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Muonic hydrogen cascade time and lifetime of the short-lived 2S state
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Metastable 2S muonic-hydrogen atoms undergo collisional 2S quenching, with rates which depend strongly
on whether the �p kinetic energy is above or below the 2S→2P energy threshold. Above threshold, collisional
2S→2P excitation followed by fast radiative 2P→1S deexcitation is allowed. The corresponding short-lived
�p�2S� component was measured at 0.6 hPa H2 room-temperature gas pressure, with lifetime �2S

short

=165−29
+38 ns �i.e., �2S

quench=7.9−1.6
+1.8�1012 s−1 at liquid-hydrogen density� and population �2S

short=1.70−0.56
+0.80%

�per �p atom�. In addition, a value of the �p cascade time, Tcas
�p = �37±5� ns, was found.

Muonic hydrogen ��−p� is a simple atomic system, sen-
sitive to basic features of the electromagnetic and weak in-
teractions. Of particular interest is its metastable 2S state,
long sought after for measuring the �p�2S�-Lamb shift L�.
Vacuum polarization dominates L�. It shifts the 2S level by
0.2 eV below the 2P level �1,2�. A measurement of L� is in
progress at the Paul Scherrer Institute �PSI�, Switzerland �3�.
We report here the data analysis of a preliminary stage of this
experiment made at low H2 gas pressure pH2

=0.6 hPa �4�.
Muons stopped in H2 gas form highly excited �p atoms

�5�. A cascade of both collisionally induced and radiative
deexcitations leads to the 1S ground state or, with a probabil-
ity �2S �few %�, to the 2S state. The �p�1S� kinetic energy
distribution Ekin

1S has been measured at pH2
=0.06–16 hPa �6�,

and cascade simulations show that Ekin
1S and Ekin

2S do not differ
significantly under our conditions �5�.

The 2S state lifetime is, in the absence of collisions, es-
sentially equal to the muon lifetime ��=2.2 �s. In H2 gas,
collisional 2S quenching occurs, with different processes for
kinetic energies Ekin

2S above or below the 2S→2P transition

threshold which is �1+m�p /mH2
��L���0.3 eV in the labora-

tory frame.
�i� Most �p�2S� atoms are formed at energies above this

threshold �6� where a collisional 2S→2P Stark transition,
followed by 2P→1S deexcitation with 1.9 keV K� x ray
emission �the 2P lifetime is 8.5 ps�,

�p�2S� + H2 → �p�2P� + H2 → �p�1S� + H2 + K� , �1�

leads to fast 2S depletion �collisional quenching�. A lifetime
�2S

short	100 ns/ pH2
�hPa� was predicted for this short-lived 2S

component �7–9�. This is too short to have been seen in
previous searches for K� x rays delayed with respect to the
�p�2S� formation time �10–12�. In this Rapid Communica-
tion we report on the first measurement of �2S

short and the cor-
responding population �2S

short.
�ii� Due to elastic collisions, a fraction of the �p�2S� at-

oms decelerates to energies below 0.3 eV where process �1�
is energetically forbidden. This fraction is the long-lived 2S
component. A recent experiment �13� showed that its domi-
nant quenching process is nonradiative deexcitation to the
ground state, with lifetime �2S

long�1.3 �s at 0.6 hPa and
population �2S

long�1%.
The cascade time Tcas

�p is the mean delay between �p-atom
formation and final deexcitation to the ground state �when a
�p K-line x ray, other than from �p�2S� decay, is emitted�.
The Tcas

�p value results from the average of the various cas-
cade deexcitation processes and depends on pH2

. It was cal-
culated �5� but never measured for �p.

In our experiment, muons stop in H2 gas containing a
small admixture of N2 �air�, and we measure simultaneously
the three time distributions
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K�, i.e., �p�n = 2 → 1� x rays �1.898 keV� ,

K��	�, i.e., �p�n � 3 → 1� x rays �2.45�2� keV�14�� ,

�N, i.e., �N�n = 5 → 4� x rays �3.08 keV�15�� .

