer programming problem

in [FCMA07]), then solve the resulting formulation by a general-purpose solver [OE03] or an

ad hoc exact algorithm [FCMA07]. We shall not elaborate the case planning problem and its

solution methods any further since it is not in the scope of this chapter. The task of the weekly

SCS problem is to allocate to each planned case its necessary resources over a speci�ed period

of time within T . Preliminary computing experiments from the previous section showed that

the SCS problem is very complex to be solved by an exact approach. One of successful heuristic

approaches to deal with such a complex scheduling problem is to break it into more manageable

subproblems (e.g. [ALM+05]). We choose this approach and propose here a general procedure

called Decomp SCS. The Decomp SCS decomposes the weekly SCS problem into a series of

(�ve) daily SCS problems and then solve them sequentially; each daily SCS problem is solved

heuristically. The procedure is presented below.

algorithm (Decomp SCS)

begin

for each surgery day t = 1 to T do1

Let Ut and Et respectively be a set of urgent and elective cases planned for day t.2

Denote by Pt a set of postponed cases in day t. Set Pt := ;, Ut := Ut + Pt�1.3

Rank the cases in Et in the decreasing order of (1) medical priority and4

(2) cost of daily care.5

for each resource r 2M6

Update its starting time of availability er:7

Phase 1: Scheduling urgent cases8

Schedule the urgent cases in Ut using some heuristic algorithm(s).9

if an operation i of case J 2 Ut uses a resource r beyond ending availability time f r.10

then Remove all modes assignable to i containing r from Ri and goto Phase 1.11

if Ri = 0 for some operation i then stop.12

for each resource r 2M13

Update the starting available time er with the scheduled urgent cases:14

er := lq + pclq where q is the last urgent case scheduled on r;15

er := er if no operation is scheduled on r.16

Phase 2: Scheduling elective cases17

Schedule elective cases in Et using some heuristic algorithm(s).18
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if a case J 2 Et uses resource r beyond its ending time f r then Pt := Pt [ J:19

end (for)20

end (Decomp SCS)

Scheduling cases for each day consists of two phases. In Phase 1, after updating the starting time

of availability for each resource (e.g. ICU bed No.1 is occupied until 12:00 while other resources

are available from 8:00), schedule urgent cases. If an operation of an urgent case uses one of its

assigned resources beyond the resource's availability interval then all modes assignable to the

operation containing this resource is removed from the operation's list of assignable modes, and

Phase 1 is started over. If after several iterations, a list of assignable modes for an operation

is reduced to empty, then the hospital's current capacity is insu�cient to handle all urgent

cases. Either more capacity should be allocated by backtracking the removed modes or some

urgent cases should be moved to other hospitals. After scheduling all urgent cases, update all

resources' starting time of availability, then proceed with elective cases in Phase 2. Clearly, all

elective cases are scheduled after the urgent cases. Finally, we check all resources' ending times

of availability and postpone to the next day any elective cases that uses a resource beyond the

resource's ending time of availability. These postponed cases shall be classi�ed as urgent the

next day.

In the next two subsections, the use of the FGBJS model and its solution methods in the

framework of the Decomp SCS shall be discussed.

4.5.2 Heuristic approach to the daily SCS problem in ACS

The importance of outpatient surgery industry has been steadily increasing over the past two

decades. For instance, outpatient surgery in the United States accounts for more than 60% of

all surgeries [Gab99]. This makes the SCS in ASC where outpatient surgeries are performed an

interesting problem on its own. As introduced in Section 4.2, the SCS problem in ASCs has

several particularities including:

1. Outpatient setting typically requires that all patients planned for a surgery day be oper-

ated on that day even if they are done overtime;

2. There is no ICU or night stay in ASC after a surgery;

3. Outpatient cases are often less complicated than inpatient cases are and demand less

resource coordination than inpatient cases do.

Because of these ASC' particularities, when solving the SCS problem in ASC, it is reasonable

to assume that:

1. Each daily SCS is independent of other daily SCS problems;
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2. All resources are continuously available throughout the day from time zero;

3. There is a main resource (the so-called processor) in each of the three surgical stages

(preoperative, perioperative, and postoperative) while other resources are always available

upon request.

Assumption 1 allows us to investigate each daily SCS problem independently without having

to apply the decomposition procedure Decomp SCS. With assumption 2, the time windows

constraints of the SCS can be relaxed. Further, the multiprocessor requirement is no longer

necessary upon assumption 3. In fact, the processors in each stage are identi�ed as follows:

(1) preoperative nurses in the preoperative stage; (2) ORs in the perioperative stage, each OR

is fully equipped and sta�ed; and (3) PACU beds in the postoperative stage. As a result, we

can straightforwardly model the SCS scheduling problem in ASC as a FGBJS problem. Note

that a sequence-dependent setup time between the two operations i and j to be performed

sequentially in an OR block is typically documented in the ASC's database as a turnover time,

which equals the sum of the preceding case's cleanup time and the succeeding case's setup time,

i.e. psijk = pcli + psuj for all k 2Mi \Mj .

