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TANGENT SPACES AND GROMOV-HAUSDORFF LIMITS

OF SUBANALYTIC SPACES

ANDREAS BERNIG AND ALEXANDER LYTCHAK

Abstract. It is shown that the Gromov-Hausdorff limit of a subana-
lytic 1-parameter family of compact connected sets (endowed with the
inner metric) exists. If the family is semialgebraic, then the limit space
can be identified with a semialgebraic set over some real closed field. Dif-
ferent notions of tangent cones (pointed Gromov-Hausdorff limits, blow-
ups and Alexandrov cones) for a closed connected subanalytic set are
studied and shown to be naturally isometric. It is shown that geodesics
have well-defined Euclidean directions at each point.

1. Introduction

The length metric on subanalytic spaces is far from being understood.
For instance, Hardt’s conjecture from 1983 ([11]), claiming that the metric
is a subanalytic function, remains open. Only after the introduction of L-
regular decompositions by Kurdyka ([12]) and Parusiński ([17]), there has
been some progress in understanding the metric structure of subanalytic
sets (e.g. [10], [4], [13], [16], [8], [18], [1], [2]). However, it seems that many
natural questions are still out of reach.

In this note, we provide results concerning the local structure of subana-
lytic spaces. Our local results rely on the following global theorem.

THEOREM 1.1. Let X ⊂ R × R
n be a compact subanalytic 1-parameter

family of subsets of R
n. Suppose that each fiber Xt := X ∩ ({t} × R

n) is
connected. Then the Gromov-Hausdorff limit limt→0+(Xt, dXt

) exists.

Considering for a single subanalytic space X the family 1
t
X we obtain that

the tangent cone limt→0(X, 1
t
dX , x) of X with respect to the inner metric

dX exists at each point x ∈ X. However, the proof of Theorem 1.1 provides
not only an abstract convergence of isometry classes of spaces but gives us
an explicit metric space in the limit. This allows us to speak about the
tangent space and about differentiability of maps. The next theorem is our
main result concerning the infinitesimal geometry of subanalytic sets.
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THEOREM 1.2. Let X ⊂ R
n be a closed, connected subanalytic set, en-

dowed with the inner metric dX . Then the Gromov tangent space TxX is

naturally isometric to the Alexandrov cone CxX, i.e. each blow up X
(ti)
x is

naturally isometric to CxX. Moreover, these tangent spaces are Euclidean
cones. In particular, the angle between two geodesics starting at x is well-
defined. Each subanalytic Lipschitz map f : (X,x) → (Y, y) is differentiable
at x in the metric sense.

In general, Gromov-Hausdorff convergence is too weak and it does not
allow to compare the topology of the limit space with the topology of the
elements of the convergent sequence. For example collapsing can occur, i.e.
the dimension of the tangent space TxX may be smaller than the dimension
of each neighborhood of x in X. However some structure survives in TxX.
Recall that the density of a k-dimensional subanalytic set X at a point

x ∈ X is given by θ(X,x) := limr→0
Hk(Br(x))

bkrk where bk is the volume of the

k-dimensional unit ball. The existence of the limit is proven in [14]. We
prove

PROPOSITION 1.3. a) The unit sphere in TxX is connected if and
only if this is the case for small spheres Sr(x) in X.

b) The density of X at x equals the ratio of the Hausdorff measure of the
unit ball in TxX and the volume bk of the k-dimensional Euclidean
ball.

Each subanalytic subset X ⊂ R
n defines at each point x ∈ X the so

called subanalytic tangent cone T sub
x X ⊂ R

n (which is the same as the
tangent cone of the metric space (X, de), where de is the Euclidean metric
on X). In general, T sub

x contains less information than the metric tangent
cone TxX, but they are closely related:

THEOREM 1.4. Let X be as above. Then the identity ι : (X, dX ) →
(X, de) is differentiable at x. The differential Dxι : TxX → T sub

x X is a
1-Lipschitz homogeneous map that preserves the distances to the origin and
lengths of arbitrary curves. Moreover each point v ∈ T sub

x X has at most
m = m(X) preimages.

The known results about the inner metric structure of subanalytic sets are
too weak to exclude strange behavior (like oscillations) of geodesics. One of
the keys for the proof of the above results is a regularity result for geodesics.
We show that each geodesic in (X, dX ) has a well defined Euclidean direction
at each point.

Remark 1.1. Theorem 1.1 and Theorem 1.4 are valid for every o-minimal
structure (see [19] for o-minimal structures). . Theorem 1.2 and Proposi-
tion 1.3 are valid for every polynomially bounded o-minimal structure.

In the last section, we will study the semialgebraic case. It turns out
that every closed, rationally bounded semialgebraic set S in Rn, where R
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is any real closed field, defines a compact inner metric space (S̄, d̄S). The
Gromov-Hausdorff limit of a semialgebraic 1-parameter family of such spaces
is again semialgebraic, the limit space is the fiber over the point 0+ in the
real spectrum of R[t].