The �p�n=3→1� K	 line �2.249 keV� is not well separated
from K� and K��	�. The 0.4�1�% air admixture in the H2

was useful for calibrating x-ray energies and times. The �N
time distribution is similar to that of �p formation because
the �N cascade time is negligibly short �	10−10 s� �16�. The
�p cascade time will therefore show up as a time delay in
the K� and K��	� distributions compared to �N. The sig-
nature for 2S radiative decay will be a tail in K� not present
in K��	�. The muon transfer rates �p+N→�N+ p are
	103 s−1 for �p�1S� and 	104 s−1 for �p�2S� �17�, too
small to affect our results.

The experiment was performed at the recently developed
low-energy �− source attached to the 
E5 beamline at PSI
�18�. It provides 	103 s−1 �− with energies of a few keV.
The muons were axially injected into a 1-m-long,
20-cm-bore solenoid operated at 5 T, containing the muon
entrance detectors and the gas target �see �3��. Two detectors,
based on nanometer-thick carbon foils, signaled the arrival of
slow muons �19�. Muons were stopped in a 20-cm-long tar-
get vessel filled with 0.6 hPa H2 gas �temperature 290 K�,
and �p atoms were formed in a volume of 0.5�1.5
�20 cm3. Twenty large-area avalanche photodiodes
�LAAPD�, each with sensitive area 13.5�13.5 mm2, were
used as x-ray detectors �20�. Muon-decay electrons were de-
tected by a set of plastic scintillators and also by the
LAAPDs. More than 5�105 events, each where an x ray
was followed by an electron, were analyzed.

Calibration data were used for each LAAPD to deduce the
energy Ex and time tx �relative to muon entrance� of a mea-
sured x ray. Typical resolutions �full width at half maximum�
were �Ex /Ex�25% and �tx�35 ns for 2-keV x rays. Most
�p x rays were found in the time interval 300� tx�600 ns,
corresponding to the widely distributed muon slowing-down
times.

The K�, K��	�, and �N time distributions were deter-
mined from a fit of the Ex spectra for different tx intervals.
The useful tx range �0.2–6.5 �s� was divided into 28 inter-
vals �50, 100, and 500 ns wide�. For each interval an Ex
spectrum was produced. Three typical spectra are shown in
Fig. 1, one at times of �p formation and deexcitation �top�
and two at later times. The function fit to each spectrum is
composed of several x-ray lines and a continuous back-
ground. Each line is the sum of a Gaussian peak and a tail
toward lower energies �an LAAPD characteristic�, with
energy-dependent weights �4�.

The lines fitted in Fig. 1 correspond to x rays from �p
�K�, K	, and K��	��, �N �main transitions at 1.67, 3.08,
and 6.65 keV �15��, �O �2.19, 4.02, and 8.69 keV�, and �C
�4.89 keV�. The intensities for the K� and K��	� and 3.08-,
4.02-, 4.89-, and 6.65-keV lines were free parameters,
whereas the relative intensities of the other lines as well as
the positions and widths of all lines were fixed by requiring
global consistency for all data �4� and considering known

yields �21�. The late-time 2-keV peak �see Fig. 1, bottom� is
due to �p x rays from second-muon stops—i.e., muons en-
tering the target at random times shortly after a first muon
which defined tx=0. The �C4→3 �4.89 keV� line at late times
arises from �p atoms drifting to the polypropylene foils in
front of the LAAPDs where muon transfer to C atoms oc-
curred. The continuous background is due to x rays with
energy �10 keV, e.g., �C K- and L-line transitions, whose
deposited charge was not fully amplified by the LAAPDs. It
was well modeled by a sum of an exponential and a linear
function, with two amplitudes as free parameters. The full
details of the extensive background studies are found in �4�.