Example 4.2.

We applied this approach to four ASC instance a01-a04 described in the previous section. Based

the performance report of the constructive heuristics for the FGBJS in Chapter 3, we selected

the constructive heuristic with the Most-Favorable-Position job insertion subroutine (the SG-

MFP) as the default initial schedule generator and improved the resulting initial schedule by

the TSBJT � N c, a Tabu search algorithm developed in Chapter 4 that has the best overall

performance on the FGBJS benchmark instances.

Obtained results are compared to corresponding results by the MILP approach (using the MM-

BJS formulation with CPLEX 9.0 solver and additional overtime of three hours) in Table 4-9;

all computing times were limited at 60 minutes.

ASC MMBJS FGBJS Gap
case UB LB SC-MFP TSBJT �Nc

(1) (2) (3) (4) (5) (6)

a01 451.00 410.96 575.00 447.00 0.89%
a02 529.00 357.36 728.00 517.00 2.27%
a03 601.78 601.64 542.00 459.00 23.73%
a04 568.00 530.86 914.00 554.00 2.46%

Table 4-9: Results of four ASC instances modeled as the FGBJS.

Column (2) and (3) of Table 4-9 show the upper and lower bounds obtained by the MILP

approach. Column (4) displays initial makespans obtained by the SG-MFP while column (5)

presents improved makespans by the TSBJT � N c. Values of the gaps shown in the last

column, calculated as Gap = (Upperbound(2)�Makespan(5))=Upperbound(2), point out that
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the heuristic approach with the FGBJS model performed better the mathematical programming

approach over these four ASC instances.

4.5.3 Heuristic approach to the daily SCS problem in integrated hospitals

As discussed in Section 4.2, an inpatient surgery often requires tight coordination of several

resources during each of its three stages, especially in the perioperative stage where resource

coordination involves a surgeon, an anaesthetist, several nurses, OR, supporting equipment,

etc. Some remarks can be withdrawn from a closer look into the participating resources in each

stage. First, the main capacity-constrained resource in the preoperative stage is PHU nurses

since PHU beds are often available. Second, PACU beds in the postoperative stage can be

considered as su�ciently nursed with di�erent availability interval. For example, if a PACU

has three supervised beds in the morning and only two supervised ones in the afternoon, we

can say that the PACU has three supervised beds, two of them have a regular ending time of

availability while the other has a shorter ending time of availability. If only two out of three

PACU beds are sta�ed, then the third one has the starting time of availability equal to a huge

positive value; thus this resource shall not be used by any case. The third remark is about ICU

beds. An ICU bed is typically supplied with integrated supporting equipment and supervised

by at least a nurse. Therefore, each recovery bed (either PACU or ICU one) can be considered

as a functional processor in the postoperative stage. Finally, ORs can be seen as the main

processor in the perioperative stage if the following conditions in the hospital under study are

satis�ed:

1. Each OR is fully sta�ed and installed with �xed supporting equipment;

2. Each OR's sta� is capable of handling any case assigned to the OR;

3. Each patient is preassigned to a surgeon, who always accepts to operate in a medically

suitable OR selected for the patient,

In this case, we can decompose the weekly SCS problem in to daily SCS problems according

to the Decomp SCS and model each daily SCS problem as a FGBJS problem. A schedule for

each FGBJS problem can be �rst obtained by a constructive heuristic (e.g. the SG-MFP), then

improved by a TS heuristic (e.g. the TSBJT �N c). Note that since the FGBJS model allows

the �rst setup time for each operation to be processor-dependent, we can handle scheduling

cases with processors' positive starting times of availability as follows. Suppose an operation i

is assigned to processor k having an (updated) starting time of availability ek, then set ps�ik :=

ek + psui . An alternative approach is to create a dummy job J0 which has one operation on

each processor k for a duration equal to the updated ek; each operation of J0 has to be the

�rst one on its resource's operation sequence. After a schedule is obtained, make the following

adjustments:
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for each operation i 2 J0

if i is not the �rst operation on k = �(i) then

Move i before the �rst operation on k.

end (for each)

Another technical issue is the in
uence of ICU stays on the makespan. An ICU stay typically

lasts for more than one day, hence it dominates the makespan of a daily schedule. Therefore, the

cost function computed for an associated FGBJS problem should contain not only the longest

path in a problem's disjunctive blocking graph but also a sum of longest paths from the dummy

start node to each operation's take-over nodes, which is equal to the sum of all operations'

earliest starting times (similarly to objective function (4-1)).