THEOREM 1.5. Let R be a real closed field. Let X ⊂ R × Rn be a
semialgebraic 1-parameter family of subsets of Rn. Suppose that X ⊂ Ba(0)
for some natural number a and that each fiber Xt := X ∩ ({t} × Rn) is
semialgebraically connected. Let S := X0+ be the fiber over 0+ ∈ SpecrR[t].
Then limt→0+(X̄t, d̄Xt

) = (S̄, d̄S).

Remark that S is again semialgebraic, but over the real closed field k(0+),
which is the field of algebraic Puiseux series over R. The analogous conver-
gence result for the induced metrics on the fibers Xt instead of the inner
metrics was known to be true for some while, see [7].

The main technical ingredient in our proofs is a decomposition, due to
Kurdyka and Orro ([13]), of a given subanalytic set into subanalytic pieces
such that inner and Euclidean metric differ only by a factor near 1. For fur-
ther information concerning the inner metric on subanalytic or more general
stratified spaces, we refer the reader to [18] and [16]. A detailed study of
geodesic metric spaces can be found in [6] and [9].

2. Tangent cones of metric and subanalytic spaces

2.1. Notations. For a metric space (X, d) we will denote by dX the inner
metric on X (which can be infinite if there is no rectifiable path between
two points). The identity id : (X, dX ) → (X, d) is 1-Lipschitz and preserves
lengths of curves. A geodesic in a metric space (X, d) is an isometric em-
bedding γ : [a, b] → X of an interval. Subsets of metric spaces will always
be considered with the induced metric, if not otherwise stated.

By Br(x) we will denote the closed metric ball of radius r around x and
by rX the metric space (X, rd).

2.2. Metric cones. Compare [15] for more on metric cones. A metric cone
is a pointed metric space (X, d, x) together with a (pointwise) continuous
family δt, t ∈ R

+ of maps (dilatations) δt : (X,x) → (X,x), such that
d(δt(y), δt(z)) = td(y, z) and δt ◦ δs = δst . A map between metric cones
is homogeneous if it commutes with the dilatations. A metric cone (T, 0)
is called radial if for each x ∈ T with d(x, 0) = 1 the map t → δt(x) is a
ray, i.e. if d(δt(x), δs(x)) = |t − s|. If (T, 0) is a radial cone we can consider
S = {x ∈ T |d(x, 0) = 1} the unit sphere in T and the Euclidean cone CS
(compare [9]) over S. Then the natural map F : CS → T that sends tx to
δt(x) is homogeneous and bilipschitz.

2.3. Ultralimits and blow-ups. See [6] and [15] for more details. We will
use a fixed non-principal ultrafilter ω on the set of natural numbers. For
pointed metric spaces (Xi, xi) we will denote their ultralimit by limω(Xi, xi).
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Remark that if the isometry classes of proper spaces (Xi, xi) build a rela-
tively compact set with respect to the pointed Gromov-Hausdorff topology,
then the limit limω(Xi, xi) is a proper space and its isometry class is a
pointed Gromov-Hausdorff limit of a subsequence of (Xi, xi).

For a fixed metric space (X,x) and a zero sequence (ti) → 0 we consider

the ultralimit limω( 1
ti

X,x), denote it by X
(ti)
x and call it the blow-up of X

at x at the scale (ti). The base point of the blow-ups will be denoted by 0.
If X is proper, and if the pointed Gromov-Hausdorff limit limt→0(

1
t
X,x)

exists, then all the blow-ups X
(ti)
x are in the isometry class of limt→0(

1
t
X,x).

If f : (X,x) → (Y, y) is an L-Lipschitz map, then for each sequence (ti) →

0 there is an induced L-Lipschitz blow-up f
(ti)
x : (X

(ti)
x , 0) → (Y

(ti)
y , 0).

2.4. Tangent cones and differentials. We refer the reader to [15] for a
detailed study of differential properties of general metric spaces.

Let X be a metric space, x ∈ X. We say that a metric cone (T, 0)
is the tangent cone TxX at x, if for each zero sequence (ti) an isometry

τ (ti) : (T, 0) → (X
(ti)
x , 0) is fixed, such that for each s > 0 and each point

p ∈ T the point τ (sti)(δs(p)) ∈ X
(sti)
x coincides with τ (ti)(p) ∈ X

(ti)
x if the

sets X
(ti)
x and X

(sti)
x are identified in the natural way.

Remark 2.1. The definition implies that all the blow-ups of X at x are
isometric and a fixed metric space (T, 0) in the isometry class of the blow-
ups is fixed. The commutation relations required in the definition are always
satisfied, if the isometries τ (ti) are given in some ”natural” way.

If for metric spaces (X,x) and (Y, y) the tangent cones TxX and TyY
exist, we say that a Lipschitz map f : (X,x) → (Y, y) is differentiable at x if

for each zero sequence (ti) the blow-up f
(ti)
x considered as a map from TxX

to TyY does not depend on the sequence (ti). This unique blow-up is in this
case a homogeneous Lipschitz map. It will be denoted by Dxf and called
the differential of f at x. In particular a Lipschitz curve γ : [0, a) → X

starting at x is differentiable at 0 iff the point v = (γ(ti)) ∈ X
(ti)
x = TxX

is independent of the zero sequence ti. In this case the differential D0γ :
T0([0, a)) = [0,∞) → TxX is given by D0γ(t) = δt(v). We will identify v
with D0γ.