The fitted intensities �with statistical errors� of the 28 en-
ergy spectra are shown in Fig. 2 as a function of tx, for the
three lines �N �3.08 keV�, �p K��	�, and K�. The late-
time events are caused by second-muon stops. The tx spectra
from different LAAPD positions show �4� that for muons not
stopped during their first pass through the gas target, a con-
siderable fraction was reflected at the gold-plated back side
of the vessel and stopped during the return pass. Conse-
quently, the �N spectrum �showing the muon stop-time dis-
tribution� was represented by a sum of two functions, each
one the convolution of a Gaussian with an exponential �Fig.
2, top�. The simultaneous fit of the three time spectra, using
the common muon stop-time distribution, gives values for
the intensities A��N�, A��	�, and A�.
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FIG. 1. �Color online� X-ray energy spectra �3 of 28� for differ-
ent tx intervals. The fit function is composed of the peaks for �p
K�, K	, K��	�, �N, �O, and �C �4.89 keV�, and a continuous
background �Bgr�.
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The K��	� and K� spectra are delayed and slightly
broadened with respect to �N due to the �p cascade time. It
is not possible to extract the precise shape of the cascade
time distribution from the data, but calculations �5� indicate
that the K��	� cascade has an approximately exponential
time distribution, whereas the K� cascade has the same
asymptotic form, but includes growth behavior at earlier
times. The �N fit function was therefore convoluted with an
exponential �parameter �cas� to obtain the K��	� function
and further convoluted with a Gaussian �parameter 
cas

� � for
the K� function. In addition, free time offsets �T��	� and
�T� �for K��	� and K�, with respect to �N� were intro-
duced. The contribution of the short-lived �p�2S� state was
considered by adding to the K� function a convolution of the

K��	� distribution with an exponential �parameter �̃2S
short� and

a relative population �̃2S
short �normalized for the fit to A��.

A simultaneous fit of the three time spectra was per-
formed, resulting in �2=57.5 for 67 degrees of freedom. The
fit functions and residuals are shown in Fig. 2. The scatter of
the residuals confirms that no relevant systematic deviations
exist between the data and the model. The resulting cascade
time slope is �cas= �26±2� ns. The time shift �T��	�
= �0±5� ns is consistent with zero, as expected for the
K��	� cascade, whereas �T�= �13±5� ns and 
cas

�

= �15±2� ns approximate a K� cascade time distribution
which deviates from an exponential in the first 	20 ns. The
deduced mean cascade times Tcas

��	�=�cas+�T��	�
= �26±5� ns and Tcas

� =�cas+�T�= �39±5� ns, weighted by
the corresponding K-line yields, result in a mean �p cascade
time Tcas

�p = �37±5� ns. �The relative K yields at pH2
=0.6 hPa were deduced from �14� as Y�=0.821�12�, Y	

=0.061�9�, and Y��	�=0.118�11�, and the K	 cascade time
was assumed to be equal to Tcas

��	�.� Tcas
�p depends only weakly

on the fit function details because it essentially reproduces
the center-of-gravity shifts of the K� and K��	� distribu-
tions relative to �N.

The fit results for the 2S tail are �̃2S
short=133−22

+29 ns and
�̃2S

short=1.44−0.46
+0.67%. As shown in Fig. 3, the absence of the 2S

tail, corresponding to �̃2S
short=0, is excluded by 6
. As a test,

the K��	� spectrum was also fit with a “2S” tail. Its ampli-
tude ���	� �normalized to A��	�� is compatible with zero
�within 0.7
� for any �̃2S

short, as expected. We conclude that
our fit function correctly reproduces the muon stop, cascade,
and second-muon time distributions. The difference between
�̃2S

short and ���	� is �̃2S
short−���	�= �1.36±0.28�% at �̃2S

short

=133 ns. A zero value of this difference is excluded by
�4.4
 for any �̃2S

short, confirming that the tail in the K� spec-
trum can only come from 2S quenching.