Example 4.3.

(This is a modi�cation of the SCS instance in Example 4.1.)

A hospital has one PHU nurse (N), two ORs (OR1; OR2), one PACU bed (PACU), and one

ICU bed (ICU); these resources are numbered in that order from 1 to 5. Their daily available

times are shown in Table 4-10.

Processor Availability
No. Description From To

Preoperative processors
1 N 8:00 16:00
Perioperative processors
2 OR1 8:00 16:00
3 OR2 8:00 16:00
Postoperative processors
4 PACU 8:00 17:00
5 ICU Open

Table 4-10: Processors and their availability interval of Example 4.3.

Ten cases to be operated in the next two days are listed in Table 4-11. Except urgent case 5,

all other cases are elective cases at the same medical priority level.

Solve the daily SCS problem for day 1 yields the schedule depicted in the top Gantt chart in

Figure 4-6, where starting time at 8:00 is counted as time zero and the full length of ICU stay

for case 5 is not shown. Observe that (1) operations of urgent case 5 are the �rst operations on

their assigned processor and (2) case 6 has its perioperative operation �nished much later than

the closing times of OR1, hence this case is postponed until day 2. Continue day 2 with case

6 treated as an urgent case. In the obtained schedule (see the bottom graph in Figure 4-6), all

but case 2 can be �nished within the processors' time of availability. The postoperative step of

case 2 exceeds the availability by only 10 minutes, thus the case is likely to be still accepted.
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Case B PHU OR PACU ICU

D P D P D P D P

Case 1 1 30 1 180 2; 3 60 4
Case 2 2 30 1 135 2; 3 75 4
Case 3 1 30 1 180 2; 3 60 4
Case 4 1 30 1 120 2; 3 30 4
Case 5 1 30 1 180 2; 3 1500 5
Case 6 1 30 1 90 2; 3 30 4
Case 7 2 30 1 150 2; 3 60 4
Case 8 2 30 1 135 2; 3 30 4
Case 9 2 30 1 105 2; 3 90 4

Case 10 2 30 1 90 2; 3 90 4

B: Booked day of surgery, D: duration (in min), P: processor.

Table 4-11: Surgical cases with processors and processing times in Example 4.3.

Figure 4-6: Gantt charts in Example 4.3.

4.6 Concluding remarks

This chapter identi�es and analyzes the surgical case scheduling (SCS) problem including

scheduling elective and add-on cases for both inpatients and outpatients. The SCS problem

is modeled as a new extension of the JS called multimode blocking job shop (MMBJS). A cor-

responding MILP formulation is developed and preliminary computational experiments were

conducted. The proposed MILP formulation for MMBJS is 
exible and adaptable for SCS in

many di�erent health care settings, including both privately- or publicly-run integrated hospi-

tals or ambulatory surgery centers, over daily or weekly scheduling periods. The main limitation

in applying the MMBJS model to SCS is the capability of general-purpose MILP solvers, which

for the moment can obtain feasible solutions for only small to medium-sized instances. For this

reason, this paper proposes a general decomposition approach, which decomposes the SCS prob-

lem into a series of daily SCS problem if the problem's time horizon is longer than a day (e.g. a

week), then tackles each single-day SCS problem heuristically. Due to several particularities of

outpatient setting in ambulatory surgical centers (ASC), a daily SCS problem can be modeled

as a FGBJS problem and solved independently of other daily problems in the week. On the

other hand, daily SCS problems decomposed from a weekly SCS problem in an integrated hos-

pital need to be solved sequentially, where a case using resources overtime in the day would be

postponed to the next day. Under certain conditions, each daily SCS problem in an integrated
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hospital can also be modeled as a FGBJS problem and solved by the methods developed in

Chapter 4.

The chapter underlines the importance of connecting surgical stages in scheduling any surgical

case and coordinating multiple resources during any surgical step. SCS should take a holistic

view of all activities and resource constraints in the OR suite instead of focusing on only an

individual stage like OR or ICU. Future research can be conducted in the following directions:

1. Validate the FGBJS-based solution methods with comprehensive real-life data and inte-

grate them into a decision support system for SCS.

2. Extend solution approaches for the FGBJS to address the MMBJS problem and apply

them to the SCS problem.
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Chapter 5

Conclusions

In this dissertation, we studied complex job shop scheduling problems, which can take place in

many industrial sectors. Four scheduling problems in manufacturing, logistics, transportation,

and healthcare service have been introduced as examples of such complex job shop problems.