2.5. Alexandrov cone. By Γx we denote the set of all geodesics start-
ing at x. On Λx := Γx × [0,∞) we consider the pseudo metric given by

d((γ1, s1), (γ2, s2)) := lim supt→0
d(γ1(s1t),γ2(s2t))

t
and call its completion the

Alexandrov cone Cx (= CxX). The points (γ, 0) ∈ Γx× [0,∞) are identified
to the origin 0 in Cx and for t ∈ R

+ the maps δt : Cx → Cx are t-dilatations,
that define the structure of a radial metric cone on Cx.

For each zero sequence (ti) → 0 the natural 1-Lipschitz map exp
(ti)
x :

Γx × [0,∞) → X
(ti)
x defined by exp

(ti)
x ((γ, s)) := (γ(sti)) uniquely extends

to a 1-Lipschitz map exp
(ti)
x : Cx → X

(ti)
x .
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Let x be a point in X. Then all the exponential maps exp
(ti)
x are isometric

embeddings iff the limes superior in the definition of the metric on Cx is a
limes. The upper angle and the lower angle between each pair of geodesics
starting at x coincide iff in addition Cx is a Euclidean cone.

2.6. Subanalytic tangent cone. Let T sub
x X denote the subanalytic tan-

gent cone of X at x, i.e. the set

T sub
x X := {v ∈ R

n : ∀ε > 0∃y ∈ X∃λ ∈ [0,∞) : ‖y−x‖ < ε, ‖λ(y−x)−v‖ < ε}

By the curve selection lemma, this is the same as the set of initial vectors
of continuous subanalytic curves starting at x and contained in X. Note
that T sub

x X is a subanalytic cone ([14]).

Remark 2.2. The cone T sub
x ⊂ R

n equals the (metric) tangent cone to the
metric space (X, de) ⊂ R

n at x. A Lipschitz curve γ : [0, ε) → X starting
at x is differentiable as a map to (X, de), iff γ is differentiable at 0 as a
curve in R

n. A subanalytic map f : (X,x) → (Y, y) that is Lipschitz with
respect to the induced metric defines a homogeneous Lipschitz differential
Dsub

x f : T sub
x X → T sub

y Y .

3. Gromov-Hausdorff limit in a subanalytic family

This section is devoted to the proof of Theorem 1.1.

Proof. Let X ⊂ R × R
n be a compact subanalytic set such that Xt :=

X ∩ ({t} × R) is connected.
We use the known fact ([13]) that for each C > 1 the set X can be decom-

posed as finite union X = ∪m
i=1X

i such that each fiber X i
t is subanalytic,

compact, connected with the property that length and induced metric on
Xi

t differ by at most a factor C.
It follows immediately that the diameters of the metric spaces (Xt, dXt

), t ∈
R are uniformly bounded from above by some 0 < D < ∞.

It also follows that the family is equicompact, i.e. for each ε > 0, there
exists N1(ε), independent of t, such that each Xt can be covered by at most
N1(ε) balls of radius ε. Equivalently, there exists N2(ε) such that each ε-
separated net in Xt contains at most N2(ε) points.

Consider two subanalytic curves γ1, γ2 : (0, ε) → X with γi(t) ∈ Xt. We
claim that the limit limt→0+ dXt

(γ1(t), γ2(t)) ∈ [0,∞) exists. This follows
from the theorem of Kurdyka-Orro ([13]) stating that for each η > 0 there

exists a subanalytic distance d̃ : X ×X → R such that d̃(x, y) ≤ dXt
(x, y) ≤

(1 + η)d̃(x, y) for all x, y ∈ Xt. Since the limit limt→0+ d̃(γ1(t), γ2(t))
exists in [0, 2D] (by properties of subanalytic functions), we obtain that
limt→0+ dXt

(γ1(t), γ2(t)) ∈ [0, 2D] exists.
On the space Λsub of subanalytic curve germs γ : (0, ε) → X with γ(t) ∈

Xt this limit defines a pseudo-metric dlim.
Let γ1, . . . , γk be an ε-separated net in Λsub. Then, for small enough

t > 0, γ1(t), . . . , γk(t) is a 2ε-separated net in Xt. By equicompactness,
5
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we get k ≤ N2(2ε) < ∞. The pseudo metric space (Λsub, dlim) is therefore
totally bounded and its completion (Xlim, dlim) is a compact metric space
(by the theorem of Hausdorff).

We claim that (Xlim, dlim) is the Gromov-Hausdorff limit limt→0+ Xt. By
total boundedness of Λsub, there exists a finite ε-dense net γ1, . . . , γk ∈ Λsub.
From the theorem of Kurdyka-Orro we infer the existence of a subanalytic
distance d̃ with d̃ ≤ dXt

≤ 2d̃ for each t. If the subanalytic set {(t, x) :

x ∈ Xt, d̃(x, γi(t)) > 2ε, i = 1, . . . , k} contains points with arbitrarily small
t > 0, the curve selection lemma implies that there is a subanalytic curve
γ ∈ Λsub contained in it. But then dlim(γ, γi) ≥ 2ε for i = 1, . . . , k which is
a contradiction. It follows that γ1(t), . . . , γk(t) form, for t sufficiently small,
a 4ε-dense net in Xt.