The measured �̃2S
short and �̃2S

short values have to be corrected
for several effects. The necessary corrections were deduced
from a Monte Carlo simulation of the experiment, based on
the known distribution of Ekin

2S �6� and on calculated cross
sections �9� for process �1� and elastic collisions. It was
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FIG. 2. �Color online� Fit functions �solid line� and residuals
�normalized by the errors� for fits to the x-ray time spectra for the
lines �N �3.08 keV� �top�, �p−K��	� �middle�, and K� �bottom�.
Each point results from a fit of the x-ray energy spectrum for the
corresponding tx interval �50, 100, and 500 ns wide�. The dotted
lines in the �N spectrum are the functions for incoming �inc�, re-
flected �ref�, and second �bg� muons. In the K��	� spectrum the
dotted line is the fit function without cascade time. In the K� spec-
trum the 2S tail—i.e., the contribution of the short-lived �p�2S�
state—is shown as the dotted line. The dashed line is the fit function
minus the 2S tail.
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FIG. 3. �Color online� Relative population �̃2S
short �normalized to

A�� of the short-lived �p�2S� component versus its lifetime �̃2S
short

�without systematic corrections�. The dot represents the best fit.
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found that �i� some �p�2S� atoms reach the target walls be-
fore being quenched; �ii� the solid angle for K� detection
varies with time due to the �p�2S� motion; �iii� because of
collisions, the Ekin

2S distribution depends on time and hence so
do the mean cross sections and �p velocities. Those effects
modify the 2S tail shape at the late times where the experi-
ment is most sensitive. The resulting correction factors are
1.24±0.07 for �̃2S

short and 1.34±0.09 for �̃2S
short. In addition,

�̃2S
short has to be multiplied by �1−�2S

short /���−1 to account for
muon decay and by Y� / �1+�2S

long� to normalize to all �p
atoms. The final result for the radiative lifetime and popula-
tion of the short-lived �p�2S� component at 0.6 hPa �tem-
perature 290 K� is �2S

short=165−29
+38 ns and �2S

short=1.70−0.56
+0.80%.

The results of our experiment can be discussed as follows:
�i� The �p cascade time and the 2S tail have been disen-
tangled from the stop-time distribution for the first time. This
has been made possible by the high statistics, the low gas
pressure, and the good stop-time resolution. The measured
�p cascade time Tcas

�p = �37±5� ns is less than half the �90 ns
value predicted for 0.6 hPa by cascade calculations �5�. The
measured value may be slightly affected by a possible differ-
ence in the �− atomic capture times of N2 and H2 predicted
by some models �22�: the muon energy from which capture
occurs is expected to increase with Z �23�, so �N atoms can
form earlier than �p atoms during the muon stopping, an
effect which would result in an even lower measured Tcas

�p

value. A result which does not depend on such effects is the
measured difference Tcas

� −Tcas
��	�= �13±4� ns, also signifi-

cantly smaller than the calculated value of �25 ns. The cal-
culated cascade times may be too long since Coulomb deex-
citations, which dominate the cascade at high n levels even at
low pH2

�5�, may be accompanied by simultaneous Auger

transitions, an effect not yet considered. �ii� We have com-
pared the measured radiative 2S lifetime with the results of
calculations. Since the existing calculated cross sections ne-
glect molecular effects, we allowed for the extreme cases
where the H2 molecule is taken as two separate H atoms or
as a single atom. Analyzing the simulated data in the time
region where the experiment is sensitive, we obtained a
value of �178±30� ns which agrees well with the experimen-
tal result �2S

short=165−29
+38 ns. This confirms the validity of the

cross sections calculated for �p�2S�+H→�p�2P�+H Stark
transitions �8,9�. The quenching rate for the short-lived 2S
component, when normalized to liquid-hydrogen atom den-
sity �LHD, 4.25�1022 atoms/cm3�, is �2S

quench�LHD�
=7.9−1.6

+1.8�1012 s−1, 	20 times faster than for the long-lived
one �13�. �iii� The sum of the measured relative populations
�2S

short=1.70−0.56
+0.80% and �2S

long�1% �extrapolated to 0.6 hPa,
from �13�� is �2.7±0.8�%, in agreement with the total 2S
population �2S= �2.49±0.17�% at 0.6 hPa deduced directly
from the measured �p K-line yields �14�. We conclude that
there is now good understanding of both the short- and long-
lived �p�2S� dynamics.
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