Chapter 2 systematically studied ten practical aspects of job shop scheduling that are not cov-

ered in the classical job shop (JS) model and groups them in three categories involving jobs,

processors, and job processing. This collection of features, though still incomplete, enabled us

to identify di�erent complexifying features of a given practical job shop problem and model it

accordingly. Similar to any other optimization problem, a job shop extension problem can be

addressed by formulating it as a mixed integer linear programming (MILP) problem and then

solving it by a commercial MILP solver. We applied this approach, �rst by selecting experi-

mentally the Manne formulation for the JS as a foundation upon which various formulations for

single-feature job shop extensions have been developed. These formulations can be combined

to formulate more complex JS problems. Our computational experiments showed that despite

today's impressive performance of commercial MILP solvers when solving some optimization

problems, a lot remains to be improved before one can use the mathematical programming

approach with MILP formulations and commercial solvers to practically solve job shop related

problems.

Chapter 3 proposed a new extended JS model which incorporates four additional features namely

processor 
exibility, blocking constraints, sequence-dependent setup times, and job transfer

times. To our knowledge, this is the �rst time that blocking constraints, a practical feature

that has received very high attention in research literature recently, have been addressed to-

gether with processor 
exibility in a job shop-based model, which is further complexi�ed by the

presence of the other two features. This extended JS, called the Flexible Generalized Job Shop

problem (FGBJS), is capable of closely modeling many practical complex scheduling problems.

The FGBJS can be seen as an extension of the Generalized Job Shop (GBJS) proposed by

Gr�o
in and Klinkert [GK05] in the 
exibility dimension. We developed a MILP formulation for

the FGBJS using some results in Chapter 2. As the exact approach's performance by the MILP

145
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and CPLEX 9.0 solver was not promising, heuristic approaches to the FGBJS were deployed.

We adapted the disjunctive blocking graph introduced in [GK05] to handle 
exibility of a sin-

gle operation so that a FGBJS instance can be solved by solving the problem of minimizing

the longest path in the instance's associated disjunctive blocking graph. Basing on this graph

representation, we have derived three neighborhood structures that obtain a feasible solution

when moving an operation to another position. The �rst one of these neighborhood structures

is based on evaluating positions (possibly on another processor) for the moved operation so that

feasibility is ensured without making further e�ort. The second structure involves moving the

operation to only a position on its currently assigned processor. The last neighborhood struc-

ture allows us to always obtain a feasible neighbor when moving the operation to an arbitrary

position by rescheduling other operations of the operation's job if necessary. When deriving the

last two neighborhood structures, we have bene�ted from some research results on job insertion

for a generalized job shop problem by Gr�o
in and Klinkert [GK07]. Job insertion is also the

framework of our three proposed constructive heuristics, which arrange all jobs in a certain

order and then insert them one by one into a partial schedule. A resulting schedule by a con-

structive heuristic can be improved by one of six Tabu search (TS) heuristic algorithms that we

developed. These algorithms are obtained from combining the three developed neighborhood

structures with three generic TS algorithms. The �rst generic TS algorithm is the well-known

algorithm for the JS by Nowicki and Smutnicki [NS96]. The second generic TS algorithm is

based on Glover's idea to alternate between two di�erent neighborhoods, while the last one is

our new proposal that integrates TS and Variable Neighborhood Search by exploiting the pres-

ence of three neighborhood structures. We carried out extensive computational experiments on

newly created benchmark instances, given the fact that the FGBJS has never been addressed

before. Our computing results have shown that one constructive heuristic called the Schedule-

Generator with the Most-Favorite-Position job insertion clearly outperformed the other two

constructive heuristics. On the other hand, the performance of the TS algorithms varied ac-

cording to many factors. Any TS algorithm can be good for a particular FGBJS instance. All

six TS algorithms improved the solution obtained by the constructive heuristics substantially.

In addition, the performance of a TS algorithm does not seem to depend on the quality of initial

feasible solutions after some computing elapsed time.

Research results from Chapter 2 and 3 were used to address the surgical case scheduling problem

(SCS) in Chapter 4. A systemwide perspective of the surgical process guided us through the

studying and modeling of the SCS problem; this view is not in line with a more common

approach in the SCS literature that locally focuses on the perioperative surgical stage. As a

result, the SCS has been modeled as a new JS extension called the Multimode Blocking Job Shop

(MMBJS), which includes into the JS four features namely multi-resource processing, 
exibility,

blocking constraints, and sequence-dependent setup times. We gave a MILP formulation for

the MMBJS and illustrated the model with a detailed example. As the exact method with the

MMBJS' formulation and a general-purpose solver is unlikely to yield optimal or even feasible
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solutions within a reasonable computing time, heuristic solution methods should be sought.

We showed that because of several particularities of the ambulatory surgical center's (ASC)

environment, we can model the SCS problem in an ASC as a FGBJS problem and hence make

use of the algorithms developed in Chapter 3 to solve the problem. This approach can also be

extended to the SCS in hospitals upon certain conditions.