Since the Gromov-Hausdorff distance between a compact metric space
and an ε-dense net is at most ε, and since the Gromov-Hausdorff distance
between ({γ1, . . . , γk}, dlim) and ({γ1(t), . . . , γk(t)}, dXt

) tends to 0, the tri-
angle inequality implies that dG−H(Xlim,Xt) → 0 for t → 0. �

Now we consider more closely the case of the tangent space. Let X ⊂ R
n

be a closed subanalytic subset, x ∈ X. Without loss of generality we assume
x = 0. Define Y ⊂ R × R

n as the set of all points y = (t, x) with t > 0
and 1

t
x ∈ X. For r > 0 denote by Y r the subset of all y = (t, x) ∈ Y with

||1
t
x|| ≤ r. The fiber Y r

t of the family Y r is just the ball Brt ⊂ X with the

metric rescaled by 1
t
. By the local conical structure of X, it is connected for

each r > 0 and all sufficiently small t. Therefore the spaces Y r
t considered

with the inner metric are equicompact.
This and the proof of Theorem 1.1 above show, that the pointed spaces

(Yt, dYt
, (t, 0)) = (X, 1

t
dX , x) converge in the pointed Gromov-Hausdorff

topology to the space Λ of all continuous subanalytic curves γ with γ(t) ∈ Yt,
where the metric is defined as in the proof above.

Let Λsub
x X be the set of all continuous subanalytic curves in X starting in

x such that limt→0
||η(t)−x||

t
< ∞. Considering the map Λ → Λsub

x X defined
by γ → η : η(t) = tγ(t) ∈ X, we conclude from the arguments above,

that d(η1, η2) := limt→0
dX(η1(t),η2(t))

t
defines a metric on Λsub

x X and that

the spaces (X, 1
t
dX , x) converge to Λsub

x X in the pointed Gromov-Hausdorff
topology.

As was already mentioned in the introduction we get more than just an
abstract Gromov-Hausdorff convergence.

Corollary 3.1. Let x ∈ X, where X is closed subanalytic. Then the tangent
cone of (X, dX ) at the point x exists and is given by completion of the pseudo-
metric space (Λsub

x X, d).

Proof. The dilatations on Λsub
x X are given by linear reparameterizations and

induce natural dilatations on TxX.
6
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The “exponential maps” exp(ti) : Λsub
x X → X

(ti)
x , η �→ (η(ti)) extend to

isometries on the completion TxX. The commutation relations required in
Subsection 2.4 are obviously satisfied. �

Observe that each γ ∈ Λsub
x X starting at x has a well defined initial

direction v ∈ TxX (i.e. γ is differentiable at 0 as a map from the interval
[0, ε] to (X, dX ) if γ is Lipschitz).

Let now f : (X,x) → (Y, y) be a subanalytic Lipschitz map (with respect
to the inner metrics) between subanalytic sets. One gets a well defined
homogeneous Lipschitz differential Dxf : Λsub

x X → Λsub
y Y, γ �→ f ◦ γ which

extends to a Lipschitz differential Dxf : TxX → TyY .

4. Regularity of geodesics

Let X ⊂ R
n be a closed subanalytic set, x ∈ X a point.

Lemma 4.1. There are C,α, r > 0 (depending on X and x) such that for
each z ∈ X with ‖z − x‖ ≤ r there is a Lipschitz curve γ in X of length at
most ‖z − x‖ + C‖z − x‖1+2α connecting x and z.

Proof. Stratify X such that Whitney’s condition A is satisfied for each
pair of strata. Consider on X \ {x} the stratified vector field V such
that V (y) is the projection of x−y

‖x−y‖ onto TyS, where S is the stratum

containing y. Of course ‖V (y)‖ ≤ 1. Define the subanalytic function

g(t) := sup
{
‖V (y) − x−y

‖x−y‖‖ : y ∈ X, y �= x, ‖y − x‖ ≤ t
}

. If g(t) does not

tend to 0 for t → 0, there is a sequence (yi) tending to x contained in one
single stratum S such that the angle between the tangent space Tyi

S and the
line between x and yi does not tend to 0, in contradiction to Whitney’s con-
dition A. By �Lojasiewicz’ inequality we get g(t) ≤ C1t

2α for some constants
α,C1 > 0.

Consider now a maximal integral curve γ of V starting at z in the stratum
containing z. It converges to a unique point z1 in a stratum of smaller
dimension. Then continue on the maximal integral curve of V starting in z1

and so on. After finitely many steps we get a Lipschitz curve γ connecting
z and x. Let s be the smallest real such that γ(s) = 0 and set γ̄(t) :=
γ(s − t), t ∈ [0, s]. From ‖V (y)‖ ≤ 1 we get L(γ̄) = L(γ) ≤ s and f(t) :=
‖γ̄(t) − x‖ ≤ t for t ∈ [0, s].