There remains a lot to be done from where this dissertation ends. Additional practical features of

complex job shop scheduling can be included into the current feature collection. Formulations

with updated big-M values, especially accompanied by advanced updating schemes, can be

further studied as suggested from computational results in Chapter 2. Implementation-wise,

constructive and TS heuristics developed in Chapter 3 can be further polished before they can

be used as subroutines embedded in an o�-the-shelf scheduling software package. Extending the

research results on the FGBJS for the MMBJS is the next research step, which can substantially

bene�t from the job insertion framework used in developing neighborhood structures for the

FGBJS. Validating the FGBJS model and its methods in an ASC or a hospital is very important

to check missing constraints and application conditions. Pragmatically, one cannot expect an

instant warm reception of a quantitative model in solving the SCS problem since the problem

is often muddled by politics con
icts. Surgeons, who have a �nal say about their cases, may

be hard to be persuaded to work towards a common goal of improving the e�ciency of the

whole OR suite. Perhaps, our best strategy is to strive for a gradual acceptance of quantitative

methods in managing surgical resources.
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APPENDIX

.1 Scheduling terminologies

Scheduling research started with studies in manufacturing industries in the 1950s. That is

why many scheduling terminologies have their root in manufacturing context. Since scheduling

problems are not limited to only manufacturing environments, this dissertation applies the

following general scheduling terms:

� a job is a set of activities that must be processed in a certain order, e.g. a customer's

order, a surgery, and so on;

� a processor is a resource used to process jobs, e.g. a machine, a surgeon, and so on;

� an operation is job processing.

The most popular representation for schedules in industry is Gantt chart, which displays the

activities as the boxes over the horizontal time axis. Below is an example of Gantt chart for a

schedule.

Example .1.

Consider scheduling a job consisting of three operations 1, 2, 3, to be processed in this order;

operation 1 is performed by processor A for a duration of one time unit, operation 2 by processor

B for two time units, and operation 3 by processor C for three time units. The Gantt chart

shows that operation 1 starts at time 0 and �nishes at time 1; operation 2 starts at time 1 and

�nishes at time 3; and operation 3 starts at time 3 and �nishes at time 6. Thus, the starting

and �nishing times of the operations ful�ll the processing time and precedence requirements.

5

A
B
C

0 1 2 3 4 6

1
2

3

Figure -1: Example of using Gantt chart to represent a schedule.

Given a solution to a scheduling problem, a left-shift of an operation is possible if an operation

can start earlier, i.e. a box representing the operation in the solution's Gantt chart can be shifted

to the left. The left-shift is called local if the operation can start earlier without changing the

current sequence on the processor(s) performing the operation, and global if otherwise. A global
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left-shift of an operation may delay the starts of other operations in the same operation sequence.

Suppose in Example .1 we have another job consisting of operations 4 and 5 to be processed

in this order by processors B and A for two and three time units respectively. A solution is

shown to the left of Figure -2. To the right of this �gure is another solution where left-shifts

of one time unit are applied to operations 4 and 5. These operations can start even earlier by

applying a global-shift of three time units to operation 4 and a local left-shift of three time

units to operation 5, respectively, as displayed to the right of Figure -3. Observe in this �gure

that the operation sequence of processor B is changed by the global left-shift and operations 2

and 3 are delayed.

5

A
B
C

0 1 2 3 4 6

1
2

3
4

5

7 8 5

A
B
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1
2

3
4
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7 89

Figure -2: Example of local left-shifts.

5

A
B
C

0 1 2 3 4 6

1
2

3
4

5

7 8 5

A
B
C

0 1 2 3 4 6

1
2

3
4

5

7 8

Figure -3: Example of global left-shifts.

A schedule is:

� semi-active if no operation can start earlier without changing the operation sequence or

violating some precedence constraint,

� active if no operation can start earlier without delaying at least another operation or

violating some precedence constraint,

� non-delay if no processor stays idle when there is some job ready for processing by the

processor.

Thus, a semi-active schedule cannot have any local left-shift. A non-delay schedule is also an

active schedule and an active schedule is also a semi-active schedule. The schedule to the left

of Figure -3 is active while the one to the right is non-delay.
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.2 Subroutine algorithms in Chapter 3

Let G0 = (V 0; E0; c) be a disjunctive blocking digraph for a GBJS' instance, where V 0 is the

set of nodes, E0 is the set of arcs and c speci�es the arc weights. Remove from E0 transitive

disjunctive arcs, then contract each pair of hand-over and take-over nodes of two consecutive

operations of the same job to obtain a disjunctive blocking graph G = (V;E; c). De�ne for G

n := jV j, m := jEj, dummy start node � 2 V of indegree j��(�)j = 0 and dummy node � 2 V of

outdegree j�+(�)j = 0: The following two algorithms are used as subroutines in some algorithms

in Chapter 3:

1. algorithm Path detection to check the existence of a path from i to j; i; j 2 V ;

2. algorithm Longest path to �nd the the length of a longest path from � to � or detect the

existence of a cycle in the solution graph:

The details of these subroutines are given below.

algorithm Path detection

Input: G = (V;E) and i; j 2 V .

Output: Yes/No answer to the question if there is any path from i to j in G:

begin

if i = j then return Yes.21

Let R = fig . Set label l(v) := unvisited for all v 2 V .22

while R 6= ; do23

Choose u 2 R. Set R := R� u and Q := fv 2 V : (u; v) 2 Eg.24

for all v 2 Q do25

if v = j then return Yes.26

else if l(v) = unvisited then set l(v) := visited and R := R+ v:27

end (for)28

end (while)29

return No.30

end (Path Detection)

Set R keeps the list of visited nodes that are reachable from i. The algorithm terminates when

j is included into R or all reachable nodes from i have been checked without obtaining the

positive answer. As the algorithm checks each node and each arc at most once, its complexity

is O(n+m): As any node in G has at most 2 entering and 2 leaving arcs corresponding to the

processing and sequencing precedences, the complexity becomes O(n):
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algorithm Longest path

Input: G = (V;E; c).

Output: Detection of a cycle (if any) in G, the length of the longest path lv from � to each

v 2 V , and the list P (v) of preceding nodes of v.

begin

Store the indegree j��(v)j of each node, v 2 V:31

for all v 2 V32

Set the length of a longest path from source � to v as lv := 033

Set the predecessor list of v as P (v) := ;.34

end (for)35

Set the set of nodes having zero indegree S := fsg. Set the inspected node u := s.36

Set number of visited nodes 
 := 0 and cycle detection 
ag � := false.37

while S 6= ; do38

Let u be the last element included into S.39

Set S := S � u, R := fv 2 V : (u; v) 2 Eg and 
 := 
 + 1.40

for all v 2 R do41

if lv< lu+ c(u;v) then set lv:= lu+ c(u;v) and P (v) := P (v) + v;42

else if l(v) = l(u)+ c(u;v) then set P (v) := P (v) + v.43

Set j��(v)j := j��(v)j � 1:44

if j��(v)j = 0 then set S := S + v.45

end (for)46

end (while)47

if 
 < jV j then set � := true.48

return �.49

end (Longest path)

Zero indegree nodes in S are inspected in the �rst-in-�rst-out basis according to their order

of inclusion to S.The algorithm ends when all nodes having indegree reduced to 0 have been

checked. When the �rst node belonging to a cycle is checked, since its reduced indegree remains

positive, no further node can be added to S hence the algorithm stops. Therefore, the number

of nodes visited is less than jV j, which con�rms the presence of a cycle. The computational

e�ort is O(m) since each arc is visited at most once.
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.3 Performance of the FGBJS' MILP formulation

Each of the 160 benchmark instances was let run for 30 minutes with CPLEX 9.0 solver. Table

-1 shows upper and bounds obtained, where mark (-) indicates that no feasible solution was ob-

tained. The found solutions were compared with solutions obtained from the three constructive

heuristics and a TS heuristic (TSBJT �N c), see Tables -2 to -5. Observe that the constructive

heuristics yielded better solutions for a majority of instances in much shorter computing times.

The TSBJT �N c, taken as a representative of the six TS heuristics, outperformed the MILP

formulation with CPLEX 9.0 solver for all of the four data sets but only two sdata instances.