Then

d

dt
f2 = 2〈γ̄′(t), γ̄(t) − x〉

= 2

〈
−V (γ̄(t)) +

x − γ̄(t)

‖x − γ̄(t)‖
, γ̄(t) − x

〉
− 2

〈
x − γ̄(t)

‖x − γ̄(t)‖
, γ̄(t) − x

〉
≥ 2f(t) − 2C1t

2αf(t)

We conclude that (for t > 0) f ′(t) ≥ 1 − C1t
2α and therefore ‖z − x‖ =

f(s) =
∫ s

0 f ′(t)dt ≥ s − C2s
1+2α with C2 := C1

1+2α
.

7
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For s sufficiently small, C2s
2α ≤ 1

2 . Replacing this yields s ≤ 2‖z − x‖
and finally L(γ) ≤ s ≤ ‖z − x‖ + C‖z − x‖1+2α with C := 21+2αC2. �

Remark 4.1. This lemma can be reformulated in terms of the identity map
ι : (X, dX) → (X, de) as follows. For each z ∈ X holds de(ι(z), ι(x)) ≥
dX(x, z) − CdX(x, z)1+2α, for some C,α depending on x. Moreover we see
that by the pointed Gromov-Hausdorff convergence (X, 1

t
dX , x) → TxX the

intersections (St(x), 1
t
dX) of the Euclidean spheres with X converge to the

unit sphere in S in TxX.

Now we derive:

PROPOSITION 4.2. Let γ : [0, t] → X be a geodesic starting at x. Then
γ, considered as a curve in R

n, has a unique direction γ+ at 0. Moreover,
there are r,C, α > 0 depending only on X and x such that for all 0 < t ≤ r∥∥∥γ+ − γ(t)−x

‖γ(t)−x‖

∥∥∥ ≤ Ctα.

Proof. We choose r,C, α as in Lemma 4.1 and 0 < t ≤ r. Let first s be a
number with t

2 ≤ s ≤ t. Put z = γ(t) and y = γ(s). In the triangle xyz

we know ||x − y|| ≤ s, ||y − z|| ≤ t − s and ||x − z|| ≥ t − Ct1+2α, with
C = C(X,x).

Using the cosine law for the (Euclidean) triangle xyz we get that the angle
at x between xz and xy is at most C̄tα, for some C̄ = C̄(C).

Thus the directions vt := γ(t)−x
‖γ(t)−x‖ satisfy ‖vt−vs‖ ≤ Ctα for each t > s ≥

t
2 . From this we immediately conclude that vt converge for t → 0 to some v.

Moreover we get ‖vt − v‖ ≤
∑∞

i=0 ‖v2−it − v2−i−1t‖ ≤ CtαΣ∞
i=0(2

α)−i = C̃tα,

with some C̃ depending on C and α. �

5. Comparison between the metric and the subanalytic

tangent cone

The natural embedding ιX : (X, dX ) → R
n is subanalytic and 1-Lipschitz.

Hence ιX is differentiable at x with differential DxιX : TxX → TxR
n = R

n

(see Section 3). The image DxιX(TxX) coincides with T sub
x X. Due to

Remark 4.1, DxιX preserves distances to the origin. If f : (X,x) → (Y, y)
is a subanalytic Lipschitz map with respect to the induced metrics, then
f is also Lipschitz with respect to the length metrics and the differentials
commute, i.e. Dsub

x f ◦ DxιX = DyιY ◦ Dxf .
Fix ε > 0 and let again X = ∪m

j=1Xj be a decomposition in subanalytic
sets such that inner and induced metric agree up to a factor 1 + ε on each
of it. The injection τj : Xj → X is subanalytic, hence it induces a 1-

Lipschitz differential Dxτj : TxXj → TxX. Denote by T̃xXj the image

Dxτj(TxXj) ⊂ TxX. Remark that TxX = ∪m
j=1T̃xXj .

Since the restriction of dX to Xj is (1 + ε)-bilipschitz equivalent to the

induced metric on Xj , the map DxιX : T̃xXj → DxιX(T̃xXj) is (1 + ε)-
bilipschitz. In particular this restriction is injective. This shows that all

8
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fibers of the map DxιX : TxX → T sub
x X have at most m elements. Moreover

T̃xX has a finite decomposition such that each set of this decomposition is
mapped (1 + ε)-bilipschitz under DxιX onto its image in T sub

x X. Since this
holds for each ε > 0 we see that DxιX preserves lengths of curves. These
observations complete the proof of Theorem 1.4.

Now we are going to prove that the tangent cone TxX is a Euclidean cone.
This result is a direct consequence of Theorem 1.4, the fact that T sub

x X is a
Euclidean cone as a subcone of R

n and the following:

Lemma 5.1. Let T be a metric cone that is in addition a geodesic metric
space. Let ι : T → CV be a homogeneous 1-Lipschitz arclengths preserving
map onto an Euclidean cone CV , that preserves the distance to the origin.
Then T is an Euclidean cone.

Proof. Let S be the unit sphere in T . It is mapped by ι to V . For x ∈ S
the image ι(δt(x)) = δt(ι(x)) is a radial ray in CV . Since ι preserves the
lengths of curves we see that δt(x) and δ(s)(x) have distance at most |s− t|.
Therefore T is a radial cone.