Upper bound Lower bound
sdata edata rdata vdata sdata edata rdata vdata

la01 1549 1639 1625 - 1118 960.402 751 499
la02 1609 1676 1777 - 1092.001 947.381 715 581
la03 1433 1499 1501 - 1144 838 635.001 496
la04 1425 1523 1574 1347 1071 956 529.5888 493
la05 1443 1475 - 1448 914 843 526 534
la06 2596 2805 - - 928.3659 926.16 659 549.003
la07 2518 2467 - - 953.6024 904.796 727.001 614.001
la08 2481 - - - 898.8801 814 725 494
la09 2682 - - - 1021 916.171 660.2337 557
la10 2895 - - - 1047 965.001 691 601
la11 4106 5210 - - 886 841.13 740 612
la12 - - - - 776 820.891 816 525
la13 - - - - 919.2961 949.43 689 596
la14 4291 - - - 930 854.711 624 655
la15 3671 3844 - - 892.8378 840 748 533
la16 2444 2892 - - 1224 1123 895 895
la17 2543 - - - 1091.442 1011 899 789
la18 2301 2341 - - 1155.153 1115.55 885.002 810
la19 2885 2801 - - 1161 1155.63 914.5387 773
la20 2472 2922 - - 1255 1234 1038 919
la21 4821 - - - 1193 1131 1007 846
la22 7234 - - - 1089.329 1092 958 813
la23 - - - - 1078 1037 881 845
la24 - - - - 1118 1073.15 937 882
la25 5440 - - - 1149 1107.72 942 915
la26 6418 - - - 1129 1107 949 -
la27 10496 - - - 1139 1154.86 1004 -
la28 7729 - - - 1120 1094.66 1021 -
la29 6496 - - - 1102.09 1101 947.6967 -
la30 10570 - - - 1169 1157 1049 -
la31 14711 - - - 1009 1078 967 -
la32 15818 - - - 1067 1126.07 967 -
la33 15033 - - - 968.0087 968 942 -
la34 14425 - - - 990 997.497 933 -
la35 15038 - - - 1003.028 962 880.3 -
la36 11348 - - - 1451 1421 1289 -
la37 8835 - - - 1436 1417.09 1336.596 -
la38 11340 - - - 1401 1309.83 1220 -
la39 11651 - - - 1350 1325.42 1237 -
la40 11490 - - - 1374.024 1321.29 1275 -

Table -1: Performance of the FGBJS's MILP formulation with CPLEX 9.0.
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Makespan Deviation = (Heuristic - MILP)/MILP

MILP SG-MCO SG-MFP SG-BN TS SG-MCO SG-MFP SG-BN TS

la01-sdata 1549.00 1737 1988 2368 1583 12.14% 28.34% 52.87% 2.19%
la02-sdata 1609.00 1949 1841 2106 1546 21.13% 14.42% 30.89% -3.92%
la03-sdata 1433.00 1745 1542 1988 1423 21.77% 7.61% 38.73% -0.70%
la04-sdata 1425.00 1917 1994 1952 1439 34.53% 39.93% 36.98% 0.98%
la05-sdata 1443.00 1470 1696 1878 1430 1.87% 17.53% 30.15% -0.90%
la06-sdata 2596.00 2577 2472 3004 2229 -0.73% -4.78% 15.72% -14.14%
la07-sdata 2518.00 2684 2526 2751 2146 6.59% 0.32% 9.25% -14.77%
la08-sdata 2481.00 2738 2406 2518 2239 10.36% -3.02% 1.49% -9.75%
la09-sdata 2682.00 2696 2717 2944 2301 0.52% 1.30% 9.77% -14.21%
la10-sdata 2895.00 2629 2742 3428 2413 -9.19% -5.28% 18.41% -16.65%
la11-sdata 4106.00 3653 3526 3461 3065 -11.03% -14.13% -15.71% -25.35%
la14-sdata 4291.00 3523 3446 3872 3103 -17.90% -19.69% -9.76% -27.69%
la15-sdata 3671.00 3368 3399 3667 3146 -8.25% -7.41% -0.11% -14.30%
la16-sdata 2444.00 3091 2886 3779 2146 26.47% 18.09% 54.62% -12.19%
la17-sdata 2543.00 2818 2430 3451 2083 10.81% -4.44% 35.71% -18.09%
la18-sdata 2301.00 2964 3098 3349 2227 28.81% 34.64% 45.55% -3.22%
la19-sdata 2885.00 2887 2685 3567 2265 0.07% -6.93% 23.64% -21.49%
la20-sdata 2472.00 3705 2969 3644 2252 49.88% 20.11% 47.41% -8.90%
la21-sdata 4821.00 4720 4219 4975 3606 -2.10% -12.49% 3.19% -25.20%
la22-sdata 7234.00 4954 3880 4561 3263 -31.52% -46.36% -36.95% -54.89%
la25-sdata 5440.00 4693 4059 5187 3446 -13.73% -25.39% -4.65% -36.65%
la26-sdata 6418.00 5996 4752 6119 4317 -6.58% -25.96% -4.66% -32.74%
la27-sdata 10496.00 5388 5600 6985 4351 -48.67% -46.65% -33.45% -58.55%
la28-sdata 7729.00 6341 5723 6601 4545 -17.96% -25.95% -14.59% -41.20%
la29-sdata 6496.00 6040 5313 6228 4135 -7.02% -18.21% -4.13% -36.35%
la30-sdata 10570.00 6198 5247 6596 4456 -41.36% -50.36% -37.60% -57.84%
la31-sdata 14711.00 8654 7916 9155 6716 -41.17% -46.19% -37.77% -54.35%
la32-sdata 15818.00 9114 8067 9632 6614 -42.38% -49.00% -39.11% -58.19%
la33-sdata 15033 8251 8417 9589 6402 -45.11% -44.01% -36.21% -57.41%
la34-sdata 14425 7976 8720 8832 6520 -44.71% -39.55% -38.77% -54.80%
la35-sdata 15038 8605 7974 10122 6401 -42.78% -46.97% -32.69% -57.43%
la36-sdata 11348 6587 5708 7714 4042 -41.95% -49.70% -32.02% -64.38%
la37-sdata 8835 7143 5905 8229 4516 -19.15% -33.16% -6.86% -48.89%
la38-sdata 11340 6415 5379 8038 4267 -43.43% -52.57% -29.12% -62.37%
la39-sdata 11651 5603 5901 7331 4424 -51.91% -49.35% -37.08% -62.03%
la40-sdata 11490 6572 5310 7767 4218 -42.80% -53.79% -32.40% -63.29%