The restriction ι : S → V is again 1-Lipschitz and preserves lengths of
curves. Let S̃ be the set S considered with the inner metric. Consider the
Euclidean cone CS̃ and the natural bijection F : CS̃ → T . Observe that
the composition ι ◦ F : CS̃ → CV preserves the lengths of curves. Since so
does the map ι : T → CV and since CS̃ and T are geodesic metric spaces, it
is enough to see that the bijection F preserves the class of Lipschitz curves.
But so does the natural 1-Lipschitz map Id : CS̃ → CS and by Subsection
2.2 the natural map F : CS → T is bilipschitz. This finishes the proof. �

6. Connectivity

Proof of Theorem 1.3, a). Let X be a closed subanalytic space, x ∈ X.
By local conical structure of X, the (Euclidean) ball Br(x) around x is
homeomorph to the cone over the (Euclidean) sphere Sr(x) for r > 0 small
enough. Suppose that Sr(x) is not connected and let S1, S2, ..., Sk be its con-
nected components. They correspond to connected components B1, ..., Bk

of Br(x) \ {x}. Since each dX-geodesic between points from different com-
ponents Bi and Bj must run through x, we see that for the closed subcones
TxBi of TxX holds TxBi ∩ TxBj = {0}. Therefore TxBi \ {0} is open and
closed in TxX \ {0} and the unit sphere in TxX is not connected.

Assume on the other hand that Sr is connected for small r. Observe
that by the convergence (X, 1

t
dX , x) → TxX the spheres (Sr,

1
r
dX) converge

to the unit sphere in TxX. But 1
r
Sr is a subanalytic family of bounded

connected subanalytic subsets for r > 0. By the equicompactness of the
family (see Section 3) the fibers Sr of the family have uniformly bounded
diameters with respect to the inner metrics dSr

. Hence the unit sphere in
TxX is connected. �

9



ht
tp

://
do

c.
re

ro
.c

h

For a vector v ∈ R
n and ρ > 0 denote by K(v, ρ) the set of all vectors

w ∈ R
n with 〈v,w〉 ≥ (1 − ρ)‖v‖‖w‖. In the next section we will use:

Lemma 6.1. Let X be a subanalytic space, 0 ∈ X. Let v ∈ T sub
0 X be a

direction. For the canonical map D0ιX : T0X → T sub
0 X let I be the finite

set D0ι
−1
X (v). Then for some ρ > 0 the intersection Y of X with the cone

K(v, ρ) has the property, that different points of I lie in different components
of T0Y \ {0}

Proof. If v = 0 then D0ι
−1
X (v) = {0} and the claim is trivial. If v �= 0 we

may assume that ‖v‖ = 1. Let 5s be the minimal distance of two points in
I. Let U1, U2, . . . be a sequence of neighborhoods of v in Ssub with diameters
tending to 0. If for each i = 1, 2, . . . there exists a point wi ∈ D0ι

−1
X (Ui) with

d(wi, I) ≥ s, we can (by compactness of the unit sphere S ⊂ TxX) extract
a converging subsequence of (wi). If w denotes its limit, then d(w, I) ≥ s
and D0ιX(w) = v, contradiction. Therefore, for some i, the intersections of
D0ι

−1
X (Ui) with balls of radius 2s around points of I are open and closed

in D0ι
−1
X (Ui). Taking ρ so small that K(v, ρ) ∩ Ssub is contained in this

neighborhood Ui, we obtain the result. �

7. Finer properties of the tangent cone

Now we are going to compare the tangent cone with the Alexandrov cone
at the given point. We start with:

Lemma 7.1. Let X be a closed connected subanalytic space and suppose
0 ∈ X. Let γ be a Lipschitz curve in X starting at 0, that has a Euclidean
differential v ∈ T sub

0 X at 0. Then γ is also differentiable at 0 as a curve
into (X, dX )

Proof. Consider the cone K(v, ρ) as in Lemma 6.1 and set Y = X ∩K(v, ρ).
Then a small starting part of γ is contained in Y and it is sufficient to
prove that γ is differentiable at 0 as map into (Y, dY ). We may assume that
||v|| �= 0. Then a beginning part of γ is contained in a connected component
C of (Br(0) ∩ Y ) \ {0}. By Theorem 1.3 a) and Lemma 6.1 the restriction
ι : T0C → T sub

0 C has the property that i−1(v) has only one point w. But for

each zero sequence ti the point (γ(ti)) ∈ C
(ti)
0 = T0C is mapped by ι onto

v. Hence (γ(ti)) = w and we are done. �

Together with Proposition 4.2 this shows that geodesics are differentiable
as maps into (X, dX ). In particular for geodesics γ1 and γ2 starting at x

and for each s ≥ 0 the generalized angle limt→0
d(γ1(st),γ2(t))

t
is well defined.

Hence the exponential maps exp
(ti)
x : CxX → TxX are isometric embeddings.

Since TxX is a Euclidean cone, the same is true for CxX and the usual angle
between geodesics is well defined too.

The next lemma finishes the proof of Theorem 1.2:
10
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Lemma 7.2. In the above notations the exponential maps exp
(ti)
x : CxX →

X
(ti)
x = TxX are surjective.

Proof. It is enough to prove that for a curve η ∈ Λsub
x , with starting direction

v in the unit sphere S of TxX, a geodesic γn between x and η( 1
n
) with starting

direction vn ∈ S holds vn → v. Consider again the intersection Y of X with
a small cone K(ι(v), ρ) as in the last lemma. Let C be the component of
(Br(x) ∩ Y ) \ {x} containing η. Due to Lemma 4.1 the geodesics γn are
contained in Y for big n. Moreover ι(vn) converge to ι(v). Hence for each
limit point w of vn holds ι(w) = ι(v). Since v is the only preimage point of
ι(v) in T0C, we obtain v = w and finish the proof. �

Remark 7.1. The (natural) equality between the tangent cone TxX and the
Alexandrov cone CxX implies directly (compare [15]), that each isometry
between subanalytic spaces is differentiable at each point. This reflects the
fact, that the tangent cones, although they are defined in subanalytic terms,
are in fact purely metric invariants of X, not only as isometry classes (which
is trivial) but as metric spaces.

8. Measure and dimension

Let X be a compact subanalytic set. Then due to the decomposition of
X in pieces where dX and de coincide up to some factor near 1, we see that
the identity ι : (X, dx) → (X, de) preserves the Hausdorff measures Hl, for
each l ∈ R

+.
On the other hand the Hausdorff dimension k of X coincides with its

topological dimension and is given by the dimension of the maximal stratum
in a stratification of X. Moreover the k-dimensional Hausdorff measure is
finite on bounded subsets and is positive on each k-dimensional subanalytic
subset.

The same statements hold true for the subanalytic tangent cone T sub
x .

Since TxX has a finite decomposition such that Dxι : TxX → T sub
x X is

almost 1-bilischitz on pieces of the decomposition, we see that the Haus-
dorff dimension of TxX coincides with the Hausdorff dimension of T sub

x X.
Moreover if the restriction of Dxι onto a subset U of TxX is injective, then
Dxι : U → Dxι(U) preserves the Hausdorff measure. Finally restricting ι to
the preimage of a maximal stratum of a stratification of T sub

x X, we see that
TxX contains an open subset homeomorph to a dim(T sub

x X)- dimensional
ball. Hence the topological dimension of TxX coincides with its Hausdorff
dimension.

Proof of Theorem 1.3, b). Choose ε > 0 and a decomposition X = ∪m
i=1Xi∪

Y such that X1, . . . ,Xm are ε-analytic pieces ([14]) and dim Y < k. Then
dim(TxY ) = dim(T sub

x Y ) ≤ dim Y < k. Since TxXi ∩ TxXj ⊂ TxX is
contained in TxY it is therefore enough to prove the proposition in the case
where X is the closure of a single subset Xi. In this case TxX = T sub

x X and
the result was shown in ([14], Proposition 3.6. and Theorem 3.8). �

11
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Remark 8.1. Suppose that v ∈ T sub
x X is moreover contained in the pure

tangent cone ([14]). Then the multiplicity n(x) defined as in [14] equals the
cardinality of the fiber of the map Dxι : TxX → T sub

x above v. This follows
by a similar argument as above.

9. Semialgebraic metric spaces

In a naive sense, the Gromov-Hausdorff limit of a semialgebraic family
will not be semialgebraic. Consider for instance a family of ellipsoids getting
thinner and thinner. The limit space is a double disc, which is not isometric
to the semialgebraic limit consisting of a single disc. But we will show that
such a limit space can be obtained as inner metric space associated to a
semialgebraic set over some real closed field R.

For the notions of semialgebraic sets, real spectrum and fiber of a semi-
algebraic family over a point in the real spectrum we refer to [5].

Let R be a real closed field. Let A be the convex hull of Z ⊂ R. Then
A is a valuation ring of R. We denote by mA its maximal ideal and by
π : A → A/mA the canonical projection. The field A/mA is archimedean
and can therefore be uniquely identified with a subfield of R. We define
the real place λR : R → R ∪ {∞} by setting λR(x) = ∞ if x /∈ A and
λR(x) := π(x) if x ∈ A.

An alternative way to define λR is given by λR(x) = inf{r ∈ Q : r > x}
(with the convention inf ∅ = inf Q = ∞).

Let S ⊂ Rn be a closed connected semialgebraic set. A path in S is a
continuous map γ : [0, 1] → S, where [0, 1] ⊂ R is the closed unit interval in
R. The length of γ is defined by

l(γ) := sup

{
λR

(
k−1∑
i=0

‖γ(ti+1) − γ(ti)‖

)
: 0 = t0 < t1 < . . . < tk = 1

}

The distance between two points x, y ∈ S is defined by

dS(x, y) := inf{l(γ) : γ is a path between x and y} ∈ R ∪ {∞}

Note that this is a real number and not a number in R.

Definition 9.1. A metric space (X, d) is called semialgebraic if there exists
a real closed field R, an integer n, a closed connected semialgebraic set S ⊂
Rn such that (X, d) equals the completion of (S, dS).