Average = -11.29% -16.64% -0.81% -31.38%

Table -2: MILP formulation with CPLEX 9.0 vs. heuristics for sdata set.

Makespan Deviation = (Heuristic - MILP)/MILP
MILP SG-MCO SG-MFP SG-BN TS SG-MCO SG-MFP SG-BN TS

la01-edata 1639.00 2320 1909 2294 1556 41.55% 16.47% 39.96% -5.06%
la02-edata 1676.00 1916 1795 2060 1588 14.32% 7.10% 22.91% -5.25%
la03-edata 1499.00 1855 1666 1721 1422 23.75% 11.14% 14.81% -5.14%
la04-edata 1523.00 1799 1782 1760 1436 18.12% 17.01% 15.56% -5.71%
la05-edata 1475.00 1504 1740 1796 1425 1.97% 17.97% 21.76% -3.39%
la06-edata 2805.00 2605 2611 3189 2132 -7.13% -6.92% 13.69% -23.99%
la07-edata 2467.00 2447 2429 2877 2128 -0.81% -1.54% 16.62% -13.74%
la11-edata 5210.00 3586 3500 3813 3152 -31.17% -32.82% -26.81% -39.50%
la15-edata 3844.00 3374 3274 3556 3031 -12.23% -14.83% -7.49% -21.15%
la16-edata 2892.00 3392 2994 3847 2252 17.29% 3.53% 33.02% -22.13%
la18-edata 2341.00 2886 3027 3317 2065 23.28% 29.30% 41.69% -11.79%
la19-edata 2801.00 3306 3035 3395 1921 18.03% 8.35% 21.21% -31.42%
la20-edata 2922.00 3551 2773 3780 2170 21.53% -5.10% 29.36% -25.74%

Average = 9.88% 3.82% 18.18% -16.46%

Table -3: MILP formulation with CPLEX 9.0 vs. heuristics for edata set.

Makespan Deviation = (Heuristic - MILP)/MILP
MILP SG-MCO SG-MFP SG-BN TS SG-MCO SG-MFP SG-BN TS

la01-rdata 1625.00 2206 1908 2071 1341 35.75% 17.42% 27.45% -17.48%
la02-rdata 1777.00 2042 1944 1812 1460 14.91% 9.40% 1.97% -17.84%
la03-rdata 1501.00 1670 1527 1572 1235 11.26% 1.73% 4.73% -17.72%
la04-rdata 1574.00 1637 1653 1472 1216 4.00% 5.02% -6.48% -22.74%
la33-rdata 15033.00 7703 8031 8335 5671 -48.76% -46.58% -44.56% -62.28%
la34-rdata 14425.00 8375 7698 8012 5770 -41.94% -46.63% -44.46% -60.00%
la35-rdata 15038.00 8319 7952 8464 6014 -44.68% -47.12% -43.72% -60.01%
la36-rdata 11348.00 5844 5833 7262 3286 -48.50% -48.60% -36.01% -71.04%
la37-rdata 8835.00 6609 5662 7988 3505 -25.20% -35.91% -9.59% -60.33%
la38-rdata 11340.00 5896 5613 7310 2999 -48.01% -50.50% -35.54% -73.55%
la39-rdata 11651.00 6470 5595 7654 2945 -44.47% -51.98% -34.31% -74.72%
la40-rdata 11490.00 6124 5691 7587 3471 -46.70% -50.47% -33.97% -69.79%

Average = -23.53% -28.69% -21.21% -50.63%

Table -4: MILP formulation with CPLEX 9.0 vs. heuristics for rdata set.

Makespan Deviation = (Heuristic - MILP)/MILP
MILP SG-MCO SG-MFP SG-BN TS SG-MCO SG-MFP SG-BN TS

la04-vdata 1347.00 1548 1623 1658 1110 14.92% 20.49% 23.09% -17.59%
la05-vdata 1448.00 1423 1462 1961 1206 -1.73% 0.97% 35.43% -16.71%

Average = 6.60% 10.73% 29.26% -17.15%

Table -5: MILP formulation with CPLEX 9.0 vs. heuristics for vdata set.
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