Proof of Theorem 1.5. We first construct a semialgebraic set S and show
afterwards that it is the Gromov-Hausdorff limit of the family. Let R ′ :=
R(t)∧alg denote the (real closed) field of algebraic Puiseux-series in the pa-

rameter t. Equivalently, R′ is the real closed field associated to the point 0+

in the real spectrum of R[t].
An element γ ∈ R′ can be identified with the germ at 0+ of a continuous

semialgebraic curve γ : (0, ε) → R (ε ∈ R).
12
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Let S := X0+ ⊂ (R′)n be the fiber of X above 0+. S consists of those
semialgebraic curve germs with γ(t) ∈ Xt for all sufficiently small t > 0. We
will show that (S̄, d̄S) is the Gromov-Hausdorff limit of the family X.

Lemma 9.1. Let X ⊂ R × Rn be a semialgebraic family which is closed,
rationally bounded (i.e. there exists a natural number a with X ⊂ Ba(0))
and fiberwise semialgebraically connected. Then, for any rational number
C > 1, there exists a decomposition X = ∪m

i=1X
i such that each X i

t is
connected and such that for x, y ∈ X i

t

λR(‖x − y‖) ≤ dXi
t

(x, y) ≤ CλR(‖x − y‖)

and such that for γ1, γ2 ∈ Xi
0+

λR′(‖γ1 − γ2‖) ≤ dSi(γ1, γ2) ≤ CλR′(‖γ1 − γ2‖).

The proof of the lemma is by extending the proof contained in [13] (which
is based on [12]) to arbitrary real closed field. In most parts of the proof,
one can just replace R by R. This is not the case for the compactness of
the Grassmannians used in [12], but this can be easily replaced by model
completeness.

We continue the proof of the theorem. Let ε > 0 be a rational number.
Apply the above Lemma (with C := 2) to X. Let x1, . . . , xk ∈ Xi

t be an
ε-separated net (with respect to dXt

). Then, if j1 �= j2, λR(‖xj1 − xj2‖) ≥
ε
2

which implies that ‖xj1 − xj2‖ ≥ ε
4 .

The size of an ε
4 -separated net in B(0, a) is bounded by a function of ε

and a. This is trivial if R = R (by considering the volume) and follows by
model completeness for all real closed R.

Therefore, the size of an ε-separated net in Xt is bounded by a number
which only depends on ε, a,m, but not on t. It follows that the family of
pseudo-metric spaces (Xt, dXt

) is equicompact. In particular, each (Xt, dXt
)

is totally bounded, which implies (by the theorem of Hausdorff) that the
completion (X̄t, d̄Xt

) is compact.
By the same reasoning, the space (S, dS) is totally bounded and its com-

pletion (S̄, d̄S) compact.
Choose a rational C > 1 and a decomposition X = ∪m

i=1X
i as in the

lemma. Similarly as in [13], we define a semialgebraic function d̃ : X ×X →
R by d̃(x, y) := 0 if x and y lie in different fibers and

d̃(x, y) := inf

{
m′−1∑
i=0

‖xi − xi+1‖ : x = x0, x1, . . . , xm′ = y is a chain, m′ ≤ m

}

Here the word “chain” means that two consecutive of the xi lie in the closure
of one of the X i

t (where t is fixed). It is clear from the definition that d̃ is
bounded by the natural number 2ma.

By the lemma, we get for x, y ∈ Xt

λR(d̃(x, y)) ≤ dXt
(x, y) ≤ CλR(d̃(x, y))
13
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and for γ1, γ2 ∈ S = X0+

λR′(d̃(γ1, γ2)) ≤ dS(γ1, γ2) ≤ CλR′(d̃(γ1, γ2)).

Let γ1, γ2 be two points in X0+ . Using the fact that the limit
limt→0+ d̃(γ1(t), γ2(t)) ∈ R exists (since d̃ is bounded by 2ma and semi-
algebraic and γ1, γ2 are semialgebraic) and using the alternative description
of λR, λR′ , we obtain

lim
t→0+

λR(d̃(γ1(t), γ2(t)) = λR′(d̃(γ1, γ2)).

From this we conclude

1

C
lim sup

t→0+

dXt
(γ1(t), γ2(t)) ≤ dS(γ1, γ2) ≤ C lim inf

t→0+
dXt

(γ1(t), γ2(t)).

Since C was an arbitrary rational number with C > 1, it follows that

dS(γ1, γ2) = lim
t→0+

dXt
(γ1(t), γ2(t)).

Now we continue the proof as in Section 3 (replacing “subanalytic” by
“semialgebraic”) to see that (S̄, d̄S) equals the Gromov-Hausdorff limit
limt→0+(X̄t, d̄Xt

). �

Remark 9.1. The above proof, applied to a constant family, shows that the
metric space associated to a rationally bounded, connected, closed semial-
gebraic set is compact. Since the Gromov-Hausdorff distance between two
compact metric spaces vanishes if and only if they are isometric, the metric
space associated to an extension of a semialgebraic S to another real closed
field ([5]) gives rise to the same metric space.

Remark 9.2. The Hausdorff limit of the family X at 0+ is given by λR(S),
endowed with the Euclidean metric ([7]). This shows that tangent cone and
semialgebraic tangent cone at a point x of a closed semialgebraic set are
given by the same semialgebraic set, but the former gets the length metric
and the latter gets the Euclidean metric.